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Abstract Climate change, the global energy footprint, and strategies for sustainable
development have become topics of considerable political and public interest. The pub-
lic debate is informed by an exponentially growing amount of data and there are diverse
partisan interest when it comes to interpretation. We therefore believe that data analysis
methods are called for that provide results which are intuitively understandable even
to non-experts. Moreover, such methods should be efficient so that non-experts users
can perform their own analysis at low expense in order to understand the effects of
different parameters and influential factors. In this paper, we discuss a new technique
for factorizing data matrices that meets both these requirements. The basic idea is to
represent a set of data by means of convex combinations of extreme data points. This
often accommodates human cognition. In contrast to established factorization meth-
ods, the approach presented in this paper can also determine over-complete bases.
At the same time, convex combinations allow for highly efficient matrix factoriza-
tion. Based on techniques adopted from the field of distance geometry, we derive a
linear time algorithm to determine suitable basis vectors for factorization. By means
of the example of several environmental and developmental data sets we discuss the
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performance and characteristics of the proposed approach and validate that significant
efficiency gains are obtainable without performance decreases compared to existing
convexity constrained approaches.

Keywords Matrix factorization · Convex combinations · Distance geometry ·
Large-scale data analysis

1 Introduction

Questions as to the sustainability of economic growth, energy consumption, and agri-
cultural production have become the focal point of worldwide debate. Issues like
globalization, climate change, and economic turmoil add heat to the public discus-
sion and exegesis of the available scientific data differs considerably among different
interest groups.

Following David MacKay’s arguments (MacKay 2009), we believe that what the
debate on sustainability needs is less emotions but a better understanding of data. This
immediately begs the question of how the massive amounts of data that accumulate
each day can be made widely understandable. Charts and diagrams may speak a clear
language to the experts, but there is too much at stake to exclude the public from the
discussion. Given these premises, we believe that data analysis methods are called that
fulfill the following requirements:

(R1) They provide intuitively understandable results that are accessible even to non-
experts.

(R2) They scale to massive data sets and thus allow for analysis at low expenses.

In this paper, we discuss a new technique for statistical data analysis that rises to these
challenges.

Specifically, we address the problem of latent components analysis for very large
data collections. For this purpose, matrix factorization algorithms have proven to be
a viable tool. Similar to earlier work by Cutler and Breiman (1994) and Ding et al.
(2010), our basic idea is to search for certain extremal elements in a set of data and to
represent the data by means of convex combinations of these archetypes. The benefits
of this archetype analysis are twofold:

– It accommodates human cognition, since memorable insights and experiences typ-
ically occur in form of extremes rather than as averages. Philosophers and Psy-
chologists have noted this for long, since explanations of the world in terms of
archetypes date back to Plato. According to C.G. Jung, it is the opposition that
creates imagination. Every wish immediately suggests its opposite and in order to
have a concept of good, there must be a concept of bad, just as there cannot be
an idea of up without a concept of down. This principle of opposites is best sum-
marized by Hegel’s statement that “everything carries with it its own negation”.
The only way we can know anything is by contrast with an opposite. By focusing
on extreme opposites, we simply enlarge the margin of what we know and in turn
our chance to separate things.

– As we will show below, convex combinations allow for highly efficient data pro-
cessing. One the key contributions of the present paper is to adopt techniques
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from the field of distance geometry (Blumenthal 1953) to derive a linear time
algorithm that determines suitable basis vectors for convexity constrained matrix
factorization. In contrast to other factorization methods, this new approach can also
determine over-complete bases where the number of basis elements exceeds the
dimensionality of the embedding space. Over-complete representations have been
advocated because they are more robust in the presence of noise, can be sparser,
and may better capture internal structures of the data.

The novel algorithm to determine convexity constrained latent components we present
is called Simplex Volume Maximization. Simplex Volume Maximization runs in linear
time and is—to the best of our knowledge—the fastest algorithm to date for solving
the task at hand. Further, it is the first algorithm in this area that does not require sub-
sampling in order to handle gigantic matrices. With respect to common error measures
such as the Frobenius norm, it shows a similar or even better performance than related
methods. Moreover, as the algorithm only relies on iterative distance computations, it
inherently allows for parallelization and is well suited for massive data analysis appli-
cation. By means of the example of several environmental and developmental data
sets we discuss the performance and characteristics of the proposed approach. Our
exhaustive experimental results show that significant efficiency gains are obtainable
without performance decreases compared to existing convexity constrained matrix
factorization approaches.

We proceed as follows. After touching upon related work, we provide several
motivating examples for our work in Sect. 3. Then, after introducing our notation in
Sect. 4 and formalizing the problem in Sect. 5, we devise a new algorithm for simplex
volume maximization in Sects. 6 and 7. Before concluding, we present the results of
our experimental evaluation. All major proofs can be found in the Appendix.

2 Related work

Understanding data by unmixing its latent components is a standard technique in
data mining and pattern recognition. Latent factor models and component analysis
have a particularly venerable tradition in psychology and sociology (Spearman 1904;
Hotelling 1933) but are also commonly applied in disciplines such as physics (Aguilar
et al. 1998; Chan et al. 2003), economics (Lucas et al. 2003), or geology (Chang et al.
2006; Miao and Qi 2007; Nascimento and Dias 2005).

The main idea is to acquire a descriptive representation by explaining a set of data
as a linear combination of certain important latent components. In this paper, we con-
sider representations that can be formulated as a matrix decomposition problem where
a data matrix is approximated by the product of a factor matrix and a matrix of mixing
coefficients. Given this basic setting, different methods for discovering latent compo-
nents differ by the constraints they impose on the two matrix factors. For example, the
k-means clustering algorithm can be understood as a matrix factorization problem
where the data is supposed to be explicable by means of a single centroid or basis vector
per data sample which corresponds to a unary constraint on the coefficient matrix. Non-
negative matrix factorization (NMF) as popularized by Lee and Seung (1999) explains
the data by means of a non-negative combination of non-negative basis vectors.
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In this paper, we focus on a type of constraint that restricts the representation to con-
vex combinations of latent components. Previous contributions that incorporate this
kind of constraint include Archetypal Analysis (AA) according to Cutler and Breiman
(1994), Convex-NMF (C-NMF) as introduced by Ding et al. (2010), Convex-hull NMF
(CH-NMF) proposed by Thurau et al. (2009), and Hierarchical Convex-hull NMF
(HCH-NMF) presented by Kersting et al. (2010).

Convexity constraints result in latent components that show interesting properties:
First, the basis vectors are included in the data set and often reside on actual data
points. Second, convexity constrained basis vectors usually correspond to the most
extreme data points rather than to the most average ones. Both these properties typ-
ically cause the basis elements to be readily interpretable even to non-experts. The
usefulness of convexity constrained latent component detection has been noted in var-
ious fields. For example, in geoscience it is also referred to as Endmember Detection
and is used in the analysis of spectral images. The most commonly applied algorithm
in this community is N-FINDR (Winter 1999). In economics, the latent components
are often called archetypes in reference to the Archetypal Analysis algorithm due
to Cutler and Breiman (1994). Unfortunately, both these algorithms are examples of
brute force techniques that scale quadratically with the number of data and are thus
too demanding w.r.t. computation time to allow for the processing of more than a few
hundred samples.

Owing to the exponential increase of available data, techniques based on matrix
factorization are now being tailored to the analysis of massive data sets. Recently, we
introduced a new algorithm that is applicable to very large data sets (Thurau et al.
2009, 2010). By means of either informed or random projections of data into 2D sub-
spaces, we perform an efficient subsampling of possible archetypal candidates. On the
subsampled data, conventional AA or C-NMF can be run in reasonable time. A disad-
vantage of this approach lies in its sensitivity to high dimensional data. A dense sub-
sampling based on many projections would be again too demanding, while a coarser
subsampling might sacrifice possibly good basis vector candidates. Other recently
proposed techniques for efficient matrix factorization suffer from similar problems:
Using random matrices to compute low rank approximations based on theorems by
Achlioptas and McSherry (2007) leads to basis vectors that lack interpretability as do
the basis elements that result from the sampling based CUR decomposition introduced
by Drineas et al. (2006).

3 Basic idea via motivating examples

The key technical problem we solve in this paper is finding latent components in
(massive) data sets that are easy to interpret. We formulate the problem as a constrained
matrix factorization problem aiming at minimizing the Frobenius norm between a data
matrix and its approximation. Based on two theorems, which we will derive from prin-
ciples of distance geometry, we then show that for convexity constrained factorizations
minimizing the Frobenius norm is equivalent to maximizing the volume of a simplex
whose vertices correspond to basis vectors. This basic idea is illustrated in Fig. 1.
Because convexity constrained basis vectors usually correspond to the most extreme

123



Descriptive matrix factorization for sustainability 329

(a) (b) (c) (d)

Fig. 1 Illustration of the approach proposed in this paper. Given a data matrix V = [v1, . . . , vn ], we deter-
mine a basis of extreme points W = [w1, . . . , wk ], k � n, to represent the data using convex combinations
V ≈ WH. The coefficients in H = [h1, . . . , hn ] result from solving constrained quadratic programs, its
columns are non-negative and sum to one. This perfectly reconstructs those points of V inside the hull of
W; points on the outside are projected to the nearest point on the hull (best viewed in color). (a) data V,
(b) basis W = VG, (c) V ≈WG, (d) pv|W1. (Color figure online)

data points and not to the most average ones, this increases interpretability. The rest
of this section illustrates this increased interpretability on several environmental data
sets. For a brief description of the used factorization methods as well as of the data
sets, we refer to the following sections, in particular to the experimental evaluation in
Sect. 8.

Computational sustainability problems arise in different domains, ranging from
wildlife preservation and biodiversity, to balancing socio-economic needs and the
environment, to large-scale deployment and management of renewable energy sources.
Consider a rather classical domain: climate. As the climate system is characterized
by highly complex interactions between a large number of physical variables, it is
a challenging task for researchers to break up the complicated structures into a few
significant modes of variability. Matrix factorization methods can be used to compute
automatically a reduced-dimensional representation of large-scale non-negative data
and, in turn, to extract underlying features. Consider for example Fig. 2. It shows the
basis vectors (kind of cluster representatives) found by several non-negative matrix
factorization1 methods applied to the Historical Climatography Series (HCS) tempera-
ture normals for the period between January 1961 and December 2000 for U.S. States.2

The data consists of monthly averaged temperatures for all U.S. States. Although clas-
sical NMF finds meaningful clusters (it seems to group together U.S. States with (a)
hot summers and (b) cold winters), the clusters are difficult to understand without
additional knowledge about the states: They do not correspond to actually observed
data. In contrast, the results of the constraint NMF versions are readily interpretable
even to non-expert users: they represent the data as convex combinations of extreme
data points. That is, the maps in Fig. 2e–p show actual average temperatures for U.S.
States. By assigning the corresponding month to each basis vector, we can easily ver-
ify that the basis vectors essentially span the four seasons: (e) cold winter, (f) spring,
(g) hot summer, and (h) warm fall. Moreover, they characterize the variations among
individual samples. For instance, the maps indicate that Maine “experiences a humid

1 For a more detailed description of the techniques we refer to the subsequent sections. In particular, for
“Robust” CH-NMF we refer to Sect. 8.
2 Available as HCS 4-1 from http://cdo.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl?
directive=prod_select2&prodtype=HCS4&subrnum=.
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(g) (h)

(a) (b) (c) (d)

(e) (f)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2 Resulting basis vectors (BV) for NMF (a)–(d), SiVM (e)–(h) as proposed in this paper, CH-NMF
(i)–(l), and robust CH-NMF (m)–(p) on the Historical Climatography Series (HCS) temperature normals
for the period between January 1961 and December 2000 for U.S. States. The data consists of monthly
averaged temperatures for all U.S. States. Triggered by the four seasons, we computed factorizations using
4 basis vectors. The colors vary smoothly from lilac (low values) to magenta (high values). Because SiVM
and (robust) CH-NMF are constructed from actual data points, they are more easily interpretable by indi-
viduals than NMF. We could easily assign the month and years of basis vectors found. One can also see that
robust CH-NMF covers the year more uniformly. In contrast, the NMF results are very different and require
additional interpretation efforts: the values (colors) do not correspond to actual temperatures. It seems to
group together U.S. States with hot summers (a) and cold winters (b) (best viewed in color). (a) NMF BV
1, (b) NMF BV 2, (c) NMF BV 3, (d) NMF BV 4, (e) SiVM Jan. ’77, (f) SiVM May. ’94, (g) SiVM Jul.
’80, (h) SiVM Nov. ’85, (i) CH-NMF Jan. ’77, (j) CH-NMF Feb. ’63, (k) CH-NMF Jul. ’87, (l) CH-NMF
Dec. ’94, (m) Robust Jan ’91, (n) Robust Apr ’64, (o) Robust Aug ’96, (p) Robust Dec. ’62. (Color figure
online)

continental climate, with warm (although generally not hot), humid summers. Winters
are cold”.3

As the next example, let us consider precipitation data. The basis vectors of several
non-negative matrix factorization methods applied to the HCS precipitation normals
for the period between January 1961 and December 2000 for U.S. States4 are shown in
Fig. 2. The data consists of monthly averaged precipitations for all U.S. States. Here,

3 Wikipedia, read on June 4, 2010; http://en.wikipedia.org/wiki/Maine#Climate.
4 Available as HCS 4-2 from http://cdo.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl?
directive=prod_select2&prodtype=HCS4&subrnum=.
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(e) (f) (g) (h)
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Fig. 3 Resulting basis vectors (BV) for NMF (a)–(d), SiVM (e)–(h) as proposed in this paper, CH-NMF
(i)–(l), and robust CH-NMF (m)–(p) on the Historical Climatography Series (HCS) precipitation normals
for the period between January 1961 and December 2000 for U.S. States. The data consists of monthly
averaged precipitations for all U.S. States. Triggered by the four seasons, we computed factorizations using
4 basis vectors. The colors vary smoothly from cyan (low values) to dark blue (high values). The basis
vectors of SiVM and CH-NMF are actual data points so that they are more easily interpretable by individ-
uals than NMF: the values (colors) are actual precipitations. We could easily assign the month and years
of basis vectors found. The robust variant again distributes the basis vectors more uniformly across the
year. In contrast to the temperatures shown in Fig 2, NMF finds basis vectors similar to those from the
other methods. Note, however, that the values (colors) do not correspond to actual precipitations; they have
been re-scaled for the sake of visualization. More interestingly, NMF does not capture the variability of the
data as well as convex counterparts: months with little precipitation across the country (h, l, p) are missing
(best viewed in color). (a) NMF BV 1, (b) NMF BV 2, (c) NMF BV 3, (d) NMF BV 4, (e) SiVM Mar. ’80,
(f) SiVM Sept. ’99, (g) SiVM Dec. ’82, (h) SiVM Oct. ’63, (i) CH-NMF Mar. ’75, (j) CH-NMF Jun. ’72,
(k) CH-NMF Jun. ’93, (l) CH-NMF Oct. ’63, (m) Robust Jan ’78, (n) Robust Mar. ’80, (o) Robust Jun. ’93,
(p) Robust Oct. ’63. (Color figure online)

the methods find similar results. However, we note that the NMF basis vectors do
not correspond to actual data points and are not indicative of characteristic variations
among individual samples. In contrast, Fig. 3g, m–p indicate that rain is common
for Washington State in winter. This at least matches well Wikipedia’s description
of Seattle, Washington States’s capital.5 Nevada receives rather scarce precipitation

5 Read on June 4, 2010; http://en.wikipedia.org/wiki/Seattle#Climate.
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during the year.6 In general, we can easily see that October can be a month with little
precipitation across the country (h,l,p). It is difficult—if not impossible — to read all
this off the NMF basis vectors without additional knowledge.

