
Masterarbeit

Distributed Stream Processing
with the Intention of Mining

Alexey Egorov

February 1, 2017

Gutachter:

Prof. Dr. Katharina Morik

Dr. Christian Bockermann

Technische Universität Dortmund

Fakultät für Informatik

Lehrstuhl für künstliche Intelligenz LS8

http://www-ai.cs.uni-dortmund.de/

Dedicated to Zhanna, Sergey,

Evgeny, Rimma and Geoffrey.

Acknowledgement

I am using this opportunity to express my gratitude to everyone who supported me throughout

the course of this master’s thesis. I express my warm thanks to Prof. Dr. Katharina Morik

and Dr. Christian Bockermann for their support, constructive criticism and guidance. They

helped me to accomplish this work and steered me in the right direction whenever this was

required.

I would also like to acknowledge the proofreaders Leonard, Kai, Lennard, Stefan, Roland

and Sebastian for their comments. Last, but not least I am very grateful that my family and

beloved ones supported and cheered me up through this researching and writing process and

through my years of study.

Alexey Egorov

iii

Contents

1 Introduction 1

2 Distributed Stream Processing 3
2.1 Distributed Processing Systems . 5

2.2 Lambda and Kappa Architectures . 6

2.3 Requirements and Feature Comparison . 10

2.4 Distributed Open Source Streaming Platforms 11

2.4.1 Apache Storm . 15

2.4.2 Apache Spark . 19

2.4.3 Apache Flink . 26

2.5 Summary . 30

3 Machine Learning for Distributed Big Data Environments 31
3.1 Theoretical Background . 31

3.2 Machine Learning in the Distributed Setting 33

3.3 Distributed Machine Learning Frameworks 35

3.3.1 FlinkML . 35

3.3.2 Spark’s MLlib . 37

3.3.3 Apache SAMOA . 38

3.3.4 StreamDM . 39

3.3.5 Other Frameworks . 40

3.4 Summary . 41

4 Metaprogramming with streams 44
4.1 Open-Source Abstraction Tools . 44

4.2 streams Framework . 47

4.3 streams on Top of the Distributed Frameworks 51

4.4 Lambda and Kappa Architectures using streams 54

5 Implementation 56
5.1 Data Representation and Serialization . 57

5.2 Stream Source . 58

5.3 Processing Function . 60

5.4 Queues . 62

5.5 Services . 64

5.6 Grouping the Data Stream . 64

5.7 Further Concepts . 66

5.7.1 Stateful Processing . 66

v

5.7.2 Fault Tolerance . 69

5.7.3 Windowing . 70

5.7.4 Union . 72

5.7.5 ML Operations . 73

5.8 Summary . 74

6 Evaluation 75
6.1 Cluster Configuration . 76

6.2 Data Stream Processing Applications . 80

6.2.1 Twitter Stream . 82

6.2.2 FACT Telescope Image Data . 85

6.3 Summary . 91

7 Summary and Conclusion 94

Bibliography 100

vi

vii

viii

1 Introduction

The analysis of streaming data in the context of Big Data has powered research and devel-

opment of new software frameworks during the past years. A continuously growing number

of embedded systems, different sensors, mobile devices and further tools in our daily lives

stream high volumes of data. In most cases, real-time requirements are given to process and

analyze the incoming data in a very short period of time. Due to the volume of Big Data, it

is essential to process it in real-time without the need to store all of it and be able to react

fast to the incoming events.

Restricted computing power of a single machine and the limits of network’s data transfer

rates become a bottleneck for both, stream and batch processing systems in a traditional

single-machine setting. Hence, distributed systems for storing and processing data are built.

Hadoop’s MapReduce and HDFS cluster system was the leading tool for distributed analysis

and storage. Through the past years, a wide range of frameworks has been developed

to process especially streaming data. Apache Storm is one of the first frameworks that

gained a lot of attention while Yahoo’s S4 is the oldest one. Other contenders as Apache

Flink, Apache Spark or Apache Samza claim to be fast enough to compete with each other.

Applying machine learning approaches to streaming data in distributed systems also raises

high interest and advances development of distributed machine learning libraries.

Goals of the Thesis In order to execute a task in distributed processing frameworks, usually

a specific job for each of them has to be implemented. In this thesis, the aim is to add an

abstraction layer for modeling the same tasks using different distributed processing engines.

For this purpose the streams framework [1] is used to design the tasks decoupled from an

engine. It has been developed at the computer science department at TU Dortmund with

the intention of working with streaming data sources. While there is a working prototype of

modeling jobs for Apache Storm through streams, during this thesis the support for modeling

jobs using Apache Flink and Apache Spark is added. The core part of this thesis is thus to

model existing streaming usecases at such an abstraction layer and compare the performance

of the three platforms for distributed computations. Different processing pipelines can be

used to evaluate the performance. The analysis of text stream data (e.g. twitter stream)

can be performed. A widespread task to compare the throughput rates is counting the words

and calculating various statistics. The focus of this thesis lies on more intense processing of

complex data streams. Therefore, the image data stream from the FACT telescope is used as

a second pipeline to evaluate the different frameworks. It is of great interest to distinguish the

better performing distributed processing framework and to understand whether the relative

throughput differences between the various usecases can be detected.

Besides performance comparison distributed machine learning libraries and their integra-

tion into distributed systems when using streams as an abstraction layer is examined basically.

1

Inspecting the wide range of different machine learning libraries with all the possible combi-

nations does not fit into this thesis completely. However, a short overview over the existing

frameworks for distributed machine learning libraries is given. Additionally, a basic comparison

of the available machine learning algorithms for each of the distributed processing platforms

when using these libraries is performed.

2

2 Distributed Stream Processing

The estimated amount of data generated by people rises exponentially. The amount of data

captured in 2011 at the level of around 1.8ZB [2] increased to 4.4ZB in 2013 [3]. At the

moment the estimated values for 2020 and 2025 are 44ZB [4] and 180ZB [5] respectively.

Figure 1 illustrates the growth by the relative size of the circles. As an example Facebook

gathered a lot of data and used to process 500TB of new data per day in 2012 [6]. This

development raised the discussion about Big Data. Basically, Big Data refers to data that

is too big or too complex to process on a single machine [7]. The most known definition,

namely 3V, defines Big Data using three keywords [8]:

• high volume of the data coming from multiple sources

• the formats of the data are different (variety)

• the response to a queried data is awaited in real-time (velocity)

2011

1.8ZB

2013

4.4ZB

2020

44ZB

2025

180ZB

Figure 1: Relative size of the worldwide
data

Though the analysis of Big Data is challenging due

to its volume and complexity, it may lead companies

to the improvements of their business performance. In

case of companies such as Netflix, their recommenda-

tion system helps to make better movie suggestions to

a person based on the watched movies with patterns

learned from the other user groups additionally [9].

Therefore, in this section the way to highly parallelize

Big Data processing, the motivation and some issues

behind it are considered. Afterwards, several frame-

works for distributed Big Data and stream processing

are introduced.

Batch and Stream Processing An important aspect for Big Data is the processing mode

which depends on the type of the data and further constraints. Considering a situation with

a lot of user logs as mentioned above, the computation task may be calculating reports or

other statistics at the end of the day. To achieve this, a series of functions is executed on

a batch of data items. Such a scenario is called batch processing. The job may be time

consuming as all the historical data need to be reviewed.

In the last decade, there was a shift towards Internet of Things with various interconnected

devices that produce pieces of information continuously. With the growing number of such

devices, the amount of generated data increases. Hence, batch processing is pushed to its

limits due to real-time constraints requiring high velocity in terms of data processing. From

this setup emerged data streams and stream processing. In contrast to batch processing, in

3

a streaming application the full data set is not available for the processing functions directly

at the start. The application receives data items from a source and can only rely on the

information collected so far. Furthermore, the source may deliver an unbounded number

of data items and the application does not terminate in such a case. Stream processing

application is limited by time and space used by the applied functions. The existing algorithms

that are applicable to batches require modifications for the streaming environment.

High-Order Operations Recently modern imperative and object-oriented programming

languages adopt features that are specific to functional programming. One concept that

is also utilized for some of the distributed stream and batch processing frameworks are high-

order functions. That is, a function that accepts one or more functions and returns a result

value or another function is called high-order function. Such functions avoid side effects

(e.g. alter global or static variable) and keep data immutable. This means that the functions

operate only with the knowledge given by the passed variables. Instead of changing the values

of a data structure, a new one is created which is filled with the resulting values. During this

thesis the following operations are mentioned:

• Map applies a function to each element of a list and returns a list of results:

map(f unc : (T)→ U)→ U[]. The following code snippet sketches a map function:

input: {"A␣B", "C␣D"}.map(x => x.split("␣"))

output: {{"A", "B"}, {"C", "D"}}

The number of input and output elements is equal.

• FlatMap is similar to the abovemap function whereas the result is a flat list of elements.

After the map function is applied, the results are concatenated into a list. The following

code snippet sketches a flatMap function:

input: {"A␣B", "C␣D"}. flatMap(x => x.split("␣"))

output: {"A", "B", "C", "D"}

In contrast to a map function the result is flattened to a single list.

• Reduce combines the values of an array. This is accomplished by a function which

combines a values with an existing accumulator: reduce(f unc : (U, T)→ U)→ U.
The following code snippet sketches a reduce function:

input: {1,2,3}. reduce ((accum , n) => accum + n)

output: 6

The list of integer values is summed up to a single value.

4

• Filter performs a selection on the input elements which pass a certain condition. The

following code snippet sketches a filter function:

input: {1,2,3,4,5}. filter(x => x % 2 != 0)

output: {1,3,5}

2.1 Distributed Processing Systems

High-volume data coming from different sources needs to be processed under strict con-

straints of space and time. While sometimes one single physical machine can not process all

the incoming data with low latency due to the complex computation steps, in other cases

the vast amount of data coming in one time unit exceeds the limits of the network traffic

bounds. This urged the idea of splitting computations onto multiple machines and hence

building a distributed processing system. In such a distributed system, several shared-nothing

machines are combined to a cluster. The machines that work together on a task need to

share the data and the results of the computations. Therefore, it is essential to provide

those machines with a common network communication. Furthermore, distribution of a task

to be calculated, load sharing and allocation of the resources need to be controlled [10]. A

master node that is aware of the computing nodes can accomplish these. A user can then

submit a computation job to this system by deploying its job to the master node which then

automatically distributes and parallelizes the execution.

Distributed Batch Processing One of the first concepts for processing Big Data in a

distributed manner, MapReduce, was introduced 2004 by Google [11]. It is based on three

steps: map, shuffle and reduce, where map and reduce apply user-defined functions. In the

map step an arbitrary function is applied on the data set of (key, value) pairs which produces

some intermediate results:

(k, v)→ [(l1, w1) . . . (lp, wn)]

where {w1, w2 . . . } ∈ W is the set of all n output value elements. This way, the result of

a single computation wi is assigned a new key lj with 1 ≤ j ≤ p while the upper limit for

different keys is p ≤ n. Those keys are used then to shuffle and collect pairs with the same

key and provide them to the next phase.

For the reduce step, the shuffled results of all map functions are processed (e.g. count

words). Each reduce instance gets the data grouped by the keys (e.g. some certain word is

a key while counting words of a given text):

(lj , [wi1 , wi2 , . . .])→ xi

where a subset of values {wi1 , wi2 , . . . } ∈ Wi with Wi ⊆ W has the same key lj and hence

the function produces the end result xi . The advantage of this concept is that all the steps

can be computed in a distributed system in parallel.

5

dance hip hop

hop hip

dance hip

dance hip hop

hop hip

dance hip

dance, 1

hip, 1

hop, 1

hop, 1

hip, 1

dance, 1

hip, 1

dance, 1

dance, 1

hip, 1

hip, 1

hip, 1

hop, 1

hop, 1

dance, 2

hip, 3

hop, 2

dance, 2

hip, 3

hop, 2

MappingSplitInput Shuffle Reduce Output

Figure 2: A word-count example for a MapReduce job

Figure 2 illustrates counting words graphically. The data is first split over three computing

nodes where each applies a user defined map function. After that, all emitted pairs are

shuffled by the keys before the reduce function performs the count operation over the items

with the same key.

Distributed Stream Processing Since the introduction of MapReduce, a bunch of new dis-

tributed processing frameworks has been developed and gained vast demand. While MapRe-

duce improved processing batches of data, it was lacking the ability to process real-time

data and to deliver quick responses at the same time. Therefore, these novel frameworks

share requirements for real-time stream processing. Stonebraker et al. [12] described these

requirements in 2005. Most of them are still essential for distributed stream processing. A

streaming application should not have a need to store the data itself, but be able to store

some information e.g. for stateful processing. Such an application should be simple to

distribute over multiple physical machines while delivering low latencies and staying highly

available. Of course, it is important that the results of any stream application are replica-

ble and predictable. Furthermore, the authors require handling of stream imperfections (e.g.

out-of-order) and the support for some high-level language as SQL for querying data. During

this thesis the last two aspects are not discussed deeply to focus on the other requirements

for a distributed stream processing system. In section 4.1, some high-level languages similar

to SQL are presented to query and process distributed data.

In the following, first the issues of any distributed system and conceptual ways to solve

them are discussed. Then criteria for the comparison of distributed stream processing frame-

works are defined and after that three frameworks are introduced.

2.2 Lambda and Kappa Architectures

Various frameworks for distributed data processing have been introduced in the past few

years. Each distributed system aims at achieving high throughput whereas the performance

6

gain comes at the cost of possible machine failures and hence data loss. In the following

the CAP theorem that describes the issues of building a distributed system is presented.

Afterwards two conceptual architectures are introduced which state to solve the issues of

the CAP theorem.

CAP Theorem In 2000, Brewer spoke at PODC (Principles of Distributed Computing)

about the complexity and issues of distributed systems [13]. In terms of such systems, he

suggested to consider three core concepts:

C consistency: all the data across multiple machines is consistent and all requests to the

system achieve the same response

A availability: every request must result in a response

P partition tolerance: the system continuous to work, even if some connections between

the machines fail (partitions)

Following the CAP theorem, any distributed system aims at holding all three of these

ideas. Brewer postulates that it is impossible to provide all of the characteristics, but to

combine pairs as 2 out of 3: CA, CP or AP. Hence, it can be represented as a triangle.

12 years later, Brewer corrected his statement himself. Although the probability of a single

machine to fail is very small, considering a big cluster with hundreds of the machines par-

titioning becomes possible. The probability P (any failure) of any physical node to fail and

split the cluster into one or more partitions is given as:

P (any failure)n = 1− P (individual node not failing)n

where n is the number of nodes. Assuming the probability of a node to not fail is rather

high, the increasing number of computing nodes still leads to an increasing probability of

partitioning. With P (individual node not failing) = 0.999 and n = {50, 100}:

P (any failure)50 = 1− 0.99950 = 0.0488 ≈ 5%

P (any failure)100 = 1− 0.999100 = 0.0952 ≈ 10%

C

A

P

Figure 3: Illustration
of CAP theorem

Thus, ignoring partition tolerance (P) and choosing the combination

CA is not applicable [14]. From here on two types of distributed systems

are possible as illustrated in Figure 3. Considering an AP oriented

distributed system, it is always available even though the computing

nodes are partitioned. That is, same requests may not deliver consistent

results due to possibly failed connections between some machines in

the cluster. On the other hand, if one chooses to build a CP oriented

distributed system the solution is to block every request during some

failing computing nodes in order to preserve the data consistency.

7

Batch

Batch

Batch

Real-time

Real-time

Real-time

T ime

Figure 4: For Lambda Architecture speed layer processes the real-time requests in the time slots

between the last and the coming batch reprocessing.

Lambda Architecture As discussed above, a distributed system has to choose between

availability and consistency. Let us consider an AP oriented system as in most cases (e.g.

like social media such as Facebook or Twitter) the service has to be available. Every query

get its result from a precomputed model. For this a batch process is used to process the

data. Under the assumption that after the batch process finished, no further changes are

applied to the data set, the response is precise. This means that between the last and the

next recomputing step the system returns not entirely correct results. Hence, the missing

link is to integrate the current changes. Nathan Marz, the developer of Apache Storm

and a long-time user of Hadoop’s MapReduce, suggested an architecture with a tradeoff

between consistency, availability and partition tolerance by reducing the complexity of the

CAP theorem, namely Lambda Architecture [15]. The basic idea is to allow high availability

of the system at the cost of minor inconsistency or incorrectness in the responses. The

concept consists of three layers:

• the speed layer processes real-time events (e.g. using Storm);

• the batch layer reprocesses historical data more precisely (e.g. using Hadoop’s MapRe-

duce);

• the serving layer combines and delivers the results of both speed and batch layer to

user requests.

As shown in Figure 4, historical data can be reprocessed in batches from time to time

whereas the speed layer is responsible to include the data that was not considered during

the last batch process. The batch layer restores data consistency and correctes corrupted or

wrong responses by using all historical data collected so far. The usage of the speed layer

allows real-time events to be integrated quickly into the responses. Figure 5a illustrates the

structure of Lambda architecture.

As one of the core concepts, Marz suggests to only work with immutable data making

data corruption almost impossible. In case of any bugs in the algorithms or other wrong

computations, the process only has to be fixed and recompute the data.

8

(a) Overview of Lambda Architecture

(b) Overview of Kappa Architecture

Figure 5: Outline of the Lambda and Kappa architectures [16]

Some projects as Summingbird1 or Lambdoop2 introduced software frameworks for de-

veloping applications directly based on the Lambda architecture.

Kappa Architecture The disadvantage of the Lambda Architecture is the use of two dif-

ferent frameworks for the batch and the speed layer. This leads to the following:

• the user needs to program and maintain jobs in two different frameworks

• results from both frameworks have to be merged

Jay Kreps claims that nowadays streaming frameworks are capable of handling both realtime

and batch processing. Hence, he introduced the Kappa Architecture as an improvement of

the Lambda architecture [16]. The Kappa Architecture simplifies the Lambda Architecture

by using a single framework for the batch and the speed layer. It allows development, testing

and debugging on top of a single framework. The same code is used for recomputing the

batch results and processing real-time requests. As displayed in Figure 5b, a new job running

with higher parallelism and more resources is started to reprocess the data. As a side effect,

A/B testing can be applied after the recomputing is done because a new second model or

database is produced. Thus, the quality of both versions can be verified. As an example

A/B testing is applied at Spotify [17]. They state to run newer versions next to the old one

while inspecting new performance and statistics values. However, Spotify still relies on the

Lambda Architecture3.
1https://github.com/twitter/summingbird
2https://novelti.io/lambdoop/
3http://de.slideshare.net/eshvk/spotifys-music-recommendations-lambda-architecture

9

2.3 Requirements and Feature Comparison

All frameworks for distributed computations discussed in this thesis accomplish the same

task with minor differences. Each of them claim to achieve higher throughput rates than

the others. The engines that are responsible for job execution and their throughput rates

are evaluated in section 6. Though characteristics of each framework form the preliminary

impression. The first comparison is done by studying the following features of the frameworks:

• Message delivery guarantee states how precise is the communication mechanism be-

tween the computing instances. Three reliability levels are distinguished:

– exactly-once: every message is delivered once

– at-least-once: in case of a failure some messages may be delivered twice or more,

with no message gets lost

– at-most-once: in case of a failure some messages may not be delivered at all

• Latency measures the time consumed for processing. It is mostly computed for a

computing node or the whole processing tree. The ability to response fast to the

queries requires low latencies.

• Fault tolerance is provided by frameworks for the case where e.g. a computing node

crashes; the items to be processed are restored and replayed by the source

• Stateful processing allows for saving the state of an operator and the whole task to a

distributed storage. It is used for recovering from a failure and sharing the state of job

progress.

• In-memory computations are a novel approach to reduce reading from and writing to

slow hard drives.

• Support for iterations is not a core feature for distributed stream processing applica-

tions, but it is required for many batch applications such as machine learning.

Comparison of Spark, Storm and Flink in terms of the properties mentioned above is

shown in Table 1. Spark and Flink support in-memory computations and iterative compu-

tations without any additional programming needed. They also enable stateful processing,

fault tolerance and can guarantee exactly-once message delivery. Storm supports almost the

same set of features except for exactly-once message delivery and iterations. Storm and

Flink both promise latencies in a sub-second level, while Spark as a batch framework (Spark

Streaming works in micro-batch mode) seems to be slower. As these features are advertised

by the developers this way, it is misleading as some of them require further preparation and

programming and are not available in all situations. More insight is given in section 5.

10

Storm Spark Streaming Flink

Message delivery guarantee∗ at-least-once exactly-once exactly-once

Latency sub-second seconds sub-second

Fault tolerance∗ yes yes yes

Stateful processing∗ yes yes yes

In-memory yes yes yes

Iterations no yes yes

Table 1: Comparison of distributed processing frameworks. ∗: implementation or further tuning is

required.

2.4 Distributed Open Source Streaming Platforms

With fast evolving technology the number of data sources increased and raised Big Data

issues to a higher level. In a distributed batch processing system like Hadoop’s MapReduce

the data is saved to a file system and processed all at once. Although data storage gets

cheaper, reading and writing stays a bottleneck and hence makes such a batch processing

framework slow and obsolete.

As discussed above real-time stream processing systems do not require storing the in-

coming data to process it. Each data item is processed directly after it was received. By

filtering and preprocessing the data one is able to reduce even more the amount of data for

further stream analysis (feature extraction, data mining, . . .). Of course, the data can still

be stored for later batch processing. In order to reduce the storage accesses and response

time of the system, within the continuous research existing batch algorithms are adjusted for

streaming scenarios.

Nevertheless, in many applications the amount of data is still so high, that it can not be

stored or processed on a single machine under given time and resource constraints. Therefore,

in this chapter we will give an overview over multiple distributed open-source streaming

platforms that enable parallelizing their execution over huge clusters of computing machines

and improving fault-tolerance to reduce data loss.

All of the frameworks presented here use the same concept to define the jobs that can

be distributed and parallelized, namely data flow graphs, that are discussed shortly at first.

After that using those graphs the different ways of parallelizing an application are shown.

Using some further optimization hints the system can achieve even a higher throughput

performance. Then three frameworks are presented here, Storm, Spark and Flink, while a

short comparison of them is given at the end of this section.

Data Flow Graph All of the frameworks that are introduced in this section use directed

acyclic graphs, DAG, for the definition of the jobs. The nodes represent the sources, tasks

11

and sinks of the streaming application. All the user logic to analyze and modify the data

is placed into these vertices. The edges define the order of the tasks and data movement.

Hence, in every job the data flows through the graph from one or more stream sources (a

node only with outgoing edges) to one or more sinks (a node only with incoming edges)

by passing zero or more tasks (nodes with incoming and outcoming edges). No cycles are

allowed to ensure that the data item is processed according to a plan that terminates. Thus,

the concept of data flow graphs enables graphical representation of the job and displays how

the data flows from one task to another.

