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1 Introduction

In the past decade, the popularity and presence of artificial intelligence (AI) grew
rapidly and thereby reached almost every part of our daily lives. From product
and media recommendations, voice assistants, and smart homes over industrial op-
timizations, medical research, and traffic, to even criminal prosecution. And most
probably, the importance of AI will grow even further in the near future, due to the
ever-increasing amount of data that accumulates day by day and the huge poten-
tial it carries. Even though, AI allows us to optimize solutions and solve problems
that were not possible to solve before, it also influences society as such and faces us
with new challenges we have to meet, concerning the way we communicate, inform
ourselves, consume, and last but not least how we evolve into a fairer society. Thus,
whenever we are using AI, it is most important to think about its potential impacts.
In the following, we want to picture two examples in which AI had a clearly negative
impact on society.

In their report Wrongfully Accused by an Algorithm1, Kashmir Hill from the New
York Times covers the case of Robert Julian-Borchak Williams, who was wrongfully
arrested due to an erroneous facial recognition. Joy Buolamwini from the Mas-
sachusetts Institute of Technology (MIT) Media Lab was able to show that the
facial recognition model is biased towards certain demographic groups, such that
its error rate is rather small as long as you are a white man, otherwise it rises up
to 35 percent. Thus, the model structurally discriminates non-white and non-male
people2.

Another example for a negative impact of AI is YouTube’s video recommendation
model. The goal of this model is to recommend new and interesting videos for
users, such that they spend more time on the platform. For a considerable time
it was suspected that the model learned that it is most efficient to recommend
more radical content over time 34, often concerning intended disinformation, hate
speech and conspiracy beliefs. Nocun and Lamberty covered this problem among
others in their book Fake Facts [NL20], and Ribeiro et al. recently investigated
the radicalization effects of YouTube’s recommendation model in [ROW+20], where
they showed that there is significant evidence that the model directs you towards
more extreme content, when starting on official news and media channels.

These two examples clearly show that it is not only sufficient to develop models
that perform well in certain tests, but it is also necessary to gain a much deeper
understanding of why models come to certain conclusions, and how undesired be-
haviour can be changed afterwards. This brings us to the concept of forgetting,
which is also of particular interest since the General Data Protection Regulation

1Wrongfully Accused by an Algorithm, by Kashmir Hill, The New York Times. (accessed
January 12th 2021, 10:02 AM)

2Facial Recognition Is Accurate, if You’re a White Guy, by Joy Buolamwini, MIT Media Lab,
and Steve Lohr, The New York Times. (accessed January 13th 2021, 09:04 AM)

3Mit zwei Klicks in die Filterblase, by Philip Banse, Deutschlandfunk Kultur. (accessed January
13th 2021, 09:41 AM)

4’Fiction is outperforming reality’: how YouTube’s algorithm distorts truth, by Paul Lewis,
The Guardian. (accessed January 13th 2021, 09:45 AM)

https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html
https://www.media.mit.edu/articles/facial-recognition-is-accurate-if-you-re-a-white-guy/
https://www.deutschlandfunkkultur.de/radikalisierung-durch-youtube-mit-zwei-klicks-in-die.1264.de.html?dram:article_id=428723
https://www.theguardian.com/technology/2018/feb/02/how-youtubes-algorithm-distorts-truth
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(GDPR), which became applicable in 2018, gives every citizen of the European Eco-
nomic Area the right to be forgotten (GDPR - Article 17). Even though, each and
everyone has an intuitive idea of what forgetting means, it is necessary to under-
stand the concept of forgetting in detail in order to apply it in the domain of AI. In
[EK19], Ellwart and Kluge presented different psychological perspectives on forget-
ting and highlighted the importance of the collaboration between psychology and
AI. The there presented perspectives on forgetting can be summarized as forgetting
on the individual, the collective, and the organisational level. Individual forgetting
only concerns the beliefs of a single individual, while collective and organisational
forgetting argues about forgetting in a group of individuals. The latter can be fur-
ther distinguished by saying that collective forgetting argues about the knowledge of
the individuals in the group and the knowledge that can be considered as common-
sense within this group, whereas forgetting in organisations concerns the knowledge
about certain behaviour and routines with respect to the organisational objectives
instead. Furthermore, Ellwart and Kluge distinguish between intentional and unin-
tentional forgetting. While unintentional forgetting corresponds to the intuitive idea
of forgetting as the unregulated loss of information, intentional forgetting describes
the active process of removing undesired information, which generally goes back to
personal motives.

In this thesis, we will focus on individual intentional forgetting, and examine it
in the context of knowledge representation. The history of forgetting in knowledge
representation goes back to the work of Boole [Boo54], which was already published
in the year 1854. There they defined the syntactical forgetting of atoms in sin-
gle propositions. Based on this, several other logic-specific forgetting approaches
followed. In 2017, Delgrande [Del17] presented a general approach of forgetting
with the goal to express the several existing logic-specific forgetting approaches, e.g.
forgetting in first-order logic [LR94], answer set programming [Won09, ZF06], or
propositional logic [Boo54], by means of a single definition. In contrast to the ex-
isting logic-specific approaches, Delgrande considers forgetting on a semantic level,
and therefore is independent of the syntactic appearance of the knowledge, which
in this case is represented by a set of formulas. Besides Delgrande, Kern-Isberner
et al. [BKIS+19] also focus on elaborating a general framework for forgetting, but
other than Delgrande they focus on the axiomatization of the different kinds of for-
getting, which underlie certain cognitive considerations and are performed on epis-
temic states instead. With these two works being the most recent and promising
approaches towards a general framework for forgetting, they form the foundations
this thesis is based on.

The goal of this thesis is the attempt of elaborating forgetting postulates that
capture the general properties of the different kinds of forgetting, and therefore are
beyond those already stated in [BKIS+19]. These postulates are based on the prop-
erties Delgrande states for their general approach in [Del17]. We think that these
properties are a good starting point for developing such postulates, since Delgrande’s
approach is already capable of expressing several of the hitherto logic-specific ap-
proaches. However, since these properties are specifically stated with respect to
their definition of forgetting, we will generalize them, such that they are applicable
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to arbitrary belief change operators and epistemic states, instead of sets of formulas.
Concretely, we will state two different sets of forgetting postulates. The first will
state the properties of forgetting signature elements, whereas the second will state
the properties of forgetting formulas. We think that this differentiation is neces-
sary, since these two kinds of forgetting are conceptually different. On an intuitive
level, forgetting signature elements corresponds to the idea of forgetting about the
existence of certain objects and concepts of our worlds, while forgetting formulas
corresponds to forgetting about specific facts about the latter. Thereby, we say that
after forgetting a signature element, we do not want to be able to infer any propo-
sitions arguing about this element. On the other hand, when we forget a formula,
we do not want to be able to infer this specific formula afterwards. Since we assume
a purely propositional framework in this work, we argue that these two kinds of
forgetting are exhaustive. Nonetheless, there might exist more kind of forgetting
when working in a non-propositional framework. Furthermore, we will investigate
the relations of these forgetting postulates to those already established in the do-
main of knowledge representation. This includes the generalized AGM postulates for
epistemic states as presented in [KP17] and [DP97], and the postulates for iterated
belief revision [DP97]. In addition, we will pursue the question, whether Delgrande’s
definition is already covered by the kinds of forgetting presented in [BKIS+19]. Fi-
nally, we will discuss, whether the here elaborated postulates are really suitable for
describing general properties of forgetting.

In the following, we state the structure of this thesis. In Section 2, we will
define all the preliminaries that are needed in this work, including a brief intro-
duction to propositional logic (Section 2.1), model theory and deductive reasoning
(Section 2.2), as well as AGM theory and some epistemic terms (Section 2.3). In
Section 2.4, we will present ordinal conditional functions (OCFs), which are a com-
mon choice for epistemic states in knowledge representation, their ability to handle
uncertain knowledge, and the special relevance of minimal models. There we also
state the relation between OCFs and faithfully assigned preorders, which are a
common assumption for general epistemic states. After this, we will present and
elaborate the different kinds of forgetting in Section 3, which are also covered later
in Section 4. In Section 3.1, we present the general forgetting approach as presented
by Delgrande in [Del17], alongside some model theoretical considerations and its
most relevant properties, which form the basis for the here presented attempt of
postulating general properties of forgetting. We also illustrate how Delgrande’s for-
getting approach can be used to express forgetting in propositional logic [Boo54].
Afterwards, we present three kinds of forgetting as presented by Kern-Isberner et
al., namely the marginalization (Section 3.2.1), the contraction (Section 3.2.2), and
the revision (Section 3.2.3), all with respect to OCFs. We decided to focus on these
three kinds of forgetting for different reasons. The marginalization is the only kind
of forgetting arguing about forgetting signature elements, and thus is most simi-
lar to Delgrande’s approach. The contraction and revision can be considered as
forgetting formulas, and form two of the three fundamental kinds of belief change
according to AGM theory, which are subject of many researches in the domain of
knowledge representation. Thus, we think that it is most important to cover both
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of them in this work as well. Besides the elaborations from Section 3, Section 4
forms the main part of this thesis. In Section 4.1, we compare the marginalization
to Delgrande’s approach and examine, whether both approaches result in equiva-
lent beliefs. Furthermore, we generalize the properties of Delgrande’s definition of
forgetting to epistemic states, and therefore state the postulates for forgetting sig-
nature elements. We also examine, if the marginalization satisfies these postulates,
and if there exist further operations that are capable of doing so. In Section 4.2,
we present our attempt of postulating general properties of forgetting formulas and
further examine, if they are satisfied by general contractions or those that only in-
duce minimal changes to the prior beliefs. Furthermore, we investigate the relations
between the AGM contraction postulates for epistemic states and the here stated
forgetting postulates. Finally, we examine, if contractions are capable of expressing
Delgrande’s forgetting by means of literal forgetting. In Section 4.3, we consider
revisions as a kind of forgetting and examine, if they are capable of satisfying the
forgetting postulates. Furthermore, we also investigate the relations between the
forgetting postulates and the AGM revision postulates for epistemic states, as well
as the postulates for iterated revision as presented by Darwiche and Pearl [DP97]. In
Section 4.4, we will discuss several controversial properties implied by the here pre-
sented forgetting postulates, and present suggestions how they should be adjusted
in future works. Lastly, we will summarize our results alongside some open question
that could be covered in future researches in Section 5. Note that all postulates
frequently used in this thesis can also be found in the appendix Appendix A.1 for a
much easier and faster access.
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2 Preliminaries

In this section, we define all the preliminaries necessary for the different definitions
and kinds of forgetting presented in Section 3, and moreover for the elaboration of a
general framework for kinds of forgetting in Section 4. Since we generally assume a
propositional framework in the later sections, we will first give a brief introduction
to propositional logic in Section 2.1. There, we will define the general syntactic
components of propositional logic, alongside the satisfaction relation and the basic
propositional equivalences, which together form the semantics of propositional logic.
Furthermore, we define the disjunctive and conjunctive normal form, which allow
us to argue about propositions more easily, since they are guaranteed to match a
certain pattern.

In Section 2.2, we present the basic definitions of model theory and deductive
reasoning. This is of particular interest, since the forgetting approaches discussed
in this work perform forgetting on the semantic level only. Thus, the syntactic
structure of a formula is irrelevant for the result of forgetting. Furthermore, we
define the concept of deductive reasoning, by means of the Tarskian consequence
relation [Tar02] and the Cn operator [Mak88]. These will be necessary for the
general forgetting approach presented by Delgrande in [Del17], but will also be used
to argue about certain properties of the other kinds of forgetting discussed in this
work.