Finally, consider another classical domain: energy consumption. The International
Energy Outlook7 2010 by the U.S. Energy Information Administration (EIA) expects
that the “world marketed energy consumption increases by 49% from 2007 to 2035
in the Reference case. Total energy demand in the non-OECD countries increases
by 84%, compared with an increase of 14% in the OECD countries.” Rising energy
consumption, however, grows the concern about global warming. Similar to climate
data, energy consumption is characterized by highly complex interactions between
a large number of variables, so that again it is a challenging task to break up the
complicated structures into a few significant modes of variability. Figure 4 shows
abundance maps for the basis vectors found by several non-negative matrix factoriza-
tion approaches applied to the yearly total electricity consumption data for the world’s
countries in the period of 1980 till 2008 as reported by the EIA.8 Here, an abundance
map essentially shows how well a country’s electricity consumption is explained by
a single basis vector. As one can see, it is again difficult—if not impossible without
additional efforts—to extract any meaningful insides from NMF’s abundance maps
(a,d,g,j). They simply represent the countries with the highest electricity consumption:
USA, China, and Russia. In contrast, the convexity constraint allows us to associate
a country with each basis vector. In turn, other countries’ energy consumption can be
explained in terms of the associated one. For instance, robust CH-NMF nicely groups
the world’s countries into (c) industrialized countries with high electricity consump-
tion represented as Spain, (f) desert-like countries represented by Taiwan , (i) energy
efficient Scandinavian-like countries represented by Poland, and (l) low energy con-
sumption countries such as the African ones or Greenland represented by the Solomon
Islands.

These simple examples expose requirement R1 from the introduction: data analysis
methods should provide intuitively understandable results that are accessible even to
non-experts. As already envisioned by such eighteenth-century philosophers as Jean
Jacques Rousseau, John Locke, and John Stuart Mill, government requires that every-
one have the right to influence political and environmental decisions that affect them.
A basic assumption is that everyone is—or should be—essentially equal, in both their
concern for environmental issues and their competency to make decisions about them.
However, in order to make these decisions, (at least informed) individuals need accu-
rate and understandable models. In this sense, classical NMF might not always be the
best choice for a problem at hand.

Moreover, computational sustainability problems may involve massive data sets.
As an example that we will also investigate in our experimental evaluation consider
hyperspectral images. They are often used in fields such as oceanography, environ-
mental science, snow hydrology, geology, volcanology, soil and land management,

6 Wikipedia, read on June 4, 2010; http://en.wikipedia.org/wiki/Nevada#climate.
7 See http://www.eia.doe.gov/oiaf/ieo/highlights.html.
8 Available from http://tonto.eia.doe.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=2.
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(a) (b) (c)

(d) (e) (f)

(g)

(j) (k) (l)

(h) (i)

Fig. 4 Abundance maps for the basis vectors found by NMF (a, d, g, j), SiVM (b, e, h, k) as proposed in
this paper, and robust CH-NMF (c, f, i, l) on the yearly total electricity consumption data for the world’s
countries in the period of 1980 till 2008 as reported by the EIA. The maps show how well each country
is explained by a single basis vector; The shades vary smoothly from white (low fit) to black (high fit).
The data consists of yearly electricity consumption (billion kilowatt-hours) for all countries of the world.
We computed factorizations using 4 basis vectors. The basis vectors of SiVM are actual data points so that
we can easily identify the corresponding countries: China (CHN), Russian (RUS) , USA (USA), and Saint
Helena (SHN). For the robust variant, they are: Solomon Islands (SLB), Taiwan (TWN), Poland (POL),
and Spain (ESP). NMF does not feature this (best viewed in color). (a) NMF BV 1, (b) SiVM CHN,
(c) Robust ESP, (d) NMF BV 2, (e) SiVM RUS, (f) Robust TWN, (g) NMV BV 3, (h) SiVM USA, (i)
Robust POL, (j) NMFBV 4, (k) SiVM SHN, (l) Robust SLB. (Color figure online)

atmospheric and aerosol studies, agriculture, and limnology to identify materials that
make up a scanned area. Hyperspectral images easily produce gigantic matrices within
hundreds of millions of entries. Thus, another requirement for “sustainable” matrix
factorization is R2 as already mentioned in the introduction: data analysis methods
should scale to massive data sets and thus allow for analysis at low expenses.

In the following, we will present a novel matrix factorization method that meets
R1 and R2.
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4 Notation and definitions

Throughout this paper, we denote vectors using bold lower case letters (v); subscripted
lower case italics (vk) refer to the components of a vector. 0 is the vector of all zeros
and 1 is the vector of all ones. We write v � 0 to indicate that vk ≥ 0 for all k. The
inner product of two vectors u and v is written as uT v. Consequently, the expression
1T v is a shorthand for

∑
k vk and vT v = ‖v‖2 is the squared Euclidean norm of v.

Matrices are written using bold upper case letters (M) and subscripted upper
case italics (Mi j ) denote individual matrix entries. In order to indicate that M is a
real-valued d × n matrix, i.e. M ∈ R

d×n , we may use the shorthand Md×n . If the col-
umns of a matrix are known, we also write M = [m1, m2, . . . , mn] where m j ∈ R

d

is the j th column vector of M. Finally, ‖M‖2 = ∑
i, j M2

i j is the squared Frobenius
norm of M.

A vector v ∈ R
d is a convex combination of v1, . . . , vl ∈ R

d , if v = ∑
i λi vi

where λi ≥ 0 and
∑

i λi = 1. Using matrix notation, we write v = Vλ where
V = [v1, v2, . . . , vl ] and λ ∈ R

l such that 1T λ = 1 and λ � 0.
The convex hull C of a set S ⊂ R

d is the set of all convex combinations of points
in S. An extreme point of a convex set C is any point v ∈ C that is not a convex com-
bination of other points in C , i.e. if v = λu + (1 − λ)w for u, w ∈ C and λ ∈ [0, 1]
then v = u = w.

A polytope is the convex hull of finitely many points, i.e. it is the set C(S) for
|S| < ∞. The extreme points of a polytope are also called vertices. We use V (S) to
denote the set of all vertices of a polytope. Note that every point inside a polytope can
be expressed as a convex combination of the points in V .

5 Problem formulation: constrained matrix factorization

We consider a data representation problem where the data V ∈ R
d×n is expressed by

means of convex combinations of certain points in V. The underlying problem can be
formulated as a matrix factorization of the form

V ≈ VGH (1)

where G ∈ R
n×k, H ∈ R

k×n are coefficient matrices such that H is restricted to
convexity and G is restricted to unary column vectors, i.e.,

1T h j = 1, h j � 0

1T gi = 1, gi = [0, . . . , 0, 1, 0, . . . , 0]T .