Data, Task and Pipeline Parallelism Performance of an application depends on various

factors. Although the speed of an application can be increased by more powerful hardware,

it was discussed above that the volume, velocity and variety of Big Data pushes hardware

improvements to the limit. Therefore, the other possibility is to change the algorithmic

concepts of data processing.

The first approach is called data parallelism where the same operation is executed on

the subsets of the whole data set. Its development started as an opposite to control-parallel

algorithms (e.g. multi-threaded tasks) in the late 80s [18]. Data is given in a matrix form

where a row is an instance with the attribute values:

x1,1 x1,2 . . . x1,p

. . .

xn,1 xn,2 . . . xn,p

where n is the number of the data instances (rows) and p is the number of attributes or

features (columns). Based on the data structure it can be split horizontally or vertically for

improving the parallelism.4 The data parallelism is exploited in the case of applying machine

learning algorithms that are introduced in section 3. Therefore, in the following the two types

of data parallelism are explained considering the case of training a model:

• Horizontal parallelism splits the incoming data by the features. Each component has

a local model that is trained with a streaming algorithm. Periodically those components

update the global model. This approach is suitable especially for the case of a high

arrival rate of examples. A disadvantage is that every model in each component needs

memory for computations. Additionally propagating the model updates is a rather

complex task.

• Vertical parallelism splits the data by attributes. Each incoming data item is parti-

tioned based on its attributes and then those partitions are distributed over the parallel

components. Every component computes statistics and periodically updates the global

model.
4http://www.otnira.com/2013/08/03/parallelism-for-dsml/

12

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
Node 1

x3,1 x3,2 . . . x3,pNode 2

x4,1 x4,2 . . . x4,p

x5,1 x5,2 . . . x5,p
Node 3

x1,1 x1,2

x2,1 x2,2

.

xn,1 xn,2

Node 1

x1,3

x2,3

. . .

xn,3

Node 2

x1,4 x1,5

x2,4 x2,5

.

xn,4 xn,5

Node 3

Horizontal split Vertical split

Figure 6: Splitting data horizontally or vertically to distribute the splits over multiple computing

machines.

{~x1, ~x2}

f (~x1)

f (~x2)

{~y1, ~y2}

(a) Data parallel: two instances of the same

function process two data items in parallel.

~xi

min(~xi)

max(~xi)

out:
min & max

(b) Task parallel: two different functions pro-

cess the same data item in parallel.

Figure 7: Parallelism

An example of splitting the data horizontally or vertically is presented in Figure 6. On the

left, each node receives several data rows with values of all attributes while on the right

a processing node only receives several data columns with all values of those attributes.

Additionally, Figure 7a illustrates how the incoming data items are split for two instances of

the same function and processed in parallel.

The second approach is to execute multiple operations or tasks in parallel on the data,

task parallelism. That is, the algorithm is split into several subtasks that can run simulta-

neously. Each function is executed independently on the same or different data in parallel.

Hence, task parallelism parallelizes e.g. tree nodes of a decision tree over the distributed

components. On the other hand, calculating statistics such as min, max etc. can also be

done in parallel. This example is illustrated in Figure 7b where two different functions are

applied in parallel onto two copies of the same data item.

The third type is the pipeline parallelism. Here the output of one task is used as the

input for the following one. Each of the pipelined tasks runs in parallel and the latency of

the system depends on the task with longest computation.

13

In real-world applications and frameworks these different types of parallelism are com-

bined. With the pipeline parallelism for a single task of the pipeline multiple instances can be

executed to additionally parallelize intense computations.5

Optimizations The job graph simplifies not only the job definition, but also further per-

formance optimizations. Hirzel et al. [19] summarizes proposals for stream processing opti-

mizations of the last decade. In following, some of the suggested approaches to improve the

performance of the distributed stream processing job are mentioned and discussed shortly.

Job Graph Optimizations As a very first step, the job graph should be optimized by the

application expert itself. First, the operations to be done can be reordered in such a way that

filtering is done as early as possible. That is, less data items need to be forwarded through

the process and hence less computations need to be done. Secondly, in a job where the data

is split and doubled into two or more new subgraphs any redundant operations should be

reduced.As the last step, the application expert has the knowledge about the computational

complexity of the job and is able to support grouping some computationally expensive and

cheap operations together. This way this knowledge may be used later to place the groups

of operations on to different hosts (CPUs, machines).

Parallelization As it was introduced in the paragraph above, parallelizing the compu-

tation can be achieved in several ways. Therefore, the one also suggested in [19] is to

increase the data parallelism for computationally expensive operations. That is, the operator

is replicated and each instance can process the data items in parallel. Also splitting complex

operations into simpler single operations is preferably as one may use different data paral-

lelism on each single task. Furthermore, modern distributed processing frameworks apply

their own job optimizations based on the job graph. To achieve the highest performance,

the load for each operator should be balanced. This can be accomplished by grouping the

data items by the various criteria (e.g. randomly, grouped by some key, etc.). Although,

allowing pipeline parallelism next to data parallelism may improve the system throughput, in

some cases it might be beneficial to fuse some operators and remove the pipeline parallelism

between them. This is especially the case if the communication costs are higher than the

computation costs of the second operator.

Load Shedding The source of a streaming application may not produce continuously

the same amount of data items per time unit. In many cases the workloads come bursty

and the data rate fluctuates over time with the originally high input rates.6 If one considers

5http://www.cs.umd.edu/class/fall2013/cmsc433/lectures/concurrency-basics.pdf
6http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R212_2014_2015/slides/Peter_Streaming_

2014.pdf

14

a sensor network measuring passing cars, it will account higher amount of data in the rush

hours. The system that was tuned for lower throughput may not be able to process the

incoming data and thus will tend to fail or increase the response times. It is also impractical

to setup a system that can handle the input rates during the peaks as they can be many

times higher than the general input rates [20, Chapter 7].

A more practical approach is to automatically adapt to the burst. Load shedding is a

technique to solve the problem of bursty workloads. Instead of increasing the delay of the

system, it is possible to shed some of the load with a minor impact on the result of the

process. That is, the accuracy of the system depends on the particular strategy of the load

shedding approach as a subset of the data items is dropped when the bottleneck is detected.

The general simple load shedding approach is to decide with some probability p whether the

tuple can pass or not. Rivetti et al. [21] introduces load-aware shedding, a modern approach

particularly for the distributed stream processing frameworks that aims for dropping as few

data items as possible. This new approach computes a cost model based on the time needed

to process the items and is able to skip those data items which processing is more time

consuming.

Backpressure Considering the situation that was introduced for load shedding, there is

another technique to overcome bursty workloads without loosing data items, backpressure.

A backpressure system monitors its components for a case where a processing node is too

busy. This can be measured by controlling how full the component’s receive buffer is. When

the buffer is full, the source of the stream shall stop or slow down and wait for the system to

process the current workload. All frameworks introduced in this thesis support backpressure

and allow the user to turn this feature on or off when configuring the cluster.

2.4.1 Apache Storm

Figure 8: Apache Storm topology

showing two spouts spreading incoming

streams to subscribing bolts.7

Apache Storm is a distributed scalable stream pro-

cessing framework. After it has been open-sourced

in 2011 by its developer Nathan Marz, Apache Storm

was acquired by Twitter just one year later and used

for its real-time analysis pipeline. The combination of

low latency and at-least-once semantics made Apache

Storm attractive to the various use cases for compa-

nies such as Spotify [17], Yahoo [22], Twitter [23] and

others.

Apache Storm’s pipeline for data processing, called a topology, is a directed acyclic

graph (DAG) as shown in Figure 8 that is executed indefinitely until it is killed. Sources of

7http://storm.apache.org/

15

data streams in a topology, spouts, read an external stream source and produce serializable

messages, tuples, with an ID and information about its sender and receiver. The processing

components, bolts, receive tuples from spouts or other bolts, execute some actions on them

and emit the results to next bolts. Figure 8 outlines a Storm’s topology. Storm distributes

the configured spouts and bolts of the topology to the executors. As already mentioned, to

improve the performance the load for the bolts should be balanced. Therefore, a strategy

of partitioning tuples across the cluster is crucial for many usecases. Storm supports several

groupings: ”shuffle” grouping (equal number of tuples to each task), ”fields” grouping (e.g.

deliver tuples with the same key entry to the same executor), ”all” grouping (replicate each

tuple to all executors) and some more.

Reliability is an important point for Apache Storm in order to achieve an at-least-once

guarantee level. Storm tracks the flow of tuples through the job graph using internally a tuple

tree. This functionality can be enabled by using a special API to acknowledge messages or

mark some of them as failed. The data item that reaches the leaves successfully is considered

fully processed. Therefore, reliability starts with the spout emitting the tuple with a unique

message id which is used to track its state inside a tuple tree. Failed or successfull execution

of a bolt’s function has to be linked to the tuple tree which is called anchoring. For this

purpose, the reliability API provides ack(Tuple item) and fail(Tuple item) methods.

When the tuple is fully processed or the processing has failed, the ack() or fail() API in

a spout is called respectively. Without activated acknowledging of the messages, values for

latency, acked and failed events will be set to zero. Otherwise Storm works at an at-most-

once guarantee level where messages may get lost. Until the state of a tuple is known, it is

hold in Storm’s memory for a possible replay. Storm allows for tuning the upper time limit

for a tuple to run through the topology.

With the introduction of transactional topologies, Storm enables exactly-once message

guarantee.8 This is realized by implementing a topology using TransactionTopology API.

For this thesis the basic topology API has been used providing at-least-once message guar-

antee.

API and Trident Storm’s low-level API is kept rather simple. Nevertheless, this also means

for the user that operations such as map or flatMap to be applied onto the data stream have

to be implemented. Trident is a high-level abstraction on top of Storm. It introduces

joins, aggregations and filters to the existing functions and grouping capabilities of Storm.

Furthermore, Trident supports stateful processing and exactly-once semantics, but at the

cost of slightly higher latencies.

8http://storm.apache.org/releases/1.0.0/Transactional-topologies.html

16

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("spout", new RandomSentenceSpout(), 2);

builder.setBolt("split", new SplitSentence(), 2)

.setNumTasks(4)

.shuffleGrouping("spout");

builder.setBolt("count", new WordCount(), 3)

.fieldsGrouping("split", new Fields("word"));

Figure 9: Word count example using Apache Storm

As a comparison two code snippets are considered to solve the same ”word count” task.

First, Figure 9 presents how this is done in Storm. While this code snippet9 only configures

the Storm topology, the actual processing task is hidden in the two classes SplitSentence

and WordCount. They are defined by the user producing an overhead. The task is split into

two bolts where the first one is splitting sentences into words and the second one is counting

words. Regardless of the implementation of counting, field grouping by words is applied here

That is, same words will be processed on the same node and thus the computation can be

distributed easily.

The code snippet in Figure 10 shows a word count example implemented with Trident.10

The only missing component here is the implementation of the splitting rule in the Split

class. Trident on its side automatically computes the most optimal topology and groups

some of the called functions into bolts. Hence, in the end Trident creates and runs a

Storm topology. The user only needs to think of the processing pipeline itself. As this

work is concentrated on distributed stream processing, Trident is not considered for the later

implementation and evaluation.

Integration with external systems and other libraries is supported. The list of officially

added connectors is shown in Figure 11a.

Parallelism The parallelism of a topology depends on the settings given by a user and the

cluster ressources. The coordination of a Storm cluster is handled by the nimbus node that

distributes a streaming job to the supervisor nodes or workers (worker machines). Each

worker executes a subset of the topology. Each supervisor provides a number of executors

that should be smaller or equal to the number of the CPU cores. The overall parallelism

relates to the number of executors or threads that are spread across the workers as it can be

seen in Figure 11b. Furthermore, each executor spawns one or more tasks for a bolt or spout

to be used. The task performs the data processing and is run inside of an executor ’s thread.

Therefore, multiple tasks in one executor are executed serially. Hence, mostly it is preferable

9https://github.com/nathanmarz/storm-starter/blob/master/src/jvm/storm/starter/

WordCountTopology.java
10https://github.com/nathanmarz/storm-starter/blob/master/src/jvm/storm/starter/trident/

TridentWordCount.java

17

TridentTopology topology = new TridentTopology();

TridentState wordCounts = topology.newStream("spout1", spout)

.parallelismHint(16)

.each(new Fields("sentence"), new Split(), new Fields("word"))

.groupBy(new Fields("word"))

.persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))

.parallelismHint(16);

topology.newDRPCStream("words", drpc)

.each(new Fields("args"), new Split(), new Fields("word"))

.groupBy(new Fields("word"))

.stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count"))

.each(new Fields("count"), new FilterNull())

.aggregate(new Fields("count"), new Sum(), new Fields("sum"));

Figure 10: Word count example using Trident

Apache Kafka

JDBC

MongoDB

Apache HDFS

Apache Hive

Elasticsearch

Storm

Apache Kafka

JDBC

MongoDB

(a) External connectors that are offi-

cially supported by Storm.

Task

Task

Task

Task

Worker node contains multiple

executors for different topologies.

An executor is a thread that can

execute several tasks of

the same component.

Task performs data processing

(b) Apache Storm topology parallelism where each

color corresponds to a spout or bolt. Different colors

imply different tasks.

Figure 11: Apache Storm: 11a presents connectors for Storm; 11b illustrates components of Storm.

to have only one task per executor and each component (spouts and bolts) is set per default

to use one task. In contrast to the number of tasks that can not be changed throughout

the lifetime of the topology, the user can change the amount of workers and executors.

Setting the number of tasks higher than the number of executors allows for achieving a

higher parallelism level after adding more worker nodes and rebalancing the topology.11

Graphical interface Apache Storm presents the overview of the cluster and the running jobs

in its graphical interface. Directly on the landing page, the user can find a summary about the

cluster, active topologies, registered supervisors and the configuration of the nimbus node.

A part of the landing page can be viewed in Figure 12.

On the page of a certain topology, one can perform some actions such as activate,

deactivate, rebalance or kill. Deactivating and activating the topology is like holding and

resuming the processing of the data in the topology. Rebalancing can increase the level of
11http://www.michael-noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-storm-topology/

18

Figure 12: Landing page of Storm’s UI

parallelism and improve the throughput rate if more processing nodes become available after

the job started and the number of tasks has been set higher than one. Kill command stops

the processing and removes the job from Storm. Further statistics about the topology are

listed in the table view. As mentioned above, statistics about latency, acked and failed events

are available only if the Storm job is implemented using the reliability API. A visualization

graph of a topology is also shown and updated live with the information about the thoughput

numbers. Additionally, details on spouts and bolts themselves can be viewed on a component

page respectively.

Generally, Storm’s dashboard presents a lot of information to the user. Some of it is

shown in several ways on the different subpages. Especially with activated message-acking

Storm helps to understand the data flow.

2.4.2 Apache Spark

Apache Spark is another distributed processing framework based on batch processing [24].

Since its first stable release in 2014 Spark achieved a lot of attention in the last couple of

years as a contender to Apache Storm and Hadoop’s MapReduce.

Authors of Spark claim to be up to 100x faster than a regular MapReduce job if the

computation fits in memory and up to 10x faster otherwise.12 Databricks proved Spark’s

performance quality without using its in-memory capabilities [25]. They submitted and won

the GraySort test13 in 2014 for sorting 100TB [26]. Hadoop MapReduce sorted 102.5TB

in 72minutes with 2100 nodes, Spark was able to reduce the sorting time to 23minutes for

12http://spark.apache.org/
13http://sortbenchmark.org/

19

sorting 100TB with only 206 nodes. This way Spark sorted the same amount of data 3

times faster and used 10 times less computing nodes.

With almost 1000 contributors14, further libraries have been implemented on top of

Spark to enable support for SQL, graph processing, streaming and machine learning. For

this thesis the last two libraries, streaming and machine learning, are essential. These enable

to additionally process streaming data and apply machine learning algorithms.

Distributed Batch Processing Apache Spark as a distributed batch processing framework

was developed around the concept of resilient distributed dataset structure (RDD) for the

internal memory management of distributed processing frameworks [27]. RDDs are con-

structed as immutable, cacheable and lazy containers to model more than just Map-Reduce

jobs.

Tasks in Spark are built like in Storm as directed acyclic graphs (DAG). The core idea

is to define transformations and actions. Those operations can be applied to many data

items of a dataset. Each transformation creates a new RDD that knows its predecessor

(parent), but the transformations are not computed immediately. Thus in case of a failure,

using the lineage of RDDs, one can replay the previous transformations. More details on

failure recovery can be found in section 5.7.2. An operation defined by RDD is executed only

when some action is called on it. All intermediate results are kept in-memory and are written

to disk in the case of low memory or on an explicit user request (persist or cache).

Additionally, each RDD splits its internal collection of elements into partitions. The num-

ber of partitions determines the level of parallelism of the application. Controlling and tuning

the partitioning right increases the runtime performance15. If any partition is lost, it can be

recomputed because of RDD’s immutabiliy and the remembered lineage of the transforma-

tions. The internal scheduler splits submitted jobs into stages where each stage processes

one partition of an RDD. A stage combines multiple transformations on a single partition.

Whenever the data set is shuffled, a new stage is created. The shuffle operation copies

data across various executors including different physical machines in order to distributed it

differently across partitions. This makes it a costly operation. Figure 13 illustrates stage

building for a Spark job.

Storage Levels Spark allows for various levels of storing RDDs. There are three basic

choices to meet:

• memory only : the data is kept in-memory only. This is also the default and most CPU

efficient setting for Spark, but if a partition does not fit to the memory, it has to be

recomputed.

14https://github.com/apache/spark
15http://www.cs.berkeley.edu/~matei/talks/2012/nsdi_rdds.pdf

20

Figure 13: A Spark job is split into stages at the points of DAG when the data is shuffled.16

• memory and disk : the data is kept in-memory unless the application is running out of

memory. In that case some partitions may be stored to the disk.

• disk only : all data is stored on the disk and not in memory.

RDD objects can be made more space efficient by serializing them. The first two options

that allow memory as a storage support object serialization while this means a higher CPU

usage to deserialize them. Finally, to improve the reliability of the system each of the above

storage options support higher replication. That is, every partition is replicated on two cluster

nodes.

Spark Streaming As processing data streams received as much attention as batch process-

ing, the Spark project was extended with streaming capabilities, called Spark Streaming. In

contrast to Storm, Spark Streaming is not a record-at-a-time system. It ”treats a streaming

computation as a series of deterministic batch computations on small time intervals” [28].

While for batch processing Spark uses the concept of RDD, Spark Streaming is based upon

another abstraction above RDD, a discretized stream called DStream. A DStream contains

a continuous series of RDDs. The data from a certain time intervall is collected into an

RDD. Each operation applied on a DStream is translated to an equivalent operation on the

underlying RDD object. Figure 14 sketches the described concept.

All possible operations on the DStream can be divided into two groups: transformations
and output operations. Spark Streaming follows the same concept of lazy evaluation as in

Spark. In this case it means that no transformation is performed unless any output operation

is applied onto a DStream. The following operations are supported on DStream:

• transformations: map, flatMap, filter, union, count, reduceByKey, transform, join,

window, updateStateByKey, . . .
16https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/

spark-dagscheduler-stages.html

21

data from

time 0 to 1

data from

time 1 to 2

data from

time 2 to 3

RDD @ time 1 RDD @ time 2 RDD @ time 3

transformed data

from time 0 to 1

transformed data

from time 1 to 2

transformed data

from time 2 to 3

DStream

Transformed

DStream

Figure 14: DStream concept is based on RDDs and allows high-level API to perform transformations

on the input data stream.

private static final Pattern SPACE = Pattern.compile(" ");

JavaReceiverInputDStream<String> lines = ssc.socketTextStream(

args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER);

JavaPairDStream<String, Integer> wordCounts =

lines.flatMap(new FlatMapFunction<String, String>() {

public Iterator<String> call(String x) {

return Arrays.asList(SPACE.split(x)).iterator();

}})

.mapToPair(new PairFunction<String, String, Integer>() {

public Tuple2<String, Integer> call(String s) {

return new Tuple2<>(s, 1);

}})

.reduceByKey(new Function2<Integer, Integer, Integer>() {

public Integer call(Integer i1, Integer i2) {

return i1 + i2;

}});

wordCounts.print();

Figure 15: Word count example using Spark Streaming

• output operations: print, foreachRDD, saveAsHadoopFiles, . . .

Many transformations that are used on RDDs are also available on the DStream. Some

special transformations are for example windowed operations. They allow to apply operations

on a sliding window. Spark Streaming can maintain an arbitrary state using operations

such as updateStateByKey. This way the collected information or statistics are updated

continuously. As DStream is also evaluated lazy, output operations force the execution of

the transformations. The easiest way is to append a print operation after the transformations.

Other operations are usually used to persist the resulted RDD locally or to an external storage.

Figure 15 presents a word count example in a Spark Streaming environment. At first, the

stream is defined. Then using a flatMap function the lines are split into words, mapToPair

function maps each word to pairs (the word and the counter set to 1) and at the end

during the reduce step pairs with the same ”key” (words) are counted with the reduceByKey

22

Elasticsearch

MongoDB

Apache HDFS

Apache Hive

JDBC

Spark

Apache Kafka

Apache Flume

Amazon Kinesis

Elasticsearch

MongoDB

Apache HDFS

Apache Hive

JDBC

Figure 16: External connectors officially supported by Spark Streaming

Spark Context

Driver Program

Cluster Management

Task 1 Task 2

CacheExecutor

Worker Node

Task 3 Task 4

CacheExecutor

Worker Node

Figure 17: Spark cluster configuration

function. After all those steps, in order to force the execution of the defined job,an output

function such as print is called.

Spark Streaming supports various data stream sources and sinks. Figure 16 illustrates

some of them. With the active community the list of supported external libraries is extending

continuously.

Parallelism For Spark it is important to tune the system carefully in order to be able to

use all the ressources. A Spark cluster consists of a master and multiple worker nodes. Ev-

ery worker node is assigned a particular number of executors where the CPU cores available

at the worker can be used by the executors. In the cluster setup in Figure 17 the driver

program appears as an important actor for cluster management. Using SparkContext the

user declares the job topology and the needed ressources. The driver programm contain-

ing the SparkContext communicates with the cluster manager, requests the ressources and

distributes the tasks to the executors. Additionally, the results of operations like reduce are

collected in the driver program and hence should be planned carefully.

23

As mentioned above, an RDD is a partitioned dataset and Spark Streaming can process

multiple partitions of the data in parallel. Following the documentation of Spark and the

tuning recommendations by Maas [29] in order to use all cores for the processing the user

should tune the system to split the incoming data stream into enough partitions. The number

of partitions can be computed easily using the following equation:

#partitions = #receivers × batchInterval/blockInterval

where batchInterval is a time interval to collect the items from the stream. blockInterval

controlls in how many blocks the data from a batch is split. The number of blocks in each

batch determines the number of tasks that will be used to process the received data in a

map-like transformation. Each task is executed on a single core. There are two parameters

to tune, batchInterval and blockInterval . The user defines the batch interval. Then the

block intervall is computed as the number of receivers and the amount of partitions is known

(#partitions = #usableCores = #al lCores −#receivers):

blockInterval =
#receivers ∗ batchInterval

#partitions

As batchInterval is still a variable that can be chosen by the user, finding the right settings

might become a more difficult task than e.g. for Apache Storm.

Even after adjusting the number of partitions right, in some situations it is advisable

to force the reduction or increase of the level of parallelism. This can be done by calling

repartition(partitions). The pipeline which follows the repartition function call, will

be then split into a desired number of partitions. Spark allows for achieving the same effect

if using the following API calls:

groupByKey(partitions)

reduceByKey(partitions)

Graphical interface Sparks’ graphical interface is an essential tool for collecting information

about the running jobs. The UI provides a lot of information about the progress of tasks. In

order to tune a Spark job properly one needs to inspect this information. On the front page

the user can directly view the status of the current jobs. The menu on the top presents the

overview of the different stages, storages, environment and executors.

For a current streaming job Spark adds another menu, Streaming. While developing a

streaming application this is a good start to inspect the performance of the system. As can

be seen in Figure 18, the following statistics are presented under the streaming menu:

• Input rate shows statistics over all the stream sources and the average throughput of

events per second; the user is able to examine the input rate of each source working

in parallel;

24

Figure 18: Details of a Spark Streaming job. The system recovers from the initial delays.

• Scheduling delay indicates the ability of the system to process the incoming stream

data in the given batch interval time;

• Processing time shows the time needed for the system to process each micro-batch;

• Total delay presents summed scheduling delay and the processing time; that is, the

newest incoming batch will be processed after this delay time;

Further down Spark presents the current queue of batches, active batch processing and

already finished batches. In a worst case scenario, the delay is increasing such that the

system can not process events in time and the queue of batches is growing. Each processed

or active batch can be inspected and the job plan and the stages (failed and finished) can be

viewed. It is possible to dive even deeper into the execution times of each single task. This

way the user can determine bottlenecks and time consuming components, verify whether all

ressources are in use and understand the execution logic of the job.

As already described in the previous paragraph tuning Spark depends on the right par-

titioning, good fitting batch and block intervals. For tuning purposes and also in case of a

failure the additional information obtained from the storage or executors tabs is useful.

Storage gives an overview of all RDDs, how much memory is used for them and whether

they are saved in memory or on a disk. Especially in case, where the system is not fast

25

enough, the increasing amount of data to be processed can be determined. Otherwise it

might increase until all memory is used up. In the executors view Spark shows actively

working executors and here worker machines that do not receive any data or not use all of

the available resources can be detected. Though this can be noticed in the batch details

view.17

2.4.3 Apache Flink

The newest contender of Storm and Spark, Apache Flink, gained a lot of attention especially

in Europe [30]. Flink started around 2010 (originally: Stratosphere) as a research project

funded by the DFG. Towards the end of 2014 it became an Apache project.

Flink is a streaming-oriented engine that executes distributed batch and stream jobs

using the same streaming engine as shown in Figure 19b. The batch and stream APIs are

almost identical with the basic types DataSet and DataStream respectively. The single

major difference in the API is the call to group the data items by a key with groupBy()

used for batch and keyBy() for streaming applications. DataSet API provides access to

multiple libraries which adds machine learning, graph processing and other capabilities to

batch processing. For DataStream API a library for processing complex events is provided

and the additional Table API allows SQL-like syntax to define Flink jobs.

Features As seen in the overview in section 2.3, Flink supports exactly-once semantics,

stateful processing and in-memory computations just like Spark. As it can be seen in Fig-

ure 19a Flink supports snapshots to improve fault tolerance. This way in case of a node

failure only results since the last snapshot have to be recomputed. More details on fault

tolerance can be found in section 5.7.2. Although most features overlap with Spark, minor

details differ.

The pipelining approach is Flink’s feature to avoid the materialization of large interme-

diate results.19 In order to achieve this, intermediate results are not materialized, but piped

into the next transformations. As an example one can consider the following sketch for a

task:

DataStream result = stream.map(...);

DataStream nextResult = result.filter(...);

nextResult.print()

Flink will not materialize result and pipes it directly to the filter operation. With pipelining

the operators start processing as they get the data and do not wait until their predecessors

17https://databricks.com/blog/2015/07/08/new-visualizations-for-understanding-apache-spark-streaming-applications.

html
18https://flink.apache.org/features.html
19Slides 18-20 in http://de.slideshare.net/fhueske/apache-flink

26

(a) Distributed snapshots (states) in Flink

job

(b) Flink capable of running same job as

batch and stream process

Figure 19: Capabilities of Flink’s engine18

finish the tasks.20 Thus most of the data is kept in memory. At the same time efficient

memory management is one of Flink’s advertised features. It aims at reducing the garbage

collection and hence increases the available computing time.

In contrast to Spark iterations over a data set in Flink are made simple with the iterate

API call. This feature has even been extended to improve performance of iterations. For

the so called delta iterations feature Flink explores which part of data is changed during the

iterations and applies the operations only on that part of data. Iterating over a stream is

also possible. This adds Flink another promenint feature not available on other distributed

stream processing platforms. Finally, Flink developers emphasize that the optimizer algorithm

improves Flink performance for batch jobs. With the above features Flink claims to provide

latencies similar to or even better than Apache Storm in a sub-second level in contrast to

Spark.

In the code snippet in Figure 20 one can see an example of a Flink program21. As a

task the word counting example is used. The steps are similar to those in Spark Streaming.

First, splitting lines to words is done using the map function. Inside the flatMap function

single words are mapped to pairs. Then the stream is grouped by collected words (parameter

number 0) and a sum is built over the second parameter of each pair (parameter number 1).

Flink also requires an output operation such as print to be defined in order to force the actual

execution of the job plan.

As the previous frameworks Flink also supports external connectors. Figure 21b shows

some of them that are advertised by Flink developers themselves.

20Slides 29-36 in http://de.slideshare.net/KostasTzoumas/apache-flink-api-runtime-and-project-roadmap
21https://github.com/apache/flink/blob/master/flink-java8/src/main/java/org/apache/

flink/streaming/examples/java8/wordcount/WordCount.java

27

DataStream<String> text = getTextDataStream(env);

DataStream<Tuple2<String, Integer>> counts = text

.map(line -> line.toLowerCase().split("\\W+"))

.flatMap((String[] tokens, Collector<Tuple2<String, Integer>> out) -> {

Arrays.stream(tokens).filter(t -> t.length() > 0)

.forEach(t -> out.collect(new Tuple2<>(t, 1)));})

.keyBy(0)

.sum(1);

counts.print();

Figure 20: Word count example using Apache Flink

Jobmanager

(master)

Slot 1

Slot 2

Taskmanager 1

Slot 1

Slot 2

Taskmanager 2

(a) Sketch of a Flink cluster setup consisting of a

master node and multiple taskmanagers

Apache Kafka

Elasticsearch

Apache HDFS

RabbitMQ

Amazon Kinesis

Flink

Apache Kafka

RabbitMQ

Amazon Kinesis

(b) External connectors advertised for Flink

Figure 21: Apache Flink

Parallelism Tuning the level of parallelism in Apache Flink is similar to Apache Storm’s

concept. As can be seen in Figure 21a, a Flink cluster consists out of two core components:

a jobmanager (master node) and (multiple) taskmanagers. The task of a jobmanager is

to control the Flink cluster, receive job requests and transmit them to the taskmanagers.

Each worker machine is called a taskmanager. For each taskmanager the user defines the

number of task slots that can process the data in parallel before a job can be deployed. This

number can not be higher than the number of CPU cores. Every taskmanager can define

its own amount of working slots. In the programm definition the processing of the data

can be to tuned in more details. In contrast to more complex tuning of Spark in a Flink

cluster the simplest way to exploit all the ressources is to set the default level of parallelism

to the number of working slots. Furthermore, Flink uses so-called chaining to bundle several

operators for a single slot. If no instructions are given, Flink will automatically decide which

operators will be chained together as a part of the optimization process. Chaining some

operators together or implicitly disable chaining for other operators is part of Flink’s API.

Additionally reserving some computing slots for groups of tasks or sharing slots among all

tasks is also possible.

28

Figure 22: Web dashboard in Flink with pieces of information of the cluster and running and completed

jobs.

Flink supports several partitioning strategies. The default is a standard round-robin par-

titioning over the whole system. When the data is coming from distributed parallel sources,

it may occur that one source receives data faster and thus transmits the data to all possible

task slots. In order to allow local round-robin partitioning instead of sending data over the

network, Flink’s API supports the transformation called dataStream.rescale(). In con-

trast to that, dataStream.rebalance() partitioning creates equal load for the whole cluster

which is especially important for the data skew.

Graphical interface Flink’s web dashboard serves similar information about running jobs

as Storm and Spark. The landing page, as presented in Figure 22, summarizes most of the

important information about the cluster and the jobs:

• the number of registered task managers, all tasks slots and those tasks slots that are

still available

• summary of the running, finished, canceled and failed jobs

• more detailed overview of the running jobs

• information about past jobs

After selecting the running or any completed job one can consider the details of that job

including the job plan. While a current stream is being processed, the current duration time,

29

details of sent and received data (in bytes) and records are displayed. For a distributed case

it is of great interest to observe the distribution of the events over the different task slots

and hence different taskmanagers.

2.5 Summary

All the presented frameworks for distributed Big Data processing are similar in their basic

job structure. Despite differences on the API level the data flow through the processing

functions is defined as a directed acyclic graph. Storm as one of the first distributed stream

processing frameworks introduced a low-level API in constrast to Spark and Flink. The later

ones provide basically similar to each other API concepts that are intuitive when building the

job graph.

Every framework showcases the job history, an overview of the available resources and

especially currently running tasks. This is a significant tool to understand, debug and tune

own jobs. Storm, Flink and Spark display all the mentioned details with a lot of information

from the general job overview down to every single component. Additionally to that Spark

Streaming displays several graphs for the current job and allows for a very detailed insight

into each micro-batch. Although Flink’s UI is instead held rather flat, it does not loose infor-

mational content as Flink does not require as much tuning as Spark. Flink lacks the charts

that are comparable to Spark streaming overview. As an advantage over Spark and Storm is

that Flink dashboard does not require reloading and updates the views itself. Similar to Spark

Flink’s dashboard also presents statistics about current memory and CPU consumption of

the taskmanagers in the taskmanager view (reachable through the left menu).

30

3 Machine Learning for Distributed Big Data Environments

The motivation behind collecting data is to analyze it and detect patterns or correlations that

are not obvious due to the size and complexity of the data. The extracted knowledge is often

used to improve a service or a product. Consider a recommendation system that is improved

based on previously selected shopping items or a more precise traffic prediction based on the

interconnected navigation systems in the cars. Machine Learning (ML) algorithms are devel-

oped with the same goal: analyzing and learning from given data and making predictions for

unseen data driven by a learned model. With Big Data training a model on a single machine

becomes difficult. Although Rapidminer [31], WEKA [32] or scikit-learn increase their at-

tempts to support distributed computations using MapReduce, Spark and other frameworks,

this thesis mainly concerned with ML libraries that were built with a clear focus on distributed

computing and support for open-source platforms Storm, Flink and Spark.

3.1 Theoretical Background

Depending on the type of the data, different ML algorithms may be required. Two types of

ML approaches exist which learn from different types of data. The first case handles labeled

data that is given as

(X1,j , . . . , Xp,j , Yj) ∀1 ≤ j ≤ n

with the number of features p and the number of data instances n. As the classes for

the instances are known, supervised learning methods can be applied. Such a supervised

algorithm trains a model based on the inferred relation between the data vectors ~Xj and the

corresponding classes Yj . If the labels are not known, then unsupervised learning methods

are able explore the data set and detect multiple classes in it. In such a case only the data

vector with no classes is given:

(X1,j , . . . , Xp,j) ∀1 ≤ j ≤ n

Unsupervised algorithms assign each data instance a detected class and do the same for new

data.

With a specific algorithm in mind the observed data is used to train a model that assigns

each data item a predicted output: f (~Xj) = Ŷj . As the task is to find a model that fits

the data best, an objective function L : Y × Y → R≥0 is defined to capture the properties

of the learned model such as minimizing the distance between the predicted and the true

label. During the training this objective function is minimized or maximized depending on its

definition. The algorithm then searches for a function f (~Xj) that minimizes the loss function:

min

n∑
j=1

L(Yj , Ŷj)

31

Further constraints such as regularizers are often added to the objective function to penalize

model complexity. This plays an important role when applying ML algorithms to Big Data.

While Big Data may correspond to the number of instances n with p � n, sometimes the

feature space has a very high dimension with n � p. Therefore, regularization terms are

used to perform feature selection.

In both cases the aim is to predict the outcome label Y by applying the trained model on

the new data ~X. The most frequently used categories of such algorithms are the following:

• for a classification (supervised learning) setting two or more labels (e.g. classes,

groups, . . .) are given and the goal of the classification algorithm is to assign the right

label to an unseen data item. Predicting multiple labels for a new data item is also

possible (multi-label classification).

• in a regression (supervised learning) setting the predicted output Y ∈ R is continuous.

In the learning phase the algorithm explores the dependencies between the features ~X

and the label Y and finds a function that fits the training data best.

• clustering (unsupervised learning) devides the input data into clusters. k-Means is

one of the most known clustering algorithms that partitions the data into k clusters

depending on the distance of a data point to the mean coordinates of all the data

points in the cluster.

Ensemble Learning With multiple accurate and diverse models it is often possible to

achieve more accurate classifiers as in the case when using a single model [33]. This approach

is called ensemble learning. Various ways to construct an ensemble are known. The two most

prominent ones are to split the data vertically into subsets of features or horizontally into

subsets of data instances. The models are then trained using those subsets.

A well-known example is Random Forest [34], where multiple decision trees are trained

on different attribute sets of the data. In the end they are combined to a powerful classifier

based on the majority vote upon all trees of the forest.

Mining Streaming Data Different techniques of ML introduced above imply that model

training is performed in a batch manner. However, as introduced in section 2 data streams

continuously produce new data items. As a simple approach the data items from a stream

can be stored and used for model fitting with the same batch processing mode. This ar-

chitecture requires regular reprocessing of the new data that might have an impact on the

model performance. Therefore, the strategy suggested above does not fit into the needs of

applications where real-time responses with the most current model are necessary. Hence,

this makes the development of ML algorithms, capable of mining streaming data without a

need to store the data, necessary.

32

The streaming ML paradigm implies that the corresponding ML model for data mining

utilizes real-time feedback and model updates are fast.22 Therefore multiple algorithms

have been adjusted to learn and update their models directly on the data stream. Such

algorithms must deal with data whose nature or distribution changes over time [35] and

thus the detection of concept change is crucial for non-stationary environments. Current

publications present ways of learning various learning tasks on data streams such as multi-

label classification [36], adaptive model rules [37] or an ensemble of adaptive model rules [38].

MOA [39] provides several stream clustering, classification and regression algorithms. In this

work a distributed version of MOA called SAMOA is introduced next to other distributed ML

frameworks in section 3.3.

3.2 Machine Learning in the Distributed Setting

The development of multiple frameworks for distributed processing led to an increased re-

search and development of distributed ML algorithms. In order to learn a model one may

consider a centralized scheme with a master computing node. This node communicates with

all the machines, receives the data and builds the model itself [40]. Due to a variety of

reasons like low bandwidth, long response time or load balancing such a scenario becomes

less attractive. Hence, new approaches aim at avoiding the collection of all the data on a

single central machine. That is, a global problem is split into many small subproblems which

can be distributed over a cluster and solved by local algorithms [20, Chapter 14].

Consider a sensor network with the sensors distributed over different locations as shown

in Figure 23. In a centralized scheme all the data is transmitted to a computing node that

processes it. The transfer costs are high and slow down the performance. When the global

problem is split into several subproblems, the data does not have to be implicitly transmitted

to the master node. Each subproblem is solved locally where the transfer costs for the

nearby located sensors are low and only local models are forwarded to the master to update

the global model. This reduces the communication costs and the power consumption while

the computation is able to run with a higher level of parallelism [20, Chapter 13].

ML in MapReduce Chu et al. [41] introduced the concept of using ML algorithms inside

a MapReduce framework. The mappers divide the global computation into several subprob-

lems. The reducers combine the results and in case of ML generate the trained model. The

concept for the distribution of the ML algorithm’s computation remains the same for other

distributed processing frameworks like Spark oder Flink where the MapReduce scheme is split

into more fine-grained functions.

22http://www.otnira.com/2013/10/06/samoa/

33

S1 S2 S3 S4 S5 S6

Master

(a) Centralized ML scheme

S1 S2 S3 S4 S5 S6

Local Local

Master

(b) Decentralized ML scheme

Figure 23: Different models for ML in a distributed setting. 23a presents a centralized appoach

where every sensor transmits the data to a master node. In 23b the data is only transmitted locally

and the solution of the subproblem is transmitted to a master node.

Distributed ML Algorithms To fit the model, an objective function is defined which is

computed iteratively over the whole data set. In the distributed setting the data set is not

placed at a single location and hence the algorithms need to be adjusted for distributed model

training if possible. Many state-of-the-art ML algorithms require only few changes for the

distributed execution, some of these are presented in the following.

Naive Bayes is one of the oldest probabilistic classifiers. For a data instance ~x Naive

Bayes computes conditional probabilities for each class Ck . Consider the feature vector ~x

with all features conditionally independent of other features given the class Ck :

P (xi |xi+1, . . . , xp, Ck) = P (xi |Ck)

Then the probability for a class Ck is

P (Ck |x1, . . . , xp) =
1

P (~x)
P (Ck)

p∏
i=1

P (xi |Ck)

where P (Ck) is the number of examples with class Ck out of all examples and P (xi |Ck)
the number of examples with feature xi labeled with Ck . The classification task is stated as

argmaxk P (Ck |x1, . . . , xp) whereas the scaling factor 1
P (~x) can be ignored. Generally speaking

for Naive Bayes one only needs to count the examples given classes and the features. In a

distributed environment collecting all the statistics can be split over the computation cluster

and the results are then combined into a Naive Bayes model. In section 2.1, frameworks

for distributed processing were described. Among other features, they provide support for

grouping the incoming data by a key that is required for this setting. The data items are thus

grouped by some key (e.g. class label) and counts are computed in parallel on the different

machines. Instead of a simple grouping, vertical parallelism as discussed above may improve

the load balancing, parallelization and network communication costs. For this each data item

34

is split among the features and hence an example instance is processed in parallel on multiple

machines. Furthermore, the duplication of the computed statistics for the single feature is

reduced as it is held on one single machine.

k-Nearest-Neighbor (kNN) is a widely used classification and regression algorithm. In-

stead of using the whole data set for a prediction, only the nearest k instances are chosen.

By considering those instances, a prediction can be made by a majority vote among the k

examples. In a distributed environment the most direct method is to split the incoming data

into subgroups, search for a neighbor in each of those subgroups and then consider the k

neighbors found among the distributed subgroups [42]. In MapReduce structure the pair-wise

distance can be computed during the map step while the reduce step takes over the search

for k smallest distances.

k-Means is a clustering algorithm that divides the data into k partitions. The goal is

to minimize the distance of all items in each partition to its centroid. A data point is

classified to a cluster, if its distance to the centroid of the cluster is minimal among all

clusters. In a distributed environment the data is split into subgroups and then the clustering

is applied to those subgroups. Forman and Zhang [43] introduced an approach for various

distributed clustering algorithms including k-Means. In this case, each worker node computes

its contribution to the global statistics and broadcasts them. Afterwards, the centers can

be adjusted locally on every machine providing identical results throughout the distributed

setting. The algorithm stops when the performance converges or after a predefined number

of iterations.

3.3 Distributed Machine Learning Frameworks

With the evolving frameworks for distributed Big Data processing a high amount of different

approaches to distribute ML algorithms over several physical machines were developed. In

the previous section the general ideas for distributing ML algorithms were discussed. Using

three state-of-the-art ML algorithms some ideas on their distributed variants has been shown.

In this section several distributed ML frameworks that support a wide range of different ML

algorithms for batch and streaming distributed execution are outlined. Here, the focus is set

on frameworks that are either decoupled from the underlying distributed processing framework

or run on top of the three frameworks discussed in this thesis, namely Storm, Spark or Flink.

3.3.1 FlinkML

FlinkML is a machine learning library provided by Flink. As it is still in development, the

support for distributed ML algorithms is rather limited.

35

The main concept behind FlinkML are ML pipelines, inspired by sklearn.23 Buitinck [44]

conceptually describes pipelining used in sklearn. In the ML context the user creates chains

of operations to transform the data (e.g. create features) and then uses the transformed

data for a predictor or simply outputs them for any other task. The API of FlinkML24 is

contained in ml.pipeline. Like in sklearn the following interfaces are present:

• Estimator contains a fit method and is the base class for the other two interfaces,

transformer and predictor.

• Transformer, as the name states, is used to transform the data and hence has transform

additionally to fit method. As an example one can consider the standard scaler trans-

former which scales all features to the user specified mean and variance. During the

training phase the fit method learns mean and variance of the data and afterwards the

transform method alters the values according to the user specified mean and variance

values (otherwise, default values of 0 and 1 resp. are used).

• Predictor interface makes predictions using the predict method and trains the model

using the same fit method as the other interfaces. Hence, as for transformer the fit

method is used while training the model and predict is called on the test data. In the

case of supervised learning, the predictor returns a label for classification or a value for

regression, but one can also implement a predictor for unsupervised learning tasks.

A chain of transformations can be implemented by calling chainTransformer and is not

limited. On the other hand a predictor is added to the pipeline by calling chainPredictor

and always means the end of the pipeline. Following this definition, a pipeline ending with

a transformer can be used as a transformer. If the last estimator is a predictor, then the

whole pipeline is used as a predictor. Each estimator needs a predefined list of input and

output types and before deploying the job to the cluster, FlinkML inspects the pipeline for

type matching, making it type-safe. An example of building a FlinkML pipeline is presented

in Figure 24.

The number of algorithms supported by Flink (August 2016) is still rather small, although

various algorithms are in development.25 An overview and comparison is presented in table 4.

As already mentioned FlinkML contains some data transformers such as different scalers.

Splitting the data set into train and test set or even preparing a k-fold train-test set is

possible with a cross-validation Splitter. These features are basicly enough to build a ML

pipeline.26

23http://scikit-learn.org/stable/
24https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/ml/pipelines.

html
25https://github.com/apache/flink
26http://de.slideshare.net/tillrohrmann/machine-learning-with-apache-flink

36

// Training data

val input: DataSet[LabeledVector] = ...

// Test data

val unlabeled: DataSet[Vector] = ...

// Construct the pipeline

val pipeline = StandardScaler()

.chainTransformer(PolynomialFeatures())

.chainPredictor(MultipleLinearRegression())

// Train the pipeline (scaler and multiple linear regression)

pipeline.fit(input)

// Calculate predictions for the testing data

val predictions: DataSet[LabeledVector] = pipeline.predict(unlabeled)

Estimator
fit()

Transformer
transform()

Predictor
predict()

Figure 24: FlinkML pipeline example written in Scala using Multiple Linear Regression

3.3.2 Spark’s MLlib

Spark’s MLlib introduced more machine learning algorithms and operations for distributed

streaming environment. The development of MLlib started as a project called MLBase

[45]. MLlib is written in Scala and uses native (C++ based) linear algebra libraries on each

node [46].

Transformer
transform()

Estimator
predict()

Figure 25: Components of a MLlib

pipeline.

As in FlinkML, Spark’s MLlib builds ML pipelines

as it is used in sklearn [44]. Although the concept is

used in a similar way, it is reduced to the two terms

as in Figure 25: Transformer and Estimator. The

transformer implements the transform method. The

estimator is equal to a predictor in FlinkML and im-

plements the fit method. The model trained by an estimator is again a transformer that

turns a data set with features into a data set with predictions. This way a MLlib pipeline is

not restricted to end with an estimator as in FlinkML. Hence, a predictor from FlinkML is a

combination of a transformer and an estimator in MLlib: the estimator’s fit method is used

for training and the transformer’s transform method used for making predictions. Figure 26

shows example code for building a pipeline in MLlib. The task is to tokenize the words,

transform them into feature vectors and then learn logistic regression model. As described

above after the fit method is called on the pipeline in line 14, the received model is again

a transformer that can be used for predictions, model validation and model inspection.

As each of the transformers and estimators is controlled by several parameters it requires

the right tuning for the given combination of the data and the learning goal. MLlib supports

cross-validation for this hyperparameter tuning.

37

1 // Configure an ML pipeline out of three stages:

2 // tokenizer, hashingTF, and lr.

3 Tokenizer tokenizer = new Tokenizer().setInputCol("text")

4 .setOutputCol("words");

5 HashingTF hashingTF = new HashingTF().setNumFeatures(1000)

6 .setInputCol(tokenizer.getOutputCol())

7 .setOutputCol("features");

8 LogisticRegression lr = new LogisticRegression()

9 .setMaxIter(10)

10 .setRegParam(0.01);

11 Pipeline pipeline = new Pipeline()

12 .setStages(new PipelineStage[] {tokenizer, hashingTF, lr});

13 // Fit the pipeline to training documents.

14 PipelineModel model = pipeline.fit(training);

Figure 26: MLlib pipeline example written in Java using Logistic Regression

3.3.3 Apache SAMOA

Apache SAMOA stands for Scalable Advanced Massive Online Analysis and provides machine

learning algorithms optimized for streaming cases [47]. Its developers have already built the

non-distributed stream mining library MOA with a great number of algorithms.

SAMOA is a framework and a library at the same time. It provides an abstraction layer

for the distributed streaming ML algorithms such that the developers do not have to focus on

the exact processing engine like Flink, Storm or Spark that executes the algorithms. Hence,

new distributed streaming ML algorithms can run on different distributed stream processing

frameworks.27 The architecture borrows the terminology from Apache Storm. SAMOA

defines a Topology that is set up by the TopologyBuilder. The following components of a

topology are shown in Figure 27a:

• ProcessingItem is a hidden component that wraps Processors

• Processor is a container for the algorithm code that can receive data from one source,

but is able to split the output over several destinations. Additionally to a normal pro-

cessor there exists an EntranceProcessor which generates the initial stream. Adjusting

the level of parallelism allows for splitting the computations over the predefined number

of ProcessingItems working in parallel.

• Stream connects the parts of the topology. As with Storm, a stream can come from

a Spout or from a Bolt. These underlying differences are hidden through the SAMOA

API .

27http://www.otnira.com/2013/10/06/samoa/

38

Stream

Processor

(a) SAMOA’s processor is

wrapped into a processing item

and outputs new stream.

// create Stream

Stream stream = builder.createStream(sourceProcessor);

// create destination Processor

destProcessor = new HelloWorldDestinationProcessor();

builder.addProcessor(destProcessor, 4);

builder.connectInputShuffleStream(stream, destProcessor);

// build the topology

helloWorldTopology = builder.build();

(b) Building SAMOA topology using its abstract components.

Figure 27: Apache Samoa

• ContentEvents are key-value wrappers for the messages transmitted between the Pro-

cessingItems. The key is used for various groupings as in distributed processing frame-

works that have been introduced in section 2.4.

Figure 27b shows an example of how one can combine processors to a SAMOA topology.

As can be seen, the processors and streams are added to the builder first and are then

connected to each other by the API.

SAMOA includes algorithms for distributed stream mining such as for classification, clus-

tering or regression. Furthermore, next to other algorithms SAMOA includes such meta-

algorithms as boosting and bagging. The authors suggest that a combination of single-

machine classifiers e.g. from MOA with these meta-algorithms is the way to go. Therefore,

an additional SAMOA-MOA package is available, while increasing the number of streaming

ML algorithms.

Based on the terminology and the idea behind Storm, SAMOA provides a DAG that can

be ideally mapped onto Storm or other stream processing engines that use DAG to define

the distributed jobs. Hence, SAMOA supports Storm and Flink (not officially announced,

but the implementation is a pending pull request) next to S4 and Samza. As Spark’s API is

not really different and is also based on the same concepts as Storm and Flink, it is possible

to implement the required SAMOA adapter components for Spark integration.

3.3.4 StreamDM

StreamDM [48] is a stream mining library built on top of Apache Spark Streaming at Huawei

Noah’s Ark Lab.28 It is one of competitors of the Apache SAMOA framework, while Albert

Bifet is one of the developers of MOA, SAMOA and StreamDM frameworks. The main dif-

28http://huawei-noah.github.io/streamDM/

39

ference between SAMOA and StreamDM is that StreamDM is coupled with Spark Streaming

platform.

The algorithms provided by StreamDM are presented in the overview in the Table 4.

The platform is built with simple extensibility in mind. It has a well and yet simply defined

structure for creating new tasks and learners which are presented in the following.

Example
input : Instance (data, x∗,j)

output : Instance (labels, yj)

weight : Double

Table 2: Structure of Example in

StreamDM

Data structures Beginning on the data level an in-

stance in StreamDM holds a multidimensional vector

of data. The real data can be saved as an array of

double or non-numeric (string) values. Such oper-

ations as dot, distanceTo or state-of-the-art map

and reduce are supported for the instances. Several

representations are available such as DenseInstance,

SparseInstance or TextInstance.

The instances are wrapped inside an example object that is passed through DStream.

This wrapper holds the input and output instances. The input instance is the real data

coming from the source. In the output instance StreamDM saves the labels. Additionally

each example can receive a weight. However, output instance and weight are optional. For

ease of understanding these data structures are presented in Table 2.

Task Tasks are sequential algorithms that use a Spark Streaming Context. A task is a

combination of blocks that are generally ordered as in any learning process setup:

1. StreamReader (read and parse Example and create a stream)

2. Learner (provides the train method from an input stream)

3. Model (data structure and set of methods used for Learner)

4. Evaluator (evaluation of predictions)

5. StreamWriter (output of streams)

In the beginning predictions are made using the current linear model. Afterwards, using

the incoming examples, a new model is trained and updated.

3.3.5 Other Frameworks

Apache Mahout Apache Mahout is a library of scalable machine learning algorithms29.

Most of the implemented algorithms run on Hadoop’s MapReduce, but support for other

platforms as Spark, Flink or H2O is growing. In the most current releases Mahout focused on

29http://mahout.apache.org/

40

linear algebra, statistical operations and data structures included within the math environment

Samsara. As can be seen in the list of available algorithms in Table 4, Mahout currently does

not have a big range of algorithms for Spark or Flink. Furthermore, the only streaming

algorithm (streaming k-Means) is listed deprecated for the engine version 0.12.0.

As another disadvantage mentioned in various sources [7, 49], most of the available

documentation is outdated and the details of implementation can often only be understood

by inspecting the code itself.

Therefore, Apache Mahout is mentioned here without further details. Although it was a

popular ML tool for Hadoop’s MapReduce, it is not as rich in features as other frameworks

discussed in this thesis.

H2O H2O is another library for distributed machine learning algorithms developed by the

company H2O.ai which sells enterprise support for its open-source library.30 H2O can be

executed both as a standalone application and inside a Spark or Hadoop cluster. It provides

a wide range of different algorithms including PCA, k-Means, Random Forest, SGD, Deep

Learning and many more. A web-based user interface, Flow, makes creation and analysis of

ML pipelines accessible for users without good programming skills.

In addition to its own processing engine, H2O offers seamless integration with Apache

Spark and Spark Streaming, through the so-called Sparkling Water project. The develop-

ment continues as H2O announced support for Spark’s version 2.0 even before it has been

officially released.31 Storm is also compatible with H2O. Documentation on how to make

real-time predictions using H2O on Storm already exists.32 Integration of Flink is currently

in development.

Despite multiple claims of the superior engine’s speed and the intensive combination

with Spark, it is difficult to find any academic neutral studies verifying these statements

and comparing it to other frameworks. Kejela et al. [50] used H2O in order to prove its

ability to distribute ML algorithms and scale for Big Data. Unfortunately, although Spark is

mentioned, no further comparison in executing time or results have been made. Nevertheless,

H2O might become an interesting companion for distributed Big Data analysis with its rich

documentation and the intensive support for Spark.

3.4 Summary

Compatibility of distributed streaming frameworks with distributed machine learning libraries

is shown in Table 3. Table 4 presents some of algorithms, data processing and utilities

implemented in the libraries presented in this section. Spark’s native library MLlib provides

30http://www.h2o.ai/
31http://www.h2o.ai/press-releases/2016-07-01-H2O-Unveils-Sparkling-Water-2/
32http://docs.h2o.ai/h2o-tutorials/latest-stable/tutorials/streaming/storm/index.html

41

high number of algorithms implemented for its own distributed framework and at the same

time has the best support for various distributed ML frameworks. H2O is definitely as

interesting as MLlib as it is the only framework to support Deep Learning out of the box.

Thus, Spark’s common project with H2O, Sparkling water, becomes attractive where the

user can profit from both systems. Flink started to work on their own library much later and

has a long list of algorithms to be implemented in the near future. Nevertheless, one can find

a lot of discussions and current work on integrating support for Flink into libraries mentioned

above. Although Storm has been introduced earlier, at the moment it does not reach the

same support for machine learning libraries as Spark.

Flink Spark Storm

Flink ML x

MLlib x

SAMOA (x) x

StreamDM x

MAHOUT (x) x

H2O (x) x (x)

Table 3: Compatibility/integration of dis-

tributed streaming frameworks with dis-

tributed machine learning libraries. (x) hints

frameworks with not full support or being in

development.

FlinkML, Spark’s MLlib, Samoa and StreamDM

are promising candidates for previously intro-

duced distributed stream processing frameworks

such as Spark, Flink and Storm. FlinkML, MLlib

and StreamDM have been specifically developed

for the distributed stream processing and hence

fit well and are simple to integrate into existing

solutions. SAMOA provides a good documenta-

tion and a concept for distributing its computa-

tion on other frameworks, which is also the aim of

this thesis. Mahout slowly becomes obsolete and

the difficulties in documentation make it less at-

tractive. On the other hand, H2O and its subpro-

ject Sparkling Water still misses some academic

approvements and comparisons, but showcases a

wide range of ML algorithms and a tendency of distributing its computations and using its

power on top of other frameworks including Flink and Storm. KDNuggets stated 2015 that

tools like H2O and MLlib are among distributed ML frameworks with strong growth [51]. At

the same time Rapidminer, one of the most popular tools for data mining and data science

according to KDNuggets, added some algorithms from H2O such as Deep Learning and GLM

and support for distributed computations on Spark and Hadoop.33

33https://rapidminer.com/products/radoop/

42

Flink ML MLlib SAMOA StreamDM MAHOUT H2O

Linear SVM x x

Random Forest x x

Gradient Boosting x x

Gradient-boosted Trees x

Bagging x

Decision Tree x x

Linear Regression x x x

Streaming Linear Regression x

Logistic Regression x x x

Isotonic Regression x

Multiple Linear Regression x

Naive Bayes x x x x

k-Means x x x

Bisecting k-Means x

Streaming k-Means x

Streaming k-Means++ x

CluStream x

Gaussian Mixture Model x

Power Iteration Clustering x

Latent Dirichlet Allocation x

Streaming Clustering/k-means x x

Alternating Least Squares x x

Principal Component Analysis x x x

Frequent Pattern Mining x

Streaming Frequent Itemset Mining x

Deep Learning x

QR Decomposition x

Stochastic SVD x x

Hoeffding Decision Tree x x

Adaptive Model Rules x

Stochastic Gradient Descent x (x) x x

Table 4: List of supported machine learning algorithms in libraries for distributed computing. SAMOA

targets streaming (online) machine learning that are limited. MLlib and H2O have support for even

more exclusive algorithms. MAHOUT supports more approaches for MapReduce.

43

4 Metaprogramming with streams

Since the introduction of MapReduce, a lot of Big Data processing moved to batch pro-

cessing on clusters. Furthermore, the definition of such distributed jobs shifted from the

two-stages concept of MapReduce to a more granular way in the current distributed pro-

cessing frameworks. In section 2.4, some of such distributed processing frameworks, namely

Storm, Spark and Flink, were introduced. All these different platforms define their jobs as

directed acyclic graphs (DAG) with the functions wrapped into the nodes and the data flow

interpreted as edges. The differences of the platforms are given by slightly different APIs

and the details of the execution runtime environments.

While new projects arise and claim to achieve higher performance, MapReduce is still

widely applied for processing huge data loads. On the other side, it is often combined

with modern distributed stream processing frameworks in order to build a system following

the Lambda architecture concept. Thus, in many usecases the developing process is split

into implementing jobs in two different concepts (batch and streaming on top of different

platforms). By using for example Spark for batch and streaming processing, the complexity

of the development is reduced radically, but all the jobs have to be redefined and adjusted to

the new system. Therefore, some projects arised to simplify and improve the job definition

for MapReduce and lately other frameworks. That is, some definition language is used to

build up processing pipelines that can be parsed and transformed into native pipelines of the

different platforms.

In this chapter, first several open-source abstraction tools and the idea behind them

are discussed. Afterwards, streams framework is introduced that is seen as a standalone

streaming engine and an abstraction job definition tool. At the end, it is discussed how

streams can be used to compete with other abstraction tools to build a Lambda or Kappa

Architecture system.

4.1 Open-Source Abstraction Tools

Before the processing of the data is executed on a particular machine in a distributed setting,

two more essential steps have to be done. On the top, there is a framework in which

the job is composed. The generated task is then executed by the runtime environment of

the framework which is responsible for distributing the task over all the computing nodes

(cores of the machine or even different physical machines) and monitoring the process. The

environment can then be executed on the local machine, in a cluster or in the cloud.

Big Data applications for data analysis require skills in writing code and knowledge in

several further areas such as software engineering, testing and statistics. Another challenge

is the ever evolving Big Data ecosystem. New MapReduce competitors have been built in the

last few years introducing a faster way to process not only batches of data, but also streams

44

Abstract job definition

Spark Flink . . .

Runtime Environment

(Storm, Spark, Flink, . . .)

Local Cluster Cloud

Figure 28: Execution stack of any distributed processing framework. An abstract job definition tool

can be put on top of them to decouple the design of the data pipeline from the execution engine.

of data in real-time. Depending on the case and the data itself, some framework may be

superior to another one. Instead of implementing each job in a new framework, one way of

reducing the programming overhead and hiding the details of the execution environment is

to add another abstract layer on the top of the stack described above. As all the discussed

frameworks use DAG for job definition, this new abstract layer can use Domain Specific

Language (DSL) for the job definition. This enables concentrating on the job definition

itself without specifying the execution engine. Figure 28 visualizes this idea. In the following,

a short overview over the existing open-source tools is presented.

Tools for application experts One group of such tools is oriented for the data analysts

with the limited experience in programming. The syntax for job definition is described by a

high-level DSL that is mainly based on SQL syntax.

Apache Hive34 is built upon Hadoop and allows summarizing, querying and analyzing the

data. Hive uses SQL-like language called HiveQL to query and process the data. HiveQL

provides the standard SQL functions that can be extended with some user defined functions,

aggregates or table functions. As many data warehouses use SQL for the data query, it can

be easily performed by Hive while being able to execute complex and intense computations

distributedly using MapReduce, Tez or Spark. The code snippet in Figure 29 shows the

word-count example in Hive.

A related project, Apache Pig, introduces its own new data flow language to define jobs,

namely Pig Latin, which is still similar to SQL syntax. Tasks defined in Pig Latin can be

executed on top of Hadoop, Tez and Spark. It can be extended by user defined functions

34https://hive.apache.org/

45

DROP TABLE IF EXISTS docs;

CREATE TABLE docs (line STRING);

LOAD DATA INPATH ’input_file’ OVERWRITE INTO TABLE docs;

CREATE TABLE word_counts AS

SELECT word, count(1) AS count FROM

(SELECT explode(split(line, ’\s’)) AS word FROM docs) temp

GROUP BY word

ORDER BY word;

Figure 29: Word-count example using HiveQL

(UDFs), although this leads to the use of a second programming language next to Pig Latin

and therefore requires more advanced programming skills.

Apache MRQL (Map Reduce Query Language) was originally intended to produce

MapReduce jobs without writing complex MR programs. Although its domain specific lan-

guage is also based on SQL syntax, it provides support for iterations, streams and grouping

as done in modern distributed processing frameworks. The support for Spark and Flink ex-

ecution engines was added and hence, the same code originally intended for a MapReduce

framework can be executed inside of the different frameworks.

Tools for programming experts As a second group, there are frameworks that are more

developer oriented as producing data processing pipelines is accomplished by coding against

the platform’s APIs. In the following, two tools that allow the developers quit thinking in the

map-and-reduce concept are illustrated.

Cascading provides a Java API to define data analysis and management jobs. Similar to

the concept of Storm’s topologies, within Cascading the user combines processing functions

called pipes into flows. For each flow, source and sink taps need to be set which complete

the data flow description. Cascading allows translating the defined DAG into MR, Spark or

Flink jobs [7].

Apache Crunch similarly to Cascading provides the Java API for the definition of a job.

In Crunch, pipelines define the data processing flow that can be mapped directly to MR,

Spark or local job. With a slightly different API than Cascading, the functions are combined

into the pipelines the same way as in any underlying distributed processing framework. After

the introduction of lambda functions in Java 8, Crunch has been extended to Crunch Lambda.

This new API almost fully matches the APIs of Spark and Flink while it still can be executed

as a MR or Spark job [52]. A word-count job written in Crunch Lambda is presented in

Figure 30.

The two types of abstraction tools provide a user with an ability of concentrating on

the job itself instead of caring about the execution platform and its programming concepts.

Abstraction tools such as Hive or Pig are widely spread for data querying and analyzing

46

Pipeline crunch = new MRPipeline(WordCountJobLambda.class);

Lambda.wrap(

crunch.read (From.textFile("/path/on/hdfs")))

.flatMap(line -> Arrays.stream(line.split(" ")), strings())

.count ()

.map (wc -> wc.first() + ":" + wc.second(), strings())

.write (To.textFile("/path/to/output"));

crunch.done();

}

Figure 30: Word-count example using Crunch Lambda

batches of data [53]. The developer tools as Crunch or Cascading are capable of building

complex distributed batch processing jobs. In both cases, it is possible to run the generated

jobs on various distributed engines. Finally, combining both types of such tools is possibly

the way to go. That is, the developers build the complex processing pipelines using the

abstraction tools and the application experts query and analyze the outcoming result data.

However, the development is then split over different tools with different DSLs that may still

deliver maintenance difficulties.

In the following sections, another approach is introduced that is able to define streaming

jobs for the distributed processing frameworks. First, streams is described as a standalone

streaming engine and a framework. After that, it is showed how streams can be used to

distribute already defined data processing pipelines onto distributed processing frameworks.

4.2 streams Framework

The landscape of various frameworks for streaming and batch applications continues to grow

rapidly. Due to fast evolving Big Data technologies the choice of the underlying execution

framework is hard and implies high costs for the later exchange of the framework. The

streams framework [1] is intended to bridge the gap between the abstract modelling of

the application flow and various underlying streaming and batch frameworks. streams ac-

complishes the definition of data processing pipelines without any major specification of the

execution engine.

The development was driven by several points in mind. At first, there are domain experts

with a high knowledge of the application and software architects who construct the underlying

processing engine. As mostly these two roles are split, an abstract application design tool need

to be as simple as possible to improve the usability for application experts. For scientific and

productive development the application modelling is an iterative process and hence requires

a possibility of rapid prototyping. On the other hand there already exist a lot of libraries

that solve various tasks from visualizing to machine learning or some specific processing need

to be added for the particular case. For such case the framework is easy to extend with the

47

Figure 31: streams data flow with stream (S), process (P), queue (Q) and service (orange box)

elements [1]

existing library or by UDFs. The definition of the processing pipeline using the high-level API

of the underlying framework requires programmatic skills and the precise knowledge of the

architecture. All these details are hidden right behind the modeling tool to prevent confusion

of domain experts and increase the platform independency. For even more complex cases

of the systems built following the Lambda architecture, the user should not have to switch

to another definition language. Therefore a multi-paradigm design allows streaming, batch

and service-oriented layers of the Lambda or Kappa architecture to be constructed inside one

single framework. streams is constructed to deal with these issues.

Data Flow Design The data flow is defined as a directed acyclic graph like in the previously

mentioned tools for distributed processing. streams utilizes XML based configuration lan-

guage while preserving simplicity of the data flow definition and enabling rapid prototyping at

the same time. As shown in Figure 31, the process flow consists of the following components

(tags):

• stream defines a source of streamed data

• process is a list of processors and executed in a given order. Each data item produced

by stream is passed through the list of those processors.

• queue allows for passing data items from one process to another one; some data items

are pushed into a queue and set the input of another process to that queue.

• service makes an anytime-service available (e.g. some look up service in each of the

processors)

All of these components can be accounted as the nodes in the data flow graph. The

edges state how the processing functions are interconnected and are defined by the input and

id attributes. The modeled application graph can contain multiple connected components.

Hence, each node has ≥ 0 inputs and ≥ 0 outputs. This way streams does not add any

constraints for building complex processing tasks. A process node accepts input from a

48

stream or a queue node with an id attribute. On the other hand each process can forward

items to a queue by defining output attribute or using Emitter processors. This way the

processing data pipeline consists out of process nodes which also contain another pipeline of

processors to be executed.

service nodes are exploited in two different ways. On the one hand they give access to

some any-time properties that are requested during the process. Therefore, such services do

not participate in the data flow with no input or output edges. At the same time they can

be chained into the list of processors. In contrast to other processors such service processors

serve as the source of state information and provide an interface to enable sharing it with

other processors or any external nodes. As an example two subgraphs are defined with both

any-time service nodes and some state-sharing service nodes.

<application id="example">

<stream id="data" class="stream.generator.RandomStream"

limit="1000000"/>

<process input="data" id="separate" copies="2">

<CreateID />

<stream.util.AlternateAB key="flag" />

<stream.demo.Enqueue queues="print"

condition="%{data.flag} == ’A’"/>

</process>

<queue id="print" />

<process input="print" id="printoutput">

<PrintData />

</process>

</application>

data

separate1 separate2

print

printoutput

Figure 32: The streams application configured by the XML code in the left is visualized as a data

flow graph on the right. As the process separation uses copies attribute, multiple instances are

instantiated in order to process the data in parallel.

The code snippet in Figure 32 presents an example of a job configuration in streams.

One can gather the data flow coming from the stream source, running through one process

node and then over the queue to the next process node. The first process node executes

multiple processors, one of which enqueues data items matching some condition to a queue.

This way only a part of the data stream is reaching the second process node. The queue

collects the data from both instances of the first processor and forwards it to the second

one.

Data Items The data items passed through streams as defined by the streams.Data

interface are simple Map objects. The map data structure is very dynamic as new features

or values can be added to the data item during the processing. The keys are String values

49

while the corresponding values have to be Serializable objects. This way a data item can

be serialized for further message passing.

Extensibility Package streams-core contains a list of processors for computing various

statistics and manipulating the data items. These processors allow for basic data processing.

Nevertheless extensibility is a crucial requirement for a processing framework to enable model-

ing specific processing applications for different areas. Alongside the XML definition language

streams provides a simple API for extending its streaming and processing capabilities.

Sources and Sinks The starting point for every application is the source of the data.

In streams every source implements the Source interface with the three following methods:

void init();

Data read();

void close();

These methods describe the life cycle of a source at the same time. After the source

has been created, init() is called to initialize the source. During the application read()

method populates the data flow graph with the data items. The source is able to finish its

operations such as close the connections to a database within the close() method. Another

interface Stream that extends Source interface adds property limit to the source that can

be set through the attribute in the XML configuration. This functionality comes in handy

during the prototyping of the application that can be stopped after reading the set number

of data items.

As a second type streams introduces a sink which receives the data items for further

processing. The life cycle of a sink consists of almost the same states. The only difference is

that during the application the write(Data) method is called. An already mentioned queue

implements the Barrel interface that combines both a sink and a source because the queue

is used as an intermediate actor between two or more process nodes. Hence, some process

writes items into the queue whereas the next process awaits data items from this queue to

be read.

Processes and Processors The definition of specific processing functionality is as sim-

ple as implementing custom sources that was showed above. The process element which was

mentioned earlier is a container for further pipeline of processors that perform the actual pro-

cessing functions. Yet the process has the same life cycle with init() and finish() meth-

ods for the start and the end respectively. During the running application in the execute()

method the pipeline of processors is executed in the order given through XML configuration.

The data items are retrieved from the input source by calling its read() method. All the

processed output can be then forwarded to the next process node.

50

Implementing processing functions to use external libraries or write own data processing

logic is one of the aforementioned core concepts. Each processor implements a simple

Processor interface:

public interface Processor {

public Data process (Data item);

}

Adding the code into this method and placing it in the XML configuration is already

sufficient for all stateless computations. The parent process nodes takes care of the data

items flowing through the ordered list of the processors. In case of any function producing

no item (null), the process stops execution and continues with the next item.

For every stateful application the framework keeps aware of the state information that is

available throughout the whole application lifetime. In order to add such support for stateful

processors one has to simply implement StatefulProcessor that adds only two methods:

public void init (ProcessContext ctx) throws Exception;

public void finish() throws Exception;

This way init is called before the first data item arrives and finish after all the data

items have been processed as in other streams’ components. All the process relevant statis-

tics need to be saved into the ProcessContext. The context is a Map of not persisted values.

Additionally, parameterizing processors happens fully automatically by adding attributes to

the processors in the XML definition on the one side and the same-titled variables in the

code on the other.

The simplicity of this API makes implementing own processors intuitive. The implemen-

tation of stream sources, queues or services is handled in a very similar way. In the course

of various projects utilizing streams for modeling the streaming applications a number of

processors for diverse use cases have been created. All of them can be reused by adding the

particular package to the streams executable jar file and placing the right processor in the

XML configuration.

The introduced streams framework gives the domain experts the possibility of simple ap-

plication design without taking the freedom of extending it with some user defined functions.

Throughout this whole section no details about the execution engine needed to be mentioned

as it stays decoupled from it. In the following section the way of running a streams process

locally or on top of some distributed processing framework is presented.

4.3 streams on Top of the Distributed Frameworks

In the previous section, the core components of streams and their extensibility were dis-

cussed. Now the execution of a data flow graph using these components can be performed

by different engines. The abstract definition of the streaming applications through streams

51

follows the same idea as the modern distributed processing frameworks such as Storm, Flink

or Spark. Each process receives the data item, processes it and propagates it to the next

functional unit. For the job definition through the XML configuration and in the streams

API, no knowledge of the execution engine is needed. As streams and the modern dis-

tributed processing frameworks use data flow graphs for the tasks configuration, streams

jobs can be executed on top of them. The general procedure is to instantiate stream, pro-

cess, queue and service components of streams first and then to encapsulate them into the

native functional units of those frameworks. The XML schema definition does not need to

be changed and this way streams transforms its application to the native topology for the

distributed environment.

Especially while prototyping an application it is inevitable to test it before deploying to

the production server. For this purpose, streams-runtime enables local execution of a

streams job. Each component is wrapped into a worker thread that performs the execution.

The application can be parallelized to take advantage of the multi-core machines. For this

the copies attribute instructs streams-runtime how many instances of a process will be

executed such that each of them can receive the data items from the source. The parallel

instances read from their stream source and the load is split randomly among the instances.

streams-runtime enables parallelizing process nodes only.

With the abstraction level of streams, the domain experts are able to build the data

processing pipelines. The execution engine can simply be chosen or changed to another one

afterwards without modificating the processing pipeline definition. At the same time, the

multi-paradigm design is achieved automatically as the application can be executed in batch

or streaming mode and the services can report the progress to a serving layer.

In the following, two packages for streams that make use of the abstract job definition

are introduced. First, this concept was used to perform streams jobs on top of Apache Storm

through the streams-storm module. Furthermore, as another example the streams-moa

module that enables the extension of the existing streams processes with streaming machine

learning capabilities of MOA is considered. The combination of both packages is used as

a proof-of-concept for using further distributed processing engines and distributed machine

learning tools.

streams-storm Storm’s job graph, topology, consists out of spouts and bolts with the

data items forwarded within tuples. streams job graph needs to be translated into Storm’s

topology for the execution on top of Storm’s engine. Therefore, streams components have

to be wrapped into the corresponding spouts and bolts. In contrast to streams, Storm uses

a push principle for message passing. That is, the next item from the source is not retrieved

through the processing node after it finished applying the function. In Storm the source

continuously produces data items.

52

streams-storm package provides the built-in parser that constructs the native topology

for Storm’s execution engine. Storm uses Tuple as the basic unit of data that is basically a

(key,value) pair. For the message passing across a cluster, these tuples have to be serializable.

streams definition of a data item can be easily put into the tuple as it is a map of serializable

objects. stream becomes a spout and process and queues - bolts. The stream source is

wrapped inside a Storm’s spout that calls nextItem method to retrieve the next data. It is

initialized and executed the same way as it is done locally. As the communication is handled

by Storm natively, the tuple is then forwarded to the subscriber of this spout. The same way

the process node is wrapped inside a Storm’s bolt that calls process with each incoming

data item. The data item is unwrapped from the tuple, processed by the processors pipeline

and then wrapped again to be sent to the next bolt. Summarizing, the wrapper for process

node follows these steps when its execute method is called:

execute(tuple)

=> unwrap(tuple)

=> process(Data)

=> wrap(Data)

=> emit(tuple)

Its execution achieves the same result as in the non-distributed mode. The service tag was

not supported for this mapping onto Apache Storm previously. A more detailed description

of the implementation concepts is presented in section 5.

streams-moa streams was developed in the way that it can include model learners and

classificators into the existing data processing pipelines. With the focus on the streaming

applications streams-moa [54] adopts MOA for the incremental learning tasks inside the

streams jobs.

MOA (Massive Online Analysis) [55] is a library and a framework for streaming ML

approaches. It includes various streaming ML algorithms and can be easily extended with the

new ones. As for Storm, one needs to adjust the data items to the native format of MOA

and wrap the classifiers into the process elements. A single data item is called an instance

with the fixed number of features or attributes. For this the data item object with the (key,

value) structure can hold the regular and special attributes with the corresponding values.

Every special attribute’s name begins with ”@” symbol and hence this attribute will not be

used for the learning task. The only constraint for the regular attributes is the non-complex

Java type such as String, Integer, Boolean and further one.

In contrast to Storm embeddings, MOA learner is wrapped inside of a processor. The

model is then trained within the execution of process method. For this features attribute

accepts regular expressions to select the features out of all available (key,value) pairs in

the data item. Additionally, the class label can be set by using the class attribute. For

the embedded MOA classifier, the streams-moa package handles its initialization with the

53

parameters set using the same XML configuration language. After that, the classifier is used

as a normal processor.

The missing part is making the predictions using the trained model. In order to en-

able this, the processor that trains the model exposes a prediction service with a simple

predict(Data item) method that returns a serializable response. The prediction is kept

inside the ”@prediction" key. Now using the predictions one is able to compute the error

with respect to the true label for evaluating purposes. With these basic steps streams is

extendable with ML capabilities.

The usage of streams-storm and streams-moa has shown the capabilities of streams to

join multiple modern frameworks inside a simple data flow graph job configuration. Successful

modeling of Storm’s topologies shows that streams can be used as an abstraction layer to

process any computation flow which can then be later executed on another platform. As

seen above, Spark and Flink also follow the same approach to model their data flow using

DAGs. Hence, their processes can be modeled inside of streams framework, too. The

processors already written for streams can be executed inside each of those frameworks.

While MOA is not a distributed library, the distributed machine learning frameworks described

in section 3.2 run on top of the distributed processing frameworks as they were shown in

section 2. Furthermore, it was used as an embedding inside the streams framework.

An important point to be discussed is the two levels of granularity defined by the process

itself. The processors that are wrapped inside of the process build another data processing

pipeline. Such granularity is used to couple several functions into one process that is mapped

to a bolt in Apache Storm, the minimal functional unit. This might be beneficial in some

cases and gives the application expert an opportunity to balance the computing load itself.

This assumes a deeper knowledge of the complexity and computing load of each processor.

The modern distributed processing frameworks may balance the computing load themselves

even better through their under-the-hood optimizations.

4.4 Lambda and Kappa Architectures using streams

As seen above, streams’ abstraction layer allows for executing configured jobs on top of

a distributed processing framework. Although Storm is a framework for distributed stream

processing, streams can also be used to configure batch jobs that can be distributed. With

streams-mapred package [56] streams was extended with the ability to define and exe-

cute MapReduce jobs. Using the combination of streams-storm and streams-mapred, a

system following the Lambda Architecture as suggested by Marz can be constructed. The

advantage of this approach is that there is no need to explicitly write new code for Storm

and MapReduce. However, there are still some difficulties with this concept. In case of using

machine learning to train a model in MapReduce, applying this model on the real-time data

54

is not straight forward. One would need to export that model into some format like JSON,

XML or PMML (predictive model markup language) and than import and apply it inside of

Storm (the speed layer). Furthermore, more effort has to be made to combine the results

from the two layers.

With Flink and Spark there is no need to pass trained models using another format

mentioned above. This task can be accomplished easier as the code for batch and stream

processing is almost identical. Defining a data flow graph with streams gives us the ability

to easily switch between stream and batch processing without writing two different jobs.

Once modeling of streams jobs into Flink and Spark is implemented, two different pipelines

can be submitted: one for fast stream analysis and one to make more intense and slow

batch reprocessing. As both, speed and batch layer, are kept in one framework as in the

Kappa Architecture, handling and combining the results is simplified. In chapter 3, different

machine learning frameworks are mentioned that can be used with Storm, Flink and Spark.

Hence, with some additional steps the streams abstract design flow can include distributed

ML algorithms on top of the distributed processing frameworks.

55

5 Implementation

streams enables rapid prototyping of the streaming applications. As described in the previous

section, in a streaming application streams consists out of four components:

• stream, stream source

• process, processing function

• queue

• service

With this components one can define various streaming jobs in the form of a data flow graph.

The nodes are stream sources and processing functions. The edges represent the flow of

the data items through the graph. The queues are the hidden structure behind the edges

that connect various function nodes and store the data items until they can be processed.

The services do not impact the data flow. For many distributed processing frameworks

these components can be mapped onto their native ones. While the names might differ, the

topologies in Storm, Flink or Spark follow the same scheme and thus streams fits into the role

of an abstraction layer to model the jobs for them. Many concepts that have been developed

for the streams-storm package are reused for the implementations of streams-flink35

and streams-spark36.

The aim of this work is to enable the definition of native Spark, Flink and Storm jobs

using streams’ XML job configuration. While the XML structure should be kept the same,

some tags and parameters may be added and some ideas of evolving the internal structure of

streams arised during the implementation for this thesis. In this chapter it is shown how a

streams job can be mapped to a job in a distributed processing framework, its implementation

in general and of the important features introduced in section 3. Hence, at first the focus lies

on finding a way to map the basic components of streams onto the distributed processing

frameworks. After that the features of the distributed frameworks that are essential for

many modern data stream applications are discussed. Not all of these features are part of

streams, but the XML configuration can be extended to support them.

Scheme to Build and Distribute a Job

The procedure for building and distributing a job is identical for all of the distributed com-

puting frameworks mentioned in this thesis. The following steps are performed:

• construct the execution plan

35https://github.com/alexeyegorov/streams-spark
36https://github.com/alexeyegorov/streams-flink

56

• package and serialize the job plan and all the user defined tasks; everything that can

not be serialized is lost

• distribute the packaged file to the workers

• deserialize and initialize the distributed tasks

• run the execution plan

During the construction phase the XML configuration is parsed and all the streams com-

ponents that are discussed in details below are initialized. For Storm, Spark and Flink this is

performed using their corresponding main classes storm.deploy, spark.deploy_on_spark

and flink.deploy_on_flink.

5.1 Data Representation and Serialization

Transferring data between the instances of a distributed system is a core application. streams

provides a very dynamic and untyped structure for data items. streams.Data is a classical

map that uses String as a key and any Serializable object as a value. Without the type

safety the application can not verify the correctness of the interconnected processes, but

passes the responsibility to the user allowing for a more dynamic job definition.

Next to passing data items along the job graph after building a job topology on the master

node, the task itself is distributed to the worker nodes. On the receiver side the job plan

need to be reconstructed and executed. For these purposes of transferring the data and the

tasks across the different working machines distributed systems use serialization. That is, the

data structures and the objects are written down to a predefined format which the receiver

understands and reconstructs those items. The prepared task with all the resources and

implementations is serialized before transmitting it to the worker units. The worker machine

deserializes this package after receiving it and is prepared to process the data stream. As the

format impacts size and time of serialization, choosing between a Java’s built-in and other

serializers can change the performance of the system.

An object is serializable if it has a primitive data type or it implements Serializable

interface in Java. The primitive data types are such as Integer, Double, String etc.

All other more complex types have to implement the java.io.Serializable interface to

enable the persistence. Such complex types contain only serializable fields and at most

fields marked with transient keyword. When the object is written down, transient fields

will not be serialized and hence, their values will be lost. For every object of a subtype

Serializable the method readResolve() is called, when this object is deserialized. This

allows for customized initialization be the user.

Serialization is handled the same way on Storm, Spark and Flink. The information that is

prepared or calculated on the master machine while building an execution plan is stored inside

57

public abstract class StreamsObject {

protected abstract void init() throws Exception;

public Object readResolve() throws Exception {

init();

return this;

}

}

Figure 33: Interface for the distributed streaming functions. When the function is to be deserialized,

readResolve() method calls init().

of serializable objects. In streams for this purpose each process holds a ProcessContext

that is again a simple Map with only serializable objects. It is serialized and distributed

over all workers together with the task. On the other hand, the processors in streams may

contain not serializable fields and thus, they need to be initialized on the worker node directly.

Therefore, an abstract class StreamsObject is defined like shown in Figure 33 which has to

be used by all the wrappers for the functions in streams (processor, process). This can be

used to call init() method and initialize all not serializable fields.

5.2 Stream Source

The source of a stream is the component that is capable of producing a possibly unbounded

sequence of data items. The real source of the incoming data varies from a messaging queue

such as Apache Kafka37 or ZeroMQ38 over the distributed storage like HDFS to a simple

data file. DSL of streams allows for basically two possibilities:

1. native stream source

2. stream source from the streams framework

In order to use the natively supported stream sources the user provides the required parame-

ters in the XML configuration and streams-{storm, spark, flink} initializes the stream

source. Kafka as a distributed streaming platform allows out-of-the-box parallelization of

stream source instances which is not originally supported by streams. Nevertheless, in this

thesis the focus lies on the streams sources and the support for the native stream sources

is part of the future work. The stream interface provides the capability to retrieve the next

data item to be processed independently from the particular stream source. In the distributed

framework a stream object is encapsulated inside the native data stream abstraction which

simply retrieves the next data item from the stream. A possible way of parallelizing of stream

instances is presented in the following.

37https://kafka.apache.org/
38http://zeromq.org/

58

Parallelism The motivation behind the distributed processing frameworks is to split the

amount of the computations and the data over multiple physical machines. A single data

stream source becomes a bottleneck unless the stream source is parallelized. In streams it

is possible to define multiple <stream .../> tags and increase the level of parallelism this

way. The disadvantages of this method are the low level of flexibility when tuning the number

of parallel sources and the uncertainty about all the sources running on the different working

nodes.

The distributed environments support parallel sources and allow better job performance.

For this purpose while building the execution plan each source has to be advised about where

or how to retrieve the data items. Otherwise parallel sources will produce duplicates. In the

case of a bounded source like a (distributed) data file the parallel sources split it up into

equal parts and process each of it respectively. Thus, the interface DistributedStream was

introduced to develop parallel sources for streams:

public interface DistributedStream extends Stream{

void handleParallelism(int instanceNumber, int copiesNumber);

}

The handler for the parallel data stream source initiates all the multiple sources and

passes the assigned source instance number and the overall number of parallel sources

through the call of handleParallelism method. With that interface in mind a stream

source IterateFilesStream has been developed for the streams-spark package to allow

for reading multiple files from a storage in parallel. That is, all the files that are found un-

der the path from the url attribute and optionally match with the ending attribute are split

among the parallel stream instances. The way to read those files is defined by the another

encapsulated stream element:

<stream id="fact" class="stream.IterateFilesStream" url="/home/egorov/data"

ending=".csv" copies="2" limit="20000">

<stream id="_" class="stream.io.CsvStream"/>

</stream>

Storm & Flink

Storm’s and Flink’s API support implementing distributed parallel sources. It automatically

tries to distribute them over separated taskmanagers to improve the performance. Simple

definition of multiple sources inside of streams’ XML file would not have the same effect. In

Storm the spout implements the method nextTuple that is called by the system to retrieve

the next data item. The source in Flink uses run method that is called once and should run

as long as the data stream source can or should retrieve the data items. Both frameworks

give the user the possibility of setting the level of parallelism by an additional parameter in

Storm or by a setParallelism method call in Flink.

59

ArrayList<SparkSourceStream> functions = sourceHandler.getFunction();

List<JavaDStream<Data>> dataStreams = new ArrayList<>(functions.size());

while (functions.size() > 0) {

dataStreams.add(jsc.receiverStream(functions.remove(0)));

}

JavaDStream<Data> unifiedStream;

if (dataStreams.size() > 1) {

unifiedStream = jsc.union(dataStreams.get(0),

dataStreams.subList(1, dataStreams.size()));

} else if (dataStreams.size() == 1) {

unifiedStream = dataStreams.remove(0);

}

Figure 34: The parallel source in Spark is built as a union of multiple source instances.

Spark

Generally Spark works the same way as Storm and Flink. It provides the method onStart

for a data stream source that it meant to run like in Flink as long as the data keeps coming

in. The difference is though in the concept of increasing the level of parallelism. In order

to achieve higher throughput in the Spark Streaming cluster, the user is suggested to create

multiple input DStreams and then build a union over them. Therefore, a streams’ source is

wrapped and if this source is able to be executed in parallel, multiple instances of this stream

source are created. The topology builder class receives this list and if there are multiple

sources, it builds a union over them. Figure 34 illustrates the process of unifying multiple

data streams.

5.3 Processing Function

After retrieving the data item from the source it is passed to the processing node that

applies a user-defined function on it. In streams the smallest function to be applied is a

processor where many of them are enqueued into a list of processors or a process. For the

sake of simplicity the process tag is considered as one complex function to be applied. The

motivation behind this two levels of granularity is to split complex analysis and processing

pipelines into multiple lighter weight functions, processors. At the same time with process

those functions can be ordered and combined differently such that communication costs are

also reduced as a process is always executed in a single JVM.

The process interface provides the capability of applying the arbitrary function to the next

data item. The processing steps of a process tag are encapsulated inside a native function

of a distributed processing framework. The native function uses the process() API to trigger

60

the processing steps. Figure 35 shows the idea of wrapping the processes or processors inside

the native functions of the distributed processing frameworks such as flatMap.

process(data)

flatMap(Data data){

}

Figure 35: Wrapped streams’ pro-

cess function

The content of the wrapper method is based on the

same idea and consists of the following steps:

1. call process on the data item

2. collect items written to the queues

In the following more details are given on each framework,

but nevertheless this procedure stays the same.

Parallelism Similar to stream each function can be parallelized. The general concept is

to run multiple instances of the function inside different threads. The input of the function

can come from both the output of another function or the data stream source. The data

flow represented by the edges is split among the multiple instances of the function. In the

simplest case the data items are shuffled and hence the data load is split equally among all

instances. More details on different grouping strategies is discussed in section 5.6.

Storm

In section 2.4.1 bolts have been introduced as the nodes of the data flow graph in Storm.

For the use with streams the processes are wrapped inside of bolts. Storm’s API provides

each bolt with multiple methods:

• prepare: the equivalent for the init method

• execute: this method is called for each data item to be processed

• declareOutputFields: as Storm works with (key, value) tuples the output of the bolt

has to define the output tuple for itself

• cleanUp: at the end of the processing this method is called to be able to clean up and

finish the calculations

Hence, after the deserialization on the worker nodes prepare method is called and allows

initialization of the process to be finished. The bolt uses OutputCollector inside of the

execute method to pass the data items to the next process. The output written to the

queues inside of the process is inspected and forwarded to the next bolt using the collector

instance.

61

Spark & Flink

As discussed before each function extends StreamsObject such that init() is called again

after the function is deserializes on the worker node. Then the function is defined and can

apply the list of processors to the data item. In Spark this looks as following:
public class SparkProcessList extends StreamsObject implements FlatMapFunction<Data, Data> {

public void init() throws Exception {...}

public Iterable<Data> call(Data data) throws Exception {....}

}

For Flink’s environment the same strategy is done almost identically:
public class FlinkProcessList extends StreamsObject implements FlatMapFunction<Data, Data> {

public void init() throws Exception { ... }

public void flatMap(Data data, Collector<Data> collector) throws Exception { ... }

}

In both frameworks flatMap is used as the native function to execute the process and

collect the results. map function requires one single element as the output, while inside of the

process multiple processors may enqueue items to the queues and hence, the output varies

from zero to more than one data item. Afterwards the function is retrieved and applied on

the data stream.
JavaDStream<Data> dataJavaDStream = source.flatMap(function);

and the same in Flink:
DataStream<Data> dataStream = source.flatMap(function);

5.4 Queues

The message passing between the nodes of the data flow graph provides the communication

between the functions of a streaming application. Each data item passed from one process

to the next one is held inside a queue. The queue is itself a concept of an intermediate actor

between the two processes that allows for writing data items into it and retrieving them for

the next function. Various queues can be used while BlockingQueue is applied as default

queue implementation.

In streams there are multiple ways of passing a message to the next process:

• output attribute in the process

• Enqueue processor inside the process that filters data items based on a given condition

into a queue

• Emitter processor propagates the whole data stream to the queue and hence to the

next process

For all the following queue implementations, when the XML configuration file is parsed,

the intermediate queues for message passing are collected and are held in a list. The data

62

P1 P2
Queue

streams

P1

QueueWrapper

QueueBolt P2streams-storm

Figure 36: The mapping of a streams topology into Storm replaces the queue between the processes

with QueueWrapper to which the processors write the data items and QueueBolt that is receiving

the data items and forwards it to the next process.

items that are enqueued into a queue should be collected or pushed further through the

pipeline. In order to fill the queue with the data items, each emitting processor or process

implements the method setSink(...). This way, the emitter (process, processor) and the

sink (queue) are interconnected.

In order to provide queue functionality, the process is inspected for a Enqueue processor

in its list and for an output attribute. The queue wrapper class adds a label to the data

item that should be pushed into the queue. Later in the data pipeline, if the process contains

queues, the data items are filtered into different new streams. Each stream is filled with the

differently labeled data items. Every framework has its own implementation of it with minor

differences.

Storm

Storm uses its OutputCollector to directly forward the data items. Hence, the queue itself

is not storing the messages. For each process bolt, the queue injection is done. That is, each

processor that implements Sink interface needs a sink set up which is a queue. Hence, the

QueueWrapper object is used as a sink that is initiated with the right collector and pushes all

the data items directly back into the Storm’s topology flow. It is then flowing to the real bolt,

called QueueBolt, which also does not store the items, but transmits them directly to the

collector. This strategy was implemented before this thesis and is represented in Figure 36.

Spark & Flink

The queue implementation adds to each data item a (key, value) pair containing the name

of the queue (that is, the edge between the processes and hence the data flow). This way,

the first process gets the data items from a real source that runs in the background. If this

process forwards the data items to the next process, then they are written into the queues.

Therefore, all such data items are extended with an entry of the queue name and pushed

63

forward to the next function. At this point, all the enqueued data items are still in the same

data stream. The split itself is done rather similar for Flink and Spark.

Using Flink’s API, DataStream can be split into several substreams. These new generated

substreams are added to the list of the sources that are used as the input for the following

processes. For Spark, there are only minor differences to Flink. In contrast to Flink, in order

to split the data stream, it is filtered using the queue names. Each of the new filtered data

streams becomes a possible source for the following processes like in Flink.

5.5 Services

In section 4.2 two types of any-time services were introduced. Any processor can provide a

service and it is automatically initialized together with the processors itself. On the other

hand, streams allows definition of service tags to allow for any-time services that do

not participate in the data flow themselves. These services are handled almost the same

way as queues and are implemented the same way for Storm, Spark and Flink. During the

initialization on the master node the services are initialized and collected into a list. As the

services are annotated with a special service tag in the code, it can be easily detected. Then

during the initialization of the processors the field that requires a particular service can be

set.

5.6 Grouping the Data Stream

Each data item of a data stream flows through the job graph. As the main key is to parallelize

the processing of the stream, the processors are distributed and hence the question arises

how to distribute the data items among the parallel instances of each processor. The very

simple strategy is to shuffle the data items, that is, the data load is split randomly across

all the processors. The contrary extreme is to propagate each data item to each processor.

While this way there is no benefit in parallelization except that different processing is done

by the two processors in parallel on the whole data stream. The mostly used grouping is

splitting the data items by the keys. In case of word counting one uses the words as the key.

Thus, the data stream is split into group of words and each processor or function responsible

for counting the words receives the subset of the data stream divided by the keys over all

the parallel instances. Figure 37 illustrates this.

Grouping the data items by keys is not supported in streams originally, but the XML

configuration can be extended to support it inside of the distributed processing frameworks.

It can be done at every point of the data flow graph where the data item is forwarded to the

next process:

1. <enqueue.../> : if a data item is put into another queue to be used for the next

process list the user might define a key for different groupings

64

. . . Count
GroupBy . . . Count

GroupBy

. . . Count
GroupBy

Machine 1

Machine 2

Figure 37: Grouping items of a stream on a single machine (left) and in a distributed setting (right)

2. <process.../> : while the process can use output attribute to push the data items

to the next process, without enqueueing the items one may still want to group them

nevertheless; thus defining the key for a process list fits in several scenarios such as for

the stateful processing feature in section 5.7.1;

3. <{customProcessor}.../> : if each processor is be mapped to a function of a dis-

tributed processing framework, then grouping can be performed directly for each func-

tion.

The parameter to be used as a key is mostly a String or an Integer with reoccurring values.

Distributed processing framework allow for defining the grouping for the functions. That is,

e.g. a real number or more complex data structures can be used for grouping.

Storm

Storm has a low-level API. The spout/bolt A that transmits the tuple has to declare the

new output field with the given key. On the other end the bolt B subscribing to the

spout/bolt A can group with fieldGrouping using that key. Also other groupings such

as shuffleGrouping, allGrouping (replicate all items to all bolts) or globalGrouping

(forward all items to one single bolt) are available in Storm.

Flink

As in Flink there are just minor differences between the DataSet and DataStream API,

one is the grouping API which is groupBy(”key”) and keyBy(”key”) respectively. The

resulting output of the keyBy operation is a KeyedStream. Flink accepts tuples with more

than 2 entries and allows the user to choose the key entry like keyBy(1), keyBy(0) or

keyBy("key"). Even if there were no key entry generated before, it is possible to group the

data stream by using some custom function that extracts the key information from the data

item as presented in Figure 38.

65

public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declare(new Fields("word"));

}

builder.setBolt("counter", new TestWordCounter(true), 4);

.fieldsGrouping("split", new Fields("word"));

JavaPairDStream<String, Iterable<Data>> dataStream = streamSource

.mapToPair(data -> new Tuple2<>((String) data.get("key"), data))

.groupByKey();

KeyedStream<Data, String> dataStream = streamSource

.keyBy(data -> (String) data.get("key"));

Spark

Flink

Storm

Figure 38: Spark is able of grouping the data stream by groupByKey. Flink simply uses keyBy for

the same task on streams. Storm wants a bolt to declare an output field that can be later used for

field grouping.

Spark

Spark and Spark Streaming APIs do not differ at this point. For both Spark and Spark

Streaming groupByKey and reduceByKey methods are available. Although they can only

be applied on a PairDStream, the standard DStream can easily be transformed to this (key,

value) stream by calling mapToPair to be able to extract some key from the data item. After

that the stream can be grouped with groupByKey operation. Such an example is shown in

Figure 38.

5.7 Further Concepts

The concepts and functions discussed so far ensure mapping streams on to distributed

processing frameworks. In the following several other features of the distributed engines are

discussed. While some are introduced as concepts, others contain details on implementation.

5.7.1 Stateful Processing

Every stream application processes the data either in stateless or in stateful mode. A stateless

application provides a response to the received data item based only on the item itself. There

is no need to store any information or statistics. Nevertherless, in various applications it is

essential to keep the state of the processed data items. That is, one might be interested

in the distribution of the words in the stream. Within streams a state is called a context.

66

<application>

<stream .../>

<process .../>

<Processor1 />

<Processor2 />

...
</process>

</application>

Process Context = State

Figure 39: streams supports stateful processing by saving information inside a process context.

Although each stateful processor can store some data in the context, many processors used

static variables to save and share their intermediate results between the several instances of

a process. This works well as streams runs inside the same JVM and just creates multiple

copies of the running process to make use of the multi-core CPUs.

With the mapping of streams processes into the different distributed processing frame-

works, it is possible to distribute the processes over several physical machines that logically

do not share one JVM. Figure 37 displays such a setup for a word-counting example. Thus,

if our intention is to count words in a distributed manner, the context need to be distributed

and update. As shown in Figure 39, the process context holds the state of all processors in

the given process. Each processor can read information from the context and update or add

new pieces of information to it.

Spark, Flink and Storm have support for distributed stateful processing of the data

streams. Spark and Flink both have in common that the state can only be saved and

updated for streams grouped by some key.

Flink A stateful function in Flink extends RichFlatMapFunction and uses a transient variable

of type ValueState to store the state.39 Then this function can save the state for the

KeyedStream (use keyBy(...) before the stateful function). Figure 40 displays these two

steps: the upper part builds the KeyedStream, the lower code snippet shows the exemplary

implementation of retrieving and saving the process context.

Spark The Spark environment provides a special API function called updateStateByKey.40

The user defines the way of how the update step should be done and passes it as a function.

Figure 41 displays how Spark can be used to perform stateful processing by using streams.

39https://ci.apache.org/projects/flink/flink-docs-master/dev/state.html
40http://spark.apache.org/docs/latest/streaming-programming-guide.html#

updatestatebykey-operation

67

DataStream<Data> dataStream = streamSource

.keyBy(data -> (String) data.get("key"))

.flatMap(function)

private transient ValueState<FlinkContext> state;

@Override

public void flatMap(Data data, Collector<Data> collector)

throws Exception {

if (data != null) {

context = state.value();

process.process(data);

...

state.update((FlinkContext) context);

}

}

Figure 40: Stateful processing can be applied on the keyed data stream in Flink. The state itself can

be saved and distributed directly in the implementation of the function (here, flatMap).

dataJavaDStream

.mapToPair((PairFunction<Data, String, Data>) data

-> new Tuple2<>((String) data.get("key"), data))

.updateStateByKey((Function2<List<Data>, Optional< SparkContext>,

Optional<SparkContext>>) (v1, v2) -> {

SparkContext sparkContext = v2.get();

...

return Optional.of(sparkContext);

});

Figure 41: Spark enables stateful processing as Flink on the keyed data stream. The state is updated

through applying updateStateByKey on that stream.

The first step is to extract a key from the data. Using the key grouping, the state can be

retrieved and saved during the second step.

Storm Storm added support for stateful processing in version 2.0.0-SNAPSHOT. A stateful

bolt extends IStatefulBolt with a single state implementation so far, KeyValueState that

is a key-value state. As streams only stores the context, it is possible to implement a custom

state that retrieves and saves the context under the same key. Figure 42 presents the lines

of code that allows storing and distributing the context of a bolt.

In the end, all three frameworks use the same scheme:

1. save the state data in the key-value data structure or it is saved on the keyed data

stream;

68

public class ProcessStatefulBolt extends ProcessBolt

implements IStatefulBolt<KeyValueState<String, BoltContext>> {

private KeyValueState<String, BoltContext> state;

public void initState(KeyValueState<String, BoltContext> state) {

this.state = state;

}

public void execute(Tuple tuple) {

BoltContext context = state.get("context");

super.execute(input);

state.put("context", context);

}

}

Figure 42: Storm supports stateful bolts since version 2.0.0.

2. before processing the new data, retrieve the distributed state and use it for the current

processing

3. store the new context

For the usage with streams, there are two main concerns. At first, to be able to save the

state each data item has to be propagated through the data flow graph with a key. Three

locations for the placement of the ”key” parameter have been suggested in section 5.6. As

the basic option, grouping the process list by a key is sufficient to enable saving the state of

this process. While still using the whole list of processors as a node in the data flow graph,

the state is kept only for the process and not for the single processors in the list. That

means that in case of a failure the whole list of the processors has to be recomputed. As the

second point, the ProcessContext holds information concerning the list of the processors.

The existing processors may store the data in static variables and hence, such processors will

not work properly on top of distributed processing platforms.

5.7.2 Fault Tolerance

As node or machine failure is possible, fault tolerance of a distributed processing framework

are one of the essential requirements. That is, the application is able to recover from failures

and ensures a specific level of message delivery that was introduced in section 2.3. Operator

state distinguishes the two forms of state that the system has to take into account:

• state of a processing function

• system state that refers to data buffers

The first form has already been discussed in section 5.7.1. The state of the system is saved

by drawing checkpoints periodically. For this the metadata or the data itself need to be

69

saved to a reliable file system such as HDFS. Storm, Spark and Flink support checkpointing

in the current versions. Checkpointing and restoring system state deals with reliable file

systems, configurations of the frameworks themselves and reliable stream sources. Although

fault tolerance is an important issue when building distributed processing framework, for

this thesis the focus was set to enable a novel abstraction layer to simplify job definition.

Improving reliability of such systems is a topic for further future work. Nevertheless, in the

following concepts for fault tolerance in Flink and Spark are mentioned briefly whereas a

little bit more details are discussed about Storm because of some issues discovered during

the evaluation phase.

Spark Spark with activated checkpointing feature allows for retrieving the streaming con-

text from checkpoint data or create the new one otherwise. The concept of RDDs helps to

recover from failures as they are immutable and the partitions can be recomputed because

Spark remembers the lineage of operations. Hence, only the original RDD need to be saved

and this is possible if the batch job is executing on a reliable file system. This is not the

case for the streaming applications. Spark provides the ability to replicate RDDs over several

executors.

Flink Similar to Spark, Flink draws checkpoints or snapshots of data streaming application

periodically. In a case of a failure, the latest checkpoint is used to restore the state of

the application. Of course, if the source is not reliable and does not support rewinding the

stream to some point in its latest history, then Flink can not guarantee exactly-once message

delivery.

Storm The Nimbus and Supervisor daemons in Storm are designed to be stateless and

fail-fast. If one of the workers dies, Storm automatically restarts it.41 Support for stateful

processing and checkpointing was announced as part of current developing version of Storm.

Unless there is a single stateful bolt, no checkpoint is performed [57].

5.7.3 Windowing

Considering the data stream from a sensor, the time series analysis becomes essential for

many applications. Monitoring the product pipeline in the manufacturing sector using various

sensors allows for detecting anomalies and changes in the processing pipeline. The process

that reacts to such real-time events can improve e.g. the quality of a product or reduce

machine failure [40]. As time series data changes over time and approaches continuously for

an undefined time period, instead of working on the raw data stream directly, the data items

can be grouped into time intervals. In a streaming application, this is called windowing. The

41http://storm.apache.org/about/fault-tolerant.html

70

Figure 43: Windows for a data streams can be built as tumbling windows (upper image) or as

overlapping sliding windows (lower image).42

definition of a window depends on its starting point and the length. Two types of windowing

are possible as shown in Figure 43:

• Tumbling window collects each data item only once. That is, the second window

starting point is set to the next item after the first window: start2 = end1 + 1. For

this type of windowing only the value of the window length has to be set.

• Sliding window in contrast to a tumbling window allows overlapping windows. That

is, the starting point of the following window is between the starting point and the end

of the first one: start1 < start2 ≤ end1. For a sliding window additionally to the

value of the window length one have to define the sliding value.

All the three distributed processing frameworks considered in this thesis provide the native

support for windowing. streams has a built-in collect processor and foreach processor

list. Using collect allows for collecting the incoming data items until a specified number

of them has arrived. This is a similar approach to windowing that is bounded by a single

JVM. With the foreach processor list multiple processors (functions) are applied to each

data item from a list of data items.

Combining the native support of distributed processing frameworks for windowing with

the streams processors makes the definition of windows on streams possible. Figure 44

shows this idea. The orange box is the wrapper object for the functions that were discussed

in section 5.3. The blue box contains the foreach processor list and it receives the windowed

data items from the native function. As a subclass of ProcessorList the processor foreach

is a stateful processor and can use its context to share the computed results on each data

item. Applying windowing creates a windowed stream that can be transformed back to the

original data stream by applying a window or reduce function. In this case foreach is used

as a reduce function that processes the list of data items and produces one single new data
42https://flink.apache.org/news/2015/12/04/Introducing-windows.html

71

window for

1 minute <foreach...>

...

</foreach>

Figure 44: Distributed windowing can combine the existing native windowing functions of the dis-

tributed processing frameworks and such streams processor as foreach. This enables using the same

processors from streams while computing the results on the windowed stream distributedly.

item containing also the output of all single data items processed. Hence, it is dependent on

the implementation of this functions executed inside of the foreach processor.

The current mapping of streams to Storm, Spark and Flink uses <process .../> tags

as the function nodes for the data flow graph. One possible solution is to introduce a

<window .../> tag similar to <process .../> tag. Inside the window tag one may directly

place the processors that should be applied to each data item of the window. Depending

on the execution engine, internally the collect processor or a native windowing function of

the distributed processing framework forwards the collected items to the foreach processor

list. The output of the foreach process is propagated to the next process by using the

same queue concept. The downside in this scenario is that this process does not fit the

current streams configuration However, streams can easily be extended to just transform

the window tag to the combination of collect and foreach tags.

5.7.4 Union

. . . fi−1

fi−2. . .

fi . . .

Figure 45: Unifying multiple

streams into one

In a streaming application sometimes multiple sources are

used as input or a single stream is split into several sub-

streams for various parallel processing steps. Depending

on the application task after the execution of several func-

tions the user may be interested in unifying multiple data

streams into a single one. The idea is rather simple: in

the data flow graph a function node fi subscribes to the

data streams from fi−1 and fi−2 and its output is a single

data stream combining the input data streams as presented in Figure 45.

In streams.io package there is a Join processor that performs a union of the given input

streams. This is realized by making this processor a sink node to which multiple processes

can forward their data items. Though when executed on a distributed processing engine, this

functionality can be simply mapped to the native union API.

72

5.7.5 ML Operations

Support for ML algorithms is one of the essential tasks discussed in this thesis. In section 3.3,

several frameworks for distributed ML approaches have been introduces. Two concepts for

designing both streaming and batch ML approaches through streams are illustrated here.

Streaming Consider the distributed streaming ML framework SAMOA. It utilizes a similar

concept to build its job graph as Storm. SAMOA allows for wrapping customized processors

next to its own distributed streaming ML algorithms. That is, the pipeline can contain several

pre- or postprocessing steps and a learning algorithm. Using streams it is possible to define

this job graph the same way as for Storm, Spark and Flink, but with the additional ML

processors. In this case, the packages streams-flink and streams-storm are not required

directly as SAMOA produces both Flink and Storm topologies. This can be accomplished like

in the streams-moa package [54]. The code snippet below illustrates job definition where

pre- and postprocessing steps are combined with a predictor, an evaluator and a learner:

<stream id="data" class="stream.io.CsvStream" url=""/>

<process input="data">

<PreprocessingProcessor />

<stream.learner.Prediction learner="learner" />

<stream.learner.evaluation.PredictionError />

<samoa.learners.classifiers.trees.VerticalHoeffdingTree id="learner" .../>

<PostprocessingProcessor/>

</process>

Batch If the desired ML approach is not applicable in a streaming environment such as

SVM, Random Forest or PCA, a batch processing approach is required. During this thesis

the definition and the execution of a batch processing job was not realized. An interesting

approach is presented in [58]. With an abstract concept of batch processing on top of

streams, the definition of a pipeline like in Flink or Spark is simple. Considering a Flink

pipeline in Figure 24, it can be designed with the streams framework as following:

<stream id="data" class="stream.io.CsvStream" url="..."/>

<batchProcess input="data">

<PreprocessingProcessor />

<flink.transformer.StandardScaler .../>

<flink.transformer.PolynomialFeatures .../>

<flink.predictor.MultipleLinearRegression .../>

<stream.learner.TrainModel id="learner" .../>

<stream.learner.Prediction learner="learner"/>

<PostprocessingProcessor/>

</batchProcess>

To achieve this, the packages streams-flink and streams-spark can be extended to

support batch processing. Afterwards, ML libraries such as FlinkML and Spark’s MLlib can

be utilized in a way presented above.

73

5.8 Summary

The abstract way of the job definition that is used in the streams environment matches

the data flow graphs generated by the APIs of the distributed processing frameworks. In

this section it was presented how the concepts of streams are mapped into distributed

environments. This way all the implemented processors so far can be utilized to process Big

Data on distributed clusters. Nevertheless not every feature and concept of the distributed

processing frameworks can be used so far. Features like stateful processing, fault tolerance

and windowing were introduced and only the ways of implementing them were discussed.

Additionally, Spark and Flink support some aggregators like sum, min and max that can be

simply utilized using XML configuration language of streams with the result inserted into

streams.Data map.

74

6 Evaluation

Modern distributed processing frameworks claim to achieve higher performance throughput

than their competitors. Various comparisons have measured the performance of distributed

stream computing frameworks introduced in section 2.4. In most cases, the results differ

probably depending on the structure and complexity of the data, different tuning settings

and job’s pipeline itself. In [59], the authors were able to show that Storm is still capable

to compete with them and performs even better than Spark. Another comparison claims

Flink’s win in performance over Spark43. Further comparisons can be found proving better

performance of each framework. In most cases simple textual data like tweets was analyzed

(for example, word counting). Those comparisons lack in processing more complex data.

Therefore, at first similar textual data analysis is used for the evaluation of the implemented

software. Then performance differences are measured using data with more complex event

items.

Preliminary Evaluation Apache Flink provides a Storm compatibility layer which allows

for executing Storm’s topologies on top of Flink. This way, for the testing purposes simple

streams processes were executed on Storm and Flink before streams-flink’s development

has been started. In both cases, streams-storm was utilized to construct the topology. The

test process marks each incoming item with A or B alternatingly, adds some of them to a

queue and writes down to a file. An excerpt from the process declaration looks as following:

<process input="data">

<streams.util.AlternateAB/>

<stream.Enqueue .../>

<stream.io.JSONWriter .../>

</process>

The results are presented in Table 5. The throughput of data items clearly increased in

Flink against Storm. Only in case of the processor JSONWriter Storm is much faster than

its contender. In the end, the job deployed to Flink through the Storm compatibility layer

reduced the runtime and increased data throughput by around 40%.

Both topologies were executed locally on MacBook Pro Late 2012 with 2.5GHz Intel

Core i5 and 8GB 1600MHz DDR3 memory. All tests were set to use a single core with no

further system tuning.

These first promising results motivated the further development and the more intense

evaluation. In this thesis streams framework was presented as an abstraction layer to define

data processing pipelines for different kind of engines. The new packages streams-spark

and streams-flink were implemented to execute streams jobs on top of Spark and Flink

43http://www.kdnuggets.com/2015/11/fast-big-data-apache-flink-spark-streaming.html

75

Throughput in items/sec

storm flink

stream.util.AlternateAB 1 119 509.88 2 558 339.22

stream.demo.Enqueue 8359.96 13 248.86

stream.io.JSONWriter 31 596.79 8927.24

Total 5649.33 9105.25

(in seconds) 265.52 164.74

Table 5: Comparison of throughput and computation time of a Storm’s topology executed directly

in Storm and using a Storm compatibility layer in Flink.

distributed engines. Furthermore, the support for Storm within streams-storm was ex-

tended. With these tools it is possible to perform the same task on multiple platforms and

compare the performance. Section 6.1 shows the configuration for the three clusters running

natively Storm, Spark and Flink. Afterwards in section 6.2 various data and processing jobs

are discussed together with the results of distributed execution.

6.1 Cluster Configuration

For the evaluation of the implemented features, the native clusters for Storm, Spark and

Flink are used. This can be replaced with other more advanced solutions such as YARN or

Docker. In this thesis, the jobs are executed on the native clusters to reduce the overhead

and possible errors while preparing YARN or Docker cluster.

For comparable results four physical machines with the same hardware is used. As shown

in Table 6, all the machines provide 6 cores and 32GB of memory. The graphics card was

not used for any of the tasks. This hardware configuration ensures comparable results of

parallel job execution on all of the utilized machines. Additionally, using a shared folder for

all the machines simplifies sharing the configuration files for each cluster.

In the following the basic configuration details are described for each of the utilized

frameworks.

ls8ws010 129.217.30.171 Dell Precision Tower 7810

CPU: 6 Core Intel(R) Xeon(R) E5-2609 v3 @ 1.90GHz

GPU: Nvidia GK110GL Tesla K20c

RAM: DDR4 32 768MB

Kernel: Linux 2.6 64

ls8ws009 129.217.30.199

ls8ws008 129.217.30.198

ls8ws007 129.217.30.197

Table 6: Machines used for testing purposes of Storm, Flink and Spark Streaming

76

Storm Configuration Storm cluster requires three essential components: ZooKeeper, Nim-

bus and multiple Supervisors. All the configuration is contained in the conf/storm.yaml file

and is used by Nimbus and Supervisors. Setting up the Storm cluster consists of the three

steps that need to be performed in the following order:

1. ZooKeeper supports Storm’s coordination between nimbus and supervisors inside the

cluster. In most cases, one single ZooKeeper instance is sufficient as it is only used

for coordination and not for message passing. For a higher level of fault tolerance one

may used multiple ZooKeeper instances.

2. With a running ZooKeeper instance, the master node initializes the Nimbus daemon

thread. The Nimbus is responsible for receiving new job requests and managing the

currently running jobs. It can be started with the command bin/storm nimbus that is

located in the downloadable Storm package. An optional, but essential part for tuning

and debugging the cluster is the web dashboard. It can be initialized together with the

Nimbus with the command bin/storm ui.

3. Each of the Supervisors can be registered at the running Nimbus instance with the

command bin/storm supervisor.

For the above steps to work, some general options need to be set in the previously

mentioned conf/storm.yaml file. In the following only five options are presented.

As seen above, for the first step ZooKeeper servers have to be named. In case of a

rather small cluster which does not require high availability, only one ZooKeeper instance is

instantiated:

storm.zookeeper.servers:

- "ls8ws007.cs.uni-dortmund.de"

For the initialization of the Nimbus daemon and successful registration of the Supervisors,

each component needs to know the master node. It is possible to initialize multiple Nimbus

instances for high availability systems:

nimbus.seeds: ["ls8ws007.cs.uni-dortmund.de"]

The number of slots that defines the level of parallelization is adjusted by setting different

ports in the configuration:

supervisor.slots.ports:

- 6700

- 6701

The above example will create two slots for that Supervisor daemon.

The memory usage is assigned depending on the following entry:

worker.childopts: "-Xmx1024m"

77

That is, the Supervisor will override the settings of the JVM and receive the defined amount

of memory. The last important setting to be mentioned here is the path to a destination

where each Storm component can store it settings, logs, jars and so on:

storm.local.dir: "storm-local"

Storm allows for more configuration which are not handled here.

Flink Configuration In contrast to Storm, Flink does not require a ZooKeeper instance ex-

cept for a high availability mode. After configuring Flink by editing conf/flink-conf.yaml

and adding all taskmanagers to be initialized to conf/slaves, Flink cluster can be started

by running the following script:

bin/start-cluster.sh

The cluster is extendable with further jobmanagers and taskmanagers. These instances can

be added or stopped with the following scripts:

bin/jobmanager.sh (start cluster) | stop | stop-all

bin/taskmanager.sh start | stop | stop-all

The configuration is similar to Storm. There are five important options to be considered

for configuration:

jobmanager.rpc.address: "ls8ws007.cs.uni-dortmund.de"

parallelism.default: 1

taskmanager.numberOfTaskSlots: 1

taskmanager.heap.mb: 2048

taskmanager.tmp.dirs: /tmp

The most essential setting is the address of the master node as every component, jobmanager

and taskmanager, needs it for initialization and registration. The other parameters have de-

faults values that need to be configured in order to achieve high performance. The level

of parallelism set in the configuration is applied if the task does not specify its own value

of parallelism. For a taskmanager it is important to set the number of task slots which

corresponds to the CPUs used for parallelizing the operators or functions. Furthermore, the

amount of memory for each taskmanager is split among all the slots. Hence, it is preferable

to use as much memory as possible leaving enough memory for the operating system. As the

last option listed above, the path to a directory is set where all the logs, jars etc. are saved

for each taskmanager.

The other configuration file used for automatic cluster setup with the aforementioned

script is conf/slaves. Its structure is very simple and only requires an IP address of each

taskmanager per line:

129.217.30.171

78

129.217.30.199

129.217.30.198

Spark Configuration Spark’s configuration is more similar to that of a Flink’s cluster as no

ZooKeeper’s instance is required except for the high availability mode. All the configuration

is contained in conf/spark-env.sh file. Using the following single call of a script is enough

to start a standalone Spark cluster:

./sbin/start-all.sh

This script initializes the master node and additionally all the worker nodes which are listed

in conf/slaves. The file containing the list of slave (worker) nodes only requires a single

IP address of the machine per line:

129.217.30.171

129.217.30.199

129.217.30.198

Later on, the cluster can be extended with further worker nodes by using another script:

./sbin/start-slave.sh <master-spark-URL>

Although the slave can be configured using the passed attributes, all the option can also be

set by editing conf/spark-env.sh file.

SPARK_MASTER_HOST=129.217.30.197

SPARK_WORKER_CORES=1

SPARK_WORKER_MEMORY=2g

The number of cores and memory for a worker is the upper limit of the available CPUs and

memory for the executors that run on that worker node. Additional tuning of a wide variety

of options such as number of executors with their CPU and memory requirements is done by

editing the file conf/spark-defaults.conf or by adding command-line parameters while

submitting the job to the cluster.

Summary

Configuring the standalone cluster in all the presented frameworks follows the same concept.

Flink and Spark reduce the overhead by providing a script to start the whole cluster with one

command-line call. At the same time, Storm requires manual start of each component. It is

advisable to run every component under supervision. A supervisor framework monitors the

services and among other tasks is able to restart failed service. Furthermore, Storm is the

only framework that requires a running ZooKeeper server for the cluster. From the other

point of view, Spark presents a huge number of options that can be set in two different files.

While these options on the one hand mean more freedom of choice for the user, on the other

79

hand it becomes difficult to overview all of them. Additionally, Spark adds another option to

the parallelism tuning next to the workers, the executors and their settings. This becomes

another conflicting point which should be considered carefully.

Summarizing the considerations above, Flink seems to provide the most simple cluster

configuration. Although Spark has scripts for cluster setup, the huge amount of options may

overwhelm the user. Storm provides a rather similar number of options as Flink, but requires

a more manual setup of the cluster.

6.2 Data Stream Processing Applications

Using the implemented packages the streams jobs can be executed on the distributed pro-

cessing engines. Four steps are required for this:

1. create a new or use an existing streams project

2. add a dependency for streams-{flink,spark,storm} for on the desired engine

3. package the resources with the mainclass responsible for the construction of the DAG

4. deploy / run this task on top of the desired distributed framework

For the third step, the following main classes are available for the different execution

engines (set it in the pom.xml directly or define property and pass it as an parameter while

packaging):

• flink.deploy_on_flink

• spark.deploy_on_spark

• storm.deploy_on_storm

All of the frameworks either provide a script for job submission including the compiled jar or

are able to run the job after the jar has been transfered to the cluster’s master node.

Tuning Spark Streaming As Spark requires more tuning parameters, the XML format

has been extended to accept the following parameters and attributes for tuning Spark’s

performance. A Spark cluster executes the job on a number of worker machines where each

machine can host one or multiple executors. An executor uses a predefined number of cores

to process partitions simultaniously. Therefore, an executor performs the tasks in parallel

and is also responsible for the in-memory storage for RDDs. In section 2.4.2, the equation

to calculate the best value for block interval that determines the number of partitions has

been introduced. This requires the knowledge about the available resources. One fact is that

each receiver uses one core. Hence, only#al lAvai lableSparkCores−#numberReceivers
cores are used for processing the data. For this the additional properties numberSources,

80

partitionFactor, sparkCores and spark-batch-interval define the number of stream sources,

partition factor, all the available Spark cores and the batch interval respectively. These

parameters are shown in Figure 46.

When submitting a new job to the cluster, it is important to tune the number of executor

instances, the number of cores and memory inside of each executor. As the processing time

correlates with the number of partitions, in case less partitions are created than available

cores, not all the possible computing power is used. Furthermore, using a number of partitions

not multiple of usable cores will lead to a situation where some of usable cores will wait for

other processes to finish. In streams-spark, it is sufficient to configure the number of

available cores, the number of sources and the partitioning factor to create the appropriate

amount of partitions.

Furthermore, when using various physical machines, it is important to provide the system

with the right setting for the locality of the data. That is, the default settings may force

processing all the data items only on the local physical machine with the remaining cluster

being unused. Thus, sharing data from a source onto a different computing node needs

adjusting the settings for locality. This can be done by passing the desired values to a

job-submission script as followed:

--conf "spark.locality.wait=3s" --conf "spark.locality.wait.process=1s"

--conf "spark.locality.wait.node=1s" --conf "spark.locality.wait.rack=0s"

This way one is able to define the settings when the data can change the locality from process

to node or even rack level.

Furthermore, one core is used by the driver program. Now when submitting the job the

executor settings are provided as following:

--num-executors 3 --executor-cores 6 --executor-memory 24G

For a cluster with 6 cores in each of the three available machines the above configuration

does not work out as it requests 18 cores with one core reserved by a driver. This fact makes

tuning a bit more difficult.44 In order to exploit as much processing power of the cluster as

possible, multiple executors are initialized with one core each:

--num-executors 17 --executor-cores 1 --executor-memory 4G

This way 17 cores of the cluster are utilized running in single JVMs with 4GB of memory

each. For the experiments in this thesis, it is not essential to bundle multiple cores to an

executor whereas other applications with more intense inter-process communication (e.g.

using broadcast variables) might face performance drops.45

In contrast to a streaming framework like Storm or Flink, as a micro-batch job Spark

loses some time for the initialization and deserialization of the job itself. This time can be

examined in the web dashboard and is rather small, but should not be fully ignored.
44http://etlcode.com/index.php/blog/info/Bigdata/Apache-Spark-tuning-spark-jobs-Optimal-setting-for-executor-core-and-memory
45https://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/

81

<container spark-batch-interval="1000"

spark-master-node="spark://129.0.0.1:7077">

<property name="numberSources" value="1" />

<property name="partitionFactor" value="1" />

<property name="sparkCores" value="5" />

...

Figure 46: Tuning parameters for Spark Streaming required for calculating the appropriate number

of partitions.

6.2.1 Twitter Stream

To start off with a comparison of streams’ runtime with the various frameworks a simple

example like word-counting is constructed for a single machine execution. For this purpose

the clusters are configured using the above mentioned settings, but only using one single

machine. The material has been prepared within the ongoing research project VaVel (Variety,

Veracity, Value).46 This project is motivated by using urban data to improve situation aware

transportation. To achieve this aim, multiple heterogeneous urban data streams should

be combined and analyzed for better trip planning. The goal is to combine the desired

components into a general purpose framework. Liebig et al. [60] introduces such a framework

based on streams. As streams is decoupled from the execution engine and the amount

of data matches the Big Data definition, it is possible to process the data from VaVel

project using any framework for distributed computation. This preliminary comparison uses

a collection of tweets, which are read from a file, and the number of tweets containing

predefined tags is counted. It was performed to be presented at a VaVel meeting in Dublin

where the various distributed processing frameworks and the pipeline definition using streams

were discussed.

The XML configuration for this task is shown in the Figure 47. Inside the stream el-

ement, the limit attribute forces the source to stop after the predefined number of read

tweets. Although the source can theoretically be parallelized, this functionality has not been

implemented for the stream.io.CsvStream stream component and hence, the number of

copies is set to one. The process node is intended to make use of the copies attribute

in contrast to the stream source. Inside the process node process-tweets, the analysis of

the twitter stream is wrapped in to a streams.Performance processor list, which enables

logging the performance values of the distributed parallel application to a server.

Measurements The one-machine-clusters were given 28GB of memory and all the

6 cores were initialized. The processing task has been executed using all the presented

distributed processing engines and streams-runtime where the number of parallel instances

46http://www.vavel-project.eu/

82

<container>

<stream id="tweet-stream" class="stream.io.CsvStream"

url="file:///home/share03/datensaetze/vavel/Twitter_IE/Twitter_IE.csv"

limit="500000" copies="1"/>

<process copies="1" input="tweet-stream" id="process-tweets">

<streams.Performance host="129.217.30.198" port="6001" every="5000">

<com.ibm.vavel.benchmarks.TwitterAnalysis textField="MESSAGETEXT"/>

</streams.Performance>

</process>

</container>

Figure 47: XML configuration for a data processing pipeline where tweets are read from a file and

processed inside the process element. The performance is logged using the streams.Performance

processor.

of the process node varied between one and three. Higher number of cores showed no

further improvements and hence are not considered here. The reason is the source that is

not parallelized and thus is limited by a maximum read speed of a single instance. The results

can be viewed in Figure 48a. For this figure, the overall computing time of the application has

been used to determine the throughput of items per second. Considering streams-runtime,

the performance is increasing almost linearly. The same effect can be considered for Flink and

Spark while Flink is increasing faster than Spark. Storm performs twice as good on the two

cores, but does not hold the same improvement rate for three cores. These improvements

can be viewed in Figure 48b.

Another interesting effect is pictured in Figure 48c where the average throughput of the

processor is measured. streams outperforms every other framework followed closely by Flink.

Even while Spark showed the best result in the one-core situation for the overall performance,

the processor itself shows the worst result. Generally, the differences between the two figures

might be explained with the pull concept of streams. That is, the process retrieves the next

data item from the source after it has finished the computation. In contrast to this concept,

in the other frameworks the source is continuously producing data items and pushing them

into the system. This way, the delay between the end of processing the data item and the

arrival of the next data item is reduced. Therefore, Flink is able to process the same number

of data items faster than streams while its average processor performance is even slightly

worse. The reduced average performance may be ignored at the price of the simplified job

definition and the distributed execution which can not be done through streams itself.

Tuning the Spark job turned out more difficult than it was assumed. In order to investigate

this effect, the web dashboard provides helpful information. During this experiments the

load balancing problems were observed as shown in Figure 48d. While for the single-core

execution Spark simply uses one partition, in the multi-core execution one needs to tune the

right amount of partitions to be created. Although the data should be split in 3 partitions

83

1 core 2 cores 3 cores

10
00
0

20
00
0

30
00
0

40
00
0

It
em

s/
se
c

Flink Spark
Storm Streams

(a) Overall throughput performance of the different ex-

ecution engines. The values are computed based on the

application’s computing time divided by the number of

processed items.

1→ 2 2→ 3

5
00
0

10
00
0

15
00
0

It
em

s/
se
c

Flink Spark
Storm Streams

(b) The improvements of the throughput

performance while increasing the level of

parallelism from 1 to 2 and from 2 to 3

cores.

1 core 2 cores 3 cores

13
00
0

14
00
0

15
00
0

16
00
0

17
00
0

It
em

s/
se
c

Flink Spark Storm Streams

(c) Average throughput performance of the single

processor unit (word matching function).

(d) Detailed view on a single batch inside of Spark Streaming where the load is not balanced among

the 3 available computing slots (cores).

Figure 48: Performance results of various distributed processing frameworks compared to

streams-runtime.

84

over 3 cores, the computing time on each core differs a lot. That is, the data items are not

distributed equally.

6.2.2 FACT Telescope Image Data

The observation of various galactic and extra-galactic sources in astronomy relies on the

measured energy emitted by their origins. While there exist different techniques to measure

that energy, one of it measures the Cherenkov light emitted by the air showers which is

generated by the particles entering the atmosphere and interacting with its elements. FACT

(First G-APD Cherenkov Telescope) produces images of the Cherenkov light captured by

the telescope camera. Such an image contains 1440 pixels and is sampled at a very high

rate (around 2000MHz) [61]. In case the hardware triggers a possible shower, a series of

images is written to disk for the analysis. This series is called region of interest (ROI). For

the analysis ROI is considered as an event.

Not every particle can be used to detect its origin as hadronic particles may have interfered

with electromagnetic fields. In contrast to hadrons, gamma particles are uncharged and hence

do not change their direction. The aim of the research is hence to distinguish gammas from

hadrons. To achieve this, the analysis pipeline consists out of the following general steps:

1. calibration, cleaning

2. feature extraction

3. signal separation

4. energy estimation

Based on the streams framework, fact-tools47 was developed to simplify the analysis

pipeline definition for researchers without specifying the underlying execution engine. This

package contains domain specific functions implemented directly for the FACT data stream

analysis. Figure 49 presents some of the functions applied in the analysis pipeline using

fact-tools. Calibration and cleaning takes the most time as during these phases pixels of

each single image have to be considered and investigated for possible events. While the most

research is done in feature extraction and energy estimation, the first step consumes the

most computing resources. Therefore, this analysis chain can be computed on a distributed

framework to be able to match the data rate of the telescope in best case.

Process configuration and details For this experiment, the FACT pre-processing pipeline

with the most time consuming steps from the data calibration and cleaning was used. A part

of the XML configuration that was used is presented in Figure 50. At the beginning some

47https://sfb876.de/fact-tools/

85

Figure 49: Processing time of some processors from fact-tools (log scale) [61]

properties and services are initialized. Then the stream.IterateFilesStream source is

utilized which was implemented as a parallel stream source. That is, the stream component

is initialized separately for each instance and retrieves the data items from different files.

The data is streamed from the Fits files located in a HDFS cluster using the subcomponent

of the stream element fact.io.FitsStream. For a real boost in processing files from the

HDFS storage, it is advisable to run the application directly using YARN. The limit for the

stream is set to 20 000 data items with around 17.2GB size.48 After that, the process node

fact-process contains the processing steps and is parallelized using the copies attribute. The

particular list of processors is not shown here due to its length. Finally, the amount of data

to be processed was set to 150 000 such that the applications needs more time to execute

the job. For this size of the transmitted data is around 129GB.

Cluster setup For the following experiments three cluster configurations are used:

• 1 machine with 25GB of RAM and 6 cores

• 2 machines with 50GB of RAM and 12 cores

• 3 machines with 75GB of RAM and 18 cores

Storm

Table 7 presents the results from processing FACT data using streams on top of Storm. The

first setting uses one machine, one source and 6 slots for processing the stream. One slot

is reserved almost the whole time for the spout that retrieves the data from HDFS cluster.

The latency raised up to 30 s. Some of the data items were marked as failed as the default

48Limited by current implementation of the distributed parallel source. In case of three sources, a limit of

19998 items is set to be able to split 20 000 items onto three sources.

86

<container id="performance-test" copies="1">

<property name="infile" value="hdfs://ls8cb01.cs.uni-dortmund.de:9000/FACT/simulation/" />

<property name="auxFolder" value="file:/home/egorov/aux/" />

...

<service id="auxService" class="fact.auxservice.AuxFileService" auxFolder="${auxFolder}" />

<service id="calibService" class="fact.calibrationservice.ConstantCalibService" />

<stream id="fact" class="stream.IterateFilesStream" url="${infile}" ending=".fits.gz"

copies="1" limit="20000">

<stream id="_" class="fact.io.FitsStream"/>

</stream>

<process id="fact-process" input="fact" copies="6">

...

</process

</container>

Figure 50: An excerpt of the FACT processing job defining the services and a parallel stream source.

The processing steps are not included due to the length of the list.

topology message timeout after which the data item is considered failed is also 30 s. Every

failed message was transmitted to the topology again.

Adding a second machine with another 6 free slots gained almost twice the performance

as originally. With 12 processing slots Storm reduced the latency down to 190ms. This time

no message failed. Running the same configuration with 2 parallel spout did not doubled the

performance. A small improvement of around 5% was measured.

As awaited, adding another same configured machine to the setup improves the through-

put of the system. Utilizing two sources on three machines is still slower than three sources.

As presented in the overview table, three machines with three spouts gain 65.6% of per-

formance improvements and reduce the computation time radically. The measured topology

latency was around 3 s.

Finally, the amount of data to be processed was set to 150 000 such that the applications

needs more time to execute the job. Although the processing speed slightly increased to

163.18 items/s, the latency of the topology was continuously growing and seemed to stay

constant at 14 s. Processing this amount of data consumed 919.24 s. Some of the messages

failed, but still all 150 000 data items were processed as presented in Figure 51.

Spark Streaming

The size and complexity of the FACT data compared to the short textual data in a Twitter

stream is rather big. It becomes a matter of smart tuning the whole system to prevent the

growing delays which lead the system to a possible crash as the unprocessed data stays in

memory (or is written down to a storage). Backpressure worked fine with the simple text

messages from the previous section, but did not seem to change something when scheduling

87

Setup Sources Time Items
sec Improvement Latency

1 machine, 6 cores, 20k 1 362.87 55 –

2 machines, 12 cores, 20k 1 193.58 103 46.6% 200ms

2 machines, 12 cores, 20k 2 185.79 108 48.8% 8100ms

3 machines, 18 cores, 20k 2 153.32 130.45 57.8% 1100ms

3 machines, 18 cores, 20k 3 125.20 159.73 65.6% 3100ms

3 machines, 18 cores, 150k 3 919.24 163.18 11 000ms

Table 7: Comparison of different setups for Storm running FACT processing pipeline to analyze

telescope events. The number of distributed parallel sources is varying next to different setups. The

improvement is computed compared to 1-machine setup.

Figure 51: Storm processing 150 000 FACT data items

and delay time were growing rapidly using FACT data. The maximum receiver rate was

limited to prevent the overload of the system.

Table 8 presents the results over various cluster setups. During all the runs only those

results were recorded where the delay time of the system recovered after some time. The

result of a single machine setup of 498 s was achieved using the following settings: maxrate

of 47 items/s for each receiver, the batch interval of 6 s with 4 partitions per core. The

delays and throughput of the system can be viewed in Figure 52a. The processing time

for each batch is almost optimal and the scheduling delay recover from the early increase.

Considering a single batch job in Figure 52b, the above configuration achieves fair partition

processing among the four available cores. Though for every partition deserialization of the

task (marked in red) consumes some time. This has an impact on the overall performance.

88

(a) Processing FACT data with Spark Streaming on a single machine (batch interval 6 s,

receivers’ maxrate 47 items/s).

(b) Processed partitions on a single machine. From initially 6 cores one is used by the driver

program and another one by the receiver.

Figure 52: Spark Streaming dashboard showing statistics of processing FACT data.

89

Setup Sources Time Items
sec Improvement

1 machine, 6 cores, 20k 1 498 40.16 –

2 machines, 12 cores, 20k 1 312 64.10 37.35%

2 machines, 12 cores, 20k 2 220 91 55.82%

3 machines, 18 cores, 20k 3 180 111.11 63.86%

3 machines, 18 cores, 150k 3 1320 113.63

Table 8: Comparison of different setups for Spark Streaming running FACT processing pipeline to

analyze telescope events. The number of distributed parallel sources is varying next to different setups.

The improvement is computed compared to 1-machine setup.

The extension of the setup with a second machine and using two parallel sources doubles

the throughput of the system and halves the duration of the application. This is achieved

by keeping maxRate at the same level and adjusting the locality values such that the data

from the receiver on the machine A is not transmitted to the machine B. In contrast to this

result, the same application using only one receiver performs worse due to the transmission

costs and the limited receiver rate. Finally, adding the third machine to the setup pushes the

performance further reducing the duration up to 180 s.

In contrast to Storm, during the experiments it was not possible to tune the system such

that it performs better on three machines with two sources than on two machines with two

sources. Furthermore, as Spark reserves one core for the driver, only 17 cores were available

for processing at most. Each receiver (source) utilizes a core and hence in the three-machines

setup only 14 cores are used for processing. Comparing the one-machine and three-machines

setups the throughput of the system is improved by a factor of 2.7. The improvement could

have been higher if Spark Streaming would distribute the parallel sources on the different

machines. Unfortunately, three sources were spread over two machines and there is no direct

option to force it.

Flink

Configuring the parallelism of a Flink job turned out simpler than in Spark. After setting up

the cluster, using the copies attribute is sufficient to improve the system performance. The

first setup utilizes the resources of a single machine. Processing all the 20 000 data items

took 289.65 s (average: 69.05 items/s). The addition of a second machine reduced the time

needed to process 20 000 data items down to 216.67 (average: 92.31 items/s). This is an

increase in the items processed per second and logically a descrease in the duration of the

application. Although the resources were doubled, the observed performance improvement

in the application’s duration time was around 24%. In this setup the data was distributed

from one machine receiving the data items across the two worker machines. Receiving and

90

transmitting of a data item uses the same data connection and hence forwarding a data

item from a receiver machine A to the second machine B reduces the bandwidth. Hence,

the second source was added to retrieve the data items in parallel. In this new setup Flink

automatically executes parallel sources on different machines. The processing time clearly

goes down to 165.64 s (average: 120.75 items/s). By adding another machine with another

parallel source to this setup improves the processing time up to 118.92 s as can be seen.

Setup Sources Time Items
sec Improvement

1 machine, 6 cores, 20k 1 289.65 69.05 —

2 machines, 12 cores, 20k 1 216.67 92.31 25.20%

2 machines, 12 cores, 20k 2 165.64 120.75 42.81%

2 machines, 12 cores, 20k, rescaled 2 153.53 130.27 46.99%

3 machines, 18 cores, 20k 2 128.32 155.86 55.70%

3 machines, 18 cores, 20k, rescaled 2 120.41 166.10 58.43%

3 machines, 18 cores, 20k 3 118.92 168.16 58.94%

3 machines, 18 cores, 20k, rescaled 3 113.69 175.91 60.75%

3 machines, 18 cores, 150k, rescaled 3 884.59 169.57

Table 9: Comparison of different setups for Flink running FACT processing pipeline to analyze tele-

scope events. The number of available cores and distributed parallel sources is varying. The improve-

ment is computed compared to 1-machine setup.

Using the rescale() API, the performance of the system is up to 2.5 times higher

which is summarized in Table 9. In the setup with two or more parallel sources on the

multiple computing nodes, rescale() forces local round-robin partitioning and reduces the

transmission to other physical machines. In case of three computing nodes, the resulting

throughput raised up to 175.91 items/s with the reduced computing time of 113.69 s. Using

this most powerful Flink setup, processing 150 000 data items consumed 884.59 s. Figure 53

presents Flink’s dashboard with the results of the last experiment where stream sources are

spread over three different machines.

When adding the third source to the setup, almost no performance increase can be

measured. This effect can have various reasons. On the one hand, the backpressure in Flink

can be protecting the system well from too high bursts of data. Otherwise, it is possible that

using three parallel sources to transmit the data over the network reaches its limits.

6.3 Summary

Distributing the processing of the Twitter stream was rather simple due to the structure and

size of the data items themselves (light-weight text messages). The image data produced by

91

Figure 53: Running through FACT pre-processing pipeline (data calibration and cleaning) inside of

Flink. The stream was limited to 150 000 items.

FACT raises the computation time for the processing. Additionally the costs of transmitting

the data to another physical machine need to be considered which induce strong conditions

for data locality. This is achieved by holding the stream source and the processed data on

the same worker node.

The throughput of the system was increased by the factors of 2.8, 2.7 and 2.5 with

Storm, Spark and Flink respectively. As seen in Figure 54b, Flink was always able to perform

preprocessing of the same amount of FACT data faster than Spark and Storm. While

executing the job Spark reserves one core for the driver program. Although this is ignorable

in a case of cluster with many machines with hundreds of CPU cores, for the experiments

in this thesis the difference to other frameworks was measurable and makes it difficult to

compare the results. Nevertheless, Spark performed on a three-machine setup as good as

Storm using two machines only.

Due to a wide range of tuning parameters in Spark, it is difficult to state whether its

performance can be increased further. Hence, when it comes to tuning the system for best

performance, Spark can not hold against Flink and Storm. While a Flink job performed the

results reported above withing the first run, Spark required multiple runs to distinguish the

right values for maxRate, batch interval, data locality and number of partitions. During the

experiments with the textual data using one partition per core in Spark Streaming showed

bad load balancing as presented in Figure 48d. With this knowledge, for the experiments on

FACT data a higher value of partitions was chosen and improved Spark performance radically.

92

1 machine 2 machines 3 machines

0
50

10
0

15
0

20
0

It
em

s/
se
c

Flink Storm Spark

(a) Comparison of Flink, Storm and Spark processing

17GB of FACT data. Higher values are better.

60
0
80
0

1,
00
0
1,
20
0
1,
40
0
1,
60
0

Se
co
nd
s

Flink Storm Spark

(b) Comparison of Flink, Storm and Spark

processing 129GB of FACT data. Lower

values are better.

Figure 54: Evaluation of Flink, Storm and Spark on the image data from FACT telescope

One approach was originally to split the FACT pipeline into several steps (processes)

with different level of parallelism. Unfortunately, this approach was withdrawed as during the

data correction and feature extraction process a lot of data is produced and added to the

passed data item object. In case of the two following steps being executed on the different

machines, this means transmitting original and newly calculated data between the nodes. A

high decrease in the throughput performance was detected during several experiments. This

should be investigated deeply in the future work.

Following the above considerations, Flink is able to provide the best performance values

in both experiments almost no tuning overhead. Storm delivers results close to those of

Flink and also requires no advanced adjustments of the system. Spark as a batch framework

primarily needs heavy tuning of various parameters to achieve a comparable performance.

93

7 Summary and Conclusion

With the steadily increasing volume, complexity and velocity of the data the definition of Big

Data is also evolving continuously. For the Internet of Things millions of devices and sensors

provide streaming data to be processed and analyzed in real-time. As this task becomes

difficult in terms of resourse constrained environments, various frameworks for distributed

processing were introduced during the last decade for improving the applications parallelism.

While the existing frameworks continue improving its performance, new contenders arise.

Each of them provide different API for building distributed tasks.

The aim of this thesis was to simplify the job definition for different distributed processing

engines using an abstract layer on top of those frameworks. Therefore, at first in section 2 the

distributed systems and CAP theorem were discussed before an overview of three distributed

stream processing frameworks was given. As analyzing the data stream is one of the most

challenging tasks, section 3 presented a minor survey of available distributed machine learning

frameworks.

The streams framework introduced in section 4 provides an abstract job definition layer

that is decoupled from the execution engine. This concept was used to develop new packages

streams-spark and streams-flink as presented in section 5. They are both based on the

concepts of the existing streams-storm package that was updated and extended during this

thesis. These extensions allow to transform streams jobs into native Spark, Flink and Storm

distributed tasks. Finally, in section 6 the implemented software was evaluated using two

different data sets.

Conclusion During this thesis it was of great interest to figure out which framework is

capable to provide high performance while being able to analyze the data stream. The

features of the discussed distributed processing frameworks are almost identical and hence no

framework stands out with a very unique functional property. Though, there is a big difference

when considering the libraries built for each of the engines. In this thesis, particularly ML

libraries were inspected. Spark definitely has a much longer list of supported ML algorithms for

the distributed environment.Nevertheless, Flink and Storm can be combinated with SAMOA

for streaming ML approaches. On the other side, the results of a streaming data processing

pipeline indicated Flink as a clear winner in terms of performance. Storm delivered values

close to those of Flink. Tuning the performance of Spark Streaming turned out as a difficult

task that need to be performed for every new distributed setting and data set to be processed.

Flink and Storm required almost no tuning except the basic cluster configuration. Therefore,

it is possible that Spark Streaming is capable of achieving higher performance values with

more time invested into tuning the system.

In the end, a framework has to be chosen driven by the application task. Spark provides

more ML capabilities while Flink and Storm process data streams much faster. Using streams

94

and the software developed during this thesis switching between the different frameworks was

simplified. Hence, a possible combination is using Spark with MLlib for training a model and

Flink or Storm for real-time requests using streams as an abstract job definition layer.

Future Work The core part of this thesis was to ensure mapping basic streams compo-

nents onto various distributed processing frameworks. This way, almost every streams job

can be executed on Storm, Flink and Spark Streaming. In section 5.7, several not imple-

mented features such as stateful processing, windowing and ML capabilities were discussed.

Additionally, the way to add their support was presented. While streaming ML is a good

starting point, the next step is to introduce the definition of batch processing jobs through

streams for Spark and Flink. As the concept of representing a job using DAG is the same

for batch and streaming, this is an achievable goal.

Furthermore, a more intense usage of the native API of the distributed frameworks might

help improve the performance. Spark and Flink both support functions such as filter,

reduce, union etc. To achieve this, the current scheme of mapping process to a native

function has to be changed to wrapping each single processor. Although it is possible to

group processors within a <process .../> element, customizing each processor’s parallelism

allows more finegrained tuning. This topic should be investigated deeply in the future.

95

References

[1] C. Bockermann and H. Blom, “The streams framework,” TU Dortmund University, Tech.

Rep. 5, 12 2012.

[2] L. Mearian, “World’s data will grow by 50x in next decade, idc study predicts,”

Jun. 2011. [Online]. Available: http://www.computerworld.com/article/2509588/

data-center/world-s-data-will-grow-by-50x-in-next-decade--idc-study-predicts.html

[3] IDC, “The digital universe of opportunities: rich data and the increasing value of the

internet of things,” Apr. 2014. [Online]. Available: http://www.emc.com/leadership/

digital-universe/2014iview/executive-summary.htm

[4] H. Weinzierl, “New digital universe study reveals big data gap: Less than 1% of world’s

data is analyzed; less than 20% percent is protected,” Dec. 2012. [Online]. Available:

http://www.emc.com/about/news/press/2012/20121211-01.htm

[5] M. Kanellos, “Amount of data created annually to reach 180 zettabytes in

2025,” Mar. 2016. [Online]. Available: https://whatsthebigdata.com/2016/03/07/

amount-of-data-created-annually-to-reach-180-zettabytes-in-2025/

[6] D. Tam, “Facebook processes more than 500 tb of data

daily,” Aug. 2012. [Online]. Available: http://www.cnet.com/news/

facebook-processes-more-than-500-tb-of-data-daily/

[7] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A survey of open

source tools for machine learning with big data in the hadoop ecosystem,” Journal of

Big Data, vol. 2, no. 1, pp. 1–36, 2015.

[8] C. Wu, R. Buyya, and K. Ramamohanarao, “Big data analytics = machine learning +

cloud computing,” CoRR, vol. abs/1601.03115, 2016.

[9] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, Large-Scale Parallel Collaborative

Filtering for the Netflix Prize. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,

pp. 337–348.

[10] G. Le Lann, “Distributed systems-towards a formal approach.” in IFIP Congress, vol. 7.

Toronto, 1977, pp. 155–160.

[11] J. Dean and S. Ghemawat, “Map-reduce: Simplified data processing on large clusters,”

D OSDI IEEE, vol. 51, 2004.

[12] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of real-time stream

processing,” ACM SIGMOD Record, vol. 34, no. 4, pp. 42–47, 2005.

96

[13] E. A. Brewer, “Towards robust distributed systems,” in PODC, vol. 7, 2000.

[14] E. Brewer, “Cap twelve years later: How the" rules" have changed,” Computer, vol. 45,

no. 2, pp. 23–29, 2012.

[15] N. Marz and J. Warren, Big Data: Principles and best practices of scalable realtime

data systems. Manning Publications Co., 2015.

[16] J. Kreps, “Questioning the lambda architecture,”

https://www.oreilly.com/ideas/questioning-the-lambda-architecture, 07 2014.

[17] Spotify, “How spotify scales apache storm,” https://labs.spotify.com/2015/01/05/how-

spotify-scales-apache-storm/, 01 2015. [Online]. Available: https://labs.spotify.com/

2015/01/05/how-spotify-scales-apache-storm/

[18] W. D. Hillis and G. L. Steele Jr, “Data parallel algorithms,” Communications of the

ACM, vol. 29, no. 12, pp. 1170–1183, 1986.

[19] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A catalog of stream

processing optimizations,” ACM Computing Surveys (CSUR), vol. 46, no. 4, p. 46,

2014.

[20] C. C. Aggarwal, Data streams: models and algorithms. Springer Science & Business

Media, 2007, vol. 31.

[21] N. Rivetti, Y. Busnel, and L. Querzoni, “Load-aware shedding in stream processing

systems,” in Proceedings of the 10th ACM International Conference on Distributed and

Event-based Systems, ser. DEBS ’16. New York, NY, USA: ACM, 2016, pp. 61–68.

[22] “The evolution of storm at yahoo and apache,”

http://yahoohadoop.tumblr.com/post/98751512631/the-evolution-of-storm-at-

yahoo-and-apache, 09 2014. [Online]. Available: http://yahoohadoop.tumblr.com/

post/98751512631/the-evolution-of-storm-at-yahoo-and-apache

[23] “History of apache storm and lessons learned,” http://nathanmarz.com/blog/history-

of-apache-storm-and-lessons-learned.html, 10 2014. [Online]. Available: http:

//nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html

[24] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster

computing with working sets.” HotCloud, vol. 10, pp. 10–10, 2010.

[25] Reynold Xin, “Apache spark officially sets a new record in

large-scale sorting,” https://databricks.com/blog/2014/11/05/

spark-officially-sets-a-new-record-in-large-scale-sorting.html, nov 2014.

97

[26] R. Xin, P. Deyhim, G. A., X. Meng, and M. Zaharia, “Graysort on apache spark by

databricks,” http://sortbenchmark.org/ ApacheSpark2014.pdf, 2014.

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,

S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing,” in Networked Systems Design and Implementation

(NSDI 12), 2012, pp. 15–28.

[28] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized streams: an efficient

and fault-tolerant model for stream processing on large clusters,” in Presented as part

of the, 2012.

[29] G. Maas, “Tuning spark streaming for throughput,” Dec.

2014. [Online]. Available: http://www.slideserve.co.uk/download/documents/

tuning-spark-streaming-for-throughput-virdata

[30] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao,

M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. J. Sax,

S. Schelter, M. Höger, K. Tzoumas, and D. Warneke, “The stratosphere platform for

big data analytics,” The VLDB Journal, vol. 23, no. 6, pp. 939–964, Dec. 2014.

[31] Z. Prekopcsák, G. Makrai, T. Henk, and C. Gaspar-Papanek, “Radoop: Analyzing big

data with rapidminer and hadoop,” in Proceedings of the 2nd RapidMiner community

meeting and conference (RCOMM 2011). Citeseer, 2011, pp. 865–874.

[32] A. K. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic, and J. Keane, “A parallel dis-

tributed weka framework for big data mining using spark,” in 2015 IEEE International

Congress on Big Data, June 2015, pp. 9–16.

[33] T. G. Dietterich, “Ensemble methods in machine learning,” in International workshop

on multiple classifier systems. Springer, 2000, pp. 1–15.

[34] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[35] A. Bifet, “Mining big data in real time,” Informatica, vol. 37, no. 1, 2013.

[36] J. Read, A. Bifet, G. Holmes, and B. Pfahringer, “Scalable and efficient multi-label

classification for evolving data streams,” Machine Learning, vol. 88, no. 1-2, pp. 243–

272, 2012.

[37] E. Almeida, C. Ferreira, and J. Gama, “Adaptive model rules from data streams,” in Joint

European Conference on Machine Learning and Knowledge Discovery in Databases.

Springer, 2013, pp. 480–492.

98

[38] J. Duarte and J. Gama, “Ensembles of adaptive model rules from high-speed data

streams.” BigMine, vol. 14, pp. 198–213, 2014.

[39] A. Bifet, G. Holmes, B. Pfahringer, J. Read, P. Kranen, H. Kremer, T. Jansen, and

T. Seidl, “Moa: a real-time analytics open source framework,” in Joint European Con-

ference on Machine Learning and Knowledge Discovery in Databases. Springer, 2011,

pp. 617–620.

[40] M. Stolpe, “The internet of things: Opportunities and challenges for distributed data

analysis,” ACM SIGKDD Explorations Newsletter, vol. 18, no. 1, pp. 15–34, 2016.

[41] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun, “Map-

reduce for machine learning on multicore,” Advances in neural information processing

systems, vol. 19, p. 281, 2007.

[42] H. Neeb and C. Kurrus, “Distributed k-nearest neighbors,” 2016.

[43] G. Forman and B. Zhang, “Distributed data clustering can be efficient and exact,” ACM

SIGKDD explorations newsletter, vol. 2, no. 2, pp. 34–38, 2000.

[44] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,

P. Prettenhofer, A. Gramfort, J. Grobler et al., “Api design for machine learning software:

experiences from the scikit-learn project,” arXiv preprint arXiv:1309.0238, 2013.

[45] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and M. I. Jordan,

“Mlbase: A distributed machine-learning system.” in CIDR, vol. 1, 2013, pp. 2–1.

[46] X. Meng, J. Bradley, B. Yuvaz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,

M. Amde, S. Owen et al., “Mllib: Machine learning in apache spark,” JMLR, vol. 17,

no. 34, pp. 1–7, 2016.

[47] G. De Francisci Morales and A. Bifet, “Samoa: Scalable advanced massive online anal-

ysis,” The Journal of Machine Learning Research, vol. 16, no. 1, pp. 149–153, 2015.

[48] A. Bifet, S. Maniu, J. Qian, G. Tian, C. He, and W. Fan, “Streamdm: Advanced data

mining in spark streaming,” in 2015 IEEE International Conference on Data Mining

Workshop (ICDMW), Nov 2015, pp. 1608–1611.

[49] C. E. Seminario and D. C. Wilson, “Case study evaluation of mahout as a recommender

platform,” in 6th ACM conference on recommender engines (RecSys 2012), 2012, pp.

45–50.

[50] G. Kejela, R. M. Esteves, and C. Rong, “Predictive analytics of sensor data using

distributed machine learning techniques,” in Cloud Computing Technology and Science

(CloudCom), 2014 IEEE 6th International Conference on. IEEE, 2014, pp. 626–631.

99

[51] KDNuggets, “R leads rapidminer, python catches up, big data tools grow, spark ig-

nites,” http://www.kdnuggets.com/2015/05/poll-r-rapidminer-python-big-data-spark.

html, may 2015.

[52] David Whiting, “Data pipelines with apache crunch and java 8,” https://developers.

soundcloud.com/blog/data-pipelines-apache-crunch-java-8.html, jun 2016.

[53] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson, O. O’Malley, J. Pandey,

Y. Yuan, R. Lee, and X. Zhang, “Major technical advancements in apache hive,” in

Proceedings of the 2014 ACM SIGMOD International Conference on Management of

Data, ser. SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 1235–1246.

[54] S. Rötner, “Behandlung von concept drift in zyklischen prozessen,” Master’s thesis, TU

Dortmund, 2014.

[55] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive online analysis,”

Journal of Machine Learning Research, vol. 11, no. May, pp. 1601–1604, 2010.

[56] N. Wulf, “Speicherung und analyse von bigdata am beispiel der daten des fact-teleskops,”

Master’s thesis, TU Dortmund, 2013.

[57] Arun Mahadevan, “Windowing and state checkpointing in

apache storm,” https://community.hortonworks.com/articles/14171/

windowing-and-state-checkpointing-in-apache-storm.html, feb 2016.

[58] M. Asmi, A. Bainczyk, M. Bunse, D. Gaidel, M. May, C. Pfeiffer, A. Schieweck,

L. Schönberger, K. Stelzner, D. Sturm, C. Wiethoff, and L. Xu, “Pg594 - big data,”

TU Dortmund, Tech. Rep. 5, 10 2016, supervised by Katharina Morik, Christian Bock-

ermann and Hendrik Blom.

[59] Yahoo, “Benchmark streaming computation engines at ya-

hoo,” https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-

computation-engines-at, 12 2015. [Online]. Available: https://yahooeng.tumblr.

com/post/135321837876/benchmarking-streaming-computation-engines-at

[60] T. Liebig, N. Piatkowski, C. Bockermann, and K. Morik, “Dynamic route planning with

real-time traffic predictions,” Information Systems, pp. –, 2016.

[61] C. Bockermann, K. Brügge, J. Buss, A. Egorov, K. Morik, W. Rhode, and T. Ruhe,

“Online analysis of high-volume data streams in astroparticle physics,” in Proceedings

of the European Conference on Machine Learning (ECML), Industrial Track. Springer

Berlin Heidelberg, 2015.

100