Afterwards, we present some fundamental epistemic terms and give a brief in-
troduction to AGM theory [AGM85, Mak85, Gär88, GR95] in Section 2.3. The
presented overview of fundamental epistemic terms and their relations to each other
makes it easier for the reader to thematically classify the different kinds of forgetting
presented in the later sections. However, they will also be necessary to understand
the there introduced AGM theory, which forms the basis for many researches in
the domain of belief change and knowledge representation. We present the three
basic kinds of belief change stated by AGM, namely the expansion, contraction and
revision, and how they relate to each other, by means of postulates and identities.
Both the postulates and the identities originally argue about belief changes in belief
sets, where most forgetting approaches regarded in this work argue about epistemic
states. Since the elaboration of their relations to the AGM postulates is a major
part of this work, we present generalized versions of both the postulates and the
identities, arguing about epistemic states, instead of belief sets. These generalized
postulates were elaborated by Darwiche and Pearl in [DP97] and Konieczny and
Pérez in [KP17], and allow us to examine the above-mentioned relations.

Lastly, we present ordinal conditional functions (OCFs) [Spo88] in Section 2.4,
which form a common choice for epistemic states in the domain of knowledge repre-
sentation, especially because of their capability of handling uncertain knowledge. In
this work, OCFs are crucial for the kinds of forgetting presented by Kern-Isberner et
al. [BKIS+19], which form the major basis for our examinations, since they all argue
about forgetting in OCFs. Beside the basic definitions and properties of OCFs, we
further highlight some properties regarding minimal models, which are particularly
important when arguing about belief changes in OCFs.
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2.1 Propositional Logic

Propositional logic is one of the most fundamental logics and forms the basis for
many others, such as first-order or modal logic. Even though one of the main
approaches of forgetting discussed in this work can generally be applied to almost
arbitrary logics, we will focus on propositional logic. Thus, we will only give an
intuitive explanation on what logics in general are, since we think that a detailed
elaboration of the latter is not necessary for this work. In the following, we will
define the syntax and semantics of propositional logic and how they are related to
each other. Further, we will define the basic equivalences that hold in propositional
logic, which can also be used for syntactically transforming propositional formulas.
Finally, we take a look at the conjunctive and disjunctive normal form, that will
allow us to argue about formulas more easily by guaranteeing that they match a
uniform structure. This is particularly useful when arguing about propositions with
respect to their syntactic appearance.

First, we want to describe fundamental commonalities that most logics share.
In general, a logic consists of three main components. The first component is the
signature. It contains all the atomic elements the logic argues about. Mostly, these
atomic elements have extra-logical meanings that describe how they can be under-
stood. Intuitively speaking, a signature contains atomic elements corresponding to
objects and concepts of our world, and further allows us to argue about them logi-
cally. The second component is a set of interpretations. Each interpretation maps
the signature elements to certain (truth) values. These values depend on the choice
of the specific logic. In classical logic, we generally have only two truth values – true
and false, but there also exist logics with more than two values. So, interpretations
can be understood as different perspectives on the objects and concepts of our world.
The third component is the language. It contains more complex statements about
the signature elements. These complex statements are formed by combining the
atomic elements by means of certain junctors, which again depend on the specific
logic. In addition to the signature, the interpretations, and the language, a relation
is needed in order to state whether a sentence of the language is coherent with a
given interpretation. The signature and the language form the logic’s syntax, while
the interpretations and the above-mentioned relation form its semantics.

In the following, we focus on propositional logic and start with the definition of
its syntactic components. As already stated above for logics in general, the atomic
components the formulas of a logic can be formed of are given by a signature. In
propositional logic, the signature is a set of atomic propositions, which we will also
refer to as atoms (Def. 2.1).

Definition 2.1. [BKI19] A signature Σ is a finite set of atoms ρ ∈ Σ.

By means of the junctors of propositional logic, we can form more complex
propositions from the atoms given in the signature. The resulting set of propositions
is called language. In Def. 2.2, we state the junctors of propositional logic and how
they can be used to form the corresponding propositional language.

Definition 2.2. [BKI19] Let Σ be a signature. The language LΣ in propositional
logic consists of the following propositions:



2.1 Propositional Logic 9

• Each ρ ∈ Σ represents an atomic proposition in LΣ.

• For each proposition ϕ ∈ LΣ, the negation ¬ϕ is also included in LΣ.

• For all propositions ϕ, ψ ∈ LΣ, the conjunction ϕ ∧ ψ is also included in LΣ.

• For all propositions ϕ, ψ ∈ LΣ, the disjunction ϕ ∨ ψ is also included in LΣ.

Atomic propositions and their negations are also often referred to as literals. Be-
sides the negation ¬, conjunction ∧ and disjunction ∨, there exist two more junctors
in propositional logic, namely the material implication→ and the co-implication↔.
Both of these operators are not included in Def. 2.2, since they are only abbreviations
for often used syntactical patterns. Therefore, they can also be expressed by means
of ¬, ∧ and ∨. Instead of ¬ϕ∨ψ we write ϕ→ ψ, and instead of (ϕ→ ψ)∧(ψ → ϕ)
we write ϕ↔ ψ. The interpretations of a propositional language then assign a truth
value to each atom ρ ∈ Σ (Def. 2.3).

Definition 2.3. [BKI19] Let Σ be a signature, then ΩΣ contains all corresponding
interpretations ω that map each ρ ∈ Σ to either true or false.

In case of propositional logic, the assigned truth values are either true or false.
Interpretations are often denoted by ω = σρ, where Σ = {σ, ρ}. Thereby, each
overlined signature element is mapped to false, while the remaining are mapped to
true. In order to assign a truth value to a non-atomic proposition ϕ ∈ LΣ, we further
need to know about the behaviour of the junctors towards their interpretation. This
behaviour is an integral part of propositional logic. The negation inverts the truth
value of a proposition (Tab. 1). If a proposition is true, its negation is false and
vice-versa. The conjunction of two propositions ϕ ∧ ψ combines the truth values
of ϕ and ψ such that it is true, if both values are true, and false otherwise. The
disjunction of two proposition ϕ∨ψ combines the truth values of ϕ and ψ such that
it is true if at least one of the values is true, and false otherwise. This is not to be
confused with the exclusive or generally used in natural language, in which exactly
one of the propositions must be true.

ϕ ¬ϕ
false true
true false

Table 1: Semantic interpretation of the negation ¬.

ϕ ψ ϕ ∧ ψ
false false false
false true false
true false false
true true true

Table 2: Semantic interpretation of the conjunction ∧.
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ϕ ψ ϕ ∨ ψ
false false false
false true true
true false true
true true true

Table 3: Semantic interpretation of the disjunction ∨.

By means of the interpretation of the atomic propositions and the given be-
haviour of the junctors, the truth value of a proposition can be determined by
applying the above stated behaviour recursively. Given a certain interpretation, the
truth assignment of a proposition is formally given by the satisfaction relation |=
(Def. 2.4).

Definition 2.4. [BKI19] A satisfaction relation |= relates interpretations ω ∈ ΩΣ

to propositions ϕ ∈ LΣ, where ω satisfies ϕ, denoted by ω |= ϕ, if and only if ϕ is
true under the interpretation of the signature elements given by ω.

Thereby, ω |= ϕ means that ϕ is true given the interpretation ω, while ω |6= ϕ
means that ϕ is false given ω. In Prop. 2.5, we state the basic semantic equivalences
that hold in propositional logic.

Proposition 2.5. [BKI19] Let ϕ, ψ, ξ ∈ LΣ be propositions and ω an interpretation.
The following equivalences hold in propositional logic.

ω |= ϕ⇔ ω |= ϕ ∨ ϕ
ω |= ϕ⇔ ω |= ϕ ∧ ϕ

(Idempotence)

ω |= ϕ ∧ ψ ⇔ ω |= ψ ∧ ϕ
ω |= ϕ ∨ ψ ⇔ ω |= ψ ∨ ϕ

(Commutativity)

ω |= (ϕ ∧ ψ) ∧ ξ ⇔ ω |= ψ ∧ (ϕ ∧ ξ)
ω |= (ϕ ∨ ψ) ∨ ξ ⇔ ω |= ψ ∨ (ϕ ∨ ξ)

(Associativity)

ω |= ϕ ∧ (ϕ ∨ ψ)⇔ ω |= ϕ

ω |= ϕ ∨ (ϕ ∧ ψ)⇔ ω |= ϕ
(Absorption)

ω |= ϕ ∧ (ψ ∨ ξ)⇔ (ϕ ∧ ψ) ∨ (ϕ ∧ ξ)
ω |= ϕ ∨ (ψ ∧ ξ)⇔ (ϕ ∨ ψ) ∧ (ϕ ∨ ξ)

(Distributivity)

ω |= ϕ⇔ ω |= ¬¬ϕ (Double negation)

ω |= ¬(ϕ ∨ ψ)⇔ ω |= ¬ϕ ∧ ¬ψ
ω |= ¬(ϕ ∧ ψ)⇔ ω |= ¬ϕ ∨ ¬ψ

(De Morgan’s law)

The idempotence states that the conjunction or disjunction of a proposition ϕ
with itself is equivalent to ϕ. The commutativity and the associativity describe
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that conjunctions or disjunctions act indifferently to the order in which they are
applied. The absorption property shows that we can simplify propositions of the
form ϕ ∧ (ϕ ∨ ψ) or ϕ ∨ (ϕ ∧ ψ), since their truth values only depend on ϕ. If ϕ is
true in ϕ ∧ (ϕ ∨ ψ), the truth value of ψ becomes irrelevant, since the proposition
is true for both interpretations of ψ. If ϕ is false in ϕ ∧ (ϕ ∨ ψ), then the proposi-
tion cannot become true anymore because of the conjunction. Therefore, the truth
value of ψ is again irrelevant. Analogously, this holds for ϕ ∨ (ϕ ∧ ψ), too. The
distributivity describes that the conjunction of a formula with multiple disjunctively
combined formulas is equivalent to a component-wise conjunction. The same holds
for the disjunction analogously. The double negation states that negating the same
proposition twice will be equivalent to the original proposition. Due to the binary
truth value assignment, the negation always results in a proposition with opposite
truth value. Applying the negation twice, we obtain the original truth value again.
De Morgan’s law describes the negation of a conjunction or disjunction of multiple
propositions, which is similar to the idea of the distributivity. The negation will also
be applied component-wise, but the disjunctions must be changed to conjunctions
and vice-versa. This can easily be comprehended using the truth tables Tab. 1 to 3
above. We want to give a small example on the satisfaction relation in Ex. 2.1. Note
that the there introduced signature ΣTweety will be repeatedly used for the following
examples in this work.

Example 2.1. In this example, we illustrate the satisfaction relation defined in
Def. 2.4. For this, we first state the signature ΣTweety = {f, b, p} with extra-logical
meanings:

f – the observed animal can fly,

b – the observed animal is a bird,

p – the observed animal is a penguin.

Furthermore, let LΣTweety be the propositional language over ΣTweety and

ω1 = pf b, ω2 = pbf, ω3 = pbf, ω4 = pbf.

are corresponding interpretations in ΩΣTweety . For ω1-ω4 the following relations hold:

ω1 |= p

ω2 |6= ¬p ∨ ¬f
ω3 |= (p→ b) ∧ (b→ f)

ω4 |= {b→ f,¬p ∨ ¬f}

Two further important properties of propositional logic are that syntactically
transforming a proposition preserves its truth value, and that if two formulas are
satisfied by the same interpretations they can also obtained from each other by
means of syntactic transformations. These properties are better known as soundness
and completeness. Therefore, the equivalences stated above in Prop. 2.5 can also
be used for syntactic transformations. If a proposition ψ can be obtained from
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another proposition ϕ by means of syntactically transforming ϕ, we also say that ϕ
syntactically infers ψ, which is denoted by ϕ |−ψ.

When arguing about propositional logic, a problem that often occurs is that the
syntactic structure of a proposition can be almost arbitrary. This makes it difficult
to argue about propositions when their syntactic structure is of importance, e.g.
for developing algorithms or complexity analysis. Therefore, the concept of normal
forms is particularly important. A normal form specifies a uniform structure each
proposition can take on by means of syntactical inference. In the following, we will
introduce two of the most well-known normal forms in propositional logic – the
conjunctive and the disjunctive normal form.

A proposition in conjunctive normal form (CNF) consists of disjunctive clauses
in which all propositions are literals, i.e. a positive or negative atomic proposition.
All those disjunctive clauses are combined conjunctively. Formally, we define the
CNF as given in Def. 2.6.

Definition 2.6. [BKI19] A proposition ϕ ∈ LΣ is in conjunctive normal form
(CNF), if and only if it is of the form

(λ1,1 ∨ · · · ∨ λ1,m1) ∧ · · · ∧ (λn,1 ∨ · · · ∨ λn,mn),

where (λi,j)i,j∈N0 are literals.

Analogously to the CNF, we can define the disjunctive normal form (DNF) in
Def. 2.7.

Definition 2.7. [BKI19] A proposition ϕ ∈ LΣ is in disjunctive normal form
(DNF), if and only if it is of the form

(λ1,1 ∧ · · · ∧ λ1,m1) ∨ · · · ∨ (λn,1 ∧ · · · ∧ λn,mn),

where (λi,j)i,j∈N0 are literals.

In case of the DNF, the literals in the clauses are combine conjunctively, while
the clauses are combined disjunctively. Further, we know that each proposition can
be transformed into an equivalent proposition (Prop. 2.8) in CNF or DNF using
the syntactic rules in Prop. 2.5. Thus, propositions can always be assumed to be in
CNF or DNF if necessary.

Proposition 2.8. [BKI19] For each proposition ϕ ∈ LΣ there exists an equivalent
proposition ψ ∈ LΣ that is in conjunctive normal form or disjunctive normal form.

In summary, we gave an intuitive explanation of logics in general, and further
introduced the basic definitions of propositional logic. This included among oth-
ers the syntactic components, namely the signature and the language, as well as
the semantic components, namely the interpretations and the satisfaction relation.
Furthermore, we stated the basic equivalences that hold in propositional logic and
presented the conjunctive and disjunctive normal form, which can be used to guaran-
tee a uniform syntactic structure of propositions, and therefore make arguing about
them easier.
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2.2 Model Theory and Deductive Reasoning

In this section, we will introduce the basic definitions and properties of model the-
ory as needed in this work, as well as the concept of deductive reasoning, which
describes the logical inference of knowledge from a given set of formulas without
further assumptions. In contrast to syntactic inference as presented in Section 2.1,
deductive reasoning is purely semantic. Thus, the syntactic appearance of a for-
mula is irrelevant for the reasoning. Instead, it argues about the interpretations
that satisfy the formula, i.e. its models. Since deductive reasoning forms the most
fundamental kind of reasoning in the domain of knowledge representation, it will
be essential for the examinations in this work, too. Furthermore, we will show that
deductive reasoning is closely related to the concept of theory. Lastly, we state sev-
eral equivalences regarding the models of a formula, its deductive closure and the
corresponding theory. These equivalences emphasize the relations between those
three concepts, and further allow us to argue about them more easily in the later
sections.

First, we like to introduce the definition of models in Def. 2.9.

Definition 2.9. [BKI19] The models JϕKΣ of a formula ϕ ∈ LΣ with respect to the
signature Σ contains all interpretations ω ∈ ΩΣ satisfying ϕ.

JϕKΣ = {ω ∈ ΩΣ | ω |= ϕ}

The models of a formula ϕ ∈ LΣ consists of all interpretations in ΩΣ that satisfy
ϕ. Generally, the corresponding signature Σ is written in the subscript of the model
brackets, but it can also be omitted if the signature is clearly given by the context.
This will be of particular importance in the later sections, where we argue about
models in different signatures. There, the subscript clarifies the corresponding sig-
natures. From the semantics of ∧,∨ and ¬ as presented in Section 2.1, we can derive
the following behaviour for the models of a conjunction, disjunction and negation
(Lem. 2.10).

Lemma 2.10. Let ϕ, ψ ∈ LΣ be formulas and ΩΣ the set of corresponding interpre-
tations, then the following relations hold:

Jϕ ∨ ψK = JϕK ∪ JψK
Jϕ ∧ ψK = JϕK ∩ JψK
J¬ϕK = ΩΣ \ JϕK

The models of a disjunction ϕ∨ψ consists of both the models of ϕ and the models
of ψ, since ϕ∨ψ is already satisfied by an interpretations if either ϕ or ψ is satisfied.
This holds similarly for a conjunction ϕ∧ψ, which is satisfied by an interpretation,
if and only if it satisfies both ϕ and ψ. Thus, the models of a conjunction equals
the intersection of the models of ϕ and ψ. The models of a negation ¬ϕ are the
complement of the models of ϕ, since each interpretation must either satisfy ϕ or
¬ϕ.

If we consider sets of formulas Γ and Γ′ instead of single formulas, we can conclude
that a model of Γ ∪ Γ′ must be a model of both Γ and Γ′ as well (Lem. 2.11).
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Lemma 2.11. [BKI19] Let Γ,Γ′ ⊆ LΣ sets of formulas and ω ∈ ΩΣ an interpreta-
tion, then the following holds:

ω |= Γ ∪ Γ′ ⇔ ω |= Γ and ω |= Γ′

By means of the model theoretical basics stated above, we can further define the
concept of deductive reasoning, which is the most basic form of reasoning, since it
only infers knowledge that directly concludes from a given set of formulas without
making further assumptions. Transferring this notion to a logical level, we say that
certain knowledge can be inferred by a given set of formulas Γ, if it is true, whenever
Γ is true. Formally, this relation is defined by the Tarskian consequence relation
(Def. 2.12).

Definition 2.12. [Tar02] A Tarskian consequence relation |= relates two sets of
formulas Γ,Γ′ ⊆ LΣ to each other, such that

Γ |= Γ′ ⇔ JΓKΣ ⊆ JΓ′KΣ.

Thereby, a set of formulas Γ′ is said to be a logical consequence of Γ, denoted by
Γ |= Γ′, if and only if all interpretations that satisfy Γ also satisfy Γ′. We also say
that Γ′ can be deductively inferred by Γ. This relation can also be applied to single
formulas analogously. In case that Γ infers Γ′ and vice-versa, we say that both sets
of formulas are equivalent (Def. 2.13).

Definition 2.13. [BKI19] Let Γ,Γ′ ⊆ LΣ be two sets of formulas, then Γ and Γ′ are
equivalent, denoted by Γ ≡ Γ′, if and only if the following holds:

Γ ≡ Γ′ ⇔ (Γ |= Γ′ and Γ′ |= Γ)⇔ JΓKΣ = JΓ′KΣ

The definition of the equivalence of two (sets of) formulas (Def. 2.13) also pro-
vides an interesting relation between a formula ϕ and its models, which is the equiv-
alence of ϕ and the disjunction of all its models JϕK (Prop. 2.14)

Proposition 2.14. Let ϕ ∈ LΣ be a formula, then the following holds:

ϕ ≡
∨
ω∈JϕK

ω

Proof of Prop. 2.14. From Def. 2.13, we know that the stated equivalence holds, if
and only if the corresponding models are equal. We prove the equality of the models
in the following:

JϕK =
⋃
ω∈JϕK

{ω}

=
⋃
ω∈JϕK

JωK (JωK = {ω})

= J
∨
ω∈JϕK

ωK (Lem. 2.10)
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At this point, we make use of the fact that a model ω ∈ JϕK can also be viewed as
a conjunction of literals, e.g. the interpretation pbf can also be viewed as p∧¬b∧f .
Thus, we make use of this trick, whenever we treat interpretations like formulas in
the following.

In contrast to the semantic inference based on the Tarskian consequence rela-
tion, we already described syntactic inference in Section 2.1, which is based on the
syntactic transformation of formulas. These two kinds of inferences are closely re-
lated through the properties of soundness and completeness [BKI19]. Soundness
states that each conclusion that can be inferred syntactically can also be inferred
semantically:

If ϕ |−ψ, then ϕ |= ψ.

This means that the models of ϕ are models of ψ as well, for every ψ that can
be obtained by syntactically transforming ϕ. In other words, it is not possible to
infer some ψ syntactically that is not satisfied by the models of ϕ. Conversely, the
correctness states that each conclusion that can be inferred semantically can also be
inferred syntactically:

If ϕ |= ψ, then ϕ |−ψ.

This means that all formulas ψ that are a consequence of ϕ can also be obtained
through syntactic transformation. If both soundness and completeness hold, we
know that these inferences are equivalent, yielding the exact same conclusions:

ϕ |−ψ ⇔ ϕ |= ψ.

Moreover, we want to state the relation between formulas ϕ, ψ and their nega-
tions in case that ϕ |= ψ holds. Since we know from Lem. 2.10 that the models of a
negation ¬ϕ are complementary to the models of ϕ, we can conclude that if ϕ |= ψ
holds, then ¬ψ |= ¬ϕ must hold as well and vice-versa (Lem. 2.15).

Lemma 2.15. Let ϕ, ψ ∈ LΣ be formulas, then the following holds:

ϕ |= ψ ⇔ ¬ψ |= ¬ϕ

In many cases, it is necessary to know all formulas that can be inferred by a
given set of formulas. Thus, we further define the consequence operator Cn in
Def. 2.16 that maps a set of formulas to all its consequences by means of a Tarskian
consequence relation.

Definition 2.16. [Mak88] Let Γ ⊆ LΣ be a set of formulas. The consequence
operator Cn maps Γ to all formulas ϕ ∈ LΣ with Γ |= ϕ.

Cn(Γ) = {ϕ ∈ LΣ | Γ |= ϕ}

Since Cn(Γ) contains all formulas that can be directly concluded from Γ, we say
that Cn(Γ) is deductively closed. In the following, we also write Cn(ϕ1, . . . , ϕn)
instead of Cn({ϕ1, . . . , ϕn}) for formulas ϕi ∈ L and i ∈ N. Due to the Tarskian
consequence relation, we know that the models of Cn(Γ) must be same as those of Γ,
and thus a set of formulas is always equivalent to its deductive closure (Lem. 2.17).



16 2 Preliminaries

Lemma 2.17. Let Γ ⊆ LΣ a set of formulas, then the following holds:

Cn(Γ) ≡ Γ

In the following, we state the main properties of the Tarskian consequence rela-
tion and the consequence operator in Th. 2.18 and 2.19. These allow us to argue
about deductive reasoning on the formula level instead of the model level, which can
often be understood more intuitively.

Theorem 2.18. [Mak88] Let Γ ⊆ LΣ be a set of formulas, ϕ, ψ ∈ LΣ formulas, and
|= a Tarskian consequence relation, then the following holds:

If ϕ ∈ Γ, then Γ |= ϕ (Reflexivity)

If Γ |= ϕ and Γ ∪ {ϕ} |= ψ, then Γ |= ψ (Cut)

If Γ |= ψ, then Γ ∪ {ϕ} |= ψ (Monotony)

Theorem 2.19. [Mak88] Let Γ,Γ′ ⊆ LΣ be sets of formulas, and Cn a consequence
operator, then the following holds:

Γ ⊆ Cn(Γ) (Reflexivity)

If Γ ⊆ Γ′ ⊆ Cn(Γ), then Cn(Γ′) ⊆ Cn(Γ) (Cut)

If Γ ⊆ Γ′, then Cn(Γ) ⊆ Cn(Γ′) (Monotony)

In Th. 2.19 it can easily be seen that the properties cut and monotony induce
the cumulativity of logical consequences [Mak88], since whenever the condition of
cut is fulfilled the condition of monotony is fulfilled as well:

If Γ |= ϕ, then Γ |= ψ iff Γ ∪ {ψ} |= ϕ,

resp. if Γ ⊆ Γ′ ⊆ Cn(Γ), then Cn(Γ′) = Cn(Γ).
(Cumulativity)

Further, we will explain the properties stated in Th. 2.18 and 2.19 with respect
to the consequence operator Cn only. However, the given explanations can easily
be transferred to the Tarskian consequence operator.