In other words, the factorization (1) approximates V using convex combinations
where the basis vectors W = VG are data points selected from V. The goal now is to
determine a basis that minimizes the Frobenius norm

E = ‖V− VGH‖2 = ‖V−WH‖2 . (2)
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When minimizing (2), we have to simultaneously optimize W and H which is
generally considered a difficult problem known to suffer from many local minima.
Archetypal Analysis (AA) and Convex-NMF (C-NMF) are well understood examples
of approaches that attempt a simultaneous optimization. AA as introduced by Cutler
and Breiman (1994) applies an alternating least squares procedure where each iteration
requires the solution of a constrained quadratic optimization problems of the order of
n × n where n is the size of the data set. It should be noted that it solves the arguably
more difficult case where the matrix G is also restricted to convexity instead of unarity.
However, Cutler and Breiman report that the resulting G typically consists of unary
columns anyway. C-NMF according to Ding et al. (2010) uses iterative update rules
which require the computation of intermediate matrices of size n×n. Both approaches
do not scale to gigantic data matrices.

In order to avoid problems due to the simultaneous estimation of W and H, other
approaches attempt to determine suitable matrices W and H in a successive manner.
Once W has been estimated, it is straightforward to determine H. In fact, the coeffi-
cient vectors h j can then be computed in parallel for all v j ∈ V. For our problem of
determining suitable basis vectors for convex combinations such a successive scheme
is indeed well justifiable.

Cutler and Breiman (1994) prove that optimal basis vectors for a convex factoriza-
tion of the data reside on the data convex hull. In other words, under the constraint
W = VG, an optimal choice of the basis vectors will correspond to a subset of the
vertices of C(V). This has already been exploited in Convex-hull NMF as introduced
in Thurau et al. (2009) as well as in various methods related to endmember detec-
tion for hyperspectral imaging (Nascimento and Dias 2005; Chang et al. 2006; Miao
and Qi 2007). Nevertheless, estimating W remains a difficult problem. On the one
hand, computing the vertices V (V) of the convex hull of many (high-dimensional)
data points V is itself a demanding problem. On the other hand, it is not immediately
evident which points to select from V (V).

Our contribution in this paper is a novel, highly efficient algorithm for estimating
W = VG. It is based on the observation that, if v j is expressed as a convex com-
bination v j = Wh j , the coefficient vectors h j reside in a (k − 1)-simplex whose k
vertices correspond to the basis vectors in Wd×k . Because of this duality, we may use
the terms polytope and simplex interchangeably in the following.

6 Simplex volume

If we assume that the basis vectors Wd×k for a convex combination are selected from
actual data samples v j ∈ V, we can proof the following Theorem; the proof is given
in the Appendix.

Theorem 1 Extending a given simplex Wd×k by adding a vertex wk+1 sampled from a
data matrix Vd×n will not increase the Frobenius norm of the optimal convex approx-
imation of the data. That is

∥
∥
∥Vd×n −Wd×(k+1)H(k+1)×n

∥
∥
∥

2 ≤
∥
∥
∥Vd×n −Wd×kHk×n

∥
∥
∥

2
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if Hk×n and H(k+1)×n are convexity constrained coefficient matrices that result from
solving constrained quadratic optimization problems.

Theorem 1 hints at the idea of volume maximization for matrix factorization. Any
increase of the volume of the k-simplex encoded in W will reduce the overall residual
of the reconstruction. But why should maximizing the simplex volume be advanta-
geous over minimizing the Frobenius norm? The answer is computational efficiency.
Next, we derive a highly efficient volume maximization algorithm that determines a
suitable basis W for convex reconstruction of a set of data. It is rooted in the notion
of distance geometry.

Distance geometry studies sets of points based only on the distances between pairs
of points. It plays an important role, for instance, in three dimensional molecular mod-
eling from connectivity data in chemistry, or various applications in geography and
physics (Crippen 1988; Sippl and Sheraga 1986). In the following, we will denote the
distance between two points vi and v j as di, j .

Distance geometry draws heavily on the notion of the Cayley-Menger determinant
(CMD) (Blumenthal 1953) which indicates the volume of a polytope or simplex. Given
the lengths di, j of the edges between the k + 1 vertices of an k-simplex S, its volume
is given by

Vol(S)2
k =
−1k+1

2k(k!)2 det(A) (3)

where

det(A) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 . . . 1
1 0 d2

1,1 d2
1,2 . . . d2

1,k+1
1 d2

1,1 0 d2
2,2 . . . d2

2,k+1
1 d2

1,2 d2
2,2 0 . . . d2

3,k+1
...

. . .
...

1 d2
1,k+1 d2

2,k+1 d2
3,k+1 . . . 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4)

is the Cayley-Menger determinant.
With respect to data analysis, our goal is to select vertices {w1, . . . , wk} ∈ V such

that they maximize the volume of the corresponding simplex. If a number of verti-
ces has already been acquired in a sequential manner, we can prove the following
Theorem; the proof is given in the Appendix.

Theorem 2 Let S be a k-simplex. Suppose that the vertices w1, . . . , wk are equi-
distant and that this distance is a. Also, suppose that the distances between vertex
wk+1 and the other vertices are given by

{
d1,k+1, . . . , dn,k+1

}
, then the volume of S

is determined by
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Vol(S)2
k =

a2k

2k(k!)2

⎡

⎣ 2

a4

k∑

i=1

k∑

j=i+1

d2
i,k+1d2

j,k+1 +
2

a2

k∑

i=1

d2
i,k+1

−k − 1

a4

k∑

i=1

d4
i,k+1 − (k − 1)

]

.

From Theorem 5, we immediately derive the following elementary:

Corollary 1 If w.l.o.g. a > 1, then

Vol(S)2
k =

a2k

2k(k!)2

⎡

⎣ 2

a4

k∑

i=1

k∑

j=i+1

d2
i,k+1d2

j,k+1 +
2

a2

k∑

i=1

d2
i,k+1

− k − 1

a4

k∑

i=1

d4
i,k+1 − (k − 1)

]

>
a2k

2k(k!)2a4

⎡

⎣2
k∑

i=1

k∑

j=i+1

d2
i,k+1d2

j,k+1

+ 2
n∑

i=1

d2
i,k+1 − (n − 1)

k∑

i=1

d4
i,k+1 − (k − 1)

]

.

7 Simplex volume maximization

Matrix factorization can be cast as an optimization problem where we seek to minimize
the Frobenius norm E = ‖V−WH‖ of the difference of a data matrix V and its low
rank approximation WH. Theorem 1 indicates that instead of determining a suitable
W from minimizing the Frobenius norm, we may equivalently determine a solution
from fitting a simplex of maximal volume into the data. Note that for other constrained
low-rank approximations the concept of maximum-volume is known for quite some
time (Goreinov and Tyrtyshnikov 2001). In contrast to Goreinov and Tyrtyshnikov,
we optimize the volume of the general simplex and not of the parallelepiped.

Algorithm 1 Simplex Volume Maximization (SiVM)

1: v j ← vrand(n) {Select vector v j at random from Vd×n}
2: w1 = arg maxk d(vk , arg maxp d(v j , vp)) {Find first basis vector}
3: for k = 2 …K do
4: φk,p ← φk−1,p + d(wk−1, vp) {Corresponds to:

∑k
i=1 di,p}

5: λk,p ← λk−1,p + d(wk−1, vp)2 {Corresponds to:
∑k

i=1 d2
i,p}

6: ρk,p ← ρk−1,p + d(wk−1, vp)× φk−1 {Corresponds to:
∑k

i=1
∑k

j=i+1 di,pd j,p}

7: wk = arg maxp

[
dmax × φk,p + ρk,p − k−1

2 λk,p

]

8: end for

123



338 C. Thurau et al.

Fig. 5 Example of how the Simplex Volume Maximization (SiVM) algorithm iteratively determines four
basis vectors for representation of a data sample by means of convex combinations (best viewed in color).
(Color figure online)

Such a simplex could be found by directly optimizing the volume using the Cayley-
Menger determinant of the distance matrix of the data. However, for large data sets
this approach is ill-advised as it scales with O(n2) where n is the number of samples.
Fortunately, it is possible to iteratively determine a set of k basis vectors in O(kn)

that maximize the volume of the simplex. Given a (k − 1)-simplex S consisting of k
vertices, we simply seek to find a new vertex wk+1 ∈ V such that

wk+1 = arg max
p

Vol(S ∪ vp)
2.

From Theorem 5 we can now directly derive an iterative algorithm for finding the
next best vertex.9 Due to monotony and since all the di, j are positive, we can reduce
computation efforts by relinquishing to compute the distance squares. This does not
significantly alter the algorithm but it is computationally less demanding. We arrive
at

wk+1 = arg max
p

⎡

⎣a
k∑

i=1

di,p +
k∑

i=1

k∑

j=i+1

di,pd j,p − k − 1

2

k∑

i=1

d2
i,p

⎤

⎦ . (5)

For example, for the case where k = 2, i.e. for the situation where vertices w1 and w2
are already given, the next vertex w3 will be set to the data point vπ ∈ V where

vπ = arg max
p

[

ad1,p + ad2,p + d1,pd2,p − 1

2
d2

1,p −
1

2
d2

2,p

]

.

This iterative approach to finding the next vertex translates to the simple and effi-
cient Simplex Volume Maximization (SiVM) approach presented in Algorithm 1. We
note that the pairwise distances computed in earlier iterations of the algorithm can
be reused in later steps. For retrieving k latent components, we need to compute the
distance to all data samples exactly k + 1 times. The distances are computed with
respect to the last selected basis vector. Informally, the algorithm can be formulated as
finding the vertex k + 1 that maximizes the simplex volume given the first k vertices.
Figure 5 gives a didactic example on how SiVM iteratively determines basis vectors.

9 Note that we omit constant values.
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7.1 Initialization and parameter selection

The initial vertex for k = 0 can not be found from an iterative update. However, it
is known that selecting a random vector v1 from a data sample, determining the data
point v2 that is farthest away and then determining the data point v3 with the largest
distance to v2, yields a vertex on the convex hull whose overall distance to the data
is maximal (Ostrouchov and Samatova 2005). In fact, this initialization step is being
used in the well known Fastmap algorithm by Faloutsos and Lin (1995). Therefore,
w1 = arg maxp d(vp, arg maxi d(v1, vi )).

Furthermore, we did not yet set a value for a. Because it is known that the volume of
a simplex is maximal if its vertices are equidistant, we assumed a constant edge length
of a when formulating Theorem 5. Obviously, in a practical application of SiVM, the
constant a has to be chosen appropriately. From 5 we see that the maximal possible
volume is bounded from above by setting the free parameter a to the maximum of all
observed distances dmax. Assuming all edge lengths to be dmax must result in the larg-
est possible volume. At the same time, we have a lower bound for each iterative update
step which corresponds to choosing the minimal distance dmin = min d(w j , wi ) where
i = j and w j , wi ∈ W. Assuming equidistant vertices, i.e., the edges have the same
lengths and setting a to dmin will therefore result in the smallest possible volume under
the current configuration. Consequently, setting a to dmin maximizes the lower bound
and as such optimizes the volume as desired. As the minimal distance changes with
each iteration step, we have to adapt a accordingly. However, experimental validation
did not reveal a significant empirical difference to setting a to dmax. Actually, for
larger data sets, dmax and dmin were found to be similar in practice. Since setting a to
dmax offers slight advantages in terms of computational efficiency, we adhere to this
strategy.

Finally, we did not address the computation of the coefficient matrix H so far.
This, however, is straightforward once a suitable set of basis vectors W has been
determined. More precisely, H can be found from solving the following constrained
quadratic optimization problem

min ‖vi −Whi‖
s.t. 1T hi = 1

hi � 0 .

Moreover, this process can be fully parallelized as the coefficients of data vectors vi

and v j are independent

7.2 Computational complexity

Based on SiVM, we propose the following 2-steps matrix factorization approach called
SiVM-NMF: (1) compute the basis vectors using SiVM and (2) compute the coeffi-
cients H as shown above.

Step 1 mainly consists of an iterative computation of distances. For each basis vector
wi we have to compute the distance d(wi , vi ), vi ∈ V once. If we assume k
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basis vectors, this translates to O(k ·n). The three simple addition operations
in lines 4-6 of Algorithm 1 do not increase computation times substantially
for large n and any conventional distance metric (e.g. in our experiments, they
typically require less than 0.1% of the overall computation time). Usually,
we can assume that k � n, which leads to linear complexity O(n) for step 1.

Step 2 is highly dependent on the constraints imposed on the factorization method.
It requires to compute the coefficients H that minimize the Frobenius norm
given the basis elements W that result from step 1. In the experiments pre-
sented below, we apply quadratic programming approaches for computing
H. As this has to be done once for each data sample in V, the complexity
is of O(n · QP(k))). Thus for k � n, the complexity is linear in the second
step as well. Moreover, once suitable basis vectors W have been determined,
computing the coefficients for each data sample vi ∈ V could be done in
parallel to further reduce computation time.

Thus, the overall running time complexity of SiVM-NMF is O(n) assuming k � n
for some fix k.

8 Experiments

In the following, we present our experimental evaluation of SiVM-NMF. Our intention
here is to investigate the following questions:

(Q1) Does SiVM-NMF perform comparably to related methods in terms of run-time
and accuracy?

(Q2) Does SiVM-NMF find basis factors that are more easily interpretable than the
ones computed by related methods?

(Q3) Does SiVM-NMF scale well to large-scale data sets?

To this aim, we have implemented10 SiVM-NMF and related factorization methods
in scientific Python using the h5py library11 and the cvxopt library by Dahl and
Vandenberghe.12 For reading hyperspectral images, we used the SPy library.13

Although SiVM-NMF can be easily parallelized, we used a serial version running
on a standard Intel-Quadcore 2. GHz computer.

Overall, we decided for three experimental setups. Our first experimental setup
evaluates and compares the run-time and accuracy performance using synthetically
generated data in order to address Q1. The second setup investigates Q2 by applying
SiVM-NMF to several small, real-world sustainability data sets already discussed in
Sect. 3: U.S. States temperatures and precipitations values, global energy consump-
tion of the world’s countries, and the environmental performance index. Finally, we
investigated SiVM-NMF’s performance to analyze several medium-scale and large-
scale, real-world hyperspectral images: AVIRIS and Natural Scene Spectral Images.

10 http://pymf.googlecode.com.
11 http://h5py.googlecode.com.
12 http://abel.ee.ucla.edu/cvxopt/.
13 http://spectralpython.sourceforge.net/.
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Table 1 Description of the real world data sets used in the experimental evaluation

Name Size # Entries

U.S. temperature 50 × 480 (State × month) 24,000
U.S. precipitation 50 × 480 (State × month) 24,000
Electricity consumption 28 × 211 (Year × country) 5,908

Name of AVIRIS spectral image Size # Entries

Band × (X × Y) Band × size

Indian Pines 220 × (145 × 145) 220 × 21,025 4,625,500
Cuprite, Nevada 50 × (400 × 350) 50 × 140,000 7,000,000
Moffett Field, California 56 × (500 × 350) 56 × 175,000 9,800,000
Jasper Ridge area, California 60 × (600 × 512) 60 × 307,200 18,432,000

Name of natural scene spectral image Size # Entries

Band × (X × Y) Band × size

Sameiro area (Braga) 33 × (1,018 × 1,339) 33 × 1,363,102 44,982,366
Ruivães (Vieira do Minho) 33 × (1,017 × 1,338) 33 × 1,360,746 44,904,618
Museum of the Monastery (Mire de Tibães) 33 × (1,018 × 1,267) 33 × 1,289,806 42,563,598
Gualtar campus (University of Minho) 33 × (1,019 × 1,337) 33 × 1,362,403 44,959,299
Terras de Bouro (Minho region) 32 × (1,020 × 1,339) 33 × 1,365,780 45,070,740
Picoto area (Braga) 33 × (1,021 × 1,338) 33 × 1,366,098 45,081,234
Ribeira area (Porto) 33 × (1,017 × 1,340) 33 × 1,362,780 44,971,740
Souto (Minho region) 33 × (1,018 × 1,340) 33 × 1,364,120 45,015,960

Specifically, we investigated Q2 on the AVIRIS Indian Pines hyperspectral image and
Q3 on all 12 hyperspectral images. The used data sets and their statistics are summa-
rized in Table 1 and further explained in the following subsections. The used matrix
factorization methods were:

NMF: Standard non-negative matrix factorization. Although it does not ful-
fillR1, we compare to it for the sake of completeness. Of course,
sub-sampling strategies and other advanced version of NMF could be
employed to scale to massive data sets.

K-Means: Standard k-means implementation. Note that is also does not fulfill
R1 so we compare to it only for sake of completeness.

C-NMF/AA: Convex-NMF resp. Archetypal Analysis, see Sect. 2 for references.
CH-NMF: Convex-hull NMF as introduced in(Thurau et al. 2009).To accommo-

date for large-scale, we used FastMap (Faloutsos and Lin 1995) for
efficiently computing candidates of convex-hull vertices.

CH-NMF R: From a robust statistics viewpoint, the distribution of distances may
contain information on potential outliers. We remove the outliers by
trimming the most extreme data points as described by Ostrouchov
and Samatova (2005). That is we take a constant number r of large
distances, cluster the corresponding data points, and choose a central

123



342 C. Thurau et al.

point of the largest cluster as candidate. In Sect. 3, we called this
approach “Robust”.

SiVM: Simplex Volume Maximization as proposed in the present paper but
it does not compute the reconstruction weights of the data points.

SiVM-NMF: Also computes the reconstruction weights of the data points.
SiVM+NMF: SiVM-NMF used as initialization for NMF.

8.1 Q1: Synthetic data

In order to evaluate the performance of SiVM-NMF and to compare it to that of pre-
viously proposed factorization methods, we generated 5 different data sets randomly
sampled from a 5-dimensional uniform distribution. Each data set was then processed
using k-means clustering, Convex-hull NMF (CH-NMF), and Convex NMF (C-NMF)
and Archetypal Analysis (AA). We measured the Frobenius norm and running times
for each randomly generated set.

Figure 6 shows the Frobenius norm for up to 50,000 randomly sampled data points
(note the logarithmic scale on the y axis) averaged over the five datasets. For all the
methods in this test, we computed 10 basis vectors and used the same number of
iterations for computing them. It can be seen that N M F yields the lowest Frobenius
norm on average. We attribute this to its less restrictive constraint (non-negativity).
CH-NMF and SiVM-NMF impose the same additional convexity constraint and are
found to yield very similar results.

Figure 6 shows the average computation time in seconds for the tested methods.
We decided to exclude the running times for computing the coefficient vectors for
CH-NMF and SiVM-NMF. This allows for a better comparison of the two most related
methods. As the computation of coefficients is an inherent part of k-means and NMF,
we could not exclude it in these cases. We find the computation of SiVM-NMF basis
vectors to require only small fractions of a second even for data sets consisting of
several thousand samples.

To further investigate the relation between the minimization of the Frobenius norm
and the maximization of the Simplex Volume, we decided for an in-depth compari-
son of Convex-NMF (or Archetypal Analysis) and Simplex Volume Maximization.
Convex-NMF attempts to directly minimize the Frobenius under the convexity con-
straint discussed in Sect. 5. SiVM-NMF, in contrast, maximizes the simplex volume
for detecting suitable basis vectors to represent the data by means of convex combi-
nations. Figure 6 shows the results for iid data samples from a 3-dimensional cube
averaged over three runs. Note that we had to reduce the number of sampled data points
as both C-NMF and AA do not scale to more than a few thousand data samples. It can
be seen that both approaches result in almost identical average reconstruction errors.
However, Fig. 6 shows that with respect to computation time (this time including
computation times for the coefficient matrices H), SiVM-NMF is orders of magnitude
faster. Thus, it offers a viable alternative to AA and C-NMF as it yields similar or even
better reconstruction errors but runs fast enough to allow for large-scale data analysis.

To summarize, the results clearly show that Q1 can be answered affirmatively.
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(a) (b)

(c) (d)

Fig. 6 Accuracy and running time comparison on synthetic data. The Frobenius norm is divided by the
number of matrix elements (best viewed in color). (a) Resulting Frobenius norms averaged over 5 runs for
various latent component detection techniques, (b) Runtimes averaged over 5 runs, (c) Resulting Frobenius
norms of C-NMF/AA and SiVM-NMF averaged over 3 runs, (d) Runtimes C-NMF/AA and SiVM-NMF
averaged over 3 runs. (Color figure online)

8.2 Q2: Temperature, precipitation, and energy consumption

The results presented already in Sect. 3 clearly answer Q2 affirmatively. Figure 7
summarize the quantitative results for these data sets. Specifically, they show the
Frobenious norms and the running times of several non-negative matrix factorizations
for the HCS temperature and precipitation normals as well as for the EIA’s global elec-
tricity consumptions. As one can see, SiVM-NMF performs very well compared to
other convexity constrained NMF approaches as well as NMF and K-Means in terms of
Frobenius norm and runtime. Additionally, it can also be used as initialization method
for NMF (SiVM+NMF) to get similar or even slightly better reconstruction errors as
NMF. This is additional evidence that Q1 can be answered affirmatively.

8.3 Q2+Q3: Hyperspectral image analysis

Hyperspectral images are often generated from airborne sensors like the NASA’s
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The AVIRIS first began
operations aboard a NASA research craft in 1987. It has since become a standard
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Accuracy and running time comparison on the data sets from Sect. 3. The Frobenius norm is divided
by the number of matrix elements (best viewed in color). (a) Resulting Frobenius norm, (b) Runtime
performance, (c) Resulting Frobenius norm, (d) Runtime performance, (e) Resulting Frobenius norm,
(f) Runtime performance. (Color figure online)

instrument used for remote sensing of the Earth, collecting spectral radiance data for
characterization of the Earth’s surface and atmosphere. AVIRIS and hyperspectral
data is often used in the fields such as oceanography, environmental science, snow
hydrology, geology, volcanology, soil and land management, atmospheric and aero-
sol studies, agriculture, and limnology. For each location flown over, reflectance data
(used for quantitative characterization of surface features) for several contiguous spec-
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(a) (b)
(c)

Fig. 8 AVIRIS data sets: (a) Band 10 (0.5μm) of the AVIRIS Indian Pines data set. (b) Its ground truth.
The classes are (1) alfalfa, (2) corn-notill, (3) corn- min, (4) corn, (5) grass/pasture, (6) grass/trees, (7)
grass/pasture-mowed, (8) hay-windrowed, (9) oats, (10) soybeans-notill, (11) soybeans- min, (l2) soybeans-
clean, (13) wheat, (14) woods, (15) building-grass-tree-drive, and (16) stone-steel towers. (c) An example
spectral profile taken from the AVIRIS Indian Pines data set (best viewed in color). (a) AVIRIS Indian
Pines, (b) Ground Truth, (c) Spectral Band. (Color figure online)

tral channels (bands) is recorded. Although the reflectance is a continuous function
of wavelength, each feature (band number) corresponds to a discrete sampling of a
particular location’s spectral profile. Consequently, a 3-dimensional cube of data is
generated for each area analyzed by AVIRIS. Consider for example Fig. 8a–c showing
the June 1992 AVIRIS data set collected over the Indian Pines test site in an agricul-
tural area of northern Indiana. The image has 145×145 pixels with 220 spectral bands
and contains approximately two-thirds agricultural land and on-third forest or other
elements. This results in a 220× 21, 050 band by pixel location matrix A containing
non-negative reflectance data. In general, the cube of data is even larger. One of our
hyperspectral image consists of 33×1, 018×1, 339 = 33×1, 363, 102 band by pixel
matrix, i.e., in total about 45 million entries. In practice, one often finds images with
even hundreds of millions of entries. In other words, scaling is important for analyzing
hyperspectral images. Based on a location’s spectral profile, one is typically interested
in determining what primary physical components exists within an area flown over.
To determine these components, one commonly applies some form of non-negative
matrix factorization to the band by pixel matrix. Using the many locations, one aims
at obtaining the k components, i.e., basis vectors that could best be added together to
reconstruct each location’s spectral profile as closely as possible.

In total, we used 12 spectral images. The first data set, the AVIRIS Indian Pines data
set, has extensive ground-truth information available, thus allowing us to qualitatively
compare the performance of SiVM-NMF to NMF. For the other 11 data sets, we do not
have the ground truth. Therefore, we used them only for run-time and reconstruction
accuracy comparison. Overall, there were three other AVIRIS images and eight hyper-
spectral images of natural scenes. The eight hyperspectral images of natural scenes are
due to (Foster et al. 2004)14 and are a mixture of rural scenes from the Minho region
of Portugal, containing, rocks, trees, leaves, grass, and earth and of urban scenes from
the cities of Porto and Braga, Portugal. Images were obtained during the summers of

14 Available from http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_images_of_
natural_scenes_04.html.
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(a)

(b)

Fig. 9 The first 10 out of 14 basis vectors (band number vs. value) found on the Indian Pines data set.
(a) for NMF, they retain the non-negativity of the reflectance data but they no longer maintain any of the
spectral continuity. (b) For SiVM-NMF, they retain the non-negativity of the reflectance data and maintain
the spectral continuity. (a) NMF Basis Vectors, (b) SiVM-NMF Basis Vectors. (Color figure online)

2002 and 2003, almost always under a clear sky. Particular care was taken to avoid
scenes containing movement. Scenes were illuminated by direct sunlight in clear or
almost clear sky.

8.3.1 Q2: Qualitative analysis: AVIRIS Indian pines

We applied NMF with random initialization to the Indian Pines data set and obtain the
14 spectral basis shown in Fig. 9a. While the 14 basis profiles shown here retain the
non-negativity of the reflectance data, they no longer maintain any of the spectral con-
tinuity. This is not to say that the basis profiles found will not sum up to reconstruct the
original profiles. The basis profiles found are just significantly corrupted with noise,
do not correspond to actual profiles and, hence, do not maintain the clear structure that
would allow one to determine if they correspond to other known surfaces (i.e. sand,
vegetation, etc.). In contrast, SiVM-NMF found the basis vectors shown in Fig. 9b.
These basis profiles should be compared to those obtained by NMF shown in Fig. 9a.
They are much smoother (preserve continuity better) than those obtained using NMF:
they are actual spectral profiles.

To further investigate the difference in performance, we computed abundance maps
for the entire image. That is, we assigned every data point to the basis vector with the
largest proportion value. Figure 10 shows examples of resulting maps. Both maps
should be compared to the ground truth in Fig. 8b. As one can see, the SiVM-NMF
basis vector separate the classes better than the NMF basis vector. To quantify this,
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(a) (b) (c)

Fig. 10 Example abundance maps founds on the labeled AVIRIS Indian Pines data set for (a) NMF and
(b, c) SiVM-NMF. Pixels in white are unlabeled. Pixels in gray indicate pixels from other classes. Remain-
ing pixels have abundance levels > 0.2. This should be compared to the ground truth in Fig. 8b. As one
can see, NMF mixes the light blue class (grass/pasture) and the red classes (wheat/woods/building-grass-
tree-drive/stone-steel towers). SiVM-NMF separates the red classes better from the other classes than NMF.
(a) NMF BV 1, (b) SiVM-NMF BV 3, (c) SiVM-NMF BV 10

(a) (b) (c)

Fig. 11 SiVM-NMF abundance maps for large-scale “Terras de Bouro (Minho region)” hyperspectral
image. We do not have ground truth for this data set but one can see that the different types of greens are
well separated (best viewed in color). (a) Colore picture of ”Terras de Bouro Minho region. (Color figure
online)

we also computed the sums of Shannon entropies of the abundance distributions. For
SiVM-NMF, the entropy was 21.33 whereas NMF’s entropy was 32.77. This indicates
that SiVM-NMF actually uses fewer number of basis vectors to describe each ground
truth class, and that its basis vectors are better representatives of the ground truth
classes.

To summarize, the results clearly indicate that Q2 can be answered affirmatively.

8.3.2 Q3: Quantitative analysis: large-scale hyperspectral images

To see how well SiVM-NMF scales to large data sets, i.e., to investigate Q3, we con-
sidered the other 11 hyperspectral images. Figure 11 shows some abundance maps
found for the “Terras de Bouro (Minho region)” hyperspectral image consisting of
32× 1, 365, 780 = 43, 704, 960 entries. We compared SiVM-NMF to other convex-
ity constrained NMF methods in terms of running time. For the three smaller AVIRIS
spectral images, we also compared to NMF and report the Frobenius norm error, cf.
Fig. 12. The runtime results on the other eight large-scale images are summarized in
Fig. 13.
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Fig. 12 Accuracy and running time comparison on the AVIRIS data sets. The Frobenius norm is divided
by the number of matrix elements (best viewed in color). (Color figure online)

As one can see, SiVM-NMF compares favorable to all baselines and scales well to
massive data sets. Furthermore, all CH-NMF baselines can only compute at most 60
basis vectors, 2-times as many basis vectors as there are dimensions. This is because
they only identify basis vectors essentially lying on the convex hull. In contrast, SiVM-
NMF can compute so called overcomplete representations, i.e., the number of basis
vectors is greater than the dimensionality of the input. Overcomplete representations
have been advocated because they have greater robustness in the presence of noise, can
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Fig. 13 Box-plot of the running
times over all the large-scale,
natural scene hyperspectral
images. The “nopt” label for
CH-NMF (R) denotes versions
of the corresponding methods
that do not compute the k best
candidates from the found l
convex-hull vertex candidates
but simply use directly the l
candidates as basis vectors. This
avoids the computationally
demanding optimization step but
yields reconstructions of lower
quality. (Color figure online)

be sparser, and can have greater flexibility in matching structure in the data. Exploring
this feature is left for future work.

Finally, in an experiment not reported here, we used our SiVM-NMF Python imple-
mentation running on a standard desktop computer to factorize 80 million tiny Google
images, a matrix with 30 billion entries. It took about 4 h to compute a single basis
vector on a single core machine.These results clearly show that Q3 can be answered
affirmatively.

To summarize, the experimental results show that all questions Q1–Q3 can be
answered affirmatively.

9 Conclusions

As Gomes (2009) highlights, the “development of policies for a sustainable future
presents unique computational problems in scale, impact, and richness”. Motivated
by this, we have presented a novel method for finding latent components in massive
data sets, called SiVM-NMF, that is fast and scales well. We formulated the prob-
lem as a classical constrained matrix factorization problem that should minimize the
Frobenius norm. The solution we presented, however, instead maximizes the volume
of the simplex spanned by the latent components. This novel formulation is not only
equivalent when imposing convexity constraints, it also allows for rapidly finding the
latent components. More importantly, the latent components are actual data points so
that they are easy to interpret even by non-experts. That is, in contrast to most exist-
ing matrix factorization techniques, SiVM-NMF is not focussing on the model but is
driven by the question “how much can the data itself help us to factorize matrices?”.
This direction is particularly appealing given that intuitively understandable results
are, in our opinion, another key issue for many computational sustainability problems.

As already envisioned by such eighteenth-century philosophers as Jean Jacques
Rousseau, John Locke, and John Stuart Mill, government requires that everyone have
the right to influence political and environmental decisions that affect them. A basic
assumption is that everybody is — or should be—essentially equal, in both their con-
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cern for environmental issues and their competency to make decisions about them.
However, in order to make these decisions, (at least informed) individuals need accu-
rate and understandable models. One of the benefits of SiVM-NMF for latent compo-
nent analysis is that the resulting basis vectors are often readily interpretable even to
non-expert users. As shown by our extensive empirical results, by extracting the most
extreme instances of a data set, SiVM-NMF yields basis elements that are well distin-
guishable data points. Since this accommodates the principle of opposites in human
cognition, the resulting basis elements are quite easy to interpret across several sus-
tainability problems. In the case of hyperspectral images, the spectral profiles found
by SiVM-NMF may not make complete sense to the reader. However, with only a
little training in the field of remote sensing, one can immediately identify the features
corresponding to the profile of, say, water and could consequently make some skilled
interpretation of the basis obtained.

There are several interesting avenues for future work. First of all, SiVM-NMF
relies on distance computations only. Although, we have here focussed on the Euclid-
ean distance, it can directly be applied to other distances. For example, using the cosine
distance will lead to latent components that maximize the angular difference. From
a robust statistics viewpoint, the most extreme instances of a data set might actually
be outliers that should be removed for instance by trimming them in a similar fashion
as done in robust CH-NMF. Climate change, energy efficiency, etc., data naturally
evolves over time so that SiVM-NMF should be extended to deal with temporal data.
Data streams and tensors are further interesting data types. Another interesting avenue
is parallelization. In a preliminary implementation using the map-reduce framework
(Dean and Ghemawat 2008) we observed a linear scaling with the number of cores.

Overall our contribution and results are an encouraging sign that applying matrix
factorizations in the wild, that is on gigantic matrices with billions of entries may not
be insurmountable.
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Appendix

Proof (of Theorem 1) We first note that

∥
∥
∥V−Wd×(k+1)H(k+1)×n

∥
∥
∥

2 =
∑

i

∥
∥
∥vi −Wd×(k+1)hk+1

i

∥
∥
∥

2
(6)

and that

∥
∥
∥V−Wd×kHk×n

∥
∥
∥

2 =
∑

i

∥
∥
∥vi −Wd×khk

i

∥
∥
∥

2
. (7)

Consider the simplex Wd×k . If vi is a point inside the simplex, then there exists an
optimal k-dimensional coefficient vector hk

i where 1T hk
i = 1 and hk

i � 0 such that
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∥
∥vi −Wd×khk

i

∥
∥2 = 0. If vi is a point outside of the simplex, Wd×khk

i will be its

projection onto the nearest facet of the simplex and
∥
∥vi −Wd×khk

i

∥
∥2

> 0.
Adding a randomly chosen vertex wk+1 ∈ V, wk+1 ∈Wd×k introduces new facets

to the simplex and increases its volume. For any vi , we can determine an optimal
coefficient vector hk+1

i from solving the constraint quadratic problem

min
∥
∥
∥vi −Wd×(k+1)hk+1

i

∥
∥
∥

s.t. 1T hk+1
i = 1, hk+1

i � 0

and have to distinguish four cases:
(i) If vi was inside Wd×k it will also be inside Wd×(k+1) and there exists an optimal

k+ 1-dimensional coefficient vector hk+1
i such that the reconstruction error vanishes.

(ii) If vi was outside Wd×k but is inside the extended simplex Wd×(k+1), the recon-

struction error decreases
∥
∥vi −Wd×khk

i

∥
∥2

>

∥
∥
∥vi −Wd×(k+1)hk+1

i

∥
∥
∥

2
.

(iii) and (iv) If vi was outside Wd×k and remains outside of Wd×(k+1), it may or

may not be projected to a new, possibly closer facet. Either way
∥
∥vi −Wd×khk

i

∥
∥2 ≥

∥
∥
∥vi −Wd×(k+1)hk+1

i

∥
∥
∥

2
.

Therefore, after extending the simplex Wd×k by a vertex wk+1, none of the terms
on the right hand side of (6) is larger than the corresponding term on the right hand
side of (7). ��

Proof (of Theorem 2) We consider the Cayley-Menger determinant as introduced in
(4). To simplify notation, we set δi, j = d2

i, j and α = a2. If we assume equidistant
edge lengths a for the first n vertices, the CMD reads

det(A) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 . . . 1
1 0 α α . . . δ1,k+1
1 α 0 α . . . δ2,k+1
1 α a 0 . . . δ3,k+1
...

. . .
...

1 δ1,k+1 δ2,k+1 δ3,k+1 . . . 0

.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Interchanging two rows or two columns leaves the determinant unchanged as does
adding a multiple of one row to another row or adding a multiple of one column to
another column. We exchange the first and the last row as well as the first and the
last column. To set most elements of the upper left submatrix to zero, we subtract the
last row multiplied by α from each row. All entries will now be zero, except for the
diagonal elements and the elements in the last and last but one row and column. Next,
we add the first n rows times α−1 to the last row. The first elements in the last but one
row can be set to zero by adding the first i rows times δi,kα

−1 to the last row. Finally,
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we subtract the last column from the last but one column. These manipulations yield

det(A) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−α 0 . . . δ1,k+1 − α 1
0 −α . . . δ2,k+1 − α 1
0 0 . . . δ3,k+1 − α 1
...

. . .

0 0 . . .
[∑k

i=1 δi,k
δi,k−α

α

] [
1+∑k

i=1
δi,k
α

]

0 0 . . .
[
1+∑k

i=1
δi,k−α

α

] [ n
α

]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

To eliminate the sums in the last but one column and the last row, we multiply the
last column with its reciprocal value. The determinant is now in upper triangular form
and since the determinant of a triangular matrix equals the product of the diagonal
entries, we can now write

det(A) = −αk

[
k∑

i=1

δi,k(δi,k − α)

α
· k

α
−

(

1+
k∑

i=1

δi,k

α
·
(

1+
k∑

i=1

δi,k − α

α

))]

.

After some tedious but straightforward algebra, this further simplifies to

det(A) = −αk

[
n − 1

α2

k∑

i=1

δ2
i,k+1 + (k − 1)

− 2

α

k∑

i=1

δi,k+1 − 2

α2

k∑

i=1

k∑

j=i+1

δi,k+1δ j,k+1

⎤

⎦ .

Plugging det(A) back into (3) yields the following more accessible expression for the
simplex Volume

(−1k+1)(−αk)

2k(k!)2

[
k − 1

α2

k∑

i=1

δ2
i,k+1 + (k − 1)

− 2

α

n∑

i=1

δi,k+1 − 2

α2

k∑

i=1

k∑

j=i+1

δi,k+1δ j,k+1

⎤

⎦ .
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For any k, either (−1k+1) or (−αk) will be negative, which leads to the form required
by the theorem

Vol(S)2
k =

αk

2k(k!)2

⎡

⎣ 2

α2

k∑

i=1

k∑

j=i+1

δi,k+1δ j,k+1

+ 2

α

k∑

i=1

δi,k+1 − k − 1

α2

k∑

i=1

δ2
i,k+1 − (k − 1)

]

.

��
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