
Diplomarbeit

Real-time feature

extraction from video

stream data for stream

segmentation and tagging

Matthias Schulte

Diplomarbeit
an der Technischen Universität Dortmund

Fakultät für Informatik
Lehrstuhl für künstliche Intelligenz (LS8)

http://www-ai.cs.tu-dortmund.de

Dortmund, January 22, 2013

Betreuer:

Prof. Dr. Katharina Morik
Dipl.-Inform. Christian Bockermann

Acknowledgment

I wish to express my sincere gratitude to my supervising tutors Prof. Dr. Katharina
Morik and Dipl.-Inform. Christian Bockermann for their qualified support. During the
last months they have been available almost twenty-four-seven and helped me a lot by
providing me with all the advice and practical support I required.

In addition I own thanks to everybody else working at the chair for artificial intelligence
at TU Dortmund University. Beside supporting me with their scientific expertise, they
always had a sympathetic ear and made me feel motivated and encouraged every time I
was in the office.

Furthermore I would like to thank Radim Burget, author of the RapidMiner Image Ex-
tension, who helped me by sharing his code and supporting me whenever I had questions
regarding the extension. It was a pleasure to work with you.

Last but not least I especially owe thanks to my beloved family and friends, who sup-
ported me in writing this thesis.

iii

Contents

Acknowledgment iii

List of Figures viii

List of Tables x

1 Introduction 1
1.1 The ViSTA-TV project . 3

1.2 Task of this thesis . 4

1.3 Structure of this work . 5

2 Video Segmentation and Tagging 7
2.1 Temporal hierarchy of video content . 8

2.2 Shot Boundary Detection . 9

2.2.1 Detection of hard cuts . 12

2.2.2 Detection of gradual transitions . 16

2.3 Segment Detection . 18

2.3.1 General-purpose methods for segment detection 19

2.3.2 Segmentation of news shows . 21

2.3.3 Anchorshot Detection . 22

2.4 Tagging the segments . 24

2.5 Further related work . 25

2.5.1 Audio analyze . 25

2.5.2 Multi-modal analyze . 26

3 Machine Learning 27
3.1 Notation . 28

3.2 Supervised Learning . 29

3.2.1 kNN . 30

3.2.2 Decision trees . 31

3.2.3 Evaluation Methods . 33

3.3 Unsupervised Learning . 36

3.3.1 Cluster Analysis . 37

3.4 Learning on Streams . 39

v

Contents

3.4.1 Concept Drift Detection . 40

3.4.2 Stream Clustering . 40

3.5 Tools and Frameworks . 40

3.5.1 CRISP-DM . 41

3.5.2 RapidMiner . 42

3.5.3 Streams framework . 43

4 Learning tasks 47
4.1 Use case A: IP-TV . 47

4.2 Use case B: Coffee - Project . 48

5 Data 51
5.1 Receiving live video data: ZAPI . 51

5.1.1 Start a ZAPI- Session . 52

5.1.2 Login with user account . 53

5.1.3 Watch a channel . 53

5.1.4 Stop Channel, logout and stop session 55

5.1.5 Error responses . 55

5.2 Creation of datasets . 55

5.2.1 The ”news”-dataset . 56

5.2.2 The ”coffee”-dataset . 58

6 Feature Extraction 59
6.1 Naming convention for extracted features 59

6.2 Image Feature Extraction with RapidMiner 60

6.2.1 IMMI Operators . 61

6.2.2 The overall feature extraction process in RapidMiner 66

6.3 Image Feature Extraction with the streams framework 68

6.3.1 Representing images . 68

6.3.2 The AbstractImageProcessor . 68

6.3.3 Implemented image processors . 69

7 Experiments and Evaluation 71
7.1 Shot Boundary Detection . 71

7.1.1 Approach and Evaluation . 72

7.1.2 Analysis of reasons for misclassification 73

7.1.3 Real-time behavior of the approach 74

7.2 Segmentation and Tagging of News shows 75

7.2.1 Feature-based anchorshot detection using RapidMiner 75

7.2.2 Real-time model-based anchorshot detection 79

7.3 Coffee capsule recognition . 83

7.3.1 Event Detection . 83

7.3.2 Capsule Recognition . 85

8 Outlook and Conclusion 89

vi

Contents

Bibliography 91

A. The ”news”-dataset 100

B. The ”coffee”-dataset 105

C. Features extracted with RapidMiner IMMI 107

D. Implemented processors in the streams framework 109

vii

List of Figures

1.1 Logo of the ViSTA-TV project. 3
1.2 Overview of the ViSTA-TV project . 4

2.1 Spatial versus temporal video segmentation 7
2.2 Hierarchical temporal segmentation of a television broadcast. 9
2.3 Different shot transitions . 10
2.4 Difference of gray-level histograms around a shot boundary 14
2.5 Difference Image . 15
2.6 Group-of-pictures (GOP) . 16
2.7 Twin comparison . 17
2.8 Motion vectors . 18
2.9 Shot reverse shot . 19
2.10 The temporal structure of a news show . 21
2.11 Anchorshot . 22
2.12 Waveforms for different audio data . 26

3.1 Example of handwritten digits . 27
3.2 k-nearest-neighbor classifier . 30
3.3 Decision tree . 31
3.4 Bias-variance-tradeoff . 34
3.5 Example for the result of a cluster analysis. 37
3.6 CRoss Industry Standard Process for Data Mining (CRISP-DM) 41
3.7 Overview of the steps constituting the KDD process 42
3.8 Input Stream . 44
3.9 A data item containing one image plus some additional information. . . . 44
3.10 Configuration XML . 45
3.11 Execution of an experiment . 45

4.1 Experiment set-up for the coffee capsule project 49

5.1 Java Code for posting a request to ZAPI to start a new session 52
5.2 Response to Start-Session . 52
5.3 Response to User Login . 53
5.4 Response to Watch Channel . 53
5.5 The .m3u-fork . 54

viii

List of Figures

5.6 The .m3u-playlist file . 54
5.7 Example for an error-response . 55
5.8 Invocation command for uncompressing a video file using xuggler 56
5.9 Invocation command for uncompressing a video file using mencoder 56
5.10 Images resulting from decoding a video with xuggler 57
5.11 One capsule event . 58

6.1 The naming space for features. 60
6.2 The RGB channels of a color image . 61
6.3 Image transformed to black and white with threshold. 63
6.4 Image Smoothing Masks . 63
6.5 Border Detection . 64
6.6 Difference Images with RapidMiner . 65
6.7 Color Histogram . 66
6.8 Multiple Color Image Opener . 67
6.9 The overall feature extraction process in RapidMiner 67
6.10 The AbstractImageProcessor . 69

7.1 Streams framework process to detect shot boundaries 72
7.2 Examples for misclassified frames. 73
7.3 Decision tree to classify anchorshots vs. news report shots 75
7.4 Two features with good differentiation power between anchorshots and

news report shots . 76
7.5 RapidMiner process for the feature selection using Naive Bayes. 77
7.6 Stream Framework process to detect anchorshots by applying a decision

tree . 80
7.7 Inferring a model for anchorshot . 81
7.8 Shot length in news shows . 82
7.9 Average RGB values for capsule events . 83
7.10 Stream Framework process to detect events in the caffee capsule video

stream . 84
7.11 Average RGB values for different colored coffee capsules 85
7.12 Min RGB values for different colored coffee capsules 86
7.13 Coffee capsule color model creation . 86

.1 Coffee capsules sorted in the order they were placed on the slide. 106

ix

List of Tables

2.1 Frequency of hard cuts versus gradual transitions in different video types 11

3.1 Possible confusion matrix for the handwritten digit recognition problem. . 35

3.2 Confusion matrix for a binary classification task 36

5.1 Video data included in the ”news” dataset 57

6.1 Overview of image features that can be extracted using the Global Statis-
tics-Operator of the IMMI Extension . 66

7.1 Frequency of hard cuts versus gradual transitions in todays’ ”Tagesschau”
news shows. 71

7.2 Resulting confusion matrix for the experiment shown in Figure 7.1 73

7.3 Quality of the classifier for different scaled versions of the news show video. 74

7.4 Feature weights of a linear SVM for distinguishing between anchorshots
and news report shots . 77

7.5 Top features selected for Naive Bayes for distinguishing between anchor-
shots and news report shots . 78

7.6 Top features selected by different learning algorithms for distinguishing
between anchorshots and news report shots 79

7.7 Resulting confusion matrix for the anchorshot detection experiment shown
in figure 7.6 . 80

7.8 Resulting confusion matrix for the anchorshot detection experiment using
the pixel-wise comparision of each frame with the 300th frame for the show. 81

7.9 Number of frames in anchorshots vs. other shots in ”Tagesschau” news
shows. 82

7.10 Confusion matrix for the capsule color detection using LibSVM. 87

7.11 Results for the coffee capsule recognition using different machine learning
algorithms. 87

.4 Parameters of class BorderDetection. 110

.5 Parameters of class ColorDiscretization. 110

.6 Parameters of class ColorToGrayscale. 111

.7 Parameters of class Crop. 111

.8 Parameters of class DetectBrokenImage. 111

x

List of Tables

.9 Parameters of class DiffImage. 112

.10 Parameters of class AverageRGB. 113

.11 Parameters of class CenterOfMass. 113

.12 Parameters of class ColorHistogram. 114

.13 Parameters of class MedianRGB. 114

.14 Parameters of class StandardDeviationRGB. 114

.15 Parameters of class SetTransparent. 115

.16 Parameters of class Smoothing. 115

.17 Parameters of class AddCoffeeLabels. 116

.18 Parameters of class EventDetectionEvaluation. 117

.19 Parameters of class ThresholdEventDetection. 117

.20 Parameters of class AddNewsshowLabels. 119

.21 Parameters of class ErrorOutput. 119

.22 Parameters of class GrayThreshold. 120

.23 Parameters of class AnchorshotModelCreator. 121

.24 Parameters of class ApplyDecisionTreeModel. 121

.25 Parameters of class ApplyImageModel. 122

xi

1

Introduction

Beside traditional Internet applications like world wide web and mail, the Internet be-
comes increasingly more interesting for broadband applications like video and television
streaming. The Cisco Visual Networking Index Forecast (VNI), an ongoing initiative to
track and forecast the impact of visual networking applications, estimates that in 2016
Internet video traffic will be 55 percent of all consumer Internet traffic [Cisco, 2012]. The
video platform YouTube1, founded in early 2005, solely accounted for 10 percent of all
traffic on the Internet in 2007 and is continuously growing. Their website is visited by 800
million unique users per month, watching over four billion videos daily [YouTube, 2012].
In addition to video-on-demand services like YouTube, IP-TV (Internet Protocol Televi-
sion) is rapidly growing as well. While only big events like sport events were broadcasted
via IP-TV in the past, nowadays companies like Zattoo2 offer the opportunity to watch a
wide range of TV channels anywhere and anytime live over the Internet. The number of
people using this service is continuously increasing: By June 2011 more than eight mil-
lion users were registered on the Zattoo-Website [onlinekosten.de GmbH, 2012]. Within
just a year this number increased to over ten million users by July 2012 [Zattoo, 2012].
Although not all users are active users, more than one million IP-TV streams per month
are watched over the Zattoo platform.

Main reasons for watching IP-TV, either by using streaming services on the computer
or by using IP-TV set-top-boxes, are probably:

• Given that an Internet connection is available, additional expenses for a cable
connection or a satellite dish are omitted.

• Television becomes available on more devices such as computers, smart phones and
tablets. Hence existing devises can be used for television reception and expenses
for television sets are omitted as well.

1http://www.youtube.com
2http://zattoo.com

1

1. Introduction

• Digital transmission allows better video and sound quality (HDTV).

• The number of potential channels is larger as no additional efforts have to be
undertaken to receive the television programs of foreign stations.

• In many cases recording and video-on-demand functionality is already integrated
and therefore free as well.

But IP-TV has even more advantages beside these obvious ones. The upcoming IP-TV
”has begun to bring consumers (a) new TV experience which goes beyond any tradi-
tional passive TV” [Zeadally et al., 2011]. Reason for this is that IP-TV, contrary to
the traditional TV, provides a feedback channel which allows interactivity with and per-
sonalization of the TV program. By tracking the switching behavior of users over the
feedback channel, IP-TV providers can discover, what ever single customer is watching
and fit the program to the customers’ needs. This includes for instance a personalized
recommendation of shows or an adaption of advertisement to the customers interest.
However not only the customer but also the content providers profit. By fitting adver-
tisement to the users needs, users are more likely to really buy the advertised products.
Thus the value of the advertisement increases and hence content providers can earn more
money without increasing the amount of advertisement. Furthermore the expensive and
imprecise evaluation of user behavior by questionnaires or tracking the switching be-
havior of some random and representative households by using set-top box based data
becomes redundant.

The above mentioned advantages require an extensive analysis of the gained user and
video data. This includes on the one hand the enrichment of the data by all information
available and on the other hand the analysis of this enriched data with machine learn-
ing approaches. As this analysis is as well of high scientific as of economic interest, big
efforts have been made in the past twenty years to cope with the problem. These efforts
include the extraction of features from audio and video data, the automatic parsing, seg-
menting, indexing and tagging of video content and the development of recommendation
approaches suitable for video data based on user behavior. As tasks are various, scientists
from many fields of research (computer scientists specialized on vision, machine learn-
ing or recommendation systems, mathematics and psychologists) have contributed and
results are manifold. Nevertheless there is no existing overall system for real-time pro-
gram recommendations based on user- and video-data. The new European Union-funded
collaborative research project ViSTA-TV is addressing this problem.

The results of this thesis are supposed to be used within the ViSTA-TV project. By
extracting real-time features from stream video data, we gain further knowledge about
the video stream itself and thereby improve the quality of the data. The idea is, that
the enriched data helps to built a recommendation engine. The next section is going to
provide the reader with some basic information about the project.

2

1.1. The ViSTA-TV project

1.1. The ViSTA-TV project

Figure 1.1.: Logo of the ViSTA-TV
project.

The project ”Video Stream Analytics for Viewers
in the TV Industry” (short: ViSTA-TV)3 is a Euro-
pean Union-funded collaborative research project,
beginning on June 1st, 2012, and lasting for two
years. Its main objective is to bootstrap the IP-
TV economy by enriching video content with back-
ground information, that allows to study user be-
havior and determine recommendations for users
by predicting, which currently broadcasted show
might be interesting for them.

To achieve this objective, the main tasks of the ViSTA-TV project are

• to process real-time TV data (video-, user behavior- and TV meta-data) and ex-
tract useful features from this data,

• to ”generate a high-quality linked open dataset (LOD) describing live TV pro-
gramming”,

• to ”combine this dataset with behavioral information to provide highly accurate
market research information about viewing behavior”, and

• to ”employ the information gathered to build a recommendation service to provide
real-time viewing recommendations.”

There are six partners involved in the program:

• University of Zurich, represented by the ”Dynamic and Distributed Information
Systems Group”. They are also the coordinator of the whole project.

• TU Dortmund University, represented by the ”Artificial Intelligence Group”.

• Vrije Universiteit Amsterdam, represented by the ”Web & Media Group”.

• Zattoo Europa AG

• British Broadcasting Company (BCC)

• Rapid-I GmbH, the developers of the RapidMiner suite for machine learning (see
chapter 3.5.2).

The two IP-TV-Providers (Zattoo and BBC) deliver live video streams from selected
broadcasting companies (also referred to as content providers). They furthermore gather
anonymized data about consumers viewing behavior by recording user program switches.
This whole data is then delivered to the three research institutions, where it is taken
”as the input for a holistic live-stream data mining analysis”. In addition to the video-

3http://vista-tv.eu/

3

1. Introduction

and user-data the IP-TV-Providers provide the opportunity to receive EPG (Electronic
Program Guide)-data for the video data as well.

Figure 1.2.: Overview of the ViSTA-TV project

Afterwards the data is enriched with internal and external features. This is done by the
module ”Data Enrichment Engine”. The term internal features refers to all features that
are extracted from the provided data itself. Examples for this are any features gathered
from the video data. In contrast to this, external features are all context information
taken from third party content providers such as DBpedia4 or Discogs5. This module is
mainly driven by TU Dortmund University. Its output is an enriched feature stream, en-
abling the following modules to do further market analysis and create recommendations
for users. This is done by the ”Recommendation Engine” module. The ”Data Ware-
house” module is responsible for building up the infrastructure to store and deliver the
enriched data.

Parts of the topic of this diploma thesis are supposed to be used in the ”Data Enrich-
ment” workpackage of the ViSTA-TV project.

1.2. Task of this thesis

Part of the ViSTA-TV project is to analyze, whether there are observable events within
the video, audio or text streams that make people switch channels, and combine this
with external features such as peoples’ interests or peoples’ activities on social media
platforms. This requires the identification of video events. Identifying video events again
can be seen as the problem of segmenting a video stream in meaningful parts and tagging
these parts. This again requires the extraction and evaluation of features, that might

4http://de.dbpedia.org/
5http://www.discogs.com/

4

1.3. Structure of this work

be useful in the context of video segmentation and tagging video segments. As we can
assume that

1. the amount of possible features extractable from video data is almost infinite and

2. we do initially not know which features are useful

we start by extracting a maximized number of exemplary features. As analyzing the video
stream and creating recommendations is supposed to happen in real-time, the amount of
selected features must not be too large at the end. Especially complex features (in terms
of time needed to calculate them) should be avoided to guarantee real-time behavior.

As a next step the extracted features have to be applied to real-world problems in order
to evaluate, which subset of features is useful. Hereby the identification of features that
appear to be useless is an important result as well, as these features do not have to
be taken into account when later on video streams are analyzed in real-time. In this
thesis two important video segmentation and tagging problems for IP-TV broadcasts
have been considered as use cases (= applications):

1. The segmentation of videos by detecting cuts and gradual transitions, and

2. the tagging of news videos by distinguishing between anchorshots and news report
shots.

There are of course other reasonable segmentation and tagging tasks as well, such as
the identification of advertisement in movies and tagging the segments of a broadcasted
movie with the label ”movie” or ”advertisement”. But as the set of features, that have
to be extracted to solve other tasks, will be similar, I decided to focus on the above
mentioned use cases.

Furthermore a second use case has been built up. This one is closer related to surveillance
applications than to IP-TV, as it is about supervising the coffee consumption for our
office. The learning tasks for both use cases are defined in more detail later on.

Last but not least, we have to take into account that the feature extraction is supposed
to be run in real-time on live video streams. Hence this thesis should demonstrate, how
feature extraction in real-time can be performed and keep an eye on the runtime of
segmentation and tagging algorithms.

1.3. Structure of this work

This work is structured in eight chapters. This Introduction chapter includes a motiva-
tion of the problem and an introduction of the context. The subsequent chapters are
structured as follows:

Chapter 2 provides a literature survey of the field of video segmentation and tagging.
Beside a definition of the terms segmentation and tagging, promising approaches
for different segmentation tasks are introduced.

5

1. Introduction

Chapter 3 gives a rough introduction to the field of machine learning. Alongside
with some notation, machine learning tasks and algorithms, which are used in
this thesis, get introduced. Furthermore evaluation methods for machine learning
algorithms are presented. In addition the tools, especially RapidMiner and the
streams framework, which play an important role for this thesis, get introduced.

Chapter 4 presents two use cases. Based on these use cases, I tested the above men-
tioned video segmentation and tagging techniques. The learning tasks to be solved
in this thesis are defined and quality measurements are established in order to be
able to evaluate the yielded results.

Chapter 5 gives an overview of the datasets that were created for the use cases.

Chapter 6 provides the reader with an overview of possibly extractable features from
video data. The feature extraction has been performed both in a batch mode, using
RapidMiner, and online, using the streams framework.

Chapter 7 contains a documentation of the experiments ran on the previous presented
datasets. All results are evaluated in regard to the quality measurements, which
were defined in chapter 4.

Chapter 8 concludes this thesis by summarizing the yielded results and proposing
topics for future research.

6

2

Video Segmentation and Tagging

Definition 1 The term Segmentation denotes the ”process of partitioning data into
groups of potential subsets that share similar characteristics”. [Li and Ngan, 2011]

Having a look at Definition 1, it becomes obvious that Video Segmentation covers a wide
range of different tasks and emerges in various application areas. Generally the term can
refer to two major categories of segmentation tasks

1. the spatial segmentation of videos into objects, as well as

2. the temporal segmentation of video data into temporal sections.

(a) spatial segmentation

(b) temporal segmentation

Figure 2.1.: Results of spatial and temporal segmentation on the same video data. Spatial
segmentations tries to identify objects with similar characteristics (in this example
faces and persons), whereas temporal segmentation tries to identify temporal segments
by identifying frames with similar characteristics (in this example separated by the
dash).

7

2. Video Segmentation and Tagging

Spatial segmentation denotes the segmentation of video content into objects, that share
similar characteristics. This includes Object Recognition as well as Foreground and Back-
ground Identification and is used in various application areas.

Face Detection and People Detection refers to the task of localizing human faces.
Application fields include motion tracking in fun applications like video game con-
soles (i.g. XBOX kinect) as well as security applications or the face priority auto-
focus capacity of digital cameras and web-cams [Rahman and Kehtarnavaz, 2008].

Face Recognition extends the face detection task by adding functionality to identify
the detected person. It can be used for security applications like access control of
buildings or to detect unusual events in a given environment by analyzing surveil-
lance videos [Stringa and Regazzoni, 2000, Zhong et al., 2004].

License Plate Recognition is another popular subtask of object recognition. It is
used in order to find stolen vehicles or collect tolls [Chang et al., 2004].

Environment Classification is used to detect and track objects like streets and obsta-
cles (i.g. [Farabet et al., 2011]). This enable autonomous vehicles ([Turk et al., 1987],
[Pomerleau, 1993]) or planes ([McGee et al., 2005]) to find their way in an unknown
environment.

Foreground and Background Identification can, for example, be used to recon-
struct 3D settings from images or video data [Vaiapury and Izquierdo, 2010].

We can imagine some of these approaches to be useful for the segmentation and tagging
of video content. For example, by detecting faces in video data, we could recognize
anchorshots or interviews in news shows. Furthermore face recognition might be useful
to identify actors in movies and hence help to tag scenes. Thus, some of the above
mentioned approaches will be picked up later (i.g. Face Detection in news videos, chapter
2.3.3). But the main task of this thesis is the temporal segmentation of video data in
meaningful parts. Therefore I will focus on temporal video segmentation approaches in
the further course of this chapter.

2.1. Temporal hierarchy of video content

”Recent advances in multimedia compression technology, coupled with the significant
increase in computer performance and the growth of the Internet, have led to the
widespread use and availability of digital videos” [Yuan et al., 2007]. In order to effi-
ciently use the information given in video material on the web, it is necessary to effi-
ciently index, browse and retrieve the video data. So far this is most often done manually,
but as the amount of video data is increasing rapidly, automatic parsing and matching
has become an important and quickly growing field of research.

When aiming on cutting a video into meaningful segments, we will find various useful
levels of abstraction. This hierarchy differs from author to author, but most approaches
will agree that television broadcasts consist of shows on the first level. These shows can

8

2.2. Shot Boundary Detection

then be divided into segments with the same topic which may consist of multiple scenes.
Scenes themselves might then be segmented into shots and on the lowest level shots
consist of single frames (identical to single images). Figure 2.2 shows an example of this
hierarchy based on a fictitious ”ZDF Sportstudio” show.

Figure 2.2.: Hierarchical temporal segmentation of a television broadcast.

When talking about video content broadcasted over television, the first level of this
hierarchy (show level) is given by the available EPG data. Furthermore the decoded
video stream consists of single frames, so that the lowest level of the hierarchy (frame
level) is of course given as well. The task of segmenting a video into meaningful sections
hence aims of the identification of shots, scenes and segments. This can be done top-
down by trying to split a show into parts that are so diverse that it is unlike they belong
together.Another option is going bottom-up by grouping frames together to receive a
segmentation on the shot level and than grouping shots together to receive scenes or
segments. As almost all existing approaches operate bottom-up, I am first going to focus
on the task of shot boundary detection (section 2.2). In the following section 2.3, I will
introduce approaches that allow to group the identified shots together.

2.2. Shot Boundary Detection

For any segmentation task on each level of the hierarchy, a segmentation of the video
stream into constituent shots will be necessary. This learning task is equivalent to the task
of finding shot boundaries in video sequences (shot boundary detection, also known as
temporal video segmentation). As this is a basic task a lot of approaches for automatically
recognizing and characterizing shot boundaries have been developed in the past 20 years.

Definition 2 (Shot (Traditional)) Originally a shot is an image sequence consisting
of one or more frames and recorded contiguously during a single operation of the camera.

9

2. Video Segmentation and Tagging

A shot is hence presenting a continuous action in time and space. (Definition is a combi-
nation of the definitions found in [Brunelli et al., 1996] and [Smoliar and Zhang, 1994])

This definition has been blurred due to the new possibilities digital videos offer. In news
shows for example the anchorperson is sometimes talking about more than one topic
within one operation of the camera. Figure 2.3 (b) shows a good example. Anyhow, in
these cases the background changes and it will be helpful to identify this as different
shots. Therefore it makes sense to slightly modify the definition of a shot and weaken it
up. So my new definition is:

Definition 3 (Shot) Shots are image sequences without any fundamental changes be-
tween the images within one shot. Especially all traditional shots are shots.

I am aware of the fact that this definition is less precise than the traditional one and
leaves room for interpretation. But it will turn out to be handier in real applications
like shot boundary detection in news shows where the video-content is digitally edited
before it gets broadcasted.

Basically there are two different types of transitions between two shots: hard cuts (also
known as abrupt cuts or camera breaks) and more sophisticated gradual effects like
fades, dissolves and wipes [Bordwell and Thompson, 2012].

(a) hard cut

(b) gradual transition

Figure 2.3.: Examples for transitions between two shots taken from the ”Tagesschau”
(German news program).

hard cut Shot A is directly followed by shot B. There is no kind of gradual effect between
the last frame of A and the first frame of B. Figure 2.3 (a) shows an example for
this.

fade The term fade describes the transition from a blank image into shot A (fade-in)
or vice versa (fade-out). When shot A fades out into a monochrome image and
afterwards shot B is faded in, the transition between shot A and shot B is called
fade-out/in.

dissolve A dissolve overlaps shot A and shot B for a certain duration. While shot A
gradually disappears, shot B gradually appears. Figure 2.3 (b) shows an example
for this.

10

2.2. Shot Boundary Detection

wipe A wipe is a transition where shot B reveals by travelling from one side of the frame
to another or with a special shape. Famous examples for wipes are barn door wipes
(where the wipe proceeds from two opposite edges of the image towards the center)
or matrix wipes. Wipes are often used in presentations but they are very rare in
TV broadcasts.

In their comparison paper from 1996 Boreczky and Rowe (University of California Berke-
ley) [Boreczky and Rowe, 1996] have shown that hard cuts are the most common type
of transition. Gradual transitions are less frequent. Their results, based on 3.8 hours of
TV broadcasts, are shown in table 2.1.

Video Type # of frames Cuts Gradual Transitions

Television 133.204 831 42

News 81.595 293 99

Movies 142.507 564 95

Commercials 51.733 755 254

Miscellaneous 10.706 64 16

Total 419.745 2507 506

Table 2.1.: Frequency of hard cuts versus gradual transitions in different video types.
[Boreczky and Rowe, 1996]

Literature

Beside [Boreczky and Rowe, 1996], serveral more detailed surveys exist, comparing fur-
ther shot boundary detection approaches and/or working on different data sets. Some
were already written in the 1990’s ([Aigrain and Joly, 1994], [Ahanger and Little, 1996],
[Patel and Sethi, 1996] [Lienhart, 1999] or [Browne et al., 1999]), others are newer like
[Gargi et al., 2000], [Koprinska and Carrato, 2001], [Hanjalic, 2002], [Lefevre et al., 2003],
[Cotsaces et al., 2006] or [Yuan et al., 2007]. Furthermore, since 2001, the shot boundary
detection problem has been included as a task in the Text REtrieval Conference series
(TREC), sponsored by the National Institute of Standards and Technology (NIST).
Since 2003, one of the workshops on this conference (TRECVID1) only handles video
data [Smeaton et al., 2006]. This also involves a good video dataset to benchmark new
approaches.

The amount of literature existing in this field reflects the number of different approaches
for shot boundary detection. Of course, all methods base on the quantification of the
difference between consecutive frames in a video sequence and most of them have in
common, that features based on the image colors are chosen to distinguish between
different shots. Swain and Ballard [Swain and Ballard, 1991] have proven, that ”color has
excellent discrimination power in image retrieval systems. It is very rare that two images

1http://trecvid.nist.gov/

11

2. Video Segmentation and Tagging

of totally different objects will have similar colors” [Zhang et al., 1995c]. Nevertheless
the different approaches vary a lot. Mostly only two consecutive frames are considered.
This works well for hard cuts, but is often not enough to detect gradual transitions.
Hence we are first focusing on the detection of hard cuts. In a later subsection I address
the problem problem of detecting gradual transitions.

2.2.1. Detection of hard cuts

As hard cuts are the most common type of transition between two consecutive frames, a
lot of different approaches have been researched to detect them. Most of them quantify
the difference of two images based on the color, but some also focus on edge detection or
motion vector comparison. In this paragraph, some selected approaches are described.

Pair-wise pixel difference

A quite simple way to compare two images in order to figure out, whether they are
significantly different or not, is to determine, how many pixels have changed. These
approaches are most often used on monochromatic images (see chapter 6.2.1), but can of
course be transfered to color images easily. One of the first approaches was published by
Nagasaka et al. in 1991 [Nagasaka and Tanaka, 1992]. They simply add up the differences
of intensity of all pixels (x, y), with x ∈ X, y ∈ Y , where X and Y denote the width and
height of all frames, over two successive frames Fi and Fi+1. This sum is then compared
to a given threshold T and a shot boundary is declared, when T is exceeded.

(
∑
x∈X

∑
y∈Y
|Fi(x, y)− Fi+1(x, y)|) > T

Using this metric, a small amount of pixels that are dramatically changing can already
cause an exceedance of the threshold. Zhang et al. [Zhang et al., 1993] therefore devel-
oped an approach with two thresholds. One to judge a pixel (x, y) as changed or not
(PC=Pixel Changed) and one to detect the shot boundaries themself. A pixel is declared
as changed in the i + 1th frame, if the difference of its grayscale values between frame
Fi and frame Fi+1 exceeds a given threshold t.

PC(x, y) =

{
1 if |Fi(x, y)− Fi+1(x, y)| > t
0 otherwise

As soon as at least T percent of the total number of pixels changed between frame Fi
and frame Fi+1, the frames are declared to be right before respectively right behind a
shot boundary. ∑

x,y

PC(x, y)

max(x) +max(y)
∗ 100 > T

Unfortunately this easy metric does not work well in many settings, as it is very sensitive
towards object and camera movements. Given the camera is panning, each pixel (x1,y1)
in frame Fi+1 will be identically to a pixel (x2,y2) close by in frame Fi. But it might

12

2.2. Shot Boundary Detection

have a huge difference compared to the same pixel (x1,y1) in frame Fi. Therefore ”a large
number of pixels will be judged as changed even if the pan entails a shift of only a few
pixels” [Zhang et al., 1993]. Similar problems occure, when an object in the foreground
is moving in front of a fixed background. Hence the number of detected shot boundaries
is usually too high, as camera and/or object motions are mistakenly classified as shot
boundaries (false positives). To handle this problem, it has proven to be useful to apply
a smoothing filter to the image before calculating the pair-wise pixel difference. For
example, Zhang et al. tried to smooth the images applying a 3 × 3 unweighted image
smoothing filter before computing the pair-wise pixel comparison [Zhang et al., 1993].
For further information on image filtering, please see chapter 6.2.1.

Statistical difference

Instead of comparing all pixels pair-wise, there are also approaches that compute sta-
tistical measures over adjacent frames and compare these statistical measures. Simple
statistical measures are i.g. the average value of all pixels after transforming the image
to grayscale. Other approaches propose more complex statistics. For example, Kasturi
and Jain [Kasturi and Jain, 1991] proposed an approach, computing the mean value (m)
and the standard deviation (S) of the gray levels of two successive frames and have a
measure called likelihood ratio based on these two values. If the likelihood ratio exceeds
a given threshold T , a shot boundary is declared.

[Si+Si+1

2 + (mi−mi+1

2)2]2

Si ∗ Si+1
> T

This approach is quite resistant against noise, but unfortunately the computation of the
statistical measures is slow due to the complexity of the statistical formulas.

Histogram difference

Other approaches do not rely on statistical measures but on color histograms. Color
histograms are a discretized representation of the color distribution of an image. For each
discretized color value (=color bin) it is counted, how many pixels fall into that bin. The
evaluation of color histograms is described in chapter 6.2.1. Based on the histograms of
two adjacent frames, a shot boundary is declared, when the bin-wise difference of the
two histograms exceeds a given threshold T . The histograms can be either calculated
on grayscale images [Tonomura and Abe, 1989] or the color image itself. Nagasaka and
Tanaka [Nagasaka and Tanaka, 1992], for example, use color histograms with 64 bins (2
bits for each RGB color component [Lefevre et al., 2003]).

G∑
j=1

|Hi(j)−Hi+1(j)| > T

In this formula Hi(j) denotes the percentage of pixels in bin j, with 1 ≤ j ≤ G, for the
ith frame. G is the total number of bins.

13

2. Video Segmentation and Tagging

(a) Four successive frames taken from a ”Tagesschau” news show.

(b) Corresponding color histograms

Figure 2.4.: Difference of gray-level histograms around a shot boundary

Basing on this easy color histogram difference, other authors tried to improve the detec-
tion rate by modifying the formula. Dailianas et al. [Dailianas et al., 1995], for example,
have developed a method that ”tries to amplify the differences of two frames” by square-
ing them. Shots are declared, when

G∑
j=1

(Hi(j)−Hi+1(j))
2

max(Hi(j), Hi+1(j))
> T

This method is known as color histogram difference based on χ2-tests and goes back
on Nagasaka and Tanaka [Nagasaka and Tanaka, 1992]. ”Since the color histogram does
not incorporate the spatial distribution information of various colors, it is more invariant
to local or small global movements than pixel-based methods.” [Yuan et al., 2007]

Block-based difference

Instead of applying metrics to entire frames, we can also think of comparing smaller
blocks (also referred to as regions or grids) of successive frames. Therefore each frame is
segmented into blocks. Afterwards the shot boundary detection gets either based on all
blocks or just a selection of blocks. Kasturi et al. [Kasturi and Jain, 1991] for example cut
each frame into a fixed number of regions. Then the likelihood ratio for each correspond-
ing block is computed and a shot boundary is declared if the likelihood ratio of more than
T frames exceeds a given threshold t. Nagasaka and Tanaka [Nagasaka and Tanaka, 1992]
have developed a similar approach. They divide each frame into 4 × 4 grids and com-
pare the corresponding regions of successive frames. Hence they get 16 difference values.
Instead of using all of them, they base the shot boundary detection on the eight grids
that have the lowest difference values. Hereby their approach gets robust towards noise,
but is prone to panning.

Net comparison by Xiong et al. [Xiong et al., 1995] uses a block-based approach in order
to speed the shot boundary detection up. They break a frame into base windows and only
take some of these base windows into account in order to detect a shot boundary. By only

14

2.2. Shot Boundary Detection

looking at some blocks (= a selection of all pixels), they outperform other approaches
with regard to computational time.

Compression differences

As the video data is present in a digital format, other authors base their approaches on
features, that can directly be extracted from the encoding. In order to understand these
methods, we first have to look at the encoding formats.

H.264/MPEG4-AVC (Advanced Video Coding) is today’s most common standard to
encode digital videos. It is also used by Zattoo and thus of interest for the ViSTA-TV
project. Encoded videos consist of three types of frames: I-, P- and B-frames
[Richardson, 2003], [Strutz and Strutz, 2009].

I-frames, also called ”Intra-coded pictures”, are video frames that have been encoded
without taking into account any other frame of the video. Hence I-frames can be
seen as stand-alone pictures and are encoded like still JPEG images.

P-frames (”Predicted Pictures”) and B-frames (”Bi-predictive pictures”) are only
holding part of the image information and require the prior decoding of other
pictures in order to be decoded. Without further distinguishing between P- and
B-frames, we can simplifyingly assume that those frames basically represent the
difference between the current frame and the frame(s) before (or even after) it.
If, for example, an object moves in front of an unchanging background, only the
object’s movement gets encoded. Everything else (in this setting the background)
is implicitly assumed as unchanged. Thus space is saved, which lowers the required
broadband when transmitting movies over the Internet. Figure 2.5 shows an exam-
ple for this. One technique of encoding only the difference between two images is
called motion compensation encoding. The encoding of motion is done by discrete
cosine transformation (DCT).

(a) Frame 1 (b) Frame 2 (c) Difference image

Figure 2.5.: Pictures (a) and (b) show two successive frames from a video sequence.
Frame (a) is transmitted as an I-frame. Instead of transmitting frame (b), only the
difference image (c), holding everything that changes from (a) to (b) is transmitted
as a P-frame. In the difference image (c), mid-grey stands for ”nothing has changed”,
whereas light and dark greys represent positive and negative differences respectively.
[Richardson, 2003]

15

2. Video Segmentation and Tagging

All pictures between one I-frame and the next, including the first I-frame, are called a
group-of-pictures (GOP).

Figure 2.6.: Group-of-pictures (GOP)

As the similarity in successive frames is quite large within one shot, encoders tend to
prefer P- and B-frames to encode the video frame. On the other hand, consecutive frames
with hardly no similarity are encoded as I-frames. This is especially the case for frames
right after a hard cut. Therefore the occurrence of I-frames is a good indicator for the
presence of a shot boundary. Furthermore the P- and B-frames hold information about
the motion of objects from one frame to the next. This information is captured in so
called motion vectors (MVs). The comparison of the length, direction and coherence of
motion vectors over several images can hence be used for shot boundary detection, as
well.
Shot boundary detection on compressed video data has, for example, been done by Ar-
man et al. [Arman et al., 1993]. They are using the discrete co-sinus transformations
(DCT)-features in an encoded MPEG-stream to find shots. Lee et al. [Lee et al., 2000]
use ”direct edge information extraction from MPEG video data”. Zhang et al.
[Zhang et al., 1995a] detect shots based on the pair-wise difference of DCT coefficients
gained from MPEG compressed video data.

Edge tracking

Instead of detecting shot transitions on the images themselves, Zabih et al. have proposed
an algorithm based on transformed frames [Zabih et al., 1995]. They apply a border
detection algorithm (see chapter 6.2.1) on each incoming frame first. Then they count the
number of border pixels that do not correspond to any border pixel in the previous frame
(window size = 2). This is identical to the number of border pixels, which is further than
t pixels away from any border in the previous frame. The higher this amount of changed
borders is, the more likely it is that a shot boundary exists. The comparison to some of
the above mentioned approaches has shown, ”that the simple histogram feature usually is
able to achieve a satisfactory result while some complicated features such as edge tracking
can not outperform the simple feature.” [Yuan et al., 2007]. Lienhard [Lienhart, 1999]
has furthermore pointed out that the edge tracking method is computationally much
more expensive than the simple color histogram methods. Hence I decided to not further
test this approach.

2.2.2. Detection of gradual transitions

Comparing gradual transitions to cuts, we find that the difference values of two succes-
sive frames are significantly smaller for gradual transitions. Hence the above mentioned

16

2.2. Shot Boundary Detection

approaches for the detection of hard cuts will most likely fail on gradual transitions.
Intuitively we would try to lower the threshold, but unfortunately it turns out that in
many cases the difference values resulting from a gradual transitions will be smaller
than the difference values of successive frames resulting from camera movements, zoom-
ing or panning. Because of that we need techniques that enable us to distinguish between
gradual transistions and special camera effects.

Twin comparison

The twin comparison approach has been developed by Zhang, Kankanhalli, and Smoliar
[Zhang et al., 1993]. Instead of using just one threshold, this approach bases on a lower
threshold Tl and a higher threshold Th. Whenever the difference of one frame towards
its’ previous frame exceeds the lower threshold Tl, the frame gets declared as the po-
tential start of a gradual transition Fs. As long as the difference value of two successive
frames does not drop under the threshold Tl, these frames are compared to the poten-
tial starting frame Fs, resulting in an accumulated difference value. If this accumulated
difference value exceeds the higher threshold Th, which is by the way also used to de-
tect hard cuts, the end of a gradual transition Fe is detected. If the difference value
between two consecutive frames drops below Tl before the accumulated difference value
exceeds Th, the potential start point Fs is dropped and no shot boundary is declared.
The approach is illustrated in figure 2.7, taken from the comparison paper of Ahanger
[Ahanger and Little, 1996].

Figure 2.7.: Illustration of the twin comparison approach. Figure taken from
[Ahanger and Little, 1996].

Unfortunately the approach is not robust towards special camera effects. Hence we still
have the problem to distinguish between gradual transitions and special camera effects.
This can be done by using motion vectors.

17

2. Video Segmentation and Tagging

Motion vectors

In order to distinguish between gradual transitions and special camera effects, Zhang
et al. [Zhang et al., 1993] proposed a method to infer the reason for high differences
between consecutive frames. Their approach bases on motion vectors. By tracking the
movement of single pixels between consecutive frames, we gain motion vectors. Tracking
pixels can be done by searching for pixels with the same color in two consecutive frames.
In case there is more than one pixel having the same color in the second image, the
spatially closest one is assumes to be the one we are looking for. For special effects like
pans, zoom-ins and zoom-outs these motion vectors generate typical fields, shown in
figure 2.8.

Figure 2.8.: Illustration of motion vectors due to camera panning, zoom-out and zoom-in.
Figure taken from [Zhang et al., 1993].

If all computed motion vectors point in the same direction, the difference of the images
most likely occurred due to a pan of the camera. In case all motion vectors are directed
from the image border towards a single center of focus, we detect a zoom-out. Analog,
if all motion vectors are directed from a single center of focus towards the image border,
we detect a zoom-in. Of course we should ignore small disparities that might occur due
to the movement of objects or noise. If the extracted motion vectors do not match any
of the three patterns, we assume that a gradual transition is the reason for the difference
of the frames.

Instead of computing the motion vector information on the decoded image stream, these
information can also be gained from MPEG encoded video data directly. ”However, the
block matching performed as part of MPEG encoding selects vectors based on compres-
sion efficiency and thus often selects inappropriate vectors for image processing pur-
poses.” [Boreczky and Rowe, 1996]

2.3. Segment Detection

As one hour of video data mostly consists out of hundreds of shots, the shot level is surely
not the ideal level for indexing video data as indexes would still be way too large to give
a good overview of the present video content. Therefore ”it is necessary to find more
macroscopic time objects, for instance larger sequences constituting a narrative unit
or sharing the same setting.” [Aigrain et al., 1997]. To solve this learning task, almost
all approaches rely on the detection of shot boundaries. Hence the detection of shot

18

2.3. Segment Detection

boundaries, as described in section 2.2 ”is an important step towards the automated
extraction of meaningful video segments” [Brunelli et al., 1996]. The next thing to do is
grouping together the shots into meaningful scenes.

Performing this macro-segmentation on random video content turns out to be very dif-
ficult. The problem is that ”automatic construction of content-based indices for video
source material requires general semantic interpretation of both images and their accom-
panying sounds” [Zhang et al., 1995b], something which ”is beyond the capabilities of the
current technologies of machine vision and audio signal analysis” [Zhang et al., 1995b].
Hence ”researchers have been focusing on special applications utilizing domain know-
ledge” [Gao and Tang, 2002] to develop solutions for special tasks. Focusing on video
content that we have a priori knowledge of, makes the segmentation task significantly eas-
ier. Popular application fields include news broadcasts ([Zhang et al., 1995b],
[De Santo et al., 2007], [Bertini et al., 2001]), sports programs (Goalgle
[Snoek and Worring, 2003b], [Snoek and Worring, 2003a], [Xu et al., 2001]), or commer-
cial advertisements. For these types of video content, scientists have found promising
approaches to automatically segment video data and extract useful annotations.

A brief introduction of methods, applicable for random video content, is given in the
following section 2.3.1. As I am not going to perform the segmentation tasks on random
video content but on news videos only, section 2.3.2 provides you with an overview of
existing approaches for the segmentation of news videos.

2.3.1. General-purpose methods for segment detection

Most of the approaches for shot boundary detection are based on the idea that those
frames, which belong together, are similar and therefore share a set of characteristics.
Unfortunately this approach can not just be transfered to the task of identifying seg-
ments, as frames in one segment are possibly very diverse. A good example for this
is a shot reverse shot setting. This is a film technique that is often used in interviews
or movies when two characters, which face each other, are talking to each other. An
example of an interview making use of this technique is shown in figure 2.9.

Neither the colors, nor the background, the amount of faces nor any other edge or motion
vector comparison will be able to classify these shots as one segment. Nevertheless there

Figure 2.9.: Example for a shot reverse shot setting, taken from an interview of Jürgen
Klopp, the coach of Borussia Dortmund, broadcasted in the ”ZDF sportstudio” of
September 2nd, 2012.

19

2. Video Segmentation and Tagging

are approaches that are able to discover such segments, without having further domain
knowledge. Two of them are detailed in this section.

Rule-based segment detection

This approach goes back on Aigrain, Joly, and Longueville [Aigrain et al., 1997]. They
claim that microscopical changes in movies and shows are emphasized by using stylistic
devices. Examples for such stylistic devices are the use of gradual transition effects,
modification of the audio track, or variations in the editing rhythm. Hence we can take
the presence of these stylistic devices as clues, in order to solve the video segmentation
task. In the above mentioned paper the authors define a total of ten rules that enable
us to group shots together in order to get a segmentation of a video on the scene level.
I pick three types of rules to demonstrate, what they look like. For more details please
see the original work.

Transition effect rules Possible transitions in videos are cuts (C) and gradual tran-
sitions (GT). Hence the transitions occurring in a video file can be seen as a word
over the alphabet {C;GT}. Transition effect rules base on the recognition of sub-
words, which follow a certain pattern. For example if the sub-word CiGT jCk with
i, k > 2, j = 1 is found, we can assume that there is a segment boundary right
before the beginning of the gradual transition.

Shot repetition rules Especially within a shot reverse shot setting, the same shot is
repeated within a distance of just a couple of shots in between. The shot repetition
rule aims on detecting shots like that by comparing the first frame after a transition
with representative frames of the last three shots. Beside interviews or movies
using the shot reverse shot technique, this rule will turn out to be useful to handle
overexposed frames due to photographic flashlights. This will be further described
in chapter 7. On the other hand the application of the rule can result in the
false grouping of shots. For example anchorshots in news shows occur repeatedly.
Nevertheless they belong to different news stories and should hence not be grouped
together.

Editing rhythm similarity rule Editing rhythm corresponds to the amount of tran-
sitions occurring in a video. The more transitions we have, the shorter the duration
of each single shot is and the faster the movie appears to the viewer. Hence the
shot duration in action scenes will be rather short in comparison to dialogs. This
is utilized by the editing rhythm rule. As soon as a shot is three times longer or
four times than the average of the last ten shots, the shot is likely to be important
and can hence be seen as a segment boundary.

Audio-based segment detection

Segment boundaries are usually indicated by boundaries of the video- and the audio-
stream. Hence taking the audio data into account can be very helpful for the detection of
segments. Commercial spots, for example, most often consist of many shots and transi-
tions, but the audio stream is probably uninterrupted. Furthermore constant background

20

2.3. Segment Detection

music or an ongoing comment from a speaker can also indicate that two shots belong to
the same segment.

Nevertheless the audio data solely is almost never sufficient to detect segments. Hence
more approaches that take into account audio data base on both, the audio- and video-
stream. To mention one approach, Aigrain et al. [Aigrain et al., 1997] have included some
rules in their rule-based segment detection approach that base on the audio stream. They
claim a segment boundary, if there has been no sound for at least 30 seconds and then
sound starts, whilst a transition in the video stream was detected at the same point.
Obviously this rule is very strict and does not apply often.

As I focus on the extraction of video features, I do not want to go into further detaisl
at this point. Further information about audio analysis is provided in chapter 2.5.1.

2.3.2. Segmentation of news shows

News shows are an excellent use case for the segmentation and tagging of video data,
as they have a well known temporal structure. The typical temporal structure of a news
show can be found in figure 2.10. Following this simplifying schema, a news show consists
of a set of anchorshots, each one followed by related news shots.
As one anchorshot along with the following news shots typically form a news story, they
can be seen as a scene. Hence scenes in news shows, in contrast to scenes in other shows,
are often referred to with the special name news storys.

Definition 4 (News story) A news story is ”a segment of a news broadcast with
a coherent news focus which contains at least two independent, declarative clauses.”
[Kraaij et al., 2005]

The detection and annotation of news stories used to be done manually, which is quiet
costly but necessary in order to keep track of the data in big news video archives
[Merlino et al., 1997]. Therefore ”documentalists (...) manually assign a limited num-
ber of keywords to the video content” [Snoek and Worring, 2005]. As broadcast agencies
as well as private consumers and governmental institutions depend on this quick access
to news archives, a lot of effort has been put in the automation of this process. Based on
the detection of shot boundaries, ”news can be finally segmented into news stories; each
story is obtained by simply linking a given anchorshot with all the following news re-
port shots until another anchorshot or the news end occurs.” [Santo et al., 2004]. Hence

Figure 2.10.: The typical temporal structure of a news show as described in
[Zhang et al., 1995b].

21

2. Video Segmentation and Tagging

anchorshot detection is the key challenge in order to analyze, segment, and browse news
video data.

2.3.3. Anchorshot Detection

First of all we have to define the term anchorshot.

Definition 5 (Anchorshot) Each shot within a news show showing one or more an-
chorperson(s) is called anchorshot.

Figure 2.11.: Example for an an-
chorshot.

Anchorshots can vary in the number of anchorper-
sons (mostly one or two), the absence or presence
of a news icon and title in the background, or a
labeling bar. If no news icon or title is present, the
anchorperson will usually be in the center. As soon
as the anchorshot shows one anchorperson and a
news icon, the anchorpersons’ position will be on
the right side and the news icon will be on the left
or vice versa. In case of two or more anchorper-
sons, the anchorshot typically has no news icon.
This holds for most news shows world-wide.

As anchorshots are widely used to cut news shows
into meaningful segments, the detection of anchor-
shots has been of great interest in the scientific community. Thus, shots in news shows
get typically classified into anchorshots and news report shots. First a given video data
gets segmented into shots. Afterwards one or more frames from each shot get selected as
key frames for this shot. Subsequently anchorshots get classified by either matching the
current key frame against a model for anchorshots (supervised) or by trying to recognize
similar shots that occur repeatedly during the news show (unsupervised). In the follow-
ing sections, some approaches get presented and their advantages and disadvantages will
be discussed.

Model matching

All approaches presented in this section try to classify anchorshot by taking benefit from
the a priori knowledge we have about anchorshots. Swanberg et al. [Swanberg et al., 1993]
propose a system that matches shots against a unique anchorshot model. As soon as the
current shot fulfills the characteristics of this model, it is labeled as an anchorshot. Their
method might work well as long as there are no variations between the anchorshots, but
Zhang et al. [Zhang et al., 1995b] have tested this model matching approach on news
videos broadcasted by the Singapore Broadcasting Corporation (SBC) and received poor
results due to the fact, that these news shows cover anchorshots with different spatial
structures. Hence, they have developed a system that matches each shot against a set
of models. Their matching is based on the pair-wise pixel difference and on color his-
tograms. Unfortunately, their approach still depends on the predefined models and does
not work on any news show. Hanjalic et al. [Hanjalic et al., 1999] have tried to overcome

22

2.3. Segment Detection

this problem by introducing a semi-automatic approach that finds its own template for
anchorshots. Based on key frames for each shot, they compute the dissimilarity of each
shot with all other shots. Then they look for a shot, which best matches other shots
throughout the show and assume that shot to be a good template for an anchorshot.
The disadvantages of this approach are quiet obvious: Again this approach only holds a
single model for anchorshots and will not work well in settings where anchorshots vary
a lot. Especially when different anchorshots do not share the same background, which
might be due to different camera angles, their matching does not work well. Furthermore
the finding of the anchorshot template requires to compare each shot to all other shots
within the show. Hence, the approach can hardly be adapted to a real-time environment,
as each shot could only be compared to the shots before. Thus the approach would have
to be approximated to make it available in a stream environment.

Face detection

Since the lightning, studio design or dominant colors of anchorshots can vary between
different news shows or over time, Avrithis et al. [Avrithis et al., 2000] and others have
based their anchorshot detection algorithms on the only characteristic that can not
vary: the presence of an anchorperson. They identify anchorshots by recognizing the
anchorperson’s face by a face detection module. Their module recognizes faces by color
matching and shape recognition. In contrast to other approaches, they do not try to
identify people. They are only interested in the presence or absence of a person’s face
somewhere in the foreground. Because of this interviewers, reporters or politicians at
press conferences might incorrectly be labeled as anchorpersons and various news shots
will consequently be classified as anchorshots. Günsel’s approach [Gunsel et al., 1996]
overcomes these problems by also taking into account the position and size of the detected
faces.

Frame similarity

Similar to Hanjalic et al. [Hanjalic et al., 1999], other authors try to find anchorshots
by looking for shots throughout a video, which share a set of visual features. These
approaches use the characteristic that are ”extremely similar among themselves, and
also frequent compared to other speech/report shots.” [Ide et al., 1998] Therefore they
can be found by clustering all shots of a news show and assuming that the ”largest
and most dense cluster would be the anchorshots”. As this technique is unsupervised
and does not need any anchorshot model, it promises to perform better in unknown
environments, like on news shows we have never seen before. On the other hand it is
unlikely, that they outperform approaches that use more a priori assumptions or have
anchorshot models for the specific news show available.

One approach using cluster analysis was presented by Gao et al. [Gao and Tang, 2002]
in 2002. They apply a graph-theoretical cluster analysis (GTC Analysis) on key-frames
from news shows. By constructing a minimum spanning tree over vertices that represent
those key-frames and cutting edges that exceed a given threshold, clusters are gained. All
clusters with more than two nodes in them are then taken as potential anchorshots. In

23

2. Video Segmentation and Tagging

order to decrease the misclassification rate, further assumptions are made. For example
it is assumed, that anchorshots are at least two seconds long. Furthermore similar frames
are only taken into account, if they appear at least 10 seconds apart from each other.
Nevertheless misclassifications occur due to anchorshots that only appear once per show
and similar news shots that appear more than once throughout a news show. Bertini
et al.[Bertini et al., 2001] assume that anchorshots differ from all other shots in regard
to motion. As neither the anchorperson nor the background or the camera are moving,
their classification approach bases on the presence or absence of motion vectors. But as
digital animations are getting more and more usual in nowadays television shows, their
assumption might already be wrong in many cases. Furthermore zooming is also a widely
common camera technique in some news shows and could cause motion in anchorshots.

Unfortunately these approaches again assume that we have seen the whole news show
at the time we want to label the anchorshots. This assumption is fine in case we want
to organize and structure a news archive, but it is not given in a real-time environment.
Hence the approaches will not be applicable in the ViSTA-TV project.

Multi-expert systems

As none of the above mentioned approaches provides fully satisfactory performance
on arbitrary news videos, it might be useful to combine some of the above mentioned
techniques in a multi-expert system (MES). Such a system uses different classifiers for
anchorshots to classify the incoming data. Afterwards the results of all classifiers are
combined by taking an average or majority voting. A promising approach has been
developed by De Santo, Percannella, Sansone, and Vento [Santo et al., 2004], using three
different unsupervised classifiers.

2.4. Tagging the segments

Beside the segmentation of the video data we are moreover interested in assigning tags
to the video material.

Definition 6 (Tag) A tag is a term or keyword assigned to a piece of data, describing
the data or including valuable meta data.

The segmentation of video data itself already provides a set of tags for videos. For
example we can use the shot boundary detection to directly assign the keyword ”shot
boundary”, ”first frame of a shot”, or ”representative frame” to single shots. Furthermore
the segmentation of news videos allows us to label frames as ”anchorshot frames”, or
assigning keywords like ”news story 1” to the data. But in order to better understand
the user behavior, it might be necessary to add way more tags to the incoming video
data stream. For this thesis I only focused on the above mentioned tags. Nevertheless
this section gives a brief overview of further tags, that might be useful in the future.

Advertisement Another interesting tag might be the segmentation of broadcasted
movies into ”advertise” and ”movie” respectively. This recognition of advertise-
ment has been done extensively and approaches vary a lot. Some again utilize

24

2.5. Further related work

a-priori knowledge, other approaches base on databases that contain known com-
mercial spots and compare the video stream to the stored spots. The database
can then be expanded by adding segments between known commercial spots and
assuming, they are advertisement as well. A-priori knowledge includes that adver-
tisement spots are full of motion, ending with a rather still shot, presenting the
product. Furthermore the audio signal is mostly tuned up during commercials and
in many cases two commercial spots are separated by some monochrome frames.
Lienhart, Kuhmünch, and Effelsberg [Lienhart et al., 1997a] for example have ap-
plied both approaches on German television data, gaining very good results.

News story names Anchorshots usually contain a textual label, which briefly sum-
marizes what the following news story is about. This captions can be read out us-
ing Optical Character Recognition (OCR) software [Sato et al., 1999]. Approaches
include locating text areas, applying filters to sharpen the text and keyword de-
tection.

Events Beside its application in the tagging of news videos, OCR can be of benefit
in other settings as well. By reading out the overlaid scores in sport broadcasts,
Babaguchi et al. [Babaguchi et al., 2004] were for example able to detect highlights
in football games. They used their method to automatically create short video clips,
containing all highlights of a game.

Actors By using face detection methods, some approaches try to identify certain actors
in video data. As actors usually act in costumes and with makeup on, this turns
out to be very complex by just matching the detected faces against a database
of actors’ faces. Some approaches recognize the reoccurrence of certain characters
within the same movie [Lienhart et al., 1997b]. By taking into account EPG-data
as well, this can help to identify the main characters and provides useful tags for
video data as well.

2.5. Further related work

In many applications, video data comes along with audio data. Hence it suggests itself
to take into account audio data to improve the quality of the segmentation of the video
data. The following section gives an overview of the existing approaches that handle
audio data.

2.5.1. Audio analyze

Daxenberger [Daxenberger, 2007] gives a good overview of the state of the art in the
field of audio segmentation. The described approaches do no take into account any video
data and have mainly been designed to segment audio data like music files. Daxenberger
has furthermore developed an application called Segfried, which is able to automatically
segment audio data using different segmentation techniques. The implemented segmen-
tation algorithms include a segmentation by Support Vector Machines (SVMs), and a
metric pair-wise constraints k-Means Clustering (MPCK-Means).

25

2. Video Segmentation and Tagging

Mierswa and Morik [Mierswa and Morik, 2005] address the problem of automatically
classifying audio data. They extract features from music files and predict the genre, in
which the music file falls, based on the extracted features. Lui et al.[Liu et al., 1998]
use audio data to classify television broadcasts. They observed that low-level audio fea-
tures already have a good differentiation power for classifying ”commercials”, ”basket-
ball games”, ”football games”, ”news”, and ”weather forecasts”. This is already indicated
when looking at the waveforms of different audio data. Figure 2.12 shows three examples.

(a) commercials (b) basketball (c) news

Figure 2.12.: Waveforms for different audio data, corresponding to video data. Figures
taken from [Liu et al., 1998].

2.5.2. Multi-modal analyze

Beside the aforementioned rule-based segmentation algorithm by Aigrain et al.
[Aigrain et al., 1997], other scientists have also developed approaches for the segmen-
tation of video data that can be seen as multi-modal approaches, taking into account
video and audio data. Sundaram and Chang [Sundaram and Chang, 2000], for example,
segment the audio and video data into scenes separately. Afterwards they determine, at
which shot boundaries as well the audio scene detection as the video scene segmentation
approach claim scene boundaries. Only those that were detected on as well the video as
the audio data are taken into account.

Snoek, and Worring [Snoek and Worring, 2005] and Wang et al. [Wang et al., 2000] have
written good comparisons of further approaches. In the further course of this work, I will
focus on features extracted from video data. As video data does not come along with
audio data in any setting (e.g. surveillance cameras and especially the ”coffee” dataset
I am using later on), I am not going to take into account audio features at all.

26

3

Machine Learning

The acquisition of new knowledge based on experience is generally called learning. Aside
from humans and animals, some machines possess the ability to learn. These machines
take empirical data as their input and try to identify underlying patterns or general-
izations on this data. The gained knowledge is than used to make predictions on new
data and helps to make intelligent decisions based on data that has never been seen
before. This process is called machine learning and is an important branch of artificial
intelligence.

Definition 7 (Machine Learning) ”A computer program is said to learn from expe-
rience E with respect to some class of tasks T and performance measure P, if its perfor-
mance at tasks in T, as measured by P, improves with experience E.” [Mitchell, 1997]

Figure 3.1.: Example of handwritten digits

To illustrate this definition, we introduce a common engineering example for machine
learning, that is also included in [Hastie et al., 2001]: The handwritten digit recognition.

27

3. Machine Learning

In order to enable machines to sort letters by their ZIP codes, they have to be able
to recognize handwritten digits on the envelopes. The problem is, that handwritings
differ a lot and therefore the same digit can look totally different on different envelopes.
Figure 3.1 shows examples for this. Humans have learned to generalize and are able to
identify various handwritings, even if they have never seen the handwriting before. The
challenge is to teach this ability to a machine. Hence, the task T is to classify handwritten
digits. The program bases on a set of examples of handwritten digits. This set forms the
experience E. An obvious performance measure P is given by the recognition rate, which
is the percentage of correct recognized digits. As it is impossible to memorize all possible
appearances for each digit, the recognition has to be based on general characteristics,
that have been observed on the experience E.

This entire chapter bases on the standard references about machine learning. Namely I
want to mention two books: ”The Elements of Statistical Learning” by Hastie, Tibshirani
and Friedman [Hastie et al., 2001] and ”Machine Learning” by Mitchell [Mitchell, 1997].

3.1. Notation

The input of a machine learning algorithm is some experience E. The experience is
represented as set of examples also referred to as training set Xtrain. This set contains
N examples ~x(i), i ∈ {1, N}

Xtrain = {~x(1),, ~x(N)}

Each example ~x(i) ∈ Xtrain is a p-dimensional vector. Here, p is the number of features
Aj , j ∈ {1, p} that form one example. The value of the j-th feature in the i-th example is

referred to as x
(i)
j . Without loss of generality we can assume that the number of features

p and their order are constant throughout the training set Xtrain. Features can either
be numerical, nominal or binominal.

Numerical features have values ranging over N or R. They are the most common
feature type, since a numerical representation supports statistical analysis best.
Values can be either continuous or discrete. Most physical measurements are ex-
amples of continuous data, like i.g. temperature, length or speed. In contrast, the
age of a person is a discrete numerical feature, as the number of possible outcomes
is finite. Continuous data can be transfered to discrete data by summarizing values
over a certain number of value ranges. This process is known as discretization.

Nominal features have values ranging over an unordered and discrete set of possible
values. A good example, taken from the popular iris flower discrimination dataset1,
is for example the species of an iris flower, that gets distinguished between three
possible types: {iris setosa, iris virginica, iris versicolor}.

Binominal features are nominal features that only have two possible outcomes. Most
often these two outcomes are {true, false}.

1http://archive.ics.uci.edu/ml/datasets/Iris

28

3.2. Supervised Learning

A machine learning algorithm takes its input Xtrain and looks for some model. A common
type of a model is a function f̂ that maps elements from the input space X to elements
from the output space Y :

f̂ : X → Y

When this model gets applied to an example from the test data x(i) ∈ Xtest, it produces
an output ŷ ∈ Y . Simplifying we can assume, that each ŷ is a label.

According to [Hastie et al., 2001] the field of machine learning splits into two major sub-
tasks: supervised and unsupervised learning. The distinctions results from the presence
or absence of labels in the training data Xtrain.

3.2. Supervised Learning

Supervised Learning is the task of inferring a model f̂ from labeled training data. The
input data set Xtrain for supervised learning algorithms again consists out of N examples,
each represented by a p-dimensional vector. One feature of each example is designated
as the true label for that example. Therefore we can also view Xtrain as a set of pairs
(~x, y), where y is the label.

Xtrain = {(~x(1), y(1)),, (~x(N), y(N))} ⊂ X × Y

Based on this input data, the machine learning algorithm infers a function that predicts
labels ŷ ∈ Y for unlabeled test data Xtest. In case the number of possible outputs is
discrete (often y ∈ {+1,−1}), the model is called a classifier. If the predicted output is
continuous (Y ⊆ R), the model is a regression function. Respectively the learning tasks
are called classification and regression.

Definition 8 (Classification) Classification is the machine learning task of inferring
a function f̂ : X → Y from nominally labeled training data Xtrain. The model is chosen
with respect to a quality criterion g that must be optimized.

Definition 9 (Regression) Regression is the machine learning task of inferring a func-
tion f̂ : X → Y from numerically labeled training data Xtrain. The model is chosen with
respect to a quality criterion g that must be optimized. In many cases the label is only
binominal.

The above mentioned introducing example of recognizing handwritten digits on mailing
envelopes is a typical example for a classification problem. The input of the learning
algorithm consists of labeled examples of handwritten digits. The inferred model later
predicts nominal labels ŷ ∈ {0, 1, 2, ..., 9} for unlabeled examples.

Examples for supervised learning algorithms are linear regression, k-nearest-neighbor
algorithms (kNN), support vector machines (SVMs) or decision tree learners, just to
mention a few. In following kNN and decision trees are explained in further detail, as
they are used in chapter 7.

29

3. Machine Learning

3.2.1. kNN

The k-nearest-neighbor algorithm (kNN) is a very simple and intuitive classification al-
gorithm. At training time, the algorithm simply stores all labeled training data Xtrain ⊂
X×Y in its model. A new, unlabeled example x ∈ X is then classified by simply search-
ing for the k nearest neighbor examples in the training set Xtrain and predicting the
most common label among these neighbors as the label ŷ for x. Hence f̂ can formally
be defined as follows

f̂(x) = arg max
y(i)∈Y

(
(x(i), y(i)) ∈ Nk(x,Xtrain)

)
where Nk(x,Xtrain) denotes set of the k nearest neighbors of x in the training data set
Xtrain. Hence |Nk(x,Xtrain)| = k. Figure 3.2 shows examples for k=1 and k=15 and a
binominal label.

(a) k = 1 (b) k = 15

Figure 3.2.: Examples for the classification of two-dimensional data by k-nearest-neighbor
classifiers with k=1 and k=15. The two classes are represented by the color. The
blue shaded region denotes that part of the input space classified as BLUE. The
orange shaded region stands for the ORANGE class respectively. Figures taken from
[Hastie et al., 2001].

The term ”near” of course depends on the chosen distance measure d. Possible distance
measures are all functions d : X ×X → R, that fulfill the following requirements:

1. Distance is never negative: d(x(1), x(2)) ≥ 0 2

2. The distance of each object to itself is zero: d(x(1), x(1)) = 0

3. The distance of two objects is symmetric: d(x(1), x(2)) = d(x(2), x(1))

4. The direct way from one object to the other is always shorter than making a detour
over any third object: d(x1, x2) ≤ d(x(1), x(3)) + d(x(3), x(2)), x(3) ∈ X \ {x(1), x(2)}

2In some cases, distance measures with negative distances are also allowed. These are not taken into
account here.

30

3.2. Supervised Learning

In literature the term distance measure equals the term dissimilar measure, as the idea
behind this measure is, that objects with a huge distance between each other are not sim-
ilar to each other. Popular examples for distance measures are for example the Euclidean
distance, given by

d(x(1), x(2)) =

√
(x

(1)
1 − x

(2)
1)2 + (x

(1)
2 − x

(2)
2)2 + ...+ (x

(1)
j − x

(2)
j)2

or the Manhattan distance, defined as

d(x(1), x(2)) = |(x(1)1 − x
(2)
1)|+ |(x(1)2 − x

(2)
2)|+ ...+ |(x(1)j − x

(2)
j)|

In Figure 3.2 the Euclidean distance was chosen.

3.2.2. Decision trees

Decision trees are an intuitive way to represent a prediction model f̂ and hence decision
tree learners are a commonly used method in machine learning. ”A decision tree is a
flowchart-like tree structure, where each internal node (nonleaf node) denotes a test on
an attribute [= feature], each branch represents an outcome of the test, and each leaf
node (or terminal node) holds a class label.” [Han and Kamber, 2006]. An example for
such a decision tree is shown in figure 3.3.

age

student

youth

yes

middle_aged

no

no

yes

yes

credit_rating

senior

no

fair

yes

excellent

Figure 3.3.: A decision tree to predict, whether a customer at an electronic store is likely
to buy a computer or not. Example taken from [Han and Kamber, 2006].

For this thesis, it is sufficient to focus on the top-down induction of decision trees
(TDIDT), as top-down approaches are by far the most common method to infer a
decision tree from given training examples Xtrain. TDIDT approaches base on two

31

3. Machine Learning

tree learning algorithms, developed independently between the late 1970s and early
1980s: Iterative Dichotomiser (ID3) by J. Ross Quinlan [Quinlan, 1986] and Classifi-
cation and Regression Trees (CART) by L. Breiman, J. Fiedman, R. Olshen, and C.
Stone [Breiman et al., 1984]. The idea is quite simple and straightforward: At each step,
the set of examples is divided into smaller subsets by splitting it by the values (or value
ranges) of one feature. The feature is hereby selected in a manner that it optimally
discriminates the set according to the classes. Hence, an ideal feature would split the ex-
ample set into subsets, that are pure (i.e. after the partition all examples in each subset
belong to the same class). As most likely no feature will split the example set into pure
subsets, different measures for the quality of a split have been proposed.

Information Gain The information gain criterion uses the entropy of a set of examples
to find the optimal feature for splitting the set into subsets. The entropy of a set
S measures the impurity of S and is defined as

E(S) = −
k∑
j=1

P (Cj)log2(P (Cj))

where P (Cj), j ∈ {1, ..., k} denotes the probability that an example in S belongs
to class Cj . We now assume that we split S into v subsets {S1, S2, ..., Sv} based on
the value of a feature A in S. Afterwards we calculate, how helpful this splitting
would be by calculating the accumulated weighted entropy over all resulting subsets
Sm,m ∈ {1, ..., v}.

EA(S) =

v∑
m=1

|Sm|
|S|
× E(Sm)

The information gain Gain(A) of feature A is then defined as

Gain(A) = E(S)− EA(S)

and the feature with the highest information gain Gain(A) is chosen to split the
example set S. For nominal features the number v of subsets is hereby usually
the number of possible outcomes of the feature. For numerical features, any v
can be chosen and v value ranges for the numerical features can be defined. The
information gain criterion was introduced in ID3.

Gain Ratio By choosing the information gain criterion, features with a large number
of different values are more likely to be chosen than other features. Especially in a
setting, where one feature holds an unique value for each example (i.g. an ID), this
feature would be selected, as it splits the example set in a way, that each subset is
pure. Hence it makes sense to penalize features by their number of possible values
v. This is done by the gain ratio criterion. The gain ratio GainRation(A) of a
feature A is defined as

GainRatio(A) =
Gain(A)

SEA(S)

with

SEA(S) = −
v∑

m=1

|Sm|
|S|
× log2(

|Sm|
|S|

)

32

3.2. Supervised Learning

Gini Index The Gini Index was introduced in CART and considers binary splits only.
Again the impurity of a set of examples S before and after a potential split is
measured. The feature A, that reduces the impurity most, is then selected as the
splitting feature. The Gini Index Gini(S) is defined as

Gini(S) = 1−
k∑
j=1

P (Cj)
2

where P (Cj), j ∈ {1, ..., k} again denotes the probability that an example in S
belongs to class Cj . Assume feature A is chosen as the splitting feature and S gets
split into subsets S1 and S2 the impurity after the split is given by

GiniA(S) =
|S1|
|S|

Gini(S1) +
|S2|
|S|

Gini(S2)

Based on these values, the split is carried out for the feature A that reduced the
impurity of S best.

∆Gini(A) = Gini(S)−GiniA(S)

For nominal features with v possible outcomes, the optimal partitioning of S is
determined by testing all potential combinations of binary subsets.

The recursive splitting of the example set S is performed until a certain stop condition
is fulfilled. This could be that the size of the tree has reached a certain level, the purity
of the leaves exceeds a given threshold or there is no feature left over that really helps
to reduce the impurity further.

3.2.3. Evaluation Methods

To evaluate the performance of machine learning algorithms, it is necessary to define a
set of performance measurements. This section gives a short overview of the performance
measurements that are used in chapter 7.

First of all we have to define the expression performance. Performance can be viewed
from different perspectives: It can either relate to the time it takes to build a model,
to how long the classification of an training example takes or to the scalability and
storage usage of an algorithm. All these performance criteria are reasonable, but will
not be detailed in this thesis. When talking about performance, we mainly focus on
accuracy of an algorithm. The model f̂ , produced by a learning algorithm, is said to

have a perfect accuracy, if the predicted output ˆy(i) for each example ~x(i) ∈ Xtrain equals
the true label y(i). Obviously this could easily be achieved by a learning algorithm by
simply memorizing all data given in Xtrain and not generalizing at all. Hence the model
complexity would be very high, but the prediction error on the training data would be
zero. Nevertheless such an algorithm would surely perform poor on unseen test data.
This phenomenon is known as bias-variance-tradeoff and shown in figure 3.4. In order
to handle this problem, we have to decrease the complexity of the model and test it on
different data than the data it was trained on. Hence it is necessary to split the given

33

3. Machine Learning

data into test- and training-data. This can be done by simply putting some data aside
(holdout validation) or, which is way more common, performing cross-validation.

Figure 3.4.: The bias-variance-tradeoff: Test and training error as a function of model
complexity. Taken from [Hastie et al., 2001].

K-fold cross-validation In K-fold cross-validation (X-validation) the given training
data Xtrain = {(~x(1), y(1)),, (~x(N), y(N))} is split randomly into K roughly equal-
sized subsets, each containing N/K examples. One of these subsets is than retained
as test data, whereas the other K − 1 subsets are used to train the model. This
process is repeated for each of the K subsets (K-folds).

The advantage of cross-validation is, that all data gets used for training as well as testing,
which is important, as usually the amount of labeled data is limited and hence we do
not have enough data to perform holdout validation. According to [Hastie et al., 2001],
typical choices of K are K=5 or K=10. If K equals the number of examples in Xtrain

(K=N), only one example is left out in each fold. Hence this variation of K-fold cross-
validation is called leave-one-out cross validation (LOOCV).

The estimated prediction error of a model can now be defined as the average difference of
the prediction ŷ and the true label y. For regression problems where y, ŷ ∈ R, this is quite
easy. For classification problems we introduce the confusion matrix as a visualization of
the performance of an algorithm.

Definition 10 (Confusion Matrix) The confusion matrix is a table, that allows vi-
sualization of the performance of a classification algorithm. The columns of the table
represent the predicted labels ŷ, the rows represent the actual labels y.

Going back to the example of handwritten digit recognition, the confusion matrix of a
learning algorithm could be given by table 3.1.

34

3.2. Supervised Learning

Prediction: 0 Prediction: 1 ... Prediction 9 Total

Label: 0 94 3 ... 7 130

Label: 1 2 81 ... 2 98

...

Label: 9 3 0 ... 87 108

Total 122 98 ... 131 1000

Table 3.1.: Possible confusion matrix for the handwritten digit recognition problem.

As we can see, we had a total of 1000 examples. 130 were labeled as 0, 98 were labeled
as 1 et cetera. The inferred model predicted the label 0̂ for 122 examples. 94 out of
that 122 were labeled correctly, the other 28 examples were labeled wrong. The same
goes for all other classes. Thus the accuracy of the model is given by summing up all
elements on the main diagonal (=correct classified examples) and dividing them by the
total number of examples. By the way, the error is then given by summing up all entries
of the confusion matrix except those on the main diagonal.

Definition 11 (Accuracy) Accuracy is the proportion of elements, which really be-
long to the class they were predicted to belong to right predictions, based on the whole
population.

Accuracy =
|Correctly predicted items|

|All items|
(3.1)

In many real-world classification problems the number of classes is binary. Thus these
classification tasks are called binary classification tasks. Examples are the classification
of e-mail into spam and no spam, the classification of patients in those having a certain
disease or not, and the classification of news shots into anchorshots and news report
shots (see chapter 2.3.3).

In such a setting the resulting confusion matrix (see table 3.2) basically consists out of
four entries:

true positives (TP), counting all examples, that belong to the class we are looking
for and our model predicts this correctly,

true negatives (TN), holding all examples, that do not belong to the class we are
looking for and get labeled as such,

false negatives (FN), counting all items, that belong to the class we are looking but
our model claims they do not

false positives (FP) holding those items, that do not belong do the class we are
looking for but our model incorrectly claims them to do.

35

3. Machine Learning

Prediction: true Prediction: false Total

Label: true TP FN ...

Label: false FP TN ...

Total

Table 3.2.: Confusion matrix for a binary classification task

Obviously the number of correctly labeled examples is given by summing up the true
positives and true negatives, whilst all examples belonging to the false negatives or false
positives are misclassified examples.

Correct = TP + TN

Missed = FN + FP

Based on that, the accuracy for binary classification tasks is simply defined as

Accuracy =
Correct

Correct+Missed
=

TP + TN

TP + FP + TN + FN
(3.2)

Hence an accuracy of 100% is perfect, as this means that all predicted values are the
same as the true values. For binary classification task we furthermore define precision
and recall as appropriate evaluation criteria. These two values are commonly used.

Definition 12 (Precision) Precision is the percentage of retrieved items that are de-
sired items.

Precision =
TP

TP + FP
(3.3)

Definition 13 (Recall) Recall is the percentage of desired items that are retrieved.

Recall =
TP

TP + FN
(3.4)

3.3. Unsupervised Learning

In contrast to supervised learning, unsupervised learning methods handle unlabeled data.
These algorithms try to find underlying patterns in the input data Xtrain.

The task of recognizing handwritten digits on mailing envelopes, for example, can be
transfered into an unsupervised learning task by modifying the input data. Therefor we
remove the labels y(i) of all examples (x(i), y(i)) ∈ X×Y . The learning task then is to find
similar patterns in the input data. We specify that we are searching for k = 10 clusters,
and try to assign one cluster Cj , j ∈ {0, 1, 2, ..., k − 1} to each x(i). Given the clustering
algorithms works well, the output will consist of labeled examples (x(i), ŷ(i)), where each
x(i) is assigned to one cluster. Unfortunately we do not have any information about

36

3.3. Unsupervised Learning

which cluster represents which digit. For example all handwritten digits representing a
four could be enclosed in cluster C7.

Examples for unsupervised learning algorithms are association rule learners and clus-
tering. As clustering is used in chapter 7, it is described in more detail in the following
subsection.

3.3.1. Cluster Analysis

Cluster Analysis refers to the machine learning task of grouping ”a collection of objects
into subsets or ’clusters’, such that those within each cluster are more closely related to
one another than objects assigned to different clusters.” [Hastie et al., 2001] Two objects
are supposed two be closely related (also called similar), when the distance between them
is small. Hence the similarity of two examples is inverse to their distance. Simplifying
we assume that

sim
(

(x(1), x(2))
)

= 1− d(x(1), x(2))

Figure 3.5 shows an example for a possible clustering of two-dimensional numerical data.
The Euclidean distance is chosen as the distance measure and the resulting clusters are
indicated by the color of the examples.

Figure 3.5.: Example for the result of a cluster analysis. Randomly generated two-
dimensional data produced by using the ’Generate Data’-Operator of RapidMiner.
Cluster Analysis is performed by the ’Clustering’-Operator using k-Means with k=3.

37

3. Machine Learning

Formally, the task of a cluster analysis algorithm can be specified as a multi-objective
optimization problem. On the one hand, the within cluster distance W (ζ) must be min-
imized, whilst on the other hand the between cluster distance B(ζ) must be maximized.

W (ζ) =
1

2

k∑
i=1

 ∑
~x(a)∈X|ζ(~x(a))=Ci

 ∑
~x(b)∈X|ζ(~x(b))=Ci

(
d(~x(a), ~x(b))

)

B(ζ) =
1

2

k∑
i=1

 ∑
~x(a)∈X|ζ(~x(a))=Ci

 ∑
~x(b)∈X|ζ(~x(b))6=Ci

(
d(~x(a), ~x(b))

)
Hence we can define the term clustering as follows:

Definition 14 (Cluster Analysis) Clustering, or Cluster Analysis, is the machine
learning task of inferring a mapping ζ : X → C that maps unlabeled data
X = {~x(1),, ~x(N)} to k clusters C = {C1, C2, ..., Ck} , in a way that each example
~x(i) gets assigned to exactly one cluster, under the condition that W (ζ) is minimized,
whilst B(ζ) is maximized.

There are various algorithms that perform cluster analysis, differing a lot: Some of them
allow objects to belong to more than one cluster at the same time (no strict partitioning),
some do not group the objects into concrete clusters but rather evaluate probabilities
for each pair of examples and clusters, saying how likely it is, that the example belongs
to the cluster. As the topic is really broad, I do not take these approaches into account,
but focus on easy clustering algorithms like k-Means ([MacQueen, 1967]).

k-Means

k-Means is an algorithm for cluster analysis. It partitions the incoming unlabeled data
X = {~x(1),, ~x(N)} into k clusters C = {C1, C2, ..., Ck}. Each of the incoming exam-
ples ~x(i) gets assigned to exactly one cluster Cj . The clusters are represented by their
centroids. Centroids are calculated by averaging the values of the corresponding features
for all points in the cluster. Usually the centroid will be an imaginary point, that is not
included in the data X.

The k-Means algorithm works iterative. Initially, k centroids are randomly chosen. Then
each example is assigned to the cluster, it is closest to, by calculating the distance of the
example to all centroids. When all examples are assigned to an cluster, the centroids for
all clusters are updated. This procedure is repeated continuously, until none of the cen-
troids moves any longer. The resulting centroids are then assumed to be good centroids
to cluster the data.

38

3.4. Learning on Streams

3.4. Learning on Streams

All the above mentioned machine learning algorithms are designed to work on a fixed
amount of data. This data is assumed to be stored in files or data bases and all data can
be accessed at any time. This, for example, enables a decision tree learner, as described
in section 3.2.2, to evaluate, which attribute splits the data best. For many years this
traditional batch data processing has been sufficient. But as the amount of data rapidly
increases, more and more data gets generated continuously, and consumers are interested
in reacting to data drifts in real-time, these traditional approaches reach their limits.
Hence learning on streams has become an upcoming part of machine learning in the last
years. Examples for such environments include sensor networks or web log analysis and
computer network traffic supervision for security reasons [Gaber et al., 2005].

The limitations given by operating on streaming data lead to the following requirements
for streaming algorithms [Bockermann and Blom, 2012b]:

C1 It is necessary to continuously process single items or small batches of data,

C2 the algorithm uses only a single pass over the data,

C3 the algorithm may consume only limited resources (memory, time) , and

C4 the algorithm provides anytime services, which means that models and statistics
have to be deliverable at any time.

In recent years, many approaches have been developed, solving most machine learn-
ing task on data streams. These algorithms include the training of classifiers on streams
[Domingos and Hulten, 2000], stream clustering algorithms [O’Callaghan et al., 2002]
[Aggarwal et al., 2003] (example given Birch [Zhang et al., 1996] or D-Stream
[Chen and Tu, 2007]), quantile computation [Arasu and Manku, 2004], and approximate
or lossy counting algorithms on streams (example given Lossy Counting
[Manku and Motwani, 2002], Count(Min) Sketch [Charikar et al., 2004]), just to men-
tion a very few. For further literature and explanations to the above mentioned algo-
rithms I recommend the final report of the Projektgruppe 542, that took place at TU
Dortmund University in 2010 [Balke et al., 2010].

The video data I am coping with in this thesis is provided in a streaming manner as
well. The video data stream is infinite and the amount of data makes it impossible to
store everything. Hence we do not have random access to the data and algorithms can
only use a single pass over it. On these grounds it suggested itself to view IP-TV video
streams as streaming data. Nevertheless only a very few of the video segmentation and
tagging approaches described in chapter 2 make use of streaming algorithms. The reason
is that there is most often no need for online learning. For tasks like cut detection or
anchorshot detection, it is sufficient to build models offline and only apply them on the
incoming video stream. Hence we are working in a batch learning but stream application
environment and do not focus on the aspect of stream mining in too much detail.

39

3. Machine Learning

Nevertheless some approaches developed for learning on streams could be useful for video
segmentation and tagging as well. This section gives a short overview of machine learning
approaches, which are applicable on streaming data.

3.4.1. Concept Drift Detection

In many applications, it is likely that the incoming data changes over time. As an ex-
ample, we can think of an easy setting, where a regression learner tries to predict the
amount of time needed to heat a pot of water based on the amount of water. After
having seen several examples, the prediction will probably have a good accuracy. But
as the initial temperature of the water from the tap might change seasonally and the
power of the water boiler might decrease over time, the prediction model gets worse and
worse. Hence it will be necessary to adjust the model to the altering setting. On the
other hand we do not want to adjust our model to outliers. Hence, ”instead of treating
all training examples equally, a concept drift aware system must decide to what extent
some particular set of examples still represents the current concept. After all, a recent
concept drift might have made the examples less relevant or even obsolete for classifier
induction” [Dries and Rückert, 2009].

Definition 15 (Concept Drift) The term concept drift refers to the change of a
statistical property of a label, which shall be predicted by an inferred model, causing the
model to become less accurate over time.

By detecting concept drifts and automatically adjusting the model, concept drift aware
learning algorithms can improve the accuracy of a classification. As the underlying mod-
els in the setting of video data also change from time to time, it could be useful to
adjust the models by using concept drift aware classifiers. A good example is the detec-
tion of anchorshots. The studio setting or the background might change from time to
time, but the changes are mostly not significant. Nevertheless, a model based on the last
anchorshots seen, will outperform a model that takes into account all data to the same
extent.

3.4.2. Stream Clustering

Some approaches for unsupervised anchorshot detection based on the idea that the most
dense cluster(s) of shots are probably anchorshots. These approaches have been devel-
oped for classifying batch data, but they could of course be adapted to streaming data
by replacing the cluster algorithms with stream clustering methods. Examples for stream
clustering methods are BIRCH [Zhang et al., 1996], STREAM [O’Callaghan et al., 2002],
or D-Stream [Chen and Tu, 2007].

3.5. Tools and Frameworks

Although solving problems with machine learning approaches is a creative process, its’
structure is often similar. This chapter gives an overview of the tools and frameworks I
used to solve the machine learning task for this thesis. It starts with the CRoss Industry

40

3.5. Tools and Frameworks

Standard Process for Data Mining (CRISP-DM), which addresses this fact by defining
a process model for carrying out data mining projects [Shearer, 2000]. Afterwards two
software frameworks for solving machine learning tasks are presented: RapidMiner and
the streams framework.

3.5.1. CRISP-DM

CRISP-DM was designed in 1996 by a European Union project led by four companies:
SPSS (an IBM company), Teradata, Daimler AG and OHRA, a dutch insurance com-
pany. Regarding to CRISP-DM a data mining process consists of six phases, that are
shown in figure 3.6:

Figure 3.6.: CRoss Industry Standard Process for Data Mining (CRISP-DM). Figure
taken from [Wirth, 2000]

Business Understanding This initial phase copes with understanding the objectives
and requirements of the problem from a business perspective. As a result the
concrete learning task of the data mining problem gets defined and a rough project
schedule is developed.

Data Understanding In this phase the given data is collected and analyzed in order
to verify the data quality and explore first insights. This might include statistical
analysis or subset detection. At the end hypotheses are formulated. These hypoth-
esis then have to be proved or refuted in the further process.

Data Preparation Here the final dataset for learning is constructed. Common tasks
are data cleaning, feature extraction and creation of new attributes and the selec-
tion of features.

Modeling In this phase, a selection of modeling techniques and learning algorithms are
applied on the data. Model parameters are assessed and methods of the evaluation
of the gotten models are conceived.

41

3. Machine Learning

Evaluation This phase is all about evaluating the results: The data mining results are
assessed with regard to business success criteria.

Deployment The last step of the process covers the deployment of the models. This
includes the presentation of the results in a final report and the presentation for
the user. In most cases the user, and not the data analyst, will then be the one to
implement the model.

Especially in the third to fifth phase (Data Preparation, Modeling and Evaluation),
certain tasks reoccur frequently in practice. Therefore it makes sense to use a tool for
simplifying these tasks of the data mining process. I have chosen two different frameworks
for this: RapidMiner (see 3.5.2) and the streams framework (see 3.5.3). RapidMiner is
ranked first in a poll by KDnuggets3, a data mining newspaper, in 2010. Furthermore
Rapid-I, the company that is maintaining and enhancing the RapidMiner, is one of the
project partners in the ViSTA-TV project. The streams framework was first developed
as a stream data mining plug-in for RapidMiner [Bockermann and Blom, 2012a], but is
available as a stand alone tool as well. Both tools are described in further details in the
next two sections.

3.5.2. RapidMiner

RapidMiner, formerly YALE (Yet Another Learning Environment)[Mierswa et al., 2006],
is an open-source machine learning environment. It was originally developed by Ralf
Klinkenberg, Ingo Mierswa and Simon Fischer at the Artificial Intelligence Group at TU
Dortmund University. By now it gets maintained and extended by Rapid-I.

RapidMiner offers a construction kit for machine learning tasks. It provides the user with
various operators. Each operator receives, processes and dispatches data. By combining
different operators, complex data mining processes can be assembled and executed.

Figure 3.7.: Overview of the steps constituting the KDD process. Figure taken from
[Fayyad et al., 1996]

The operators cover all steps of the data mining process (see Figure 3.7). Therefore
IO-, Preprocessing- and Transformation- Operators are as well included as Modeling-
and Evaluation- Operators. The number of operators can even be increased by installing
further PlugIns for certain task or developing your own operators. As we are using

3http://www.kdnuggets.com/

42

3.5. Tools and Frameworks

RapidMiner to extract image features from video frames, the IMMI-PlugIn for example
was useful (see chapter 3.5.2).

RapidMiner is developed in JAVA and used in its current version 5.3.

RapidMiner Image Extension

The Image Mining (IMMI) Extension is an open-source plug-in for RapidMiner (see
3.5.2) extending this data mining platform with image mining functionality
[Burget et al., 2010]. It is developed and maintained by a group of researchers from
the Signal Processing Laboratory at Brno University of Technology, Czechia,4 lead by
Prof. Zdenek Smekal. In it’s current version the extension offers more than 160 opera-
tors for processing images with RapidMiner, including IO-, visualization-, preprocessing-,
transformation-, feature extraction-, image filter-, and object detection-operators. These
functionalities have already been used for various image-related data mining tasks includ-
ing for example the automatic segmentation of human brain CT images
[Uher and Burget, 2012] and the localization of temporomandibular joint disc in MRI
images [Burget et al., 2011].

The RapidMiner Image Extension is used for Feature Extraction. A documentation of
this can be found in Section 6.2.

3.5.3. Streams framework

The RapidMiner suite is designed to process data in a batch. This means, that static
data is processed in one ore more passes over the data. But in many applications, in-
cluding scientific experiments, sensor networks or live video analysis, the data to be
processed is nowadays not static and too large to be stored completely. In this set-
tings, the batch processing model quickly reaches it’s limits. I have already pointed out
this aspect in section 3.4. The streams framework developed by Christian Bockermann
[Bockermann and Blom, 2012b] aims on solving this problem by offering a framework,
capable to process data in a streaming manner. In this section I am roughly presenting
the framework with particular attention to the processing of video data. For a more gen-
eral documentation of the streams framework please see [Bockermann and Blom, 2012b].

Streams

A stream is a (possibly infinite) sequence of data items that can be read from various
sources. Possible sources are files, databases, or Internet resources, just to mention a few.
Implementations for streams that read from .csv-files, SQL databases, JSON or XML
formatted data are included in the core streams module. Access to video data is provided
by the stream.io.MJpegImageStream, a stream implementation that allows to read
.raw-files, containing decoded MJpeg images. Figure 3.8 shows the definition for a stream
reading video data from an HTTP url.

4http://http://splab.cz/

43

3. Machine Learning

<stream id="video"
class="stream.io.MJpegImageStream"
url="http://kirmes.cs.uni-dortmund.de/video/20120911-small.raw" />

Figure 3.8.: Example for an input stream, consisting of decoded MJepg Images read over
the Internet.

Conceptually, a data stream is defined as ”an interface, which essentially provides a
method to obtain the next item of a stream” [Bockermann and Blom, 2012b]. Each of
the data items consist of a set of (key, value)-pairs, where keys are attribute names and
values are the corresponding values. Figure 3.9 shows an example for one data item,
containing a serialized image plus some additional information.

Key Value

frame ”stream.image.ImageRGB@2583d260”

frame:id 42

frame:width 1920

frame:height 1080

Figure 3.9.: A data item containing one image plus some additional information.

”The names are required to be of type String whereas the values can be of any type
that implements Java’s Serializable interface. The data item is provided by the
stream.Data interface.”

Processors

Processors are ”the low-level functional units that actually do the data processing and
transform the data items”. They basically have one method that receives a data item,
manipulates it, and returns the modified (or even a totally new) data item as its result.
Furthermore it offers the possibility to perform some initializations when the process
gets started. The basic framework for a processor can be found in the appendix.

Processes

The streams framework ”defines a process as the consumer of such a source of items
[=stream]. A process is connected to a stream and will apply a series of processors to
each item that it reads from its attached data stream.”

Stream processes are defined in a XML. In such a XML the stream source as well as the
processors are configurated. Figure 3.10 shows an example for a configuration XML.

44

3.5. Tools and Frameworks

<container>
<stream

id="video"
class="stream.io.MJpegImageStream"
url="http://mattis.special-operations.de/video/20121027-scaled.raw" />

<process input="video" >
<stream.DataItemProcessor1 />
<stream.DataItemProcessor2 parameter1="42" parameter2="Test" />

</process>
</container>

Figure 3.10.: Example for a configuration XML-file.

The input stream has an unique identifier (id). Each data item of the input stream
stream gets processed by a series of processors, where the result of one processor forms
the input of the next processor (pipes-and-filters concept).

The whole experiment can be run by calling the stream.run.main() function in-
cluded in the streams project. This function expects a configuration file as a parameter.
Afterwards the processors are started, and the init() function of each processor is
executed. Then the first data item is read and passed to the first processor. The source
code to start an experiment from the command line is shown in Figure 3.11.

>> java -cp $classpath stream.run experiment.xml

Figure 3.11.: Command to run an experiment defined by the corresponding configuration
file experiment.xml.

45

3. Machine Learning

46

4

Learning tasks

This thesis is about the identification, extraction and evaluation of features from video
data. Video data gets produced in countless settings, including television broadcasts,
Internet videos, and surveillance cameras. As the results of this thesis are supposed to
be used within the ViSTA-TV project, I decided to base the biggest part of my thesis
on the analyze of video features, gained from IP-TV data. Nevertheless, the features
extraction process and the evaluation of the extracted features are similar for other
settings as well. Hence, I decided to build up another use case, that is closer related
to surveillance than television. For both use cases, the corresponding learning tasks are
defined in this chapter.

4.1. Use case A: IP-TV

As mentioned in the introduction, one important task of the ViSTA-TV project is to
understand the interests and behavior of IP-TV users. This shall then be used to predict
user switches. To solve this task, it is necessary to have detailed information about the
broadcasted television program. Some information about the program already comes
with the EPG data, which is provided by the broadcasting companies. We are able to
receive the EPG data through our ViSTA-TV project partner Zattoo. Unfortunately the
EPG data is limited to information on the show level, including

start and end time of a broadcast, accurate to the nearest second,

title of the show. In case the show is part of a series, the episode title is also given,

categories the show falls into. This includes for example documentation, news, movie,
sports, ...

Hence the segmentation and tagging of the incoming video stream on the show level is
already given. But in order to gain better predictions on user behavior and interests, we
are interested in a closer grained segmentation. Thus, I decided to take the segmentation

47

4. Learning tasks

of video data, in particular news shows, into shots and stories as one use case for this
thesis. My decision to focus on news videos is due to the fact, that ”news videos re-
ceive greater attention by the scientific community than all the other possible sources of
video” [De Santo et al., 2007]. This interest is mainly due to the fact that broadcasting
companies produce a great amount of video material and the reuse of the material is
often useful. Hence a good segmentation of news video data is enormously important, as
it is the basic step for building up a digital database.The learning tasks are accordingly
defined as follows:

• A1: Identify all shot boundaries in an incoming news stream. As a measure for
success I have chosen the recognition rate, given by precision and recall, as appro-
priate evaluation criteria. ”The recognition rate is the most used quality criterion
in order to compare shot change detection methods.” [Smoliar and Zhang, 1994].

• A2: Recognize all anchorshots. Where does one news story end and the next starts?
The success of an inferred classifier can be measured by its’ accuracy.

• A3: Tag all found segments with meaningful keyword. Even if a keyword is valid
for a whole segment, it gets assigned to every single frame included in that seg-
ment. Again the accuracy of the assigned keywords can be taken as an evaluation
criterion.

I hope that this level of granularity enables us to find explanations for program switches
of users and will hence be useful for the further progress of the ViSTA-TV project.

4.2. Use case B: Coffee - Project

Beside IP-TV, surveillance cameras, traffic supervision cameras and web cams do also
produce massive amount of video data, that has to be analyzed in real-time. As this thesis
is not exclusively limited to IP-TV, I decided to take a second use case into account: Our
office is equipped with a Nespresso coffee maker. This machine uses differently colored
coffee capsules to produce coffee with different flavors. Unfortunately, the consumption
of coffee flavors in our office varies a lot, which makes the reordering of coffee capsules
difficult. Someone has to count the left over coffee capsules first and estimate the flavors
that are missing. The idea of the Coffee project is, to count the consumed capsules
automatically by installing a web cam on top of the coffee machine. This web cam will
then detect the event of inserting a new capsule, recognize the capsules color and update
a counter for each capsule type. Figure 4.1 shows the experiment set-up.

The Coffee project was inspired by the well-known Trojan Room coffee pot camera
1, which was installed at the University of Cambridge between 1991 and 1993. This
coffee maker, located in the so called Trojan Room at the Computer Laboratory of the
University of Cambridge, was ”the inspiration for the world’s first web cam”. It provided
an 128 ×128 pixel grayscale picture of the coffee maker within the local network of the
university. This enabled everybody working at the Computer Lab to check the status

1http://en.wikipedia.org/wiki/Trojan_Room_coffee_pot

48

http://en.wikipedia.org/wiki/Trojan_Room_coffee_pot

4.2. Use case B: Coffee - Project

of the coffee maker from their computer before actually walking to the Trojan Room.
Hence useless trips to the coffee maker could be avoided.

Figure 4.1.: The experiment experiment set-up for the coffee capsule project. A web cam,
installed on the coffee maker, continuously films the closing lever of the machine. If a
capsule is inserted, the event can be detected and the capsule can be classified by its
color. The web cam is connected to a computer, processing the incoming video data
and making it available over TCP/IP.

The approach to count coffee capsules automatically is -like Trojan Room coffee pot
camera- a helpful and demonstrative application to apply techniques, which are useful
for other tasks as well. To be able to count the coffee capsules automatically, I have to
recognize the capsules that are inserted in the machine. Hence the learning tasks of this
project are

• B1: Identify all events, where a new coffee capsule is inserted in the coffee maker
by supervising the incoming video stream. As events usually last for more then one
frame, it is of course not necessary to detect all frames covered by the event. An
event is rather said to be detected, as soon as at least one of the frames covered
by the event is detected. Again precision and recall are chosen as appropriate
evaluation criteria.

• B2: Recognize the type of the capsule by identifying its’ color. In this setting I
am again interested in the percentage of correctly classified capsules based on all
capsules. Hence the accuracy is chosen as the suitable evaluation criterion.

49

4. Learning tasks

The corresponding experiments, which were performed to solve the defined learning
tasks, are described in chapter 7.

50

5

Data

In this chapter I describe how the video data used for the experiments in chapter 7 was
gained. The chapter slips up in two parts: In the first section I introduce the ZAPI, that
allows us to receive live IP-TV streams over the Internet. The second section is about
the creation of the video datasets used for my later experiments.

5.1. Receiving live video data: ZAPI

Zattoo offers their partners a standardized Application Programming Interface (API)
called ZAPI (Zattoo API). The ZAPI gets used by external developers as well as Zattoo
itself to develop applications that have to access any kind of content provided by Zattoo.
This includes a full access to all broadcasted IP-TV channels as well as further program
information and EPG-data. The communication with the ZAPI bases on the Hypertext
Transfer Protocol Secure (HTTPS). ZAPI receives HTTPS-Requests (POST- and GET-
Requests), accepts them and responds the results in either XML (Extensible Markup
Language) or JSON (JavaScript Object Notation) format. Thereby it is accessible on
almost any device that is capable of doing video streaming.

As I am operating on the actual video stream in this thesis, this chapter gives an overview
of how to access the ZAPI and read the video stream. Thus the following chapter struc-
tures into how to

• start a ZAPI session

• authenticate with the given user account

• receive the video content of a certain channel

• logout and stop the session

All information are according to the ZAPI documentation that can be found under the
URL http://developer.zattoo.com. To get access to this developers partner site,
you have to contact the Zattoo team and request login information.

51

http://developer.zattoo.com

5. Data

5.1.1. Start a ZAPI- Session

A session is a sequence of messages exchanged between an application and the ZAPI.
Each ZAPI session gets initialized by a ”Hello”-message. This is a POST-Request to
the URL https://HOST/zapi/session/hello. By this request the client’s Appli-
cation ID (App ID) and a unique ID of your device (UUID) are registered. Furthermore
the user has to choose a language and (as a optional parameter) a response format.
Possible response formats are XML and JSON. Figure 5.1 shows the source code of a
corresponding Java method.

private void startSession(HttpClient httpClient) throws Exception {
HttpPost post = new HttpPost("https://" + HOST + "/zapi/session/hello");

//Specify Parameters
List<NameValuePair> params = new ArrayList<NameValuePair>();
params.add(new BasicNameValuePair("app_tid", app_tid));
params.add(new BasicNameValuePair("uuid", uuid));
params.add(new BasicNameValuePair("lang", "de"));
params.add(new BasicNameValuePair("format", "XML"));

post.setEntity(new UrlEncodedFormEntity(params));

//Execute Post
String response = EntityUtils.toString(httpClient.execute(post).getEntity());

}

Figure 5.1.: Java Code for posting a request to ZAPI to start a new session

ZAPI will now respond on the request with a message, containing an XML-response.
Figure 5.2 shows an example for a response to a successful request. Afterwards a con-
nection is established and a session is started. In addition a Session ID gets generated.
The Session ID is used to identify the session during the following requests.

<result>
<success>True</success>
<session>
<active>True_</active>
<loggedin>False</loggedin>
<language>en</language>
<aliased_country_code>CH</aliased_country_code>
<block_size>3</block_size>
<min_connectivity>wifi</min_connectivity>
<current_time>2011-08-23T16:06:06Z</current_time>
<general_terms>http://zattoo.com/terms-policies</general_terms>
<privacy_policy>http://zattoo.com/privacy-policy</privacy_policy>
<recording_eligible>True</recording_eligible>
<upgrade_available>True</upgrade_available>

</session>
<urls>
<url>http://Zattoo.ivwbox.de/cgi-bin/ivw/CP/DE-ANONYMOUS</url>

</urls>
</result>

Figure 5.2.: Response to Start-Session

52

https://HOST/zapi/session/hello

5.1. Receiving live video data: ZAPI

5.1.2. Login with user account

Although users may be able to access certain Zattoo content without having a Zattoo
account or being logged in, most services require a registration. Registered users get a
login and a password and certain permissions are stored for each account. To log in a
user another POST-Request request has to be sent to the URL https:////HOST/
zapi/account/login. This request includes the user name (login) and the password
as parameters. ZAPI will again answer with a message, containing an XML-response.
Figure 5.3 shows, how this response will look like.

<result>
<success>true</success>
<account>
<login>username</login>
<services/>
<products/>
<subscriptions/>
<max_playlist_size>250</max_playlist_size>
<pvr_trial_expiration>2012-11-14T19:34:00Z</pvr_trial_expiration>

</account>
</result>

Figure 5.3.: Response to User Login

As you can see, all services, subscriptions, and products, the user is subscribed to, will
be listed in this response. After receiving the successful response message, the user will
now be able to access all content that is available for him over the established session.

5.1.3. Watch a channel

To receive the actual stream of a channel’s video and audio data, a further POST-Request
has to be sent. This request must be addressed to the URL https://HOST/zapi/
watch and contains the requested stream type and channel ID (cid) as parameters.
Possible stream types are HTTP Live Streams (HLS) or Silverlight Smoothstreams,
where HLS8 is way more common. The channel ID is a unique text identifier of a channel.
Figure 5.4 again shows an example for a successful ZAPI response.

<result>
<urls> ... </urls>
<stream>
<url>http://HOST/ZDF-live.m3u8?maxrate=0&uuid= ... </url>

</stream>
<success>True</success>

</result>

Figure 5.4.: Response to Watch Channel

This response contains the URL, under which a playlist file can be found. Playlist file
can be received by sending a GET-Request to the given URL. These playlist files are

53

 https:////HOST/zapi/account/login
 https:////HOST/zapi/account/login
https://HOST/zapi/watch
https://HOST/zapi/watch

5. Data

plain text files in the .m3u(8)1-format, containing the locations of the actual media files.
Following the URL given in the watch channel response, we receive a .m3u-file, that
again refers to other .m3u-files. An example for such a response can be found in figure
5.5.

#EXTM3U
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=64000
ZDF-live-64.m3u8?watchid= ...
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=150000
ZDF-live-150.m3u8?watchid= ...
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=300000
ZDF-live-300.m3u8?watchid= ...
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=600000
ZDF-live-600.m3u8?watchid= ...
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=1100000
ZDF-live-1100.m3u8?watchid= ...

Figure 5.5.: The .m3u-file received, when following the link given in the watch chan-
nel response. This file routes the user to the correct playlist file, optimized for his
bandwidth.

Each given .m3u-entry in this file is again a playlist file, which is optimized for differ-
ent bandwidths. Hence users with faster internet connections get directed to a playlist
containing media elements with higher quality. After choosing the playlist, which is
appropriate for the available bandwidth, the right .m3u-file can be downloaded using
another GET-Request. This received playlist file now is a media playlist according to
the HTTP Live Streaming (HLS) Protocol [Pantos and May, 2009]. An example can be
found in figure 5.6.

#EXTM3U
#EXT-X-TARGETDURATION:4
#EXT-X-MEDIA-SEQUENCE:67978019
#EXT-X-KEY:METHOD=AES-128,URI="http://HOST/ZDF/live/64/6421.key?watc ..."
#EXTINF:4,
http://HOST/ZDF/live/64/67978019s.ts?__gda__= ...
#EXTINF:4,
http://HOST/ZDF/live/64/67978020s.ts?__gda__= ...
#EXTINF:4,
http://HOST/ZDF/live/64/67978021s.ts?__gda__= ...
#EXTINF:4,
http://HOST/ZDF/live/64/67978022s.ts?__gda__= ...
#EXTINF:4,
http://HOST/ZDF/live/64/67978023s.ts?__gda__= ...

Figure 5.6.: The .m3u-file received, when following one of the links given in the first
.m3u-file. This file contains references to the media segments.

This .m3u-playlist refers to a set of media segments, encoded in the MPEG-2 Transport
Stream (TS)-format. All media segments can be downloaded from the Zattoo server
and each of the segments contains four seconds of video and audio data. When putted

1.m3u-files are usually encoded with the Latin-1 charset. The file ending 8 indicates that this file is the
unicode version of .m3u, which uses UTF-8 unicode characters

54

5.2. Creation of datasets

together in the right order (given by the ascending numbering of the segments), we obtain
a full video and audio data stream of one channel. The .m3u-file gets updated regularly,
whereby new elements get added and old elements get deleted. Hence the video stream
is infinite. In order to ensure that only registered users watch the television channels,
the .ts-files are AES-encrypted and have to be decrypted before putted together.

5.1.4. Stop Channel, logout and stop session

After all the desired data is received, the channel should be stopped, the user should
be logged out and the session should of course be terminated. This is done by three
easy POST-Requests; each of them not requiring any parameters. The request have to
be addressed to the URLs https://HOST/zapi/stop, to stop the channel, https:
//HOST/zapi/account/logout, to log out the user and https://HOST/zapi/
session/goodbye, to stop the session.

5.1.5. Error responses

In some cases the sent requests may be irregular or can not be processed by the server.
In these cases the server replies with an error response, providing the user with brief
information about the occurred problem. An example for such an error-response can be
found in figure 5.7.

<result>
<success>False</success>
<http_status>400</http_status>
<internal_code>2</internal_code>

</result>

Figure 5.7.: Example for an error-response

The error code can be looked up on the Zattoo website, providing the user with hints
how to fix the error.

5.2. Creation of datasets

In order to be able to evaluate the performance of the applied approaches for shot
boundary detection, anchorshot detection, and coffee capsule recognition, it is necessary
to have labeled data. Hence it is not possible to test the approaches on live video data
received over the ZAPI. Rather we need to have fixed video datasets: one containing the
video data of news shows and one for the coffee capsule recognition project.

For this purpose, we downloaded video files of news shows on the Internet respectively
recorded a video file containing data of different coffee capsules. Unfortunately neither
the RapidMiner Image Mining Extension (see section 3.5.2) nor the streams framework
(see section 3.5.3) offers the opportunity to read in MPEG video files directly: The
RapidMiner Image Mining Extension requires a folder containing JPEG images as its
input, whilst the MJpegImageStream implementation of the streams framework (see

55

https://HOST/zapi/stop
https://HOST/zapi/account/logout
https://HOST/zapi/account/logout
https://HOST/zapi/session/goodbye
https://HOST/zapi/session/goodbye

5. Data

section 3.5.3) requires a file, containing RAW decoded video frames in the JPEG image
format. Hence the MPEG video files need to be converted into the desired formats.
There is plenty of good software for uncompressing media files available. I only want to
mention the two tools I actually used: xuggler and mencoder.

xuggler is an open-source tool to uncompress, modify, and re-compress media files
from Java. It is available on the xuggler project homepage2 and distributed under
the GPL Version 3 license. It consists of a Java part and a set of native libraries
and uses FFmpeg to compress and uncompress media data. The usage is quite
simple: The java class DecodeAndPlayVideo.java has a static main method. When
calling this main method with a string parameter, which represents a filename,
the video file is opened, gets uncompressed and displayed. As all that functionality
is written in Java, this can easily be modified and the uncompressed JPEG im-
age can be stored on the disk. Figure 5.8 shows the invocation command for the
DecodeAndPlayVideo class.

File videofile = new File ("C:/tagesschau.mp4");
DecodeAndPlayVideo.main(videofile);

Figure 5.8.: Invocation command for uncompressing a video file using xuggler

mencoder3 is a free command line tool for video decoding and encoding. It is related
to the MPlayer (which is similar to FFmpeg) and included in all MPlayer distribu-
tions, but provides a standalone version as well. Released under the GNU General
Public License, it is available without charge for various operating systems, includ-
ing Linux and MacOS. The mencoder can convert a great amout of media data
formats into each other, including MPEG and RAW JPEG sequence files. Hence
it enables us to convert the downloaded video data into a format, which can be
read in by the streams framework with the MJpegImageStream. The command
needed to invoke mencoder is shown in figure 5.9. The scale command is optional
and allows to redefine the size of the frames of the resulting output data.

>> mencoder videofile.mp4 -nosound -of rawvideo -o videofile.raw
-ovc lavc -lavcopts vcodec=mjpeg [-vf scale=640:360]

Figure 5.9.: Invocation command for uncompressing a video file using mencoder

5.2.1. The ”news”-dataset

For the evaluation of the learning tasks A1, A2, and A3, I use a dataset consisting
of four ”Tagesschau” news show downloaded from YouTube. The ”Tagesschau” is the
best-known German news show, broadcasted on the first German program (ARD) every

2http://www.xuggle.com/xuggler
3http://mplayerhq.hu/

56

http://www.xuggle.com/xuggler
http://mplayerhq.hu/

5.2. Creation of datasets

night from 8:00pm to 8:15pm. The reason for downloading the videos from YouTube is,
that they have the identical video format as the onces we receive when using the ZAPI.
The advantage is, that I did not have to glue together the MPEG Transport Stream
(.ts) segments, which made the process of creating the dataset a little bit easier. The
downloaded videos are listed in tabular 5.1.

Date Length in minutes

Tuesday, September 11th 2012 15:38

Thursday, September 13th 2012 15:44

Saturday, September 15th 2012 12:21

Saturday, October 27th 2012 13:36

Total 57:19

Table 5.1.: Video data included in the ”news” dataset

Each of the video files has a resolution of 1280 × 720 pixels per frame (HD ready). In
order to be able to process the data in RapidMiner,the video files were first encoded
using xuggler. As the result I get a folder containing images of each single frame (see
figure 5.10. Based on the encoded data, I attached labels to the resulting JPEG images.
The first multinominal label is ”cut” (C), ”gradual transition” (GT), and ”not cut”
respectively. The second label holds information about the type of the shot. It distin-
guishes between ”anchorshots” (AS) and ”no anchorshots”. The ”no anchorshot” class
is further labeled as ”intro”, ”extro”, ”weather” and ”n a”, which covers all sort of news
report shots including interviews and commentaries. By using mencoder,the video files
have furthermore been converted into a format that can be imported in the streams
framework. The video files as well as the .csv files containing the labels are available
online. The url is http://mattis.special-operations.de/video/. The labels
of one news show are furthermore included in the appendix.

Figure 5.10.: Images resulting from decoding a video with xuggler. Each frame gets stored
as a JPEG image.

57

http://mattis.special-operations.de/video/

5. Data

5.2.2. The ”coffee”-dataset

For the evaluation of the learning tasks B1 and B2, I use a dataset consisting of two
short video sequences. Each of the video files shows 36 coffee capsules, which slip down a
slide. A capsule slipping down the slide is hence one ”event”, whilst the empty slide can
be seen as ”no event”. The video files are recorded at a stretch, using a webcam with
a resolution of 640 × 480 pixels per frame. 25 frames per second are captured. The 36
coffee capsules split into six different classes, representing six different coffee flavors. All
flavors can be identified by the color of the capsules. Possible colors are ”red”, ”yellow”,
”blue”, ”green”, ”black”, and ”purple”.

I have decided to produce the labeled dataset by slipping coffee capsules down a slide
for two reasons: First of all, the Nespresso coffee maker in our office broaches all coffee
capsules that are inserted. Hence it would not have been possible to create an artificial
dataset within a short amount of time, without having to drink a whole lot of coffee.
Furthermore I was not sure, if I would be able to manually determine the color of coffee
capsules, which where inserted over time, in order to label the data correctly. Especially
purple, dark green, and black capsules did almost look the same to me. So I decided to
create the dataset artificially. The inferred techniques for event detection and capsule
recognition will afterwards be transferable to the real setting easily.

Beside the video data, the dataset contains files, which hold the true labels for both
of the video files. This includes the number of the frame, where an event occurs, plus
the color of the coffee capsule, which is slipping down the slide at that moment. As an
event spans more than one frame, only the first frame of the event is stored in the label
file. Implicitly the following six frames belong to the same event. Figure 5.11 shows an
example for one capsule event.

An example for a file, containing the manually assigned labels for one of the two video se-
quences, is included in the appendix. The full dataset, including the video data as well as
the label files, is available online. The url is http://mattis.special-operations.
de/video/.

Figure 5.11.: A red coffee capsule slipping down the slide. All six consecutive frames
belong to the same capsule event.

58

http://mattis.special-operations.de/video/
http://mattis.special-operations.de/video/

6

Feature Extraction

Videos are basically a sequence of images (frames) and short audio-samples. Therefore,
most methods developed for learning on images can also be applied to video data. The
following section gives an overview of the features I have extracted from the video data
for this diploma thesis. Since the extraction of features from images is a common task
in computer vision and countless approaches have been developed over the years, I can
only focus on a small subset of all possibly extractable features. Of course, the following
collection is surely not exhaustive and there might be useful features I have not identified
yet, but it will turn out, that the features extracted so far are sufficient to solve the
specified learning tasks. Nevertheless the extraction of further features might turn out
to be necessary during the next phases of the ViSTA-TV Project.

In order to evaluate which image features are useful for solving the defined learning tasks
(see chapter 4), I have first of all extracted a huge amount of features using RapidMiner.
The RapidMiner Image Mining Extension takes JPEG images, gained from the video
data by using xuggler, as its’ input and enables us to extract and evaluate features
quickly. The features extraction is described in section 6.2. As RapidMiner does not
provide the user with any stream functionality, I have afterwards developed processors
for the streams framework, enabling me to extract those features, which turned out to be
useful, on live video data in real-time as well. An overview of the implemented methods
can be found in section 6.3).

6.1. Naming convention for extracted features

In order to keep track of the huge amount of features that might potentially be created
using all sorts of available data (i.g video, audio, EPG and user-data), a consistent
naming convention is necessary. Therefore we have developed a hierarchical naming
scheme. We have decided to separate each level of the hierarchy by using a ”:”. On the
first level of the hierarchy we should tell, from which kind of data we gained the feature.
Possible values are: ”video:”, ”audio:”, ”epg:”, ”user:” or ”dbpedia:”, just to mention a

59

6. Feature Extraction

few examples. The second level of the hierarchy then of course depends on the first level.
For ”video:” we have decided to specify next, whether the feature is related to a single
frame (”frame:”), a sliding windows of n frames (”n-frames:”) or a whole show (”show:”).
As difference images of two successive frames are useful for cut detection, the ”2-frame:”-
features are especially interesting. Furthermore we hope to be able to calculate them very
quick by taking advantage of the MPEG-codex (see chapter 2.2.1). For ”video:frame”-
features the next level of the hierarchy than describes the color channel the feature is
gained from. Image 6.1 shows an extract from the full naming space for features used in
my diploma thesis. This proposal has been adopted for the ViSTA-TV project.

Figure 6.1.: The naming space for features.

6.2. Image Feature Extraction with RapidMiner

The RapidMiner Image Mining Extension (see 3.5.2) provides a bunch of useful operators
for extracting features from single images. These include operators for image transforma-
tion, filtering and feature extraction. Furthermore it comes with an operator, allowing
us to loop over all images contained in one folder (Multiple Color Image Opener). As we
are able to decode a movie file and store all images in one folder by using xuggler (see
5.2), we can not only use the Image Mining Extension to extract features from images,
but from video data as well. In the following section 6.2.1, I first of all describe the
IMMI operators used for the feature extraction. Afterwards the whole feature extraction
process in RapidMiner is explained.

60

6.2. Image Feature Extraction with RapidMiner

6.2.1. IMMI Operators

Image Representations

Digital images can be considered as a two-dimensional matrix, which contains a fixed
number of rows and columns. The values in this matrix represent the pixels of the image.
Based on the type of image, the values in the matrix are usually either one bit, one byte,
or eight byte long, allowing us to represent different color types.

Monochrome Images In monochrome images (sometimes also referred to as grayscale
images) these pixels are represented by just a single one byte value per pixel indi-
cating the brightness. Usually we have one-byte values, allowing us to distinguish
between values ranging from 0 to 255.

Color Images Whereas monochrome images can be represented by just a single byte
per pixel, color images require at least three values. The most common color space
in this context is the RGB color space. Here a colored image is represented by three
values representing the relative proportion of the three primary colors of light: red,
green and blue. Figure 6.2 gives an example for the decomposition of a color image
into its three color channels. In the Figures (b) to (d) a dark colored pixel indicates
a high value on the same pixel on the corresponding color channel. For example as
the sky is blue, the sky becomes darker in the blue channel image then on the red
and green channel images.

Other color spaces such as YCbCr are not taken into account in this thesis.

Black and White Images Black and White images (sometimes also referred to as
binary or bi-level images) are a special subtype of monochrome images that only
have two gray levels: 0 (=white) and 1 (=black). Since there are only two possible
values for each pixel, the image matrix to store the image can be a binary one.
This saves disks space, speeds up the transmission of the image and makes some
evaluations faster.

(a) Original image (b) Red channel (c) Green channel (d) Blue channel

Figure 6.2.: The RGB channels of a color image from the Texas State Capitol in Austin.

61

6. Feature Extraction

Images of one color type are downwardly compatible. That means that color can be trans-
formed into imagemonochrome images, and monochrome images can be transformed into
black and white images.

Converting color images into monochrome images

In some cases it might be necessary to convert a color image into a monochrome one.
Unfortunately, this conversion is not done uniformly troughout different tools. In all
cases the gray value of a pixel is calculated as a weighted sum of the RGB-values of the
pixel.

GRAY = WR ∗R+WG ∗G+WB ∗B

Typical weighings WR,WG,WB are:

• The equalized weighting of all channels is the simplest form. The weights are:

WR = WG = WB =
1

3

• ”Since we perceive both red and green as being substantially brighter then blue, the
resulting image will appear to be too dark in the red and green areas and too bright
in the blue ones.” Therefore unequal weights, originally developed for encoding
analog color television signals, are more common: [Burger and Burge, 2007]

WR = 0.299,WG = 0.587,WB = 0.114

• ITU-BT.709 [itu, 2002] even recommends slightly other weights for digital color
encoding:

WR = 0.2125,WG = 0.7154,WB = 0.072

The equalized weighting as well as the second methode are also available in the IMMI
Color to grayscale operator.

Converting monochrome images into black and white images

Monochrome images can be transformed into black and white images by applying a
threshold on the value of each pixel. If the gray value of a pixel exceeds the given
threshold, the pixel is set to black or white wise versa. Figure 6.3 shows an example
for a color image converted into a black and white image. The intermediate step of
converting it into a monochrome image is not shown. The conversion can be performed
using the IMMI Thresholding operator.

62

6.2. Image Feature Extraction with RapidMiner

(a) Original image (b) Transformed Image

Figure 6.3.: Image transformed to black and white with threshold.

Image Transformations

Filtering

In certain settings, the appliance of image filters might be a helpful technique to improve
the quality of the extracted features. For instance if the input image contains a lot of
noise, it can be useful to do some image smoothing first. Therefore this section gives an
overview of some popular image filtering methods.

Image Smoothing Each pixel in a frame is replaced by a new value, based on its
neighborhood. In the simplest case, the new value is calculated as the unweighted
average of the color values of all eight nearest neighbors plus the pixel itself (3× 3
mask). This is shown in figure 6.4 (a) [Bhabatosh Chanda, 2011]. More complex
approaches use bigger masks, even not necessarily shaped quadratically, weighted
averages or the other statistical approximations like medians, maximum, or mini-
mum values. Figure 6.4 (b) shows an example for a 5×5 Gaussian-weighted mask.

(a) Unweighted 3× 3 mask (b) Gaussian-weighted 5× 5 mask

Figure 6.4.: Examples for two different image smoothing masks. In a Gaussian-weighted
masks the weights of each pixel (x, y) are calculated by the two-dimensional Gaussian
function f(x, y) = exp(−(x2 + y2)/s) where s is the scale parameter controlling the
spread [Bhabatosh Chanda, 2011].

The problem of simple averaging filters is, that they tend to blur edges and de-
tails. This can be overcome be either using median filters or order-statistics filters

63

6. Feature Extraction

[Rafael C Gonzalez and Woods, 2008], or applying other filters, that sharpen im-
ages.

Image Sharpening Whenever edges, line structures or other details in an image are
important, image sharpening filters are used to enhance these structures. These
filters try to detect edges and increase the intensity of the detected edges in the
resulting image. For further information about edge detection please see chapter
6.2.1. The big challenge is to enhance edges without increasing noise at the same
time. Although there are existing approaches (i.g. [Alvarez et al., 1992]), the prob-
lem is still an open field for further research.

IMMI offers miscellaneous filters. All of them are available over the Image Filters pack-
age.

Border detection

The detection of borders (also called ”edge detection”) in an image might be a useful
method in order to get abstract information about the image. The border detection
algorithm implemented in IMMI operates on color images. These color images are first
of all transformed into a color-space containing 64 colors. This is done by uniformly
quantizing each of the RGB color channels into four quantiles. Afterwards each pixel,
having all four neighbors (top, bottom, left, and right) the same quantized color, is
classified as an interior pixel. All other pixels are classified as border pixels. The outcome
is a black and white image, where all border pixels are black and all interior pixels are
white. Figure 6.5 shows an example for this. The correspondent operator is called Border
/ Interior Classification (short: BIC) operator.

(a) Original image (b) Transformed Image

Figure 6.5.: Example for border detection on a color image.

Difference images

As RapidMiner offers no functionality to operate on video data, there is no way to benefit
from any features that can be gained from the MPEG compression. Unfortunately some
of the presented approaches for shot boundary detection base on these features, especially
the difference image of two frames. Therefore I ”emulated” the MPEG compression in
RapidMiner by reproducing the difference image of two frames and extracting features
on these difference images. The corresponding process is shown in figure 6.6.

64

6.2. Image Feature Extraction with RapidMiner

First of all both frames are loaded as monochrome images using the Open Gray-scale
Image operator. Then the grayscale values of all pixels in both images have to be mul-
tiplied with 0.5. Afterwards 128 is added to all pixel values in one of the images, and
last the two images get subtracted using the Image Combinator operator. An example
for the output of this process can be found in figure 2.5.

Global image statistics

So far I have only described operators that transform images. The next two paragraphs
now cope with the actual feature extraction.

The IMMI Extension offers an operator called Global Feature Extractor from a Single
Image to extract global statistics or histograms from images. Table 6.1 shows an overview
of all features that can be extracted by the Global Statistics-Operator.

The output of the operator is an ExampleSet containing values for all requested fea-
tures. I have applied this operator on the original image, the grayscale image, each color
channel, the reverse engineered difference image, the black and white image, and an im-
age resulting from the border detection separately. Further details are described in the
following section 6.2.2.

Histograms

Beside the Global Statistics-Operator, another interesting operator for extracting in-
formation from an image is the Histogram-Operator. A color histogram represents the
distribution of colors in an image. After defining the number of bins, color ranges, which
cover the whole color space of the image, are derived automatically. Then each pixel
is sorted into the corresponding bin and afterwards the number of pixels in each bin is
counted. The relative count of pixels belonging to a bin then is the value for this bin. The
color histogram therefore can be seen as an statistical approximation of the continuous
distribution of color values for a frame.

Figure 6.6.: The RapidMiner process for reproducing the difference image of two frames.

65

6. Feature Extraction

Mean The average gray value of the input image.

Median The median gray value of the input image.

Standard Deviation The standard deviation of the gray values.

Skewness The skewness of the gray values.

Kurtosis The kurtosis of the gray values.

Peak Include peak color from histogram and its relative
value.

Min Gray Value Include Minimum Gray value in the image.

Max Gray Value Include Maximum Gray value in the image.

Center of Mass Delivers two features X and Y, denoting the X- and
Y-coordinate of the brightness-weighted average of the
X and Y coordinates of all pixels in the image.

Normalized Center of Mass Delivers two features X and Y. Same as Center of
Mass, but normalized, so that the size of the image
doesn’t matter.

Area Fraction The percentage of non-zero pixels.

Edginess Relative count of white (255) pixels after applying
”Find edges” operator.

Table 6.1.: Overview of image features that can be extracted using the Global Statistics-
Operator of the IMMI Extension

(a) Original image (b) Color histogram

Figure 6.7.: Example of a color histogram for a ”Tagesschau” frame.

6.2.2. The overall feature extraction process in RapidMiner

Using the above described operators, I designed a RapidMiner experiment to extract
video features from a set of images, extracted from a video file by using xuggler. A
screenshot of the main part of the experiment is shown in figure 6.9.

66

6.2. Image Feature Extraction with RapidMiner

Figure 6.8.: Multi-
ple Color Image
Opener

By using the Multiple Color Image Opener, I loop over all images
in the folder created by xuggler. The process shown in figure 6.9
is the inner process of the MCIO-operator and is hence executed
for every image. First the image gets multiplied seven times. One
of the seven images is kept as it is, the others are transformed by
selecting a single color channel only, calculating the difference
image, converting the image to grayscale, or applying border
detection. Afterwards the Global Feature Extractor from a Sin-
gle Image-operator is applied to each of the resulting images
in order to extract features from the images. In order to save
computational time, the operator is not always used to its’ full
extent. For example color histograms are only extracted of the
original image. After renaming the extracted features and adding an id in order to be
able to join the resulting example sets, the extracted features are written into a .csv-file.
As the result of the whole process, I gained a set of 80 features per frame. A complete
list of the features extracted with the RapidMiner IMMI is included in the appendix.

Figure 6.9.: The overall feature extraction process in RapidMiner

67

6. Feature Extraction

6.3. Image Feature Extraction with the streams framework

RapidMiner does not provide the user with any stream functionality. But given that
video data should be processed in real-time, we need to extract features in a streaming
manner. This can be achieved by using the streams framework (see section 3.5.3). The
following section gives an overview of the processors, which I have implemented for
processing video data and extracting features. A full list of all implemented processors,
including more details about parameters and the API, can be found in the appendix.

6.3.1. Representing images

By using stream.io.MJpegImageStream, I can read in decoded video data and cre-
ate a stream of data items. Each of these data items corresponds to one frame of the video
stream. It contains the frame itself as a serialized image plus some additional informa-
tion. As the image type java.awt.image.BufferedImage, which is usually used in
JAVA to store images, is not serializable, it can of course not be used. Hence the images
included in the data items are of the self-implemented type stream.image.ImageRGB.
An ImageRGB image can be obtained from a BufferedImage by using the ImageRGB
(BufferedImage img) constructor. On the other hand an ImageRGB image can be
converted to a BufferedImage using the provided BufferedImage createImage()
function.

In RapidMiner image types vary depending on the image representation. Hence IMMI
operator can either process color images, monochrome images or black and white images.
In contrast to this concept, I decided to represent all types of images by the ImageRGB
class. Monochrome images can be stored by calculating the grayscale value for each pixel
and setting the value of all three RGB channels of the image to this grayscale value. Black
and white images get stored by setting each pixel either to black or white. The advantage
of this approach is that every image processor can handle every image and the processors
can be combined in any order. When using RapidMiner the combination of operators is
sometimes difficult, due to the fact that images of different types have to be converted
into each other to ensure the outcome of one operator matches the income of the next
one.

6.3.2. The AbstractImageProcessor

Data items, containing ImageRGB images, can be processed by special processors, ex-
tending the stream.image.AbstractImageProcessor processor. The advantage
of using the AbstractImageProcessor instead of the AbstractProcessor is that
the AbstractImageProcessor allows an easy access to the image, included in the
data item, without searching for the image first. Nevertheless it is still possible to access
the full data item. This is necessary in order to store new features or access further
information, that is included in the data item. Figure 6.10 shows the source code of the
AbstractImageProcessor.

68

6.3. Image Feature Extraction with the streams framework

package stream.image;

public abstract class AbstractImageProcessor extends AbstractProcessor {

protected String imageKey = "data";

@Parameter(description = "The name of the attribute that contains the byte array
data of the image.", required = true)

public void setImage(String data) {
this.imageKey = data;

}

public String getImage() {
return imageKey;

}

public Data process(Data input) {

Serializable value = input.get(imageKey);
if (value instanceof ImageRGB) {

Data result = process(input, (ImageRGB) value);
return result;

}

byte[] bytes = (byte[]) input.get(imageKey);
if (bytes == null) {

return input;
}

try {
BufferedImage bufferedImage = ImageIO

.read(new ByteArrayInputStream(bytes));
if (bufferedImage == null) {

log.debug("No valid JPEG image!");
return null;

}
ImageRGB img = new ImageRGB(bufferedImage);
Data result = process(input, img);
return result;

} catch (Exception e) {
log.error("Error processing image: {}", e.getMessage());
if (log.isDebugEnabled())

e.printStackTrace();
return input;

}
}

public abstract Data process(Data item, ImageRGB img);
}

Figure 6.10.: The AbstractImageProcessor.

6.3.3. Implemented image processors

Using the AbstractImageProcessor, I have implement a wide variety of processors,
which can process images. This section just gives an overview of all processors. For a
full list please see the appendix. All presented processors are at least able to process
images in real-time, given that we are receiving not more than 25 frames, each in Full
HD resolution (1920 × 1080 pixels), per second. This throughput was achieved using my

69

6. Feature Extraction

personal computer, which is specified in more detail in the following chapter 7.

Image Transformation processors

When operating with the RapidMiner IMMI, it has turned out to be necessary to trans-
form images. Hence I have developed a set of image transformation processors.

The BorderDetection processor performs a border detection on the input image. A
pixel is said to be a border pixel, if its’ color differs from the color of at least one of
its’ four neighboring pixels significantly. By increasing the tolerance, the amount
of neighboring pixels that have to have the same color value can be decreased.

The ColorDiscretization processor discretizes the color space of the input image by
discretizing each single RGB color channel.

The ColorToGrayscale processor converts a color image to a grayscale image.

The Crop processor crops an image to a new size by cutting away parts of the image.

The DiffImage processor computes the difference image of the actual image and the
image before.

The Smoothing processor is a filter, smoothing the image. Hence the processor reduces
the noise in an input image. Each pixel gets replaced by the average of pixels in a
square window surrounding the pixel.

Image Feature Extraction processors

The AverageRGB processor extracts RGB colors from a given image and computes
the average RGB values over all pixels of that image.

The CenterOfMass processor calculates the Center of Mass of one color channel of
the image. You can either ask for the absolute x- and y-coordinates of the Center
of Mass or the normalized Center of Mass (= absolute Center of Mass / the size
of the image).

The ColorHistogram processor computes a color histogram on one color channel of
an image.

The MedianRGB processor extracts RGB colors from a given image and computes
the median value for each color channel.

The StandardDeviationRGB processor computes the standard deviation for all three
RGB channels. Requires the Average (=Mean) value for all RGB channels to be
included already. This can for example be done by using the AverageRGB proces-
sor.

Further processors

Beside the above mentioned processors, I have implement further processors, which were
necessary to run the experiments. A list of all processors is included in the appendix.

70

7

Experiments and Evaluation

Using the approaches presented in chapter 2 and the data described in chapter 5, I
now address the tasks of shot boundary detection, news video segmentation, and coffee
capsule application as introduced in chapter 4.

All experiments, which are described in this chapter, have been run on my personal
computer, equipped with a dual-core Intel Core(TM) i5-2520M CPU with 2.5 GHz clock
speed and 4 GB main memory.

7.1. Shot Boundary Detection

As described in chapter 2.2 the detection of shot boundaries is the first important step
towards a meaningful segmentation of video content. This detection splits up into two
learning tasks: The detection of hard cuts and the detection of gradual transitions. As we
have seen in table 2.1, hard cuts seem to be more likely to occur than gradual transitions.
Unfortunately this statistics was taken from a comparison paper written in 1996 and
talking about TV broadcasts from the United States [Boreczky and Rowe, 1996]. So we
should first have a look on current video material to see, whether those results are

Date # of frames Cuts Gradual Transitions

11.09.2012 23.457 130 10

13.09.2012 23.619 130 3

15.09.2012 18.522 100 8

27.10.2012 20.406 110 5

Total 86.004 470 26

Table 7.1.: Frequency of hard cuts versus gradual transitions in todays’ ”Tagesschau”
news shows.

71

7. Experiments and Evaluation

valid for todays’ video content of German broadcasting companies as well. Therefore I
manually analyzed the four news show videos (approximately 1 hour of video data) of
”Tagesschau”, included in my ”news” dataset. The results are shown in table 7.1.

Obviously todays’ news shows still have way more hard cuts than gradual transitions in
them. It looks like the rate has even been rising over time. Hence we simplifying focus
on the detection of hard cuts first.

7.1.1. Approach and Evaluation

As described in chapter 2.2, the simplest approaches for hard cut detection base on the
calculation of pair-wise differences between successive frames. This can be done in the
Stream Framework as well, by calculating the difference image, converting the difference
image to grayscale and checking, whether the average gray value of the difference image
exceeds a threshold T . This approach almost is a direct reimplementation of the approach
by [Nagasaka and Tanaka, 1992]. The difference is that T in my implementation is a
threshold on the average gray value of the difference image. Thus it does not need to be
adjusted to the resolution of the input video stream.

<container>

<stream id="video"
class="stream.io.MJpegImageStream"
url="http://kirmes.cs.uni-dortmund.de/video/20120911-small.raw" />

<process input="video" >
<CreateID key="frame:id" />
<stream.news.helper.AddNewsshowLabels />

<stream.laser.DiffImage threshold="0"/>
<stream.image.ColorToGrayscale />
<stream.image.AverageRGB />
<stream.news.learner.sbdetection.GrayThreshold t="35" />

<stream.learner.evaluation.PredictionError label="@label:shotboundary" />
<stream.statistics.Sum keys="@error:shotboundary" />

</process>
</container>

Figure 7.1.: Streams framework process to detect shot boundaries. A shot boundary is
declared, when two successive frames differ more than a given threshold. The difference
of two successive frames is calculated on the grayscale difference image of the frames.

Figure 7.1 shows the stream framework process for the described experiment. The thresh-
old t = 35 is chosen randomly. The resulting confusion matrix shows, that 97,7% (128
out of 131) of all cuts have been correctly classified as a cut (True Positives). Unfortu-
nately the number of False Positives (shots that were incorrectly labeled as cuts) is quite
high as well (precision = 71.5 %, recall = 97,7%).

72

7.1. Shot Boundary Detection

Prediction: true Prediction: false Total

Label: True 128 3 131

Label: False 51 23.276 23.327

Total 179 23.279 23.458

Table 7.2.: Resulting confusion matrix for the experiment shown in Figure 7.1

7.1.2. Analysis of reasons for misclassification

In order to understand in which setting misclassifications occur, figure 7.2 shows some
examples for misclassified frames. Each row shows one misclassified frame (in the middle),
plus the frames before and after. Having a look at the False Negatives (Figure 7.2 (a)),
we notice, that these images are all very similar in color and hence difficult to detect for
the used algorithm. For example in (a1) the background is unchanged, as both interviews
are recorded in front of the same wall. Furthermore the position of the microphones and
faces overlap, so that the difference between both images does not exceed the given
threshold.

(a) False Negatives (b) False Positives

Figure 7.2.: Examples for misclassified frames.

False Positives occurred in frames 8816∗, 8817∗, 13089∗, 13090∗, 13153∗, 13154∗, 14350∗,
14351∗, 14358∗, 14359∗, 14360∗, 14363∗, 14375∗, 14382∗, 14383∗, 14385∗, 14386∗, 14390∗,
14396∗, 14480∗, 14481∗, 14493∗, 14496∗, 14506∗, 14531∗, 14532∗, 14586∗, 14710∗, 14711∗,
14733∗, 14735∗, 14736∗, 14765∗, 14766∗, 14767∗, 14768∗, 15971, 15975, 15981, 17768,
20187, 20188, 20189, 20190, 20191, 20739∗, 20740∗, 20792∗, 20793∗, 20799∗ and 20800∗.
Three examples for False Positive classified frames are shown in Figure 7.2 (b).

Obviously, the misclassifications in the first and third example of figure 7.2 (b) occur
due to overexposed frames. The reason for the occurrence of such frames are photogra-
phers using flashlights whilst the shot is recorded. These photographic flashlights cause
large dissimilarity values of two adjacent frames, as every single pixel of the image get
significant brighter. In the above given enumeration of all false positive frames from the
”Tagesschau” show of September 11th, 2012, all frames that are misclassified due to pho-
tographic flashes are marked with the symbol ∗. As we see, photographic flashes are the

73

7. Experiments and Evaluation

main reason for misclassification: 42 out of 51 misclassification occur due to photographic
flashes. This phenomenon can be observed in the other news videos of the dataset as
well. Hence it seems that photographic flashes are very common. Especially in TV news
those flashes tend to produce a lot of segmentation errors and there are already existing
approaches how to detect them (e.g. [Quénot et al., 2003], [Heng and Ngan, 2003]).

Flash detection is particularly interesting, as a high density of photographic flashes
also is a good indicator for the importance of an events. They most often occur ”in
impressive scenes, such as interviews of important persons” [Takimoto et al., 2006]. Most
likely scenes like that will be recorded by different cameras from different angles. In this
scenario the pattern of photographic flashes can also used to identify the same scene in
different videos [Takimoto et al., 2006]. Therefore photographic flashes can be a valuable
semantic information and their identification might be an interesting task for the further
ViSTA-TV project.

7.1.3. Real-time behavior of the approach

As figure 7.1 shows, the shot boundary detection experiment has been run on a scaled
version of the news show video. This scaled version was used in order to speed the exper-
iment up and reach a throughput of more than 25 frames per second. This throughput is
necessary when working on live video data later on, as the television program delivered
by Zattoo is broadcasted with 25 frames per second. As the throughput could also be
increased by using better hardware, it nevertheless suggests itself to check, if the recogni-
tion rate improves when using video data with a higher resolution. Hence I have run the
experiment on four different scaled versions of the video. The results of the experiments
are shown in table 7.3.

video file (resolution) time needed (in ms) FP FN

20120911-micro.raw (160 × 90) 67.797 49 3

20120911-small.raw (320 × 180) 193.935 51 3

20120911-scaled.raw (640 × 360) 583.756 51 3

20120911.raw (1280 × 720) 2.455.627 51 3

Table 7.3.: Quality of the classifier for different scaled versions of the news show video.

As we see, the experiment could not be accomplished in realtime using the video file with
the maximum resolution. Taking 2.455.627 milliseconds ≈ 2.455 seconds ≈ 41 minutes
to process and given that the video consists out of 23.457 frames, the throughput is
less than 10 frames per second. Fortunately results on the scaled versions of the videos
turned out to have the same quality than on the largest video. Hence processing scaled
versions of the television programm will be suffient for the shot detection task in the
ViSTA-TV project.

74

7.2. Segmentation and Tagging of News shows

7.2. Segmentation and Tagging of News shows

7.2.1. Feature-based anchorshot detection using RapidMiner

As mentioned before, I decided to first of all extract a great amount of different features
from the news show dataset by using RapidMiner and its Image Mining Extension. A
full list of all extracted features can be found in the Appendix. In order to figure out,
which of these features are useful, I trained a decision tree learner on the labeled dataset
of three news shows. As described in chapter (see 3.2.2), decision tree learners work top-
down by splitting the examples at each step using a feature that splits the example set
best. Hence all features, that appear on one of the first levels of the inferred decision tree,
have a high power to distinguish between the classes. For this experiment, I decided to
focus on distinguishing between anchorshots and news report shots only. Thus the input
for the learner consists out of a subset of 58.987 examples derives from the ”Tagesschau”
shows of September 13th and 15th, and October 27th 2012. The example set includes
14.249 anchorshots and 44.738 news report shots. The inferred decision tree is shown in
figure 7.3.

frame:red:median

> 62.5

Anchorshot

≤ 62.5

Report frame:blue:standardDeviation

> 38.823 ≤ 38.823

Report
frame:blue:median

> 102.5 ≤ 102.5

Report

Figure 7.3.: Decision tree for the classification of anchorshots. The tree was inferred
using all news report shots and anchorshots from three ”Tagesschau” shows (Sep. 13th
and 15th, and Oct. 27th 2012). Parameters for Decision Tree operator: {criterion =
gain ration, minimal size for split = 4, minimal leaf size = 2, minimal gain = 0.1,
maximal depth = 4, confidence = 0.25, prepruning alternatives = 3}.

75

7. Experiments and Evaluation

Obviously, the median red value, the standard deviation of the blue values, and the
median blue value turn out to be features with good differentiation power between
anchorshots and news report shots. When inferring a larger and deeper decision tree,
further features like i.g. the normalized Y-coordinate of the center of mass of the red
color channel proof to be useful as well. The value of these features also get emphasized
when plotting the data. Figure 7.4 shows an example of such a plot. Obviously the
median blue value (Y-axis) and the normalized Y-coordinate of the center of mass of the
red color channel (X-axis) of anchorshots (within the given ”Tagesschau” dataset) are
always similar.

Figure 7.4.: The median blue value (Y-axis) and the normalized Y-coordinate of the
center of mass of the red color channel (X-axis) have turned out to be features with
good differentiation power between anchorshots (blue) and news report shots (red).
This figure shows the corresponding values for 5000 randomly draw examples for news
report shots and anchorshots from the ”Tagesschau” show of September 11th, 2012.
As the anchorshots are really similar and therefore overlaid each other, a small jitter
has been applied for a better illustration.

Beside decision trees many other learning algorithms can be used to determine a set of
features with good differentiation power. Support Vector Machines (SVM) assign weights
to each feature. The higher the assigned weight for one feature is, the better this feature
is to separate the classes. Hence I ran another experiment on the same data, using a
linear SVM to build a model for anchorshot classification. The top five ranked features
and their corresponding weights for two randomly drawn stratified samples of the data
are listed in table 7.4.

76

7.2. Segmentation and Tagging of News shows

feature name weight (ranking) weight (ranking)

in run1 in run2

frame:b and w:CenterOfMass:normalizedY 1.0 (1) 1.0 (1)

frame:red:standardDeviation 0.830 (2) 0.801 (3)

frame:blue:median 0.804 (3) -

frame:green:average 0.789 (4) -

frame:red:average 0.764 (5) -

frame:blue:average - 0.837 (2)

frame:green:CenterOfMass:normalizedX - 0.729 (4)

frame:green:average - 0.717 (5)

Table 7.4.: Normalized feature weights of a linear SVM for distinguishing between an-
chorshots and news report shots. The weights are calculated by using the Weights
by SVM operator, which is included in RapidMiner. The calculation is based on two
different randomly drawn stratified data sets, each including 10.000 examples.

Figure 7.5.: RapidMiner process for the fea-
ture selection using Naive Bayes.

Obviously, the optimal feature subset
varies from one run to the other. This dif-
ference in the top five ranked features is
based on the sampling of the input data.
In order to have reliable results, we are
interested in a more stable feature selec-
tion. Thus we have to find those features
that produce good results on different splits
of the data. Hence, after reading the la-
beled data in, we split the data into dif-
ferent sets, according to the split of an
X-validation. As we will need another X-
validation operator, this X-validation will
be referred to as the outer X-validation. On
each of the training data sets produced by
the outer X-validation, we select the opti-
mal features by using an evolutionary algo-
rithm. This evolutionary algorithms again
uses an (inner) X-validation to choose the
selected features. Based on the optimal fea-
ture subset, a model is built and evalu-
ated for each split of the original data. At
the end, the outer X-validation computes,
which features have been selected for most
splits of the data. The corresponding pro-
cess is shown in figure 7.5.

77

7. Experiments and Evaluation

The reason for choosing an evolutionary feature selection is quite easy. As mentioned
earlier, the idea was to extract as many features as possible by using RapidMiner IMMI.
Hence the feature selection is performed on a large feature set. As the search space for
a feature selection increases exponentially in the number of features (each feature can
either be chosen or not), it is almost impossible to try each combination. The exponential
feature selection operator tackles this problem.

Furthermore the evaluation of the selected features requires an inner X-validation. This
leads to an enormous computational complexity, as the learning algorithms have to be
trained and tested thousands of times. As training of an Support Vector Machine (SVM)
is way more complex then the training of a simple learner like Naive Bayes, I decided
to run the feature selection process, which is shown in figure 7.5, on Naive Bayes and
Decision Trees only. Training the SVM has unfortunately turned out to be impossible in
the available amount of time. Nevertheless, I expect these approaches to be a good first
measure for the importance of the extracted features.

In theory, an inner parameter optimization for the learner would be needed as well. Due
to the increasing computational complexity, I decided to rely on the default parame-
ters for each learner in this setting. A parameter optimization is performed in another
experiment, which is described later in this chapter.

Using Naive Bayes, ”frame:red:average” and ”frame:green:median” turned out to be the
best features, both being selected in 90% of all (ten) splits of the data, performed by
the outer X-validation. A full list of the top five ranked features is shown in table 7.5.

feature name weight

frame:red:average 0.9

frame:green:median 0.9

frame:red:median 0.8

frame:blue:median 0.8

frame:b a w:CenterOfMass:normalizedX 0.7

frame:blue:average 0.7

frame:green:average 0.7

frame:red:standardDeviation 0.7

Table 7.5.: Top features selected for Naive Bayes for distinguishing between anchorshots
and news report shots.

Of course the selected features do also strongly depend on the used learning algorithm.
Hence it suggests itself to run the experiment for different learning algorithms. Table 7.6
shows an overview of the top five ranked features for different learning algorithms. In
case more than one feature has the same weight than the fifth ranked feature, all equally
ranked features are listed.

78

7.2. Segmentation and Tagging of News shows

Learning Algorithm Selected Features (weights)

Naive Bayes frame:red:average (0.9), frame:green:median (0.9)

frame:red:median (0.8), frame:blue:median (0.8)

frame:b a w:CenterOfMass:normalizedX (0.7)

frame:blue:average (0.7), frame:green:average (0.7)

frame:red:standardDeviation (0.7)

Decision Tree frame:red:median (1.0), frame:blue:median (0.9)

frame:red:standardDeviation (0.9)

frame:grey:CenterOfMass:normalizedX (0.8)

frame:blue:average (0.7)

frame:blue:CenterOfMass:normalizedX (0.7)

frame:blue:CenterOfMass:normalizedY (0.7)

frame:green:CenterOfMass:normalizedX (0.7)

frame:red:CenterOfMass:normalizedY (0.7)

Table 7.6.: Top features selected by different learning algorithms for distinguishing be-
tween anchorshots and news report shots.

Beside a ranking of the features, the experiment also provides us with the accuracy of
the used learning algorithms with regard to the learning task of detection anchorshots.
The resulting accuracies are as follows: Naive Bayes scored 98.87% ± 0.19%. Decision
Trees had a perfect performance of 100%.

7.2.2. Real-time model-based anchorshot detection

In chapter 2.3.3 I have presented three types of anchorshot detection approaches: model
matching, face detection, and frame similarity. As mentioned, the frame similarity is
an unsupervised approach clustering all shot and taking the most dense cluster as the
anchorshot cluster. As said before, it is thus not easily transferable to stream data.
Moreover, relying on face detection is only reasonable if position and size of the face
are also taken into account. Hence the most promising and probably easiest approach
for anchorshot detection on video streams is matching each shot against a model, which
describes an anchorshot.

Applying a Decision Tree-Model

In the previous section 7.2.1, I have used RapidMiner to infer a decision tree that al-
lows as to classify shots into anchorshots and news report shot. Although this model
was learned offline, we can of course apply it online. This can be done by using the
ApplyDecisionTreeModel processor. The corresponding process is shown in figure 7.6.

79

7. Experiments and Evaluation

<container>

<stream id="video"
class="stream.io.MJpegImageStream"
url="http://kirmes.cs.uni-dortmund.de/video/20120911-scaled.raw" />

<process input="video" >
<CreateID key="frame:id" />

<stream.news.helper.AddNewsshowLabels />

<stream.image.features.AverageRGB />
<stream.image.features.MedianRGB />
<stream.image.features.StandardDeviationRGB />

<stream.news.learner.anchorshotdetection.ApplyDecisionTreeModel
predictionkey="@prediction:anchorshot" />

<stream.learner.evaluation.PredictionError label="@label:anchorshot" />

</process>
</container>

Figure 7.6.: Stream Framework process to detect anchorshots by applying the decision
tree inferred with RapidMiner.

The decision tree was inferred on the labeled ”Tagesschau” news videos from September
13th and 15th, and October 27th, 2012. Hence it makes sense to apply it on the ”Tagess-
chau” news video broadcasted on September 11th, 2012. Based on this news video, the
precision of the detection approach reaches 97% (recall = 85.8%). Unfortunately only
half of the real anchorshots really get labeled as anchorshots. This is of course not suf-
ficient, but can be improved by using a decision tree, which is deeper and hence takes
into account more features.

Prediction: true Prediction: false Total

Label: True 2.966 2.817 5.783

Label: False 529 17.149 17.678

Total 3.495 19.966 23.461

Table 7.7.: Resulting confusion matrix for the anchorshot detection experiment shown
in figure 7.6

Applying an Image-Model

But not only decision trees are reasonable models for representing anchorshots. Anchor-
shots can also be represented by images. I have considered two types of images.

Inferred anchorshot mask

Based on labeled data, we can evaluate, which pixels in anchorshot frames never change
at all. This includes all segments of anchorshot frames, which belong to the studio

80

7.2. Segmentation and Tagging of News shows

furnishings or the background. The advantage of this model is that it can be updated
anytime a new anchorshot is found by simply comparing the new anchorshot to the old
model and exclude pixels that differ. Figure 7.7 shows an example for the resulting mask.
Excluded pixels are represented as black pixels, whereas all colored pixels are pixels that
had this color (± a limit of tolerance) throughout all anchorshot frames seen so far. The
presented mask has been inferred automatically by using the AnchorshotModelCreator
processor, I have implemented for the streams framework.

Figure 7.7.: Automatically inferred model for anchorshots using the labeled data included
in the news dataset.

First anchorshot frame of the show

We know that each ”Tagesschau” show starts with an intro, directly followed by an
anchorshot. As the intro of each ”Tagesschau” show is always the same and covers
approximately 250 frames, we can assume, that the 300th frame of a ”Tagesschau” news
show is an anchorshot. Hence we can compare each following frame to the 300th frame
and compute the pixel-wise color difference. If at least 50% of the pixels are the same (±
a limit of tolerance), I classify the frame as an anchorshot frame. Surprisingly this easy
approach turns out to perform very well, resulting in an accuracy of 100%. As table 7.8
shows, there were no misclassifications at all when applying this on the ”Tagesschau”
news video from September 11th, 2012.

Prediction: true Prediction: false Total

Label: True 5.783 0 5.783

Label: False 0 17.678 17.678

Total 5.783 17.678 23.461

Table 7.8.: Resulting confusion matrix for the anchorshot detection experiment using
the pixel-wise comparision of each frame with the 300th frame for the show.

81

7. Experiments and Evaluation

Figure 7.8.: The number of frames for each shot within the ”Tagesschau” news dataset,
distinguishing between anchorshots and ’normal’ shots.

Computational time optimization

Of course, it is not necessary to perform the anchorshot detection for each single frame.
In fact it is sufficient to test one frame per shot only. This enables us to significantly speed
the anchorshot detection process up. Furthermore, when looking at the data included in
the news dataset, it turns out that anchorshots are significantly longer than news report
shots. Table 7.9 shows this aspect by comparing the average number of frames of an
anchorshot and the average number of frames of a news report shot.

Date # of average # of # of other average # of

anchorshots frames shots frames

11.09.2012 11 412 129 138

13.09.2012 12 520 121 144

15.09.2012 12 383 96 144

27.10.2012 10 508 105 146

Total 48 452 450 143

Table 7.9.: Number of frames in anchorshots vs. other shots in ”Tagesschau” news shows.

In fact all anchorshots in the news dataset cover more than 100 frames. Hence it is very
unlikely, that short shots, covering less than four seconds (≈ 100 frames), are anchorshots.
Figure 7.8) illustrates this fact. Utilizing this fact as well, the computational time of the
anchorshot detection could be improved by the factor 100.

82

7.3. Coffee capsule recognition

7.3. Coffee capsule recognition

The second use case is about detecting and recognizing coffee capsules in video data.
It splits in two task: the event detection and capsule recognition. Both problems are
tackled in this chapter.

7.3.1. Event Detection

Figure 5.11 has already given us an idea, how the frames that belong to one event
look like. Obviously the images of all frames, which do not belong to an event, do not
differ too much. But whenever a coffee capsule slips by, the color of the capsule changes
the image extremely. Hence I started my experiments by calculating the average color
values of all three RGB color channels for each image and plotted the data, using the
stream.plotter.Plotter processor, which comes with the streams framework. The
resulting plot is shown in figure 7.9.

Figure 7.9.: Average RGB values for capsule events.

The plot visualizes the average RGB color values for a sequence of 500 frames, taken
from one of the video files included in the ”coffee”-dataset. The sequence covers 9 events
of coffee capsules slipping down the slide. Obviously, the assumption that the average
RGB color values are a good indicator for recognizing events, is supported: as long as
no capsule slips by, the average RGB color values of the frames do not change a lot.
The average blue value (in this plot visualized by the red line) is somewhere around
110 ± 10, the average red and green color values are somewhere around 120 ± 10. As
soon as the frame shows a coffee capsule, the average color values for all three RGB

83

7. Experiments and Evaluation

channels decrease significantly. In this sequence they all drop clearly below 90. Hence
my first approach for detecting events in the ”coffee”-dataset bases on the extraction of
the average color values for all RGB color channels. Based on this, a simple classifier
tests, whether the value for one of the color channels dips more than a fixed threshold t,
or not. In case it does, the frame is classified as ”belongs to an event”. The corresponding
configuration file for running this with the streams framework is shown in figure 7.10.

<container>

<stream id="video"
class="stream.io.MJpegImageStream"
url="http://mattis.special-operations.de/video/kapseln.raw" />

<process input="video" >
<CreateID key="frame:id" />
<Skip condition="\%{data.frame:id} @lt 30" />

<stream.image.DisplayImage image="data" />

<stream.coffee.helper.AddCoffeeLabels
file="file:///C:/ (....) /data/kapseln/kapseln.csv" />

<stream.image.features.AverageRGB />

<stream.coffee.eventdetection.ThresholdEventDetection
predictionkey="@prediction:event" attribute="frame:red:average"
standardvalue="120" t="15" />

<stream.plotter.Plotter history="500" keepOpen="true"
keys="frame:red:average,frame:blue:average,frame:green:average" />

<stream.coffee.eventdetection.EventDetectionEvaluation />
</process>

</container>

Figure 7.10.: Streams Framework process to detect events in one of the coffee capsule
video file by applying the simple classifier using a threshold.

As already mentioned in chapter 5.2.2, an event ranges over more than one frame. Nev-
ertheless it does not matter, if the event detection algorithms does not label all of the
frames, belonging to the event, as such. In fact it is sufficient, when at least one of the
frames is detected. Hence I needed a new evaluation processor to determine the quality
of the classifier. This new processor is named stream.coffee.eventdetection.
EventDetectionEvaluation processor and further described in the appendix.

Running the experiment, it turns out that this easy classifier is sufficient to solve the
learning task. On both video data files included in the dataset, it detects all events,
without ever proclaiming an event, where no event is. Hence, precision as well as recall
for this classifier are 100% on the given data. Of course the ”standardvalue” and the
”threshold” used by the classifier will have to be adjusted to the data, produced by a
web cam, which is installed on the coffee maker directly.

84

7.3. Coffee capsule recognition

7.3.2. Capsule Recognition

After having detected the events, the next task is to classify the color of the coffee cap-
sules correctly. When zooming in the dips, which can be observed as soon as a coffee
capsule slips by, I noticed that the dips look slightly different based on the color the
coffee capsule had. Figure 7.11 illustrates this. Hence I decided to determine the min-
imal observed color value for each color channel during one event. Afterwards I stored
these values into a CSV file, including the real label of the event. I did that for both
video sequences included in the dataset. Thus I got 72 examples, each containing three
numerical values plus a label. This is then taken as the input for RapidMiner.

Figure 7.11.: Average RGB values for different colored coffee capsules. This plot is just
a zoomed-in view of the plot, shown in figure 7.9.

Graphical analysis of the data

When plotting the data by choosing two of the three color channels, the minimal RGB
values have been evaluated for, and indicating the label by the color of the points, it
turns out, that the minimal observed color values for the three color channels during
one event really seem to be useful features with good differentiation power. Figure 7.12
shows two of the three possible plots. Obviously yellow, red, and green capsules are best
recognizable, as they form the most dense clusters in the plots.

As we are having labeled data and the provided features seem to be useful, we can now
start to train and evaluate possible models.

85

7. Experiments and Evaluation

(a) red and green channel (b) blue and green channel

Figure 7.12.: Min RGB values for different colored coffee capsules.

Inferring a model and evaluation

Figure 7.13.: RapidMiner process for infer-
ring and testing a classifier on the ex-
tracted dataset.

Based on all 72 events, included in the
two datasets, I now try to develop a model
by using different machine learning algo-
rithms. The RapidMiner process for infer-
ring and testing a model is shown in figure
7.13. It consists of two Read CVS opera-
tors, which read in the data produced by
the streams framework. After joining the
data, it gets normalized to a range from
0 to 1. Afterwards it is splitting into ten
sets of training and testing data by us-
ing a X-validation. The model is inferred
on nine of the data sets, whilst one set is
held back for testing. The parameters of
the learner are optimized by using an evo-
lutionary parameter optimization.
As the full data set only covers 72 ex-
amples of coffee capsules events, the over-
all process including X-validation and pa-
rameter optimization can be run in a
reasonable amount of time for different
machine learning algorithms. The best
performance was obtained by a LibSVM
(C-SVC, linear kernel, C=6233.8, epsilon
0.0010), classifying the data with an accu-
racy of 86.25 % ± 8.53 %. The resulting
confusion matrix is shown in figure 7.10.

86

7.3. Coffee capsule recognition

Pred: Pred: Pred: Pred: Pred: Pred: class

red yellow blue green black purple recall

Label: red 12 0 0 0 0 0 100 %

Label: yellow 0 12 0 0 0 0 100 %

Label: blue 0 0 12 0 0 0 100 %

Label: green 0 0 0 11 0 1 91.7 %

Label: black 0 0 0 0 10 2 83.3 %

Label: purple 0 0 0 0 5 7 58.3 %

class precision 100 % 100 % 100% 100 % 66.7 % 70.0 %

Table 7.10.: Confusion matrix for the capsule color detection using LibSVM.

Beside the LibSVM, I have tested other learning algorithms. The classification results
can be found in table 7.11.

Obviously the detection of certain capsules is quite easy. Red, yellow and blue capsules
get recognized easily, the predictions for green are sufficient as well. Only the black and
the purple capsules can hardly be distinguished. I believe, that the reason for this is the
poor quality and the bad light circumstances of the video data. When pointing a spot
light on the capsules, at the time they are filmed, the classification will surely become
better. Nevertheless an accuracy of more than 85% is quite good in a setting, with six
equally distributed classes. Random guessing would after all result in less than 20%
accuracy.

algorithm accuracy optimal parameters

k-NN 79.46 % ± 15.18 % k=1

Naive Bayes 76.86 % ± 11.52 %

Neural Net 76.43 % ± 10.97 % training cycles = 63, learn-
ing rate = 0.863, momen-
tum = 0.564

Decision Tree 63.39 % ± 16.39 % criterion = gain ratio, min-
imal gain = 0.05, minimal
leaf size = 1, minimal size
for split = 3

Table 7.11.: Results for the coffee capsule recognition using different machine learning
algorithms.

87

7. Experiments and Evaluation

88

8

Outlook and Conclusion

The experiments have shown that the implemented methods for video segmentation and
tagging perform well on the presented datasets. Nevertheless there is a lot that could be
done in future to obtain good results on random video data.

Outlook

The problem of detecting shot boundaries can be tackled by detecting cuts and gradual
transitions. The presented approaches are capable to handle almost any kind of video
data. Minor errors due to slow gradual transitions, which can hardly be detected, are
bearable, as cuts are by far the more common type of shot transitions. Nevertheless
”it reveals that the identification of cuts has been somewhat successfully tackled, while
the detection of gradual transitions still remains a difficult problem” [Yuan et al., 2007],
which should be addressed in future. Furthermore, the experiments have shown that
it would be useful to be able to distinguish between cuts and noises like photographic
flashlights.

More data

Segment detection is far more difficult on random video data. It turned out that the
problem can be tackled by taking into account prior knowledge about the type of video.
That way, I have successfully been able to segment the ”Tagesschau” news videos in-
cluded in the ”news” dataset, by identifying sets of features with good differentiation
power. Although the set of valuable features will surely vary from one news show to the
other, the method of segmenting news by detecting anchorshots can be done for other
news formats as well, using the same techniques. Similar approaches do also exist for
various other types of video data. Nevertheless, there is still work to be done in order to
obtain a good automatic segmentation and tagging on random video data. This problem
will hopefully be tackled successfully during the next steps of the ViSTA-TV project.

89

8. Outlook and Conclusion

More features

Beside considering a wider field of video content, it would be helpful to extract even
more features from the incoming video data. By extracting features directly from MPEG
compressed video data, things could further been fastened up. Additionally some scien-
tists have already proven that MPEG features can be useful to detect video segments
([Lee et al., 2000]). Furthermore it turned out that including audio data, as long as it
comes along with the video data, can be useful as well. Daxenberger’s approach for audio
segmentation [Daxenberger, 2007] shows, how good segmentation on audio data can be
solely. Using multi-modal approaches, as described in chapter 2.5.1, will even improve
the segmentation quality. Finally, EPG data would also deliver a bunch of new and
interesting features.

When the amount of extractable features rises, the selection of valuable features has to
be repeated as well. Beside focusing on features that get selected by certain machine
learning algorithms, a direct feature selection is also possible using the RapidMiner
feature selection extension by Schowe [Schowe, 2011]. This could also be tried out in
future.

More possible tags

Last but not least, the presented use cases do not at all cover all possible tags that would
be useful within the ViSTA-TV project. As mentioned in chapter 2.4, a further emphasis
should be put on the extraction of more tags. Good examples are ”advertise” vs. ”no
advertise”, ”photographic flashlight”, or the names of actors.

Conclusion

This work shows that a huge amount of reasonable features for video segmentation and
tagging can be extracted on live data in real-time. By applying the extracted features
on two use cases, I have shown that an adequate segmentation based on these features
is possible. Furthermore, the presented process for feature extraction and selection can
easily be adapted to new features. The streams framework hereby helps to implement
new processors, which are capable to extract features in a real-time stream setting.
Examples for more features or tags, which at the end are features as well, are mentioned
above and described in the second chapter of this thesis.

90

Bibliography

[itu, 2002] (2002). ITU-R BT.709: Parameter values for the HDTV standards for pro-
duction and international programme exchange. International Telecommunication
Union.

[Aggarwal et al., 2003] Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. (2003). A
framework for clustering evolving data streams. In Proceedings of the 29th Interna-
tional Conference on Very Large Data Bases (VLDB ’03), volume 29 of VLDB ’03,
pages 81–92. VLDB Endowment.

[Ahanger and Little, 1996] Ahanger, G. and Little, T. D. C. (1996). A survey of tech-
nologies for parsing and indexing digital video. Journal of visual Communication and
image representation, 7:28–43.

[Aigrain and Joly, 1994] Aigrain, P. and Joly, P. (1994). The automatic real-time analy-
sis of film editing and transition effects and its applications. Computers and Graphics,
18(1):93 – 103.

[Aigrain et al., 1997] Aigrain, P., Joly, P., and Longueville, V. (1997). Medium
knowledge-based macro-segmentation of video into sequences. In Maybury, M. T.,
editor, Intelligent multimedia information retrieval, chapter Medium knowledge-based
macro-segmentation of video into sequences, pages 159–173. MIT Press, Cambridge,
MA, USA.

[Alvarez et al., 1992] Alvarez, L., Lions, P.-L., and Morel, J.-M. (1992). Image selective
smoothing and edge detection by nonlinear diffusion. ii. SIAM Journal on Numerical
Analysis, 29(3):845–866.

[Arasu and Manku, 2004] Arasu, A. and Manku, G. S. (2004). Approximate counts and
quantiles over sliding windows. In Proceedings of the 23rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of database systems, PODS ’04, pages 286–296,
New York, NY, USA. ACM.

[Arman et al., 1993] Arman, F., Hsu, A., and yee Chiu, M. (1993). Feature management
for large video databases. In Proceedings of SPIE Storage and Retrieval for Image and
Video Databases, pages 2–12.

[Avrithis et al., 2000] Avrithis, Y., Tsapatsoulis, N., and Kollias, S. (2000). Broadcast
news parsing using visual cues: A robust face detection approach. In Proceedings of

91

Bibliography

IEEE International Conference on Multimedia and Expo (ICME 2000), New York
City, NY, USA.

[Babaguchi et al., 2004] Babaguchi, N., Kawai, Y., Ogura, T., and Kitahashi, T. (2004).
Personalized abstraction of broadcasted american football video by highlight selection.
IEEE Transactions on Multimedia, 6(4):575 – 586.

[Balke et al., 2010] Balke, M., Beckers, T., Fernys, K., Haak, D., Homburg, H., Kalabis,
L., Kokott, M., Kulmann, B., Müller, K., Przyluczky, C., Schulte, M., Skirzynski, M.,
Bockermann, C., and Schowe, B. (2010). Endbericht Projektgruppe 542: Stream Min-
ing for Intrusion Detection in Distributed Systems. Technical report, TU Dortmund
University. Previous number = SIDL-WP-1999-0120.

[Bertini et al., 2001] Bertini, M., Del Bimbo, A., and Pala, P. (2001). Content-based
indexing and retrieval of tv news. Pattern Recognition Letters, 22(5):503–516.

[Bhabatosh Chanda, 2011] Bhabatosh Chanda, D. (2011). Digital Image processing and
analysis. PHI Learning Private Limited.

[Bockermann and Blom, 2012a] Bockermann, C. and Blom, H. (2012a). Processing Data
Streams with the RapidMiner Streams-Plugin. In Proceedings of the 3rd RapidMiner
Community Meeting and Conference.

[Bockermann and Blom, 2012b] Bockermann, C. and Blom, H. (2012b). The streams
framework. Technical Report 5, TU Dortmund University.

[Bordwell and Thompson, 2012] Bordwell, D. and Thompson, K. (2012). Film Art: An
Introduction. Film Art: An Introduction. McGraw-Hill College.

[Boreczky and Rowe, 1996] Boreczky, J. S. and Rowe, L. A. (1996). Comparison of video
shot boundary detection techniques. In Journal of Electronic Imaging, volume 5, pages
122 – 128.

[Breiman et al., 1984] Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Clas-
sification and Regression Trees. Wadsworth and Brooks, Monterey, CA.

[Browne et al., 1999] Browne, P., Smeaton, A. F., Murphy, N., O’Connor, N., Marlow,
S., and Berrut, C. (1999). Evaluating and combining digital video shot boundary
detection algorithms. In In Processing of the Irish Machine Vision and Image Con-
ference (IMVIP 2000).

[Brunelli et al., 1996] Brunelli, R., Mich, O., and Modena, C. M. (1996). A survey on
video indexing. Journal of Visual Communications and Image Representation, 10:78–
112.

[Burger and Burge, 2007] Burger, W. and Burge, M. (2007). Digital Image Processing:
An Algorithmic Introduction Using Java. Texts in Computer Science. Springer.

92

Bibliography

[Burget et al., 2011] Burget, R., Cika, P., Zukal, M., and Masek, J. (2011). Automated
localization of temporomandibular joint disc in mri images. In Proceedings of the 34th
International Conference on Telecommunications and Signal Processing (TSP 2011),
pages 413 –416.

[Burget et al., 2010] Burget, R., Karásek, J., Smékal, Z., Uher, V., and Dostál, O. (2010).
Rapidminer image processing extension: A platform for collaborative research. The
33rd International Conference on Telecommunication and Signal Processing, TSP,
2010:114–118.

[Chang et al., 2004] Chang, S.-L., Chen, L.-S., Chung, Y.-C., and Chen, S.-W. (2004).
Automatic license plate recognition. IEEE Transactions on Intelligent Transportation
Systems, 5(1):42 – 53.

[Charikar et al., 2004] Charikar, M., Chen, K., and Farach-Colton, M. (2004). Finding
frequent items in data streams. Theoretical Computer Science, 312(1):3–15.

[Chen and Tu, 2007] Chen, Y. and Tu, L. (2007). Density-based clustering for real-time
stream data. In Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’07, pages 133–142, New York, NY,
USA. ACM.

[Cisco, 2012] Cisco (2012). Visual networking index: Forecast 2011-2016.

[Cotsaces et al., 2006] Cotsaces, C., Nikolaidis, N., and Pitas, I. (2006). Video shot
detection and condensed representation. a review. Signal Processing Magazine, IEEE,
23(2):28 –37.

[Dailianas et al., 1995] Dailianas, A., Allen, R. B., and England, P. (1995). Comparison
of automatic video segmentation algorithms. In SPIE Photonics West, pages 2–16.

[Daxenberger, 2007] Daxenberger, A. (2007). Datengestützte Segmentierung von Au-
diodaten.

[De Santo et al., 2007] De Santo, M., Percannella, G., Sansone, C., and Vento, M.
(2007). Segmentation of news videos based on audio-video information. Pattern
Analysis & Applications, 10:135–145. 10.1007/s10044-006-0055-5.

[Domingos and Hulten, 2000] Domingos, P. and Hulten, G. (2000). Mining high-speed
data streams. In Proceedings of the 6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’00, pages 71–80, New York, NY, USA.
ACM.

[Dries and Rückert, 2009] Dries, A. and Rückert, U. (2009). Adaptive concept drift
detection. Stat. Anal. Data Min., 2(5):311–327.

[Farabet et al., 2011] Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E.,
and LeCun, Y. (2011). NeuFlow: A runtime reconfigurable dataflow processor for
vision. In Proceedings of the 5th IEEE Workshop on Embedded Computer Vision.

93

Bibliography

[Fayyad et al., 1996] Fayyad, U., Piatetsky-shapiro, G., Smyth, P., and Widener, T.
(1996). The kdd process for extracting useful knowledge from volumes of data. Com-
munications of the ACM, 39:27–34.

[Gaber et al., 2005] Gaber, M. M., Zaslavsky, A., and Krishnaswamy, S. (2005). Mining
data streams: a review. SIGMOD Record, 34(2):18–26.

[Gao and Tang, 2002] Gao, X. and Tang, X. (2002). Unsupervised video-shot segmen-
tation and model-free anchorperson detection for news video story parsing. IEEE
Transactions on Circuits and Systems for Video Technology, 12(9):765 – 776.

[Gargi et al., 2000] Gargi, U., Kasturi, R., and Strayer, S. (2000). Performance char-
acterization of video-shot-change detection methods. IEEE Transactions on Circuits
and Systems for Video Technology, 10(1):1 –13.

[Gunsel et al., 1996] Gunsel, B., Ferman, A. M., and Tekalp, A. M. (1996). Video in-
dexing through integration of syntactic and semantic features. In Proceedings of the
3rd IEEE Workshop on Applications of Computer Vision (WACV ’96), WACV ’96,
pages 90–, Washington, DC, USA. IEEE Computer Society.

[Han and Kamber, 2006] Han, J. and Kamber, M. (2006). Data Mining: Concepts and
Techniques. The Morgan Kaufmann Series in Data Management Systems Series. El-
sevier Science & Technology.

[Hanjalic, 2002] Hanjalic, A. (2002). Shot-boundary detection: unraveled and resolved?
IEEE Transactions on Circuits and Systems for Video Technology, 12(2):90 –105.

[Hanjalic et al., 1999] Hanjalic, A., Lagendijk, R., and Biemond, J. (1999). Semi-
automatic news analysis, indexing, and classification system based on topics prese-
lection. In Proceedings of SPIE: Electronic Imaging: Storage and Retrieval of Image
and Video Databases.

[Hastie et al., 2001] Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements
of Statistical Learning. Springer Series in Statistics. Springer New York Inc., New
York, NY, USA.

[Heng and Ngan, 2003] Heng, W. J. and Ngan, K. N. (2003). High accuracy flashlight
scene determination for shot boundary detection. Signal Processing: Image Commu-
nication, 18(3):203 – 219.

[Ide et al., 1998] Ide, I., Yamamoto, K., and Tanaka, H. (1998). Automatic video index-
ing based on shot classification. In Proceedings of the 1st International Conference on
Advanced Multimedia Content, pages 87–102. Springer-Verlag.

[Kasturi and Jain, 1991] Kasturi, R. and Jain, R. (1991). Computer Vision: Principles.
IEEE catalog. IEEE Computer Society Press.

[Koprinska and Carrato, 2001] Koprinska, I. and Carrato, S. (2001). Temporal video
segmentation: A survey captions on mpeg compressed video. DSignal Processing Image
Communication, pages 477–500.

94

Bibliography

[Kraaij et al., 2005] Kraaij, W., Smeaton, A. F., Over, P., and Arlandis, J. (2005).
Trecvid 2004 - an overview. In Online Proceedings of TREC Video Retrieval Evalua-
tion.

[Lee et al., 2000] Lee, S.-W., Kim, Y.-M., and Choi, S. W. (2000). Fast scene change
detection using direct feature extraction from mpeg compressed videos. IEEE Trans-
actions on Multimedia, 2(4):240–254.

[Lefevre et al., 2003] Lefevre, S., Holler, J., and Vincent, N. (2003). A review of real-time
segmentation of uncompressed video sequences for content-based search and retrieval.
Real-Time Imaging, 9(1):73 – 98.

[Li and Ngan, 2011] Li, H. and Ngan, K. (2011). Image/video segmentation: Current
status, trends, and challenges. In Ngan, K. N. and Li, H., editors, Video Segmentation
and Its Applications, pages 1–23. Springer New York.

[Lienhart, 1999] Lienhart, R. (1999). Comparison of automatic shot boundary detection
algorithms. In Proceedings of SPIE, volume 3656, pages 290–301.

[Lienhart et al., 1997a] Lienhart, R., Kuhmunch, C., and Effelsberg, W. (1997a). On
the detection and recognition of television commercials. In Proceedings of the IEEE
International Conference on Multimedia Computing and Systems ’97, pages 509 –516.

[Lienhart et al., 1997b] Lienhart, R., Pfeiffer, S., and Effelsberg, W. (1997b). Video
abstracting. Commun. ACM, 40(12):54–62.

[Liu et al., 1998] Liu, Z., Wang, Y., and Chen, T. (1998). Audio feature extraction
and analysis for scene segmentation and classification. The Journal of VLSI Signal
Processing, 20:61–79.

[MacQueen, 1967] MacQueen, J. B. (1967). Some methods for classification and analysis
of multivariate observations. In Cam, L. M. L. and Neyman, J., editors, Proceedings
of the 5th Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 281–297. University of California Press.

[Manku and Motwani, 2002] Manku, G. S. and Motwani, R. (2002). Approximate fre-
quency counts over data streams. In Proceedings of the 28th International Conference
on Very Large Data Bases (VLDB 2002), VLDB ’02, pages 346–357. VLDB Endow-
ment.

[McGee et al., 2005] McGee, T., Sengupta, R., and Hedrick, K. (2005). Obstacle detec-
tion for small autonomous aircraft using sky segmentation. In Proceedings of the 2005
IEEE International Conference on Robotics and Automation (ICRA 2005), pages 4679
– 4684.

[Merlino et al., 1997] Merlino, A., Morey, D., and Maybury, M. (1997). Broadcast news
navigation using story segmentation. In Proceedings of the 5th ACM International
Conference on Multimedia, pages 381–391.

95

Bibliography

[Mierswa and Morik, 2005] Mierswa, I. and Morik, K. (2005). Automatic feature extrac-
tion for classifying audio data. Machine Learning Journal, 58:127–149.

[Mierswa et al., 2006] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and Euler,
T. (2006). Yale: Rapid prototyping for complex data mining tasks. In Ungar, L.,
Craven, M., Gunopulos, D., and Eliassi-Rad, T., editors, Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’06), pages 935–940, New York, NY, USA. ACM.

[Mitchell, 1997] Mitchell, T. (1997). Machine Learning. McGraw-Hill, New York.

[Nagasaka and Tanaka, 1992] Nagasaka, A. and Tanaka, Y. (1992). Automatic video
indexing and full-video search for object appearances. In Proceedings of the IFIP
TC2/WG 2.6 Second Working Conference on Visual Database Systems, pages 113–
127, Amsterdam, The Netherlands, The Netherlands. North-Holland Publishing Co.

[O’Callaghan et al., 2002] O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., and
Motwani, R. (2002). Streaming-data algorithms for high-quality clustering. In Pro-
ceedings of the 18th International Conference on Data Engineering, pages 685 –694.

[onlinekosten.de GmbH, 2012] onlinekosten.de GmbH (2012). Zattoo wächst auf 8 Mil-
lionen Nutzer. zuletzt abgerufen am 20.06.2012.

[Pantos and May, 2009] Pantos, E. R. and May, W. (2009). Internet draft - http live
streaming.

[Patel and Sethi, 1996] Patel, N. and Sethi, I. (1996). Compressed video processing for
cut detection. IEEE Proceedings on Vision, Image and Signal Processing, 143(5):315
–323.

[Pomerleau, 1993] Pomerleau, D. A. (1993). Neural Network Perception for Mobile Robot
Guidance. Kluwer Academic Publishers, Norwell, MA, USA.

[Quinlan, 1986] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning
Journal, 1(1):81–106.

[Quénot et al., 2003] Quénot, G., Moraru, D., and Besacier, L. (2003). Clips at trecvid:
Shot boundary detection and feature detection. In Proceedings of TRECVID 2003
Workshop Notebook Papers, pages 35–40.

[Rafael C Gonzalez and Woods, 2008] Rafael C Gonzalez, P. and Woods, R. (2008). Dig-
ital Image Processing, Third Edition. Prentice Hall.

[Rahman and Kehtarnavaz, 2008] Rahman, M. and Kehtarnavaz, N. (2008). Real-time
face-priority auto focus for digital and cell-phone cameras. IEEE Transactions on
Consumer Electronics, 54(4).

[Richardson, 2003] Richardson, I. E. G. (2003). H.264 and MPEG-4 Video Compression:
Video Coding for Next-generation Multimedia. John Wiley & Sons, Inc., New York,
NY, USA.

96

Bibliography

[Santo et al., 2004] Santo, M., Percannella, G., Sansone, C., and Vento, M. (2004). Com-
bining experts for anchorperson shot detection in news videos. Pattern Analysis and
Applications, 7:447–460.

[Sato et al., 1999] Sato, T., Kanade, T., Hughes, E. K., Smith, M. A., and Satoh, S.
(1999). Video ocr: indexing digital news libraries by recognition of superimposed
captions. Multimedia Systems, 7:385–395.

[Schowe, 2011] Schowe, B. (2011). Feature Selection for high-dimensional data in Rapid-
Miner. In Proceedings of the 2nd RapidMiner Community Meeting And Conference
(RCOMM 2011). Shaker Verlag.

[Shearer, 2000] Shearer, C. (2000). The crisp-dm model: The new blueprint for data
mining. Journal of Data Warehousing, 5(4).

[Smeaton et al., 2006] Smeaton, A. F., Over, P., and Kraaij, W. (2006). Evaluation
campaigns and trecvid. In Proceedings of the 8th ACM International Workshop on
Multimedia Information Retrieval (MIR ’06), pages 321–330, New York, NY, USA.
ACM Press.

[Smoliar and Zhang, 1994] Smoliar, S. W. and Zhang, H. (1994). Content-based video
indexing and retrieval. IEEE MultiMedia, 1(2):62–72.

[Snoek and Worring, 2003a] Snoek, C. G. and Worring, M. (2003a). Time interval max-
imum entropy based event indexing in soccer video. In IEEE International Conference
on Multimedia & Expo (ICME 2013), page pp.

[Snoek and Worring, 2003b] Snoek, C. G. M. and Worring, M. (2003b). Goalgle: A
soccer video search engine. In IEEE International Conference on Multimedia & Expo
(ICME 2013).

[Snoek and Worring, 2005] Snoek, C. G. M. and Worring, M. (2005). Multimodal video
indexing: A review of the state-of-the-art. Multimedia Tools and Applications, 25(1):5–
35.

[Stringa and Regazzoni, 2000] Stringa, E. and Regazzoni, C. (2000). Real-time video-
shot detection for scene surveillance applications. IEEE Transactions on Image Pro-
cessing, 9(1):69–79.

[Strutz and Strutz, 2009] Strutz, T. and Strutz, T. (2009). Grundlegende verfahren zur
bildsequenzkompression. In Bilddatenkompression, pages 261–272. Vieweg+Teubner.

[Sundaram and Chang, 2000] Sundaram, H. and Chang, S.-F. (2000). Video scene seg-
mentation using video and audio features. In Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME 2000), volume 2, pages 1145 –1148.

[Swain and Ballard, 1991] Swain, M. J. and Ballard, D. H. (1991). Color indexing. In-
ternational Journal of Computer Vision (IJCV), 7(1):11–32.

97

Bibliography

[Swanberg et al., 1993] Swanberg, D., Shu, C.-F., and Jain, R. C. (1993). Knowledge-
guided parsing in video databases. Proceedings of SPIE Storage and Retrieval for
Image and Video Databases, pages 13–24.

[Takimoto et al., 2006] Takimoto, M., Satoh, S., and Sakauchi, M. (2006). Identification
and detection of the same scene based on flash light patterns. In Proceedings of the
IEEE International Conference on Multimedia and Expo (ICME 2006), pages 9 –12.

[Tonomura and Abe, 1989] Tonomura, Y. and Abe, S. (1989). Content oriented visual
interface using video icons for visual database systems. In IEEE Workshop on Visual
Languages, 1989, pages 68 –73.

[Turk et al., 1987] Turk, M., Morgenthaler, D., Gremban, K., and Marra, M. (1987).
Video road-following for the autonomous land vehicle. In Proceedings of the 1987
IEEE International Conference on Robotics and Automation, volume 4, pages 273–
280.

[Uher and Burget, 2012] Uher, V. and Burget, R. (2012). Automatic 3d segmentation
of human brain images using data-mining techniques. In Proceedings of the 35th
International Conference on Telecommunications and Signal Processing (TSP 2012),
pages 578 –580.

[Vaiapury and Izquierdo, 2010] Vaiapury, K. and Izquierdo, E. (2010). An o-fdp frame-
work in 3d model based reconstruction. In APWeb, pages 424–429.

[Wang et al., 2000] Wang, Y., Liu, Z., and Huang, J.-C. (2000). Multimedia content
analysis-using both audio and visual clues. IEEE Signal Processing Magazine, 17(6):12
–36.

[Wirth, 2000] Wirth, R. (2000). Crisp-dm: Towards a standard process model for data
mining. In Proceedings of the 4th International Conference on the Practical Application
of Knowledge Discovery and Data Mining, pages 29–39.

[Xiong et al., 1995] Xiong, W., mong Lee, J. C., and gang Shen, D. (1995). Net com-
parison: An adaptive and effective method for scene change detection.

[Xu et al., 2001] Xu, P., Xie, L., Chang, S.-F., Divakaran, A., Vetro, A., and Sun, H.
(2001). Algorithms and system for segmentation and structure analysis in soccer
video. In Proceedings of the IEEE International Conference on Multimedia and Expo
(ICME 2001), pages 721 –724.

[YouTube, 2012] YouTube (2012). Statistics.

[Yuan et al., 2007] Yuan, J., Wang, H., Xiao, L., Zheng, W., Li, J., Lin, F., and Zhang,
B. (2007). A formal study of shot boundary detection. In IEEE Transaction on Circuit
and Systems For Video Technology, pages 168–186.

[Zabih et al., 1995] Zabih, R., Miller, J., and Mai, K. (1995). A feature-based algorithm
for detecting and classifying scene breaks. In Proceedings of the 3rd ACM International
Conference on Multimedia, MULTIMEDIA ’95, pages 189–200, New York, NY, USA.
ACM.

98

Bibliography

[Zattoo, 2012] Zattoo (2012). Zattoo erreichte während der Europameisterschaft in
Deutschland mehr als 1 Million Nutzer. zuletzt abgerufen am 05.01.2013.

[Zeadally et al., 2011] Zeadally, S., Moustafa, H., and Siddiqui, F. (2011). Internet pro-
tocol television (IPTV): Architecture, trends, and challenges. IEEE Systems Journal,
5(4):518 –527.

[Zhang et al., 1993] Zhang, H., Kankanhalli, A., and Smoliar, S. W. (1993). Automatic
partitioning of full-motion video. Multimedia Systems, 1(1):10–28.

[Zhang et al., 1995a] Zhang, H., Low, C., and Smoliar, S. W. (1995a). Video parsing
and browsing using compressed data. Multimedia Tools and Applications, 1:89–111.

[Zhang et al., 1995b] Zhang, H., Tan, S. Y., Smoliar, S. W., and Yihong, G. (1995b).
Automatic parsing and indexing of news video. Multimedia Systems, 2:256–266.
10.1007/BF01225243.

[Zhang et al., 1995c] Zhang, H. J., Low, C. Y., Smoliar, S. W., and Wu, J. H. (1995c).
Video parsing, retrieval and browsing: an integrated and content-based solution. In
Proceedings of the 3rd ACM international Conference on Multimedia, MULTIMEDIA
’95, pages 15–24, New York, NY, USA. ACM.

[Zhang et al., 1996] Zhang, T., Ramakrishnan, R., and Livny, M. (1996). Birch: an
efficient data clustering method for very large databases. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, SIGMOD ’96,
pages 103–114, New York, NY, USA. ACM.

[Zhong et al., 2004] Zhong, H., Shi, J., and Visontai, M. (2004). Detecting unusual
activity in video. In Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2004), volume 2, pages II–819 –
II–826 Vol.2.

99

A. The ”news”-dataset

This table shows an example for the labels for one ”Tagesschau” news show, recorded
on September 11th, 2012. The frame numbers indicate the first frame of each shot. The
transitions distinguish between cuts (C) and gradual transitions (GT). If the shot does
belong to something else than the ”news report” class, the class is explicitly named in
the last column. ”AS” hereby is a short form for ”anchorshot”.

frame transition label

35 GT Intro

257 GT Intro

258 C AS

1209 C

1410 C

1506 C

1590 C

1707 C

1782 C

1857 C

1920 C

2153 C

2310 C

2392 C

2637 C

2851 C

3010 C

3200 C

3358 C

3472 C

3940 C AS

100

4402 C Diagrams

4757 GT

4928 C

5015 C

5144 C

5395 C

5527 C

5638 C

5899 C

6013 C

6096 C

6155 C

6565 C

6620 C

6680 C

6766 C

7121 C

7256 C

7369 C AS

8066 C

8238 C

8294 C

8363 C

8423 C

8556 C

8642 C

8814 C

8990 C

9222 C

9297 C

9366 C

9439 C

9514 C

9592 C

9688 C

9945 C

101

A. The ”news”-dataset

10007 C

10046 C

10500 C AS

11655 C

11717 C

11795 C

11878 C

11965 C

12140 C

12377 C

12588 C

12677 C

12758 C

12928 C

12984 C

13060 C

13196 C

13360 C

13708 C

13885 C

13950 C

14007 C AS

14337 C

14607 C

14657 C

14810 C AS

15283 C

15381 GT

15495 GT

15632 GT

15740 GT

15876 GT

15953 C

16091 C

16209 C

16304 C

102

16421 C

16457 C AS

17299 C

17435 C

17491 C

17557 C

17622 C

17693 C

17769 GT

17898 C

17964 C

18011 C

18180 C

18237 C

18313 C

18387 C

18445 C

18484 C

18523 C

18610 C

19001 C

19068 C

19154 C

19288 C

19469 GT

19555 C AS

19782 C

20069 C

20125 C

20239 C

20351 C

20424 C

20430 C AS

20628 C

20691 C

20810 C

103

A. The ”news”-dataset

20864 C

20916 C

20986 C

21048 C

21117 C

21174 C

21227 C

21313 C AS

21458 C Weather

23020 C AS

23323 C Extro

104

B. The ”coffee”-dataset

This table shows the labels for one of the coffee capsule videos. Each row contains one
event, given by the frame number the event starts with (=number of the frame, on which
the capsule can first be seen) plus the correct color label of the capsule.

frame label

99 red

178 yellow

242 blue

294 green

350 black

416 purple

482 red

534 yellow

581 blue

639 green

696 black

757 purple

807 red

875 yellow

923 blue

981 green

1041 black

1098 purple

1147 red

1199 yellow

1255 blue

1304 green

1364 black

105

B. The ”coffee”-dataset

1416 purple

1476 red

1527 yellow

1577 blue

1632 green

1685 black

1745 purple

1801 red

1854 yellow

1900 blue

1951 green

2006 black

2060 purple

Figure .1.: Coffee capsules sorted in the order they were placed on the slide.

106

C. Features extracted with
RapidMiner IMMI

frame : color : peakcolor

frame : color : peakcolor : relativecount

frame : color : eginess

frame : color : centerofmass : normalizedx

frame : color : centerofmass : normalizedy

frame : grayscale : areafraction

frame : grayscale : kurtosis

frame : grayscale : max

frame : grayscale : mean

frame : grayscale : median

frame : grayscale : minimum

frame : grayscale : skewness

frame : grayscale : standarddeviation

frame : grayscale : histogram : bin0

frame : grayscale : histogram : bin1

frame : grayscale : histogram : bin2

... : ... : ... : ...

frame : grayscale : histogram : bin9

frame : (blue , red , green) : areafraction

frame : (blue , red , green) : eginess

frame : (blue , red , green) : kurtosis

frame : (blue , red , green) : max

frame : (blue , red , green) : mean

frame : (blue , red , green) : median

frame : (blue , red , green) : min

107

C. Features extracted with RapidMiner IMMI

frame : (blue , red , green) : centerofmass : normalizedx

frame : (blue , red , green) : centerofmass : normalizedy

frame : (blue , red , green) : skewness

frame : (blue , red , green) : standarddeviation

2-frame : difference image : areafraction

2-frame : difference image : eginess

2-frame : difference image : kurtosis

2-frame : difference image : max

2-frame : difference image : mean

2-frame : difference image : median

2-frame : difference image : min

2-frame : difference image : centerofmass : normalizedx

2-frame : difference image : centerofmass : normalizedy

2-frame : difference image : peakcolor : relativecount

2-frame : difference image : peakcolor

2-frame : difference image : skewness

2-frame : difference image : standarddeviation

frame : black and white : areafraction

frame : black and white : mean

frame : black and white : median

frame : black and white : centerofmass : normalizedx

frame : black and white : centerofmass : normalizedy

frame : borders : areafraction

frame : borders : mean

frame : borders : median

frame : borders : centerofmass : normalizedx

frame : borders : centerofmass : normalizedy

108

D. Implemented processors in the
streams framework

109

D. Implemented processors in the streams framework

Processors in Package stream.image

This package provides several processors for transforming images (video frames).

Processor BorderDetection

This processor performs a border detection on the input image. A pixel is said to be a
border pixel, if its’ color differs from the color of at least one of its’ four neighboring
pixels. By increasing the tolerance, the amount of neighboring pixels that have to have
the same color value can be decreased.

Parameter Type Description Required

output String The name/key of the output image is stored. If this name
equals the name of the input image, the input image is going
to be overwritten.

false

tolerance int The number of neighboring pixels that may have a different
color value, without causing, that the actual pixel becomes
recognized as a border pixel. The higher the tolerance is,
the less border pixels will be found.

false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .4.: Parameters of class BorderDetection.

Processor ColorDiscretization

The processor discretizes the color space of the input image by discretizing each single
RGB color channel.

Parameter Type Description Required

bins Integer Set the number of discrete color values, each channel in
divided into.

false

output String The name/key under which the output image is stored. If
this name equals the name of the input image, the input
image is going to be overwritten.

false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .5.: Parameters of class ColorDiscretization.

110

Processor ColorToGrayscale

This processor converts a color image to a grayscale image.

Parameter Type Description Required

output String The name/key under which the output image is stored. If
this name equals the name of the input image, the input
image is going to be overwritten.

false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .6.: Parameters of class ColorToGrayscale.

Processor Crop

This processor crops an image to a new size by cutting away parts of the image.

Parameter Type Description Required

output String Key/name of the attribute into which the output cropped
image is placed, default is ’frame:cropped’.

false

width int Width of the rectangle to crop, default is 10. false

height int Height of the rectangle to crop, default is 10. false

x int x coordinate of the lower-left corder of the rectangle for
cropping, defaults to 0.

false

y int y coordinate of the lower-left corder of the rectangle for
cropping, defaults to 0.

false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .7.: Parameters of class Crop.

Processor DetectBrokenImage

This processor detects broken images and trows them away.

Parameter Type Description Required

threshold double The fraction of pixels that need to have the ’broken’ color
to mark this image as broken.

false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .8.: Parameters of class DetectBrokenImage.

111

D. Implemented processors in the streams framework

Processor DiffImage

This processor computes the difference image of the actual image and the image before.

Parameter Type Description Required

output String The name/key under which the output image is stored. If
this name equals the name of the input image, the input
image is going to be overwritten.

false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .9.: Parameters of class DiffImage.

112

Processors in Package stream.image.features

This package provides several processors for extracting features from images (video
frames).

Processor AverageRGB

This processor extracts RGB colors from a given image and computes the average
RGB values over all pixels of that image.

Parameter Type Description Required

includeRatios boolean Sets, if the processor includes the ration between the color
channels, or just the average RGB color values. Ratios are
(red/blue), (red/green), (green/blue).

false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .10.: Parameters of class AverageRGB.

Processor CenterOfMass

This processor calculates the Center of Mass of one color channel of the image. You
can either ask for the absolute x- and y-coordinates of the Center of Mass or the
normalized Center of Mass (= absolute Center of Mass / the size of the image).

Parameter Type Description Required

normalized Boolean Sets, if the processor computes the normalized Center of
Mass or the absolute Center of Mass

false

colorchannel String Sets the color channel, on which the Center of Mass com-
putation is based on.

false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .11.: Parameters of class CenterOfMass.

113

D. Implemented processors in the streams framework

Processor ColorHistogram

This processor computes a color histogram on one color channel of an image.

Parameter Type Description Required

bins Integer Sets the number of bins the color channel is discretized into. false

colorchannel String Sets the color channel the histogram is computed for. false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .12.: Parameters of class ColorHistogram.

Processor MedianRGB

This processor extracts RGB colors from a given image and computes the median value
for each color channel.

Parameter Type Description Required

image String The name of the attribute that contains the byte array data
of the image.

true

Table .13.: Parameters of class MedianRGB.

Processor StandardDeviationRGB

This processor computes the standard deviation for all three RGB channels. Requires
the Average (=Mean) value for all RGB channels to be included already. This can for
example be done by using the AverageRGB processor.

Parameter Type Description Required

image String The name of the attribute that contains the byte array data
of the image.

true

Table .14.: Parameters of class StandardDeviationRGB.

114

Processors in Package stream.image.filters

This package provides several processors for applying filters to images.

Processor SetTransparent

This processor sets black pixels transparent by setting the alpha value of black pixels
to 0. Transparent pixels are not taken into account by some other processors.

Parameter Type Description Required

image String The name of the attribute that contains the byte array data
of the image.

true

Table .15.: Parameters of class SetTransparent.

Processor Smoothing

This processor is a filter, smoothing the image. Hence the processor reduces the noise
in an input image. Each pixel gets replaced by the average of pixels in a square window
surrounding the pixel.

Parameter Type Description Required

output String The name/key of the output image is stored. If this name
equals the name of the input image, the input image is going
to be overwritten.

false

windowSize Integer Sets the window size. The window size determines the neigh-
boring pixels for each pixel, that are averaged. A windowSize
of 3 means that 3 times 3 = 9 pixels are taken into account.

false

weighted Boolean If a weighted smoothing technique is selected, neighbors
closer to the pixel to be smoothend are counted with a
higher weight.

false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .16.: Parameters of class Smoothing.

115

D. Implemented processors in the streams framework

Processors in Package stream.coffee.helper

This package provides several processors useful for processing the coffee dataset.

Processor AddCoffeeLabels

This processor adds the true label to the video frames of one coffee capsule video file.
One label is attached to each data item: @label:event, telling, the color of the coffee
capsule slipping down the slide or ”no event”, in case no capsule is shown within the
frame (multinominal).
The labels have to be stored in a file, that gets read in before the stream process starts
(during the init of this processor).

Parameter Type Description Required

file String Sets the file the labels are stored in. false

Table .17.: Parameters of class AddCoffeeLabels.

Processor DatasetGenerator

This processor creates a dataset, containing only one data item for each coffee capsule
event. If the last data item belonged to an event, but the current does not, the minimal
RGB values for that event plus the label are returned. All other data items are simply
dropped. The minimal color values observed during the event have to be included in
the data item already. This can be done using the
stream.coffee.tagging.MaxRGBOverEvent processor.

116

Processors in Package stream.coffee.eventdetection

This package provides processors to detect events and evaluate event detection
classifiers.

Processor EventDetectionEvaluation

This processor evaluates the quality of a learner, which classified frames as ”events” or
”no events”. As an event is said to be recognized, as soon as at least one frame of the
event was classified as ”event”, the evaluation processors, included in the core streams
module, are not sufficient to perform the evaluation.

Parameter Type Description Required

label String The key, under which the t label is stored. false

prediction String The key, under which the predicted label is stored. false

Table .18.: Parameters of class EventDetectionEvaluation.

Processor ThresholdEventDetection

This processor classifies the incoming frames as ”events” or ”no events”, based on the
value of one color channel. If the average color value of the color channel falls below a
given threshold t, the frame is labeled as an ”event” frame.

Parameter Type Description Required

attribute String Tells the processor, on which attribute to base the event
detection on.

false

t Integer Sets the threshold t to a new value. false

predictionkey String Sets the key under which the classifier stores the predicted
label.

false

standardvalue Integer Sets the value the attribute has in random frames. false

Table .19.: Parameters of class ThresholdEventDetection.

117

D. Implemented processors in the streams framework

Processors in Package stream.coffee.tagging

This package provides processors useful for processing the coffee dataset.

Processor MaxRBGOverEvent

This processor determines the minimal RGB color values observed during the actual
event. If the frame does not belong to an event (@prediction:event = false), no action
is performed. As soon as a series of event frames start, the minimal color value for all
color channels is remembered and the minimal values observed so far are added to the
data item. Hence the last data item of the series holds the minimal color values for the
whole event.

118

Processors in Package stream.news.helper

This package provides several processors useful for processing the news dataset.

Processor AddNewsshowLabels

This processor adds the true label to the video frames of one news show. Three labels
are attached to each data item: @label:shotboundary, telling, whether the frame is the
first frame after a shot boundary or not (binominal), @label:anchorshot, telling,
whether the frame belongs to a shot boundary or not (binominal), and @label:shottype,
telling, what concrete type of shot the frame belongs to (multinominal).
The labels have to be stored in a file, that gets read in before the stream process starts
(during the init of this processor).

Parameter Type Description Required

file String Sets the file the labels are stored in. false

Table .20.: Parameters of class AddNewsshowLabels.

Processor ErrorOutput

This processor compares a predicted label with the true label. If both labels match, no
action is performed. If the prediction deviates from the true label, the id of the frame
gets stored. This processor hence helps to get an overview of the data items, which
were not labeled correctly. This turned out to be useful to improve the classifiers.

Parameter Type Description Required

label String Sets the key under which the true label is stored. false

prediction String Sets the key under which the predicted label was stored by
the classifier.

false

Table .21.: Parameters of class ErrorOutput.

119

D. Implemented processors in the streams framework

Processors in Package stream.news.sbdetection

This package provides processors to detect shot boundaries.

Processor GrayThreshold

This processor classifies the incoming frames as ”shot boundaries” or ”no shot
boundary” based on the DiffImages of two successive frames. It can only be applied,
after the DiffImage has already been calculated. If the average gray value of the
DiffImages exceeds a given threshold t, the frame is labeled as a ”shot boundary”.

Parameter Type Description Required

t Integer Sets the threshold t. false

predictionkey String The key, under which the classifier shall store the predicted
label.

false

graykey String Tells the GrayThreshold processor, where to find the gray
value of the pixels.

false

Table .22.: Parameters of class GrayThreshold.

120

Processors in Package stream.news.anchorshotdetection

This package provides several processors useful for detecting anchorshots in news
videos and creating anchorshot models.

Processor AnchorshotModelCreator

This processor learns an image model, which represents anchorshots, by looking for
areas in anchorshot frames that have constant color values throughout all incoming
anchorshot frames.

Parameter Type Description Required

model String URL of a file, where the model can be stored on the disk. false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .23.: Parameters of class AnchorshotModelCreator.

Processor ApplyDecisionTreeModel

This processor classifies a news video into anchorshots and news report shots, by
applying a decision tree to each example. The decision tree has to be learned using
RapidMiner, as not Decision Tree Learner is implemented in the streams framework
yet.

Parameter Type Description Required

predictionkey String Sets the key under which the classifier shall store the pre-
dicted label.

false

Table .24.: Parameters of class ApplyDecisionTreeModel.

121

D. Implemented processors in the streams framework

Processor ApplyImageModel

This processor classifies a news video into anchorshots and news report shots, by
matching each shot against an image, representing an anchorshot model. Pixels, that
are black in the model, get ignored, all other pixels get compared pixel-wise. If the
difference between the current image and the model does not exceed a given threshold
t, the shot is predicted to be an anchorshot.

Parameter Type Description Required

model String Tells the processor, where to find the model to be matched. false

t Integer Sets the threshold t to a new value. false

predictionkey String Sets the key under which the classifier shall store the pre-
dicted label.

false

image String The name of the attribute that contains the byte array data
of the image.

true

Table .25.: Parameters of class ApplyImageModel.

122

Erklärung

Hiermit erkläre ich, Matthias Schulte, die vorliegende Diplomarbeit mit dem Titel
Real-time feature extraction from video stream data for stream segmentation and
tagging selbständig verfasst und keine anderen als die hier angegebenen Hilfsmittel
verwendet, sowie Zitate kenntlich gemacht zu haben.

Dortmund, January 22, 2013

	Acknowledgment
	List of Figures
	List of Tables
	Introduction
	The ViSTA-TV project
	Task of this thesis
	Structure of this work

	Video Segmentation and Tagging
	Temporal hierarchy of video content
	Shot Boundary Detection
	Detection of hard cuts
	Detection of gradual transitions

	Segment Detection
	General-purpose methods for segment detection
	Segmentation of news shows
	Anchorshot Detection

	Tagging the segments
	Further related work
	Audio analyze
	Multi-modal analyze

	Machine Learning
	Notation
	Supervised Learning
	kNN
	Decision trees
	Evaluation Methods

	Unsupervised Learning
	Cluster Analysis

	Learning on Streams
	Concept Drift Detection
	Stream Clustering

	Tools and Frameworks
	CRISP-DM
	RapidMiner
	Streams framework

	Learning tasks
	Use case A: IP-TV
	Use case B: Coffee - Project

	Data
	Receiving live video data: ZAPI
	Start a ZAPI- Session
	Login with user account
	Watch a channel
	Stop Channel, logout and stop session
	Error responses

	Creation of datasets
	The "news"-dataset
	The "coffee"-dataset

	Feature Extraction
	Naming convention for extracted features
	Image Feature Extraction with RapidMiner
	IMMI Operators
	The overall feature extraction process in RapidMiner

	Image Feature Extraction with the streams framework
	Representing images
	The AbstractImageProcessor
	Implemented image processors

	Experiments and Evaluation
	Shot Boundary Detection
	Approach and Evaluation
	Analysis of reasons for misclassification
	Real-time behavior of the approach

	Segmentation and Tagging of News shows
	Feature-based anchorshot detection using RapidMiner
	Real-time model-based anchorshot detection

	Coffee capsule recognition
	Event Detection
	Capsule Recognition

	Outlook and Conclusion
	Bibliography
	A. The "news"-dataset
	B. The "coffee"-dataset
	C. Features extracted with RapidMiner IMMI
	D. Implemented processors in the streams framework