The reflexivity ensures that a set of formulas Γ ⊆ L is always included in its own
logical consequences Cn(Γ). Since Cn(Γ) consists of all formulas that are satisfied
by the models JΓK, Cn(Γ) in particular contains Γ itself, because JΓK |= Γ holds by
definition.

The cut property states that when adding a formula ϕ to the set of formulas
Γ that could already be inferred, it does not affect the resulting deductive closure
Cn(Γ). Concretely, if we can infer ψ ∈ L from Γ∪{ϕ} deductively, but also ϕ from
Γ, then adding ϕ to Γ does not give us any new information. Therefore, we can also
infer ψ from Γ without adding ϕ.

The monotony states that after adding new information, we can still infer the
same knowledge as before. At first glance, it may seem that this property does
not hold when adding information that is inconsistent to the present knowledge.
This is the case when we add a formula ϕ to a set of formulas Γ with Γ |= ¬ϕ.
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By definition of the Tarskian consequence relation (Def. 2.12), we know that ¬ϕ
concludes deductively from Γ, if and only if its models are included in those of ¬ϕ:

Γ |= ¬ϕ⇔ JΓK ⊆ J¬ϕK.

Since ϕ and ¬ϕ are mutually exclusive, we further know

JϕK ∩ J¬ϕK = ∅,

due to Lem. 2.10. When we then add ϕ to Γ, there will be no models that satisfy the
resulting set of formulas, since there do not exist interpretations satisfying ϕ ∧ ¬ϕ.
The models of Γ ∪ {ϕ} can be described by intersecting the model sets of Γ and ϕ,
since the a set of formulas is satisfied, if and only if the conjunction of all formulas
in this set is satisfied. Since JΓK ⊆ J¬ϕK and JϕK ∩ J¬ϕK = ∅, we also know

JΓ ∪ {ϕ}K = JΓK ∩ JϕK = ∅.

At this point, we want state that the whole language L can be inferred from an
contradiction ⊥, since J⊥K = ∅ (Lem. 2.20).

Lemma 2.20. For each propositional language LΣ, the following holds:

Cn(⊥) = LΣ

This directly concludes from the definition of the Tarskian consequence relation
(Def. 2.12), in which it is stated that a formula ϕ can be deductively inferred from a
set of formulas Γ, if and only if JΓK ⊆ JϕK. Applying this definition to ⊥, we obtain

Cn(⊥) = {ϕ ∈ L | ⊥ |= ϕ} (Def. 2.16)

= {ϕ ∈ L | J⊥K ⊆ JϕK} (Def. 2.12)

= {ϕ ∈ L | ∅ ⊆ JϕK}
= L.

Therefore, the monotony holds even if we add contradictory knowledge to Γ.
Finally, we state some equivalent relations in Prop. 2.21 summarizing the relations
between model sets, the Tarskian consequence relation and the Cn operator.

Proposition 2.21. Let Γ,Γ′ ⊆ LΣ be sets of formulas, the the following relations
are equivalent:

1. JΓK ⊆ JΓ′K

2. Γ |= Γ′

3. Cn(Γ) |= Cn(Γ′)

4. Cn(Γ′) ⊆ Cn(Γ)

Next, we want to show the strong relation between the concept of theory and
deductive reasoning. For this, we first give the definition of a theory in Def. 2.22.
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Definition 2.22. Let Θ ⊆ ΩΣ be a set of interpretations. The theory of Θ is defined
as

Th(Θ) = {ϕ ∈ LΣ | Θ |= ϕ}.

Intuitively, a theory describes all knowledge that is coherent with a given set
of interpretations Θ. Formally, this is described by the set of all formulas that are
satisfied by Θ. Just as the Cn operator, Th results in a deductively closed set of
formulas. Moreover, the theory of a set of interpretations can also be described by
means of Cn (Lem. 2.23). This can be traced back to the equivalence of a formula
and the disjunction of its models stated in Prop. 2.14.

Lemma 2.23. Let Θ ⊆ ΩΣ be a set of interpretations, then the following holds:

Th(Θ) = Cn(
∨
ω∈Θ

ω)

This allows us to use the deductive closure of a formula and the theory of its
models interchangeably. Furthermore, we know that the models of a theory must
be equal to the set of interpretations Th was applied to (Lem. 2.24).

Lemma 2.24. Let Θ ⊆ ΩΣ, then the following holds:

JTh(Θ)K = Θ

This also corresponds to the fact that the models of a deductive closure Cn(Γ)
are equal to the models of Γ. Another important property we will need in this work
is that the intersection of two theories Th(Θ) and Th(Θ′) can be described by the
theory of Θ ∪Θ′ (Lem. 2.25).

Lemma 2.25. Let Θ,Θ′ ⊆ ΩΣ be sets of interpretations, then the following relation
holds:

Th(Θ) ∩ Th(Θ′) ≡ Th(Θ ∪Θ′)

Intuitively, Lem. 2.25 states that the formulas both theories Th(Θ) and Th(Θ′)
agree on are the formulas that can be inferred from both interpretation sets Θ,Θ′.
To summarize the relations between a set of formulas, its deductive closure and the
theory of its models, we state several equivalences in Prop. 2.26 below.

Proposition 2.26. Let Γ ⊆ LΣ be a set of formulas, then the following sets are
equivalent:

Γ ≡ Cn(Γ) ≡ Cn(
∨
ω∈JΓK

ω) ≡ Th(JΓK)

In conclusion, we gave a short introduction to model theory by presenting the
basic definitions and properties as needed in this work. Thereby, we answered the
questions what models are, how they can be determined, and how they relate to
their corresponding formulas. Moreover, we showed how deductive reasoning can
formally be described by means of models. Thereby, we introduced the Tarskian
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consequence relation that determines, whether a formulas be can deductively in-
ferred from another, as well as the consequence operator Cn that determines the
deductively closed set of consequences of a formula. For both the relation and the
operator we stated the most relevant properties including certain equivalences that
emphasize the relations between models, formulas and their consequences. Lastly,
we showed that the concept of deductive reasoning is strongly related to the concept
of theory, and stated some of the basic properties and equivalences.

2.3 Fundamentals of Epistemology and AGM Theory

In this section, we will introduce the fundamental epistemic terms in knowledge
representation and their relations to each other. These include among others the
concepts of knowledge bases, belief sets and epistemic states. Thereby, we will
briefly highlight the special significance of faithful assignments for the latter. In
addition, we will state the three fundamental belief change operations in knowledge
representation, namely the expansion, contraction and revision. These operations
are best known in the context of AGM theory [AGM85, GR95], in which their
general properties and connections to each other are given in the form of postulates
and identities. We will present the latter as needed in this work, and furthermore
their generalized forms for epistemic states. Note that all postulates presented in
this section will be frequently used in the later sections. Therefore, they can also be
found in Appendix A.1 for a faster and easier access.

Fundamental epistemic terms. We want to start with an overview of the most
basic epistemic terms, and their relations to each other. This overview is also illus-
trated in Figure 1. The most basic of the epistemic terms is that of a knowledge
base, which describes a set of secure or uncertain information that forms the basis
of our knowledge. These information can be logical formulas or probabilities, for ex-
ample. Given a certain knowledge base, we can obtain its corresponding belief set by
means of deductive reasoning. Thereby, the belief set states the deductively closed
set of conclusions that can be inferred from the knowledge base without further
assumptions. In the context of propositional logic, we already introduced this con-
cept by means of the Tarskian consequence relation (Def. 2.12) and the Cn operator
(Def. 2.16) in Section 2.2. However, the knowledge base can also be used to obtain
an epistemic state, that describes our knowledge in a more abstract manner. Com-
monly used examples for epistemic states are Bayesian networks [CH92], decision
trees [JWHT13], and ordinal conditional functions [Spo88]. The latter will be intro-
duced in Section 2.4. Epistemic states represent our knowledge without explicitly
stating our beliefs, but by estimating probability functions, arranging certain rules,
or ordering interpretations, depending on the kind of epistemic state. Generally, an
epistemic state can be obtained from a knowledge base by means of inductive infer-
ence, which forms one of the three commonly considered kinds of reasoning, beside
deductive and abductive reasoning [Pei65]. What distinguishes inductive from de-
ductive inference, is that it infers general knowledge from more specific information.
This always requires further assumptions that are not given by the knowledge base,
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Knowledge base

Belief set

Epistemic state
Deductive
inference

Inductive
inference

Projection

Figure 1: Relations of the epistemic terms knowledge base, epistemic state and belief set.
This figure is adapted from the slides of the lecture Commonsense Reasoning read by
Kern-Isberner at TU Dortmund University in summer 2019.

which in this case is used to evidence the more general knowledge. Note that this is
conceptually different to inferring information from the knowledge base deductively.
Information that are inferred inductively do not necessarily have to be correct, but
can only be considered probable, since the knowledge base is just an evidence rather
than a proof. An epistemic state can further be used to determine whether certain
information are believed or not. Thus, we can obtain the belief set of an epistemic
state by means of a projection function. The way the projection maps an epistemic
state to its beliefs again depends on the kind of epistemic state chosen to represent
our knowledge. It is even possible that there exist different projections for the same
epistemic state. Note that the terms stated above are not exhaustive, but only state
the very fundamental terms as needed in this work.

As described above, the concept of epistemic states is very general and rather
abstract, and can be realized in many different ways. However, in the domain of
knowledge representation, epistemic states Ψ are often assumed to be equipped with
a faithfully assigned total preorder �Ψ on the interpretations Ω, which allows an
ordering of our knowledge, for example with respect to its probability or plausibility.
The term faithful thereby states that the assigned total preorder must follow certain
conditions. We state these conditions in Def. 2.27 below.

Definition 2.27. [DP97] Let Ψ and Φ be epistemic states and Ω a set of interpre-
tations that belong to them. A faithful assignment maps each epistemic state Ψ to
a total pre-order �Ψ ⊆ Ω× Ω satisfying the following conditions for all ω, ω′ ∈ Ω:

1. ω, ω′ |= Bel(Ψ), only if ω =Ψ ω′,

2. ω |= Bel(Ψ) and ω′ |6= Bel(Ψ), only if ω �Ψ ω′ and not ω′ �Ψ ω,
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3. Ψ = Φ, only if �Ψ=�Φ,

where ω =Ψ ω′ is defined as ω �Ψ ω′ and ω′ �Ψ ω; and ω <Ψ ω′ is defined as
ω �Ψ ω′ and ω′ �Ψ ω.

The three conditions a faithfully assigned total preorder �Ψ must fulfil, can
intuitively be understood as follows. Two interpretations satisfy the beliefs of an
epistemic state, only if they are equal according to �Ψ. This means, that all models
of Bel(Ψ) are equal according to the total preorder, and if an interpretation is for
example less probable or plausible than a model of Bel(Ψ), then it cannot be a
model of Bel(Ψ). Lastly, two epistemic states can only be equal, if their assigned
total preorders are equal as well. However, this does not exclude that two different
epistemic states are assigned to the same total preorder.

Introduction to AGM theory. Next, we introduce the three fundamental belief
change operations, namely the expansion, contraction and revision as elaborated
in AGM theory [AGM85, GR95]. All of these operations argue about belief sets
and formulas, and thereby follow the minimum change paradigm, which states that
our beliefs should only be changed in a minimum way when performing certain
belief changes. Concretely, this means that when removing or adding new beliefs
to our belief set, only those formulas should be removed or added that are crucial
for successfully performing the corresponding belief change. This consideration is
also stated in the properties postulated by AGM. First, we present the expansion,
denoted as +, which forms the simplest of the three belief change operations. The
general properties of an expansion are given by the following postulates (AGM+1)-
(AGM+6) [Mak85], where K,K ′ are belief sets and ϕ ∈ L is a formula:

(AGM+1) K + ϕ is a belief set

(AGM+2) ϕ ∈ K + ϕ

(AGM+3) K ⊆ K + ϕ

(AGM+4) If ϕ ∈ K, then K + ϕ = K

(AGM+5) If K ⊆ K ′, then K + ϕ ⊆ K ′ + ϕ

(AGM+6) K+A is the smallest belief set, such that (AGM+1)-(AGM+5) hold

These postulates state that each expansion K +ϕ should again result in a belief
set (AGM+1), in which the just added formula ϕ is included (AGM+2). Thus,
(AGM+2) is also called the success postulate. It is of particular importance that
due to the expansion none of prior beliefs are rejected (AGM+3). This means,
that even if ϕ contradicts the prior beliefs K, none of them will be rejected in order
to prevent a posterior contradictory belief set. (AGM+5) states the monotony
that retains the subset relation of prior belief sets K,K ′ after an expansions with
ϕ. This is strongly related to the underlying minimum change paradigm, which is
more explicitly stated by (AGM+4) and (AGM+6). Given the AGM expansion
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postulates (AGM+1)-(AGM+6), we can state that an operator + satisfies them,
if and only if it equals the deductive closure of the prior beliefs K unified with ϕ
(Th. 2.28).

Theorem 2.28. [GR95] A belief change operator + satisfies (AGM+1)-(AGM+6),
if and only if

K + ϕ = Cn(K ∪ {ϕ})

While the expansion as originally stated by AGM is sufficient for the elaborations
in this work, we cannot make use of the originally stated contraction and revision,
because they only argue about belief sets. Since the examinations towards a general
framework for kinds of forgetting will mostly argue about forgetting in epistemic
states, we need a generalized form of the AGM contraction and revision postulates
that argue about epistemic states as well. This will allow us to examine how the
properties of contractions and revisions relate to the forgetting postulates, which
will be presented in the later sections. The postulates (AGMes-1)-(AGMes-7) as
presented by Konieczny and Pérez in [KP17] state the AGM contraction postulates
generalized to epistemic states, where Ψ is an epistemic state, ϕ, ψ ∈ L are formulas,
and − a belief change operator over epistemic states:

(AGMes-1) Bel(Ψ) |= Bel(Ψ− ϕ)

(AGMes-2) If Bel(Ψ) |6= ϕ, then Bel(Ψ− ϕ) |= Bel(Ψ)

(AGMes-3) If Bel(Ψ− ϕ) |= ϕ, then ϕ ≡ >

(AGMes-4) Bel(Ψ− ϕ) ∪ {ϕ} |= Bel(Ψ)

(AGMes-5) If ϕ ≡ ψ, then Bel(Ψ− ϕ) ≡ Bel(Ψ− ψ)

(AGMes-6) Bel(Ψ− ϕ ∧ ψ) |= Bel(Ψ− ϕ) ∨Bel(Ψ− ψ)

(AGMes-7) If Bel(Ψ− ϕ ∧ ψ) |6= ϕ, then Bel(Ψ− ϕ) |= Bel(Ψ− ϕ ∧ ψ)

A contraction Ψ − ϕ describes a belief change that removes certain formulas
from our prior beliefs Bel(Ψ) without adding new information, such that ϕ is not
believed by the posterior beliefs (AGMes-1). However, this does not hold if ϕ is a
tautology. In this case, ϕ is still included in the posterior beliefs, due to the nature
of tautologies (AGMes-3). Furthermore, if ϕ was not included in the prior beliefs
in the first place, then the contraction will not reduce the prior beliefs (AGMes-2).
This again corresponds to the underlying minimum change paradigm. Moreover,
the contraction is independent of the syntactic structure of the contracted formulas,
which concludes that contracting two equivalent formulas ϕ ≡ ψ will also result in
equivalent beliefs (AGMes-5). The beliefs that were rejected due to a contraction
can be recovered by adding ϕ to the posterior beliefs Bel(Ψ − ϕ) (AGMes-4).
Thus, (AGMes-4) is also called the recovery postulate. (AGMes-6) states that
contracting a conjunction ϕ ∧ ψ only removes those formulas from the prior beliefs
that are necessary to guarantee that ϕ ∧ ψ cannot be inferred by the posterior
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beliefs. Concretely, this means that it is generally sufficient to contract the beliefs
that are either related to ϕ or ψ. (AGMes-7) states that if ϕ cannot be inferred
by the Bel(Ψ − ϕ ∧ ψ), then contracting ϕ ∧ ψ from ψ will at least reject the
same beliefs as contracting ϕ from Ψ. This strongly relates to (AGMes-6), since
Bel(Ψ−ϕ∧ψ) |6= ϕ reveals that the contraction rejects the beliefs that are related
to ϕ.

Lastly, we introduce the revision for epistemic states, by means of the generalized
AGM revision postulates as presented by Darwiche and Pearl in [DP97], where Ψ,Φ
are epistemic states, ϕ, ψ ∈ L are formulas, and ∗ is a belief change operator:

(AGMes∗1) Bel(Ψ ∗ ϕ) |= ϕ

(AGMes∗2) If Bel(Ψ) ∪ {ϕ} 6≡ ⊥, then Bel(Ψ ∗ ϕ) ≡ Bel(Ψ) ∪ {ϕ}

(AGMes∗3) If ϕ 6≡ ⊥, then Bel(Ψ ∗ ϕ) 6≡ ⊥

(AGMes∗4) If Ψ = Φ and ϕ ≡ ψ, then Bel(Ψ ∗ ϕ) ≡ Bel(Φ ∗ ψ)

(AGMes∗5) Bel(Ψ ∗ ϕ) ∪ {ψ} |= Bel(Ψ ∗ ϕ ∧ ψ)

(AGMes∗6) If Bel(Ψ ∗ ϕ) ∪ {ψ} 6≡ ⊥, then Bel(Ψ ∗ ϕ ∧ ψ) |= Bel(Ψ ∗ ϕ) ∪ {ψ}

A revision generally states the incorporation of new formulas into our present
beliefs. However, in contrast to the expansion, the revision guarantees the posterior
beliefs to be consistent, by rejecting those beliefs contradicting the newly added in-
formation. Therefore, the success postulate (AGMes∗1) states that after revising
Ψ with ϕ, we are able to infer ϕ. In case that ϕ does not contradict the prior beliefs,
it can just be added without rejecting any of the prior beliefs (AGMes∗2). How-
ever, the success of a revision just holds, if the formula ϕ we revise the epistemic
state Ψ with is not a contradiction by itself (AGMes∗3). Just as the contraction
for epistemic states, the revision of a formula ϕ is independent of its syntactic struc-
ture. Thus, when revising two equal epistemic states Ψ,Φ with equivalent formulas
ϕ, ψ, then the resulting beliefs will also be equivalent (AGMes∗4). Note that the
property described by (AGMes∗4) does not exactly capture the same idea as the
postulate originally stated by AGM. For this, it would be necessary that the beliefs
of Ψ and Φ are assumed to be equivalent, instead Ψ and Φ being equal. Since the
result of revising an epistemic state with a formula not only depends on its beliefs,
but also on further properties, the requirement of the posterior beliefs being equiv-
alent, if the prior beliefs are equivalent as well, is too strict. Therefore, Darwiche
and Pearl weakened the antecedence of this postulate such that the epistemic states
are assumed to be equal instead. (AGMes∗5) states that the beliefs after the
incorporation of multiple information ϕ, ψ, represented by the conjunction ϕ ∧ ψ,
are bounded by those of simply adding ψ after the revision with ϕ. Due to the
unification with ψ, we know that the resulting beliefs are capable of inferring all
consequences of ψ as well. The revision with ϕ ∧ ψ cannot yield conclusion beyond
the consequences of ψ. Thus, (AGMes∗5) also states that the revision with multi-
ple information is always bounded by the formulas an expansion would add to the
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prior beliefs. Lastly, (AGMes∗6) states that if a formula ψ is consistent with the
posterior beliefs of a revision Ψ ∗ ϕ, then revising with ϕ ∧ ψ contains the beliefs,
we would obtain when simply adding ψ to our beliefs.

As can be seen from the description of the postulates above, there exist certain
connections between those three fundamental belief change operations. In AGM
theory, the most important connections are stated as identities, which can also be
used to define an expansion, contraction or revision operator, respectively. In total,
there are three identities, namely

(Levi identity) K ∗ ϕ = (K − ¬ϕ) + ϕ,

(Harper identity) K − ϕ = K ∩ (K ∗ ¬ϕ),

(Third identity) K + ϕ =

{
K ∗ ϕ, if ¬ϕ /∈ K
L, otherwise

,

where +,− and ∗ are assumed to be an expansion, contraction and revisions, re-
spectively, satisfying the corresponding postulates as originally stated by AGM.
Note that in contrast to the (Levi identity) and (Harper identity), the last of
the stated identities does not have a specific name, which is why we refer to it as
the (Third identity). The (Levi identity) [Lev77] states that a revision can also
be expressed by means of a contraction and an expansion. The contraction removes
any contradicting beliefs, while the consecutively performed expansion actually adds
ϕ and all its consequences to the present beliefs. The (Harper identity) [Har76]
states that a contraction K − ϕ can also be expressed by revising K with ¬ϕ and
intersecting the resulting beliefs with the prior. This way, ϕ and the minimum set of
formulas from which ϕ can be inferred are removed, while all other prior beliefs are
preserved. The (Third identity), which directly concludes from the AGM revision
postulates [AGM85, Gär88], states that an expansion K + ϕ results in the same
beliefs as an revision K ∗ ϕ, if ¬ϕ is not included in K, i.e. if the expansion with
ϕ does not result in contradictory beliefs. This makes sense, since in this case the
revision does not reject any of the present beliefs and simply adds ϕ to them. Oth-
erwise, the expansion will result in contradictory beliefs. However, these identities
only hold with respect to the postulates originally stated by AGM, and not for the
generalized postulates stated above. In [KP17], Konieczny and Pérez discussed how
these identities can be generalized such that they correspond to the AGM postulates
for epistemic states, and stated several approaches. In this work, we will only make
use of the simplest of the there presented approaches, which regards the identities
with respect to the posterior beliefs. We refer to them as

(Levi equivalence) Bel(Ψ ∗ ϕ) ≡ Bel(Ψ− ¬ϕ) + ϕ,

(Harper equivalence) Bel(Ψ− ϕ) ≡ Bel(Ψ) ∨Bel(Ψ ∗ ¬ϕ),

(Third equivalence) Bel(Ψ) + ϕ =

{
Bel(Ψ ∗ ϕ), if Ψ |6= ¬ϕ
L, otherwise

,
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where + is an expansion satisfying (AGM+1)-(AGM+6), while − is a contraction
satisfying (AGMes-1)-(AGMes-7), and ∗ is a revision satisfying (AGMes∗1)-
(AGMes∗6). In the following, we want to note a few things about the above-stated
equivalences. First of all, we do not refer to those generalized forms as identities,
because other than the identities, the equivalences cannot be used to define an expan-
sion, contraction or revision operator. Thus, they do not fully capture the relations
between the operators as originally stated by the identities. Second, the operators ∗
and − are belief change operators for epistemic states and are assumed to satisfy the
generalized postulates (AGMes∗1)-(AGMes∗6) and (AGMes-1)-(AGMes-7),
while the expansion + still argues about belief sets only, and therefore is assumed
to satisfy (AGM+1)-(AGM+6). Even though, Konieczny and Pérez presented
even more elaborated generalizations of the identities, that are able to capture the
stated relations more accurately, the equivalences stated above are sufficient for the
examinations in this work.

Finally, we want to present further revision postulates for epistemic states that
form an extension of the hitherto revision postulates (AGMes∗1)-(AGMes∗6).
Darwiche and Pearl generalized the AGM revision postulates to epistemic states in
[DP97], and argued that they are not sufficient to state properties of iterated belief
revision. This is of particular interest when revising epistemic states instead of belief
sets, because revising an epistemic state not only affects the corresponding beliefs,
but also further properties. Therefore, Darwiche and Pearl stated four more pos-
tulates in addition to the generalized AGM revision postulates, in order to capture
the notions of iterated belief revision as well. We refer to the postulates of iterated
belief revision as (DP1)-(DP4), where Ψ is an epistemic state and ϕ, ψ ∈ L are
formulas:

(DP1) If ϕ |= ψ, then Bel((Ψ ∗ ψ) ∗ ϕ) ≡ Bel(Ψ ∗ ϕ)

(DP2) If ϕ |= ¬ψ, then Bel((Ψ ∗ ψ) ∗ ϕ) ≡ Bel(Ψ ∗ ϕ)

(DP3) If Bel(Ψ ∗ ϕ) |= ψ, then Bel((Ψ ∗ ψ) ∗ ϕ) |= ψ

(DP4) If Bel(Ψ ∗ ϕ) |6= ¬ψ, then Bel((Ψ ∗ ψ) ∗ ϕ) |6= ¬ψ

(DP1) states that when consecutively revising with two formulas ψ and ϕ,
where ϕ is more specific than ψ, the revision with the more general information ψ is
negligible, since its effect on the prior beliefs is also included in the revision with ϕ.
(DP2) states that consecutively revising with two contradictory formulas ϕ and ψ,
i.e. ϕ |= ¬ψ, the second revision revokes the effects of the first revision completely.
(DP3) states that when a certain information ψ is believed after revising Ψ with
ϕ, then explicitly incorporating ψ into our beliefs before revising them with ϕ does
not change that ψ is believed afterwards. Lastly, (DP4) states that if our beliefs
do not contradict ψ after a revision with ϕ, then they especially do not contradict
ψ, when we explicitly incorporate it into our beliefs before revising them with ϕ.
These properties are also said to formalize the principle of conditional preservation
for belief revisions, which in contrast to the minimum change paradigm states that
conditional relations in our epistemic state are preserved, if there is no reason to



26 2 Preliminaries

reject them. Darwiche and Pearl also discussed in [DP97] that the minimum change
paradigm and the principle of conditional preservation are not always compatible,
since the preservation of conditional relations often induces additional propositional
changes, and vice-versa.

2.4 Ordinal Conditional Functions

In epistemology, terms like truth, knowledge, belief and plausibility can be sepa-
rated into two categories – determinism and probabilism. This dichotomy does not
characterize a strict division and allows epistemic terms to be discussed determin-
istically as well as probabilistically. The different notions do not necessarily have
to exclude each other. More often, the opposite is the case in which the different
notions benefit from each other and together deduce more profound insights. In
probability theory, it was possible to argue about certain terms, which could not be
discussed deterministically for a long time, including the irrelevance of information
and the change in certain beliefs with respect to a given observation or fact. A
major reason why arguing about those terms deterministically was impossible for
such a long time is the fact that deterministic approaches were not able to han-
dle uncertain knowledge. In contrast to secure knowledge, uncertain knowledge is
not simply true or false, but allows exceptions to exist, e.g. we know that birds
generally fly, but we also know that there exists birds to which this rule does not
apply. Thus, uncertain knowledge can be regarded as plausible rules rather than
strict facts. While this kind of uncertainty can be inherently described by probabil-
ity theory, a deterministic representation is more complicated, since exceptions as
described above were not intended in classical logic. Motivated by the capabilities
of handling uncertain and conditional knowledge in probability theory, Spohn devel-
oped a qualitative abstraction of discrete probability distributions to argue about
the above-mentioned terms logically. This abstraction is know as ordinal conditional
functions (OCFs) [Spo88] and forms a common way of representing epistemic states
capable of handling uncertain knowledge.

In the following, we will elaborate the fundamental definitions and properties of
OCFs as needed in this work, which includes among others, the belief in and plau-
sibility of propositional and conditional knowledge, and the importance of minimal
models.

Ordinal conditional functions as epistemic states. In the further course, we
want to discuss OCFs as epistemic states. Thereby, we elaborate how OCFs can be
used to represent knowledge and how their beliefs can be obtained. Furthermore,
we state the basic properties and equivalences of OCFs as needed in this work.
Afterwards, we show that OCFs follow the concept of faithful assignments stated in
Section 2.3, which is a common assumption when working with general epistemic
states. We start with the definition of OCFs (Def. 2.29), since they form the basis
for everything discussed further in this section.

Definition 2.29. [Spo88] An ordinal conditional function (OCF) κ : ΩΣ → N0 ∪
{∞} over signature Σ assigns a rank to each interpretation ω ∈ ΩΣ with κ−1(0) 6= ∅.
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As already mentioned above, OCFs are epistemic states that can be understood
as a qualitative abstraction of probability functions and enrich the beliefs of our
epistemic states by a plausibility ranking of interpretations, which can be compared
to a probability function assigning probabilities to possible outcomes. But in con-
trast to probabilities, an interpretation appears more plausible the lower its rank is.
Thus, the rank an OCF assigns to an interpretation can be understood as a degree
of disbelief. The interpretations that are assigned to rank 0 are therefore considered
the most plausible. If an interpretation is assigned to rank ∞, it means that it
is not just unlikely, but completely excluded. Thus, assigning an interpretation to
rank ∞ corresponds to the idea of something being impossible, and therefore to a
probability of 0. However, in this work we only consider OCFs that do not assign
interpretations to rank∞, since it only makes arguing about them more technically
without providing any advantages. From a cognitive perspective, one can also ar-
gue that excluding certain interpretations completely is not desirable, since one can
usually not exclude certain considerations no matter how unlikely they seem. This
is closely related to the question what truth actually is, and that even knowledge we
consider as facts is based on assumption that theoretically can be disproved. The
additional condition that the inverse image κ−1(0) must not be empty, states that
there must always exist most plausible interpretations. In the further course, we
refer to the most plausible interpretations of κ as JκK (Def. 2.30).

Definition 2.30. [Spo88] Let κ be an OCF over signature Σ. The most plausible
interpretations of κ are given by JκK = {ω ∈ ΩΣ | κ(ω) = 0}.

Since epistemic states can generally be used to describe our beliefs about the ob-
jects and concepts of our world, represented by the signature elements Σ, we further
want to define, in which case a proposition ϕ ∈ LΣ is believed by an OCF κ. For this,
we make use of the plausibility ranking as already introduced for interpretations,
and first expand it to formulas in Def. 2.31.

Definition 2.31. [Spo88] Let κ be an OCF over signature Σ, then the rank of a
formula ϕ ∈ LΣ is defined as

κ(ϕ) = min{κ(ω) | ω ∈ ΩΣ and ω |= ϕ}.

Thereby, the rank of a formula ϕ is determined by the minimum rank among
the interpretations satisfying ϕ. This means that a formula is always as plausible
as its most plausible model. When we now want to know, if a certain formula ϕ is
believed by κ, we simply compare whether ϕ or ¬ϕ appears more plausible. We say
that ϕ is believed by κ, denoted as κ |= ϕ, if and only if ϕ is more plausible than
¬ϕ (Def. 2.32).

Definition 2.32. [Spo88] Let κ be an OCF over Σ and ϕ ∈ LΣ a formula.

κ |= ϕ⇔ κ(ϕ) < κ(¬ϕ)

In case that ϕ and ¬ϕ are assigned to the same rank, neither of them can be
concluded, since this would mean that we believe in contradicting propositions. On
the contrary, we know that ϕ cannot be inferred by κ, if and only if ¬ϕ is assigned
to rank 0 (Lem. 2.33).
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Lemma 2.33. [Spo88] Let κ be an OCF over signature Σ, then for each formula
ϕ ∈ LΣ the following holds:

κ |6= ϕ⇔ κ(¬ϕ) = 0

Since we now know that a proposition is believed when it appears more plausible
than its negation, we can further describe the belief set Bel(κ) of an OCF κ as the
set of all formulas that can be inferred it (Def. 2.34). Note that Bel(κ) must be
deductively closed, since it already contains all formulas that can be inferred from
κ.

Definition 2.34. [Spo88] Let κ be an OCF over Σ. The belief set of κ

Bel(κ) = {ϕ ∈ LΣ | κ |= ϕ}

is the deductively closed set formulas that can be inferred by κ.

In the following, we complete the overall picture by stating two more basic prop-
erties of OCFs that directly conclude from their definition. For each formula ϕ ∈ LΣ,
we know that ϕ, ¬ϕ or both must be assigned to rank 0, since each interpretation
ω ∈ ΩΣ is either a model of ϕ or ¬ϕ. This can be traced back to the condition that
there must exist interpretations with rank 0.

Proposition 2.35. [Spo88] Let κ be an OCF over signature Σ, then κ(ϕ) = 0 or
κ(¬ϕ) = 0 holds for each formula ϕ ∈ LΣ.

Prop. 2.35 also illustrates that it is necessary, but not sufficient for a formula
to have rank 0 in order to be believed by an OCF. Furthermore, we can conclude
that the rank of a disjunction ϕ ∨ ψ must be the minimum rank of either ϕ or ψ
(Lem. 2.36). This holds, since all models of ϕ and ψ are models of ϕ ∨ ψ as well.

Lemma 2.36. [Spo88] Let κ be an OCF over signature Σ, then for all formulas
ϕ, ψ ∈ LΣ the following holds:

κ(ϕ ∨ ψ) = min{κ(ϕ), κ(ψ)}

Given the basic definitions and properties of OCFs, we further want to state some
equivalences regarding its most plausible interpretations and beliefs, which will be
needed for the further examinations in this work. First, we state in Prop. 2.37 that
an interpretation ω is assigned to rank 0, if and only if its included in JκK, and
furthermore we know that it then must be a model of Bel(κ) as well.

Proposition 2.37. Let κ be an OCF over signature Σ and ω ∈ ΩΣ an interpretation,
then the following relations are equivalent:

1. κ(ω) = 0

2. ω ∈ JκK

3. ω |= Bel(κ)
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From this, we can further conclude the equivalences given in Prop. 2.38, which
state that the beliefs of two OCF κ, κ′ are equivalent, if and only if their most
plausible interpretations are equal. Moreover, this can also be expressed by means
of the corresponding theories.

Proposition 2.38. Let κ, κ′ be OCFs over the same signature Σ, then the following
relations are equivalent:

1. Bel(κ) ≡ Bel(κ′)

2. JκK = Jκ′K

3. Th(JκK) ≡ Th(Jκ′K)

From Prop. 2.38, we can conclude that the beliefs of an OCF can especially
be stated as the theory of its most plausible interpretations (Lem. 2.39). Thus,
the models of an belief set exactly correspond to the most plausible interpretations
(Lem. 2.40).

Lemma 2.39. Let κ be an OCF, then Bel(κ) ≡ Th(JκK) holds.

Lemma 2.40. Let κ be an OCF, then JBel(κ)K = JκK holds.

Analogously to Prop. 2.38, we can state that the beliefs of an OCF κ infer those
of another OCF κ′, if and only if JκK is included in Jκ′K respectively (Prop. 2.41).
Again, the same holds for the corresponding theories.

Proposition 2.41. Let κ, κ′ be OCFs over the same signature Σ, then the following
relations are equivalent:

1. Bel(κ) |= Bel(κ′)

2. κ |= Bel(κ′)

3. JκK ⊆ Jκ′K

4. Th(JκK) |= Th(Jκ′K)

After presenting the basic definitions and properties of OCFs as needed in this
work, we want to elaborate the relation of OCFs and faithful assignments as men-
tioned in Section 2.3. There, we described faithful assignments as a commonly
assumed property of epistemic states, since they imply important belief change
properties. Next, we show that the order of the interpretations induced by an OCF
are obtained faithfully. For this, we first like to specify this order in Prop. 2.42.

Proposition 2.42. [KI01] Let κ be an OCF over signature Σ, then κ induces a total
preorder �κ with

ω �κ ω′ ⇔ κ(ω) ≤ κ(ω′),

for all interpretations ω, ω′ ∈ ΩΣ.
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This induced total preorder follows a faithful assignment (Def. 2.27), since all of
the necessary conditions are satisfied (Prop. 2.43). Therefore, we can make use of
OCFs in the further course, whenever an epistemic state with a faithful ranking is
assumed.

Proposition 2.43. Let κ be an OCF over signature Σ. The corresponding induced
total preorder �κ satisfies

1. ω, ω′ |= Bel(κ), only if ω =κ ω
′,

2. ω |= Bel(κ) and ω′ |6= Bel(κ), only if ω ≺κ ω′,

3. κ = κ′, only if �κ=�κ′,

where ω =κ ω
′ is defined as ω �κ ω′ and ω′ �κ ω; and ω ≺κ ω′ is defined as ω �κ ω′

and ω′ �κ ω. Therefore κ 7→�κ is a faithful assignment.

Proof of Prop. 2.43.

1. ω, ω′ |= Bel(κ), only if ω =κ ω
′:

ω, ω′ |= Bel(κ)⇔ κ(ω) = 0 = κ(ω′) (Prop. 2.37)

⇒ κ(ω) ≤ κ(ω′) and κ(ω′) ≤ κ(ω)

⇔ ω �κ ω′ and ω′ �κ ω (Prop. 2.42)

⇔ ω =κ ω
′

2. ω |= Bel(κ) and ω′ |6= Bel(κ), only if ω ≺κ ω′:

ω |= Bel(κ) and ω′ |6= Bel(κ)

⇔ κ(ω) = 0 and κ(ω′) > 0 (Prop. 2.37)

⇔ ω �κ ω′ and ω′ �κ ω (Prop. 2.42)

⇔ ω ≺κ ω′

Since, we showed the equivalence of ω |= Bel(κ), ω′ |6= Bel(κ) and ω ≺κ ω′,
we know that the implication stated in (2.) holds as well.

3. κ = κ′, only if �κ=�κ′ : We prove (3.) by showing that if the total preorders
�κ, �κ′ are not equal, then κ and κ′ cannot be equal either.

�κ 6=�κ′
⇔ there exist ω, ω′ ∈ ΩΣ with

(ω �κ ω′ and ω �κ′ ω
′) or (ω �κ ω

′ and ω �κ′ ω′)
⇔ there exist ω, ω′ ∈ ΩΣ with

(κ(ω) ≤ κ(ω′) and κ′(ω) 6≤ κ′(ω′))

or (κ(ω) 6≤ κ(ω′) and κ′(ω) ≤ κ′(ω′))

(Prop. 2.37)

⇒ there exist ω ∈ ΩΣ with κ(ω) 6= κ′(ω)

⇔ κ 6= κ′
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Handling uncertainties with ordinal conditional functions. One of the key
strengths of OCFs is their capability of handling uncertain and conditional knowl-
edge, which again originates from the fact that OCFs can be understood as a quali-
tative abstraction of probability functions, for which we know that they are capable
of handling both of the above as well. Even if we mainly focus on propositional
knowledge in this work, we want to briefly introduce how OCFs can be used to
represent conditional, and therefore uncertain knowledge in the following. For this,
we will introduce conditionals, which can be understood as plausible rules, their
corresponding three-valued satisfaction relation, and furthermore under which cir-
cumstances they are believed by an OCF.

First, we intuitively recall conditional probability functions and show why the
semantics of classical propositional logic are not sufficient for representing uncertain
knowledge. A conditional probability function P (X = x|Y = y) describes the
probability that X takes on the value x, when we assume or already know that
Y = y holds. So, with Y = y given, the probabilities of X taking on a certain value
change accordingly. If P (X = x|Y = y) = 1 would hold, we would know that given
Y = y, X must definitely take on the value x, since all other values that might
be possible are assigned to a probability of 0. In this case, the relation of X = x
and Y = y can be described as a strict rule: if Y = y, then X = x. Such strict
rules can also be described in classical logic by means of a material implication
X → Y . However, the probability mass will generally not collapse into a single
value like this, but will rather redistribute over all values X can take on. Therefore,
P (X = x|Y = y) describes how plausible X = x seems under the assumption
Y = y. This means, there is an uncertainty about the behaviour on which value X
takes on, and therefore strict rules such as the material implication are not capable of
capturing this phenomena in general. To finally argue about this kind of conditional
knowledge, we need if-then rules capable of abstracting the uncertainty of conditional
probabilities. This leads us to the definition of conditionals (Def. 2.44).

Definition 2.44. [Spo88] The set of conditionals (LΣ|LΣ) over a language LΣ is
defined as (LΣ|LΣ) = {(ψ|ϕ) | ϕ, ψ ∈ LΣ}.

Inspired by the notation of conditional probabilities, we denote a conditional by
(ψ|ϕ), where ϕ is the antecedence and ψ the conclusion. (ψ|ϕ) can be read as ψ
follows plausibly from ϕ or ϕ usually implies ψ, and therefore can be considered as a
plausible rule. Even though we understand conditionals this way intuitively, they are
of a purely syntactic nature. In order to capture the uncertainty of plausible rules
semantically, it is not sufficient to use a binary satisfaction relation as in classical
logic, because this way a rule could only be true or false. Instead, we define a ternary
satisfaction relation (Def. 2.45), in which we distinguish between the verification,
falsification and satisfaction of conditionals. This definition goes back to de Finetti
who considered conditionals as general indicator functions [DeF74].

Definition 2.45. [KI01] Let (LΣ|LΣ) be a set of conditionals over the language
LΣ and ΩΣ the corresponding set of interpretations. For each conditional (ψ|ϕ) ∈
(LΣ|LΣ) and ω ∈ ΩΣ, the following three-valued satisfaction relation holds:

ω falsifies (ψ|ϕ)⇔ ω |= ϕ ∧ ¬ψ
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ω satisifies (ψ|ϕ)⇔ ω |= ϕ⇒ ψ

ω verifies (ψ|ϕ)⇔ ω |= ϕ ∧ ψ

An interpretation falsifies a conditional, when the conclusion holds but the an-
tecedence does not. In this case, the interpretation disagrees with the plausible
rule. A conditional is verified by an interpretations, if both the antecedence and the
conclusion hold. Finally, an interpretation ω can satisfy a conditional (ψ|ϕ) in two
cases, in which ω either verifies (ψ|ϕ) or is not applicable at all, since it contradicts
the antecedence of the plausible rule, namely ϕ. In simple terms, a conditional is
satisfied by an interpretation if it is not falsified. Given the three-valued satisfaction
relation above, we define the rank of a conditional in Def. 2.46.

Definition 2.46. [KI01] Let κ be and OCF over signature Σ and (ψ|ϕ) ∈ (LΣ|LΣ)
a conditional.

κ(ψ|ϕ) = κ(ϕ ∧ ψ)− κ(ϕ)

Determining the rank of a conditional (ψ|ϕ), can be viewed as determining the
rank of ϕ ∧ ψ in an OCF κ that only argues about the models of ϕ. These are the
interpretations that either falsify or verify (ψ|ϕ). Conditionalizing κ to the models
of ϕ corresponds to the assumption that ϕ must hold according to the antecedence
of (ψ|ϕ). In Def. 2.46, this corresponds to subtracting κ(ϕ), which maintains the
condition κ−1(0) 6= ∅ when removing the models of ¬ϕ. In this conditionalized
OCF, we then determine the rank of ϕ∧ψ, which corresponds to the minimum rank
among those interpretations verifying (ψ|ϕ). Furthermore, we can define whether
an OCF infers a conditional (Def. 2.47) analogously to the inference of propositions
stated in Def. 2.32.

Definition 2.47. [KI01] Let κ be an OCF over Σ and (ψ|ϕ) ∈ (LΣ|LΣ) a condi-
tional.

κ |= (ψ|ϕ)⇔ κ(ψ|ϕ) < κ(¬ψ|ϕ)

This means that an OCF believes a conditional, if and only if its verification
seems more plausible than its falsification. Similarly, we say that a conditional
(ψ|ϕ) is not believed by an OCF, if and only if (¬ψ|ϕ) is at least as plausible as
(ψ|ϕ) (Lem. 2.48).

Lemma 2.48. Let κ be an OCF over Σ and (ψ|ϕ) ∈ (LΣ|LΣ) a conditional.

κ |6= (ψ|ϕ)⇔ κ(¬ψ|ϕ) ≤ κ(ψ|ϕ)

Finally, in Prop. 2.49 we state some equivalences regarding the inference of a
conditional that will be useful for further examinations, and finish this paragraph on
OCFs and uncertain knowledge by giving an example that summarizes the previously
discussed properties of OCFs regarding conditionals (Ex. 2.2).

Proposition 2.49. Let κ be an OCF over signature Σ and (ψ|ϕ) ∈ (LΣ|LΣ) a
conditional, then the following relations are equivalent:

1. κ |= (ψ|ϕ)
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2. κ(ψ|ϕ) < κ(¬ψ|ϕ)

3. κ(ϕ ∧ ψ) < κ(ϕ ∧ ¬ψ)

Example 2.2. In this example, we want to illustrate how OCFs can be used to
handle uncertain knowledge represented by conditionals. For this, we consider the
OCF κ as given in Tab. 4 below.

κ(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 pbf

2 pbf , pbf

1 pbf , pbf

0 pbf , pbf , pbf

κ(·|b)(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 -

2 pbf

1 pbf , pbf

0 pbf

Table 4: Left: OCF κ over signature ΣTweety. Right: OCF κ over signature ΣTweety, but
restricted to the models of b.

According to Def. 2.45, we know that a conditional can be inferred by an OCF,
if and only if its verification seems more plausible than its falsification. Considering
the conditional (f |b), which reads birds usually fly, we know that κ infers (f |b), if
and only if:

κ |= (f |b)
⇔ κ(f |b) < κ(¬f |b) (Def. 2.45)

⇔ κ(f ∧ b)− κ(b) < κ(¬f ∧ b)− κ(b) (Def. 2.46)

⇔ 1− 1 < 2− 1

⇔ 0 < 1 X

Thus, we know that birds usually fly is believed by κ.
As already mentioned above, the subtraction of κ(b) can be viewed as restricting κ

to the models of the antecedence b. Thus, κ(f |b) corresponds to determining the rank
of f under the assumption that b holds. The OCF that would result from actually
restricting κ to the models of b is also illustrated in Tab. 4. We can see that the
ranks assigned to f ∧ b and ¬f ∧ b by κ(·|b) correspond to the ranks of (f |b) and
(¬f |b) in κ, and thus κ(·|b) infers (f |b) as well:

κ(·|b) |= (f |b)
⇔ κ(·|b)(f |b) < κ(·|b)(¬f |b) (Def. 2.45)

⇔ κ(·|b)(f ∧ b)− κ(·|b)(b) < κ(·|b)(¬f ∧ b)− κ(·|b)(b) (Def. 2.46)

⇔ 0− 0 < 1− 0

⇔ 0 < 1 X
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Minimal models and refinements of OCFs. Lastly, we want to argue about
the concept of minimal models, which will be essential for this work. Thus, we state
their definition and fundamental properties as needed in this work, and furthermore
the refinement relation of OCFs, which is strongly related to them.

First, we state the definition of minimal models in Def. 2.50. Thereby, minimal
models define the models of a formulas that are most plausible according to the
total preorder �κ induced by an OCF κ.

Definition 2.50. Let κ be an OCF over signature Σ with corresponding total pre-
order �κ, and ϕ ∈ LΣ a formula, then the minimal models of ϕ are defined as

min{JϕK,�κ} = {ω ∈ JϕK | κ(ω) = κ(ϕ)}.

Note that the minimality of the selected models is implicitly stated by the equal-
ity κ(ω) = κ(ϕ), since the rank of ϕ is already given by its most plausible models.
Therefore, by assuming κ(ω) = κ(ϕ), we also assume that there does not exist other
models of ϕ with a lower rank than ω.

In the following, we state several properties that are necessary when arguing
about minimal models. First, we state that if we assume that the minimal models
of ϕ and ψ are not disjunct, then both formulas must be assigned to the same rank
(Lem. 2.51).

Lemma 2.51. Let κ be an OCF over signature Σ and ϕ, ψ ∈ LΣ formulas.

If min{JϕK,�κ} ∩min{JψK,�κ} 6= ∅, then κ(ϕ) = κ(ψ)

This property is straightforward, since we know that all minimal models of ϕ are
assigned to a certain rank r, while all minimal models of ψ are assigned to a certain
rank r′. Obviously, ϕ and ψ can only share minimal models if they are assigned to
the same rank r = r′.

From Lem. 2.36, we know that the rank of a disjunction ϕ ∨ ψ is given by the
minimum rank of ϕ and ψ. Considering the minimal models of ϕ∨ ψ, we can make
use of Lem. 2.36 and show that they equal the unification of the minimal models of
ϕ and ψ, if and only if ϕ and ψ are assigned to the same rank (Prop. 2.52)

Proposition 2.52. Let κ be an OCF over signature Σ and ϕ, ψ ∈ LΣ formulas.

min{Jϕ ∨ ψK,�κ} = min{JϕK,�κ} ∪min{JψK,�κ} ⇔ κ(ϕ) = κ(ψ)

Proof of Prop. 2.52. We prove the equivalence stated in Prop. 2.52, by showing
that min{Jϕ ∨ ψK,�κ} = min{JϕK,�κ} ∪ min{JψK,�κ} implies that ϕ and ψ are
assigned to the same rank, and that if ϕ and ψ are assigned to the same rank, then
min{Jϕ ∨ ψK,�κ} = min{JϕK,�κ} ∪min{JψK,�κ} holds. In the following, we refer
to these two cases as (⇒) and (⇐)

Case (⇒):
By Def. 2.50, we know κ(ω) = κ(ϕ∨ψ) holds for each ω ∈ min{Jϕ∨ψK,�κ}. Further
we know min{JϕK,�κ} ∩min{Jϕ ∨ ψK,�κ} 6= ∅, since we assumed min{JϕK,�κ} ⊆
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min{Jϕ∨ψK,�κ}, and therefore we can conclude κ(ϕ) = κ(ϕ∨ψ) due to Lem. 2.51.
Thus, κ(ω) = κ(ϕ ∨ ψ) holds for each ω ∈ min{Jϕ ∨ ψK,�κ}. The same holds
analogously for the minimal models of ψ. Thus, we can conclude that κ(ϕ) = κ(ψ)
holds, if we assume min{Jϕ ∨ ψK,�κ} = min{JϕK,�κ} ∪min{JψK,�κ}.

Case (⇐):
In the further course, we assume κ(ϕ) = κ(ψ) and show that under this assumption
min{Jϕ ∨ ψK,�κ} = min{JϕK,�κ} ∪min{JψK,�κ} holds.

min{Jϕ ∨ ψK,�κ}
= {ω ∈ Jϕ ∨ ψK | κ(ω) = κ(ϕ ∨ ψ)} (Def. 2.50)

= {ω ∈ JϕK ∪ JψK | κ(ω) = κ(ϕ ∨ ψ)} (Lem. 2.10)

= {ω ∈ JϕK | κ(ω) = κ(ϕ ∨ ψ)} ∪ {ω ∈ JψK | κ(ω) = κ(ϕ ∨ ψ)}
= {ω ∈ JϕK | κ(ω) = min{κ(ϕ), κ(ψ)}}
∪ {ω ∈ JψK | κ(ω) = min{κ(ϕ), κ(ψ)}}

(Lem. 2.36)

= {ω ∈ JϕK | κ(ω) = κ(ϕ)} ∪ {ω ∈ JψK | κ(ω) = κ(ψ)} (κ(ϕ) = κ(ψ))

= min{JϕK,�κ} ∪min{JψK,�κ} (Def. 2.50)

Given Lem. 2.36 and Prop. 2.52, we can further express the minimal models of
ϕ ∨ ψ as stated in Lem. 2.53.

Lemma 2.53. Let κ be an OCF over signature Σ and ϕ, ψ ∈ LΣ formulas.

min{Jϕ ∨ ψK,�κ} =


min{JϕK,�κ}, if κ(ϕ) < κ(ψ)

min{JψK,�κ}, if κ(ψ) < κ(ϕ)

min{JϕK,�κ} ∪min{JψK,�κ}, otherwise

Next, we state some properties regarding the relations of disjunctions ϕ∨ψ and
conjunctions ϕ ∧ ψ to the minimal models of ϕ and ψ. In Prop. 2.54 we state that
the intersection of the minimal models of ϕ and ψ is always included in the minimal
models of their disjunction and conjunction, respectively.

Proposition 2.54. Let κ be an OCF over signature Σ with corresponding total
preorder �κ and ϕ, ψ ∈ LΣ formulas, then the following subset relations hold:

min{JϕK,�κ} ∩min{JψK,�κ} ⊆ min{Jψ ∧ ϕK,�κ}
min{JϕK,�κ} ∩min{JψK,�κ} ⊆ min{Jψ ∨ ϕK,�κ}

Proof of Prop. 2.54. We will proof the subset relation stated in Prop. 2.54 for the
conjunction ψ ∧ ϕ first, and for the disjunction ψ ∨ ϕ afterwards.

Proof of min{JϕK,�κ} ∩min{JψK,�κ} ⊆ min{Jψ ∧ ϕK,�κ}:
In the following we distinguish two cases. In the first case (= ∅) we show that the
subset relation holds if min{JϕK,�κ} ∩min{JψK,�κ} = ∅. In the second case (6= ∅)
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we show that it also holds if the intersection is not empty.

Case (= ∅): In this case the subset relation holds trivially, since ∅ ⊆ Θ holds for
every arbitrary set Θ.

Case (6= ∅): For each of interpretation ω ∈ min{JϕK,�κ} ∩ min{JψK,�κ}, we
know that κ(ϕ) = κ(ω) = κ(ψ) holds due to Lem. 2.51. Moreover, we know that
each ω ∈ min{JϕK,�κ} ∩min{JψK,�κ} must be a model of ϕ ∧ ψ, because of

min{JϕK,�κ} ∩min{JψK,�κ} ⊆ JϕK ∩ JψK = Jϕ ∧ ψK. (Lem. 2.10)

Thus, we know that there cannot exist models of ϕ ∧ ψ that are assigned
to smaller ranks than ϕ or ψ, because otherwise there would exist a model ω
satisfying ϕ and ψ with κ(ω) < κ(ϕ) and κ(ω) < κ(ψ). This concludes that
min{JϕK,�κ} ∩min{JψK,�κ} = min{Jψ ∧ ϕK,�κ} must hold.

Proof of min{JϕK,�κ} ∩min{JψK,�κ} ⊆ min{Jψ ∨ ϕK,�κ}:
We again distinguish the two cases in which min{JϕK,�κ} ∩min{JψK,�κ} is either
assumed to be empty (= ∅) or to contain at least a single interpretation ( 6= ∅).

Case (= ∅): Just as for the first part of the proof, the subset relation holds
trivially if min{JϕK,�κ} ∩min{JψK,�κ} = ∅.

Case (6= ∅): By assumption, we can make use of Lem. 2.51 and conclude that
κ(ϕ) = κ(ψ) must hold. Due to Lem. 2.36, we especially know κ(ϕ) = κ(ϕ ∨ ψ) =
κ(ψ). From this we can further conclude

min{Jϕ ∨ ψK,�κ} = min{JϕK,�κ} ∪min{JψK,�κ}. (Lem. 2.53)

Since the intersection of two sets min{JϕK,�κ} ∩ min{JϕK,�κ} is always a subset
of their unification min{JϕK,�κ} ∪min{JψK,�κ}, we can finally conclude that the
subset relation stated in Prop. 2.52 holds.

From Prop. 2.54 we can further derive that if we assume the intersection of the
minimal models of ϕ and ψ to be non-empty, we know that the intersection is even
equal to the minimal models of ϕ ∧ ψ (Lem. 2.55). This is a special case of the
property stated in Prop. 2.54.

Lemma 2.55. Let κ be an OCF over signature Σ with corresponding total preorder
�κ and ϕ, ψ ∈ LΣ formulas.

If min{JϕK,�κ} ∩min{JψK,�κ} 6= ∅
then min{JϕK,�κ} ∩min{JψK,�κ} = min{Jψ ∧ ϕK,�κ}

Finally, we want to state the refinement relation of two OCFs κ and κ′ (Def. 2.56).
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Definition 2.56. Let κ and κ′ be OCFs over the same signature Σ. κ is a refinement
of κ′, denoted by κ v κ′, if and only if for each pair of interpretations ω, ω′ ∈ ΩΣ it
holds that if ω �κ ω′, then ω �κ′ ω′.

We say that κ refines κ′, denoted by κ v κ′, in case that each relation between the
interpretations that holds in κ also holds in κ′. However, �κ′ is allowed to contain
relations that are not valid in �κ. It is important to note that due to the condition
that the relations of �κ must also hold in �κ′ , it is not possible for �κ to invert
any of the relations in �κ′ . Metaphorically, one can imagine that a refinement of κ′

can be obtained by observing it with a magnifying glass. Thus, taking a closer look
might reveal that some of the interpretations that appeared equal in rank before,
are actually assigned to different ranks. This way we obtained a more detailed view
on κ′ that does not contradict the previous. Furthermore, the refinement relation
implies that the most plausible interpretations of κ must be included in those of κ′,
if κ v κ′ holds (Prop. 2.57).

Proposition 2.57. Let κ, κ′ be OCFs over signature Σ, then the following holds:

If κ v κ′, then JκK ⊆ Jκ′K.

Proof of Prop. 2.57. We prove Prop. 2.57 by means of a contraposition. For this,
we show that κ cannot be a refinement of κ′, if we assume that JκK is not a subset
of Jκ′K:

If JκK * Jκ′K, then κ 6v κ′.

This can also be expressed as

if there exist ω ∈ JκK with ω /∈ Jκ′K,
then there exist ω, ω′ ∈ ΩΣ with ω �κ ω′ and ω �κ′ ω

′.

In the further course, we choose ω ∈ JκK freely, such that ω /∈ Jκ′K holds. Due to
the assumption JκK * Jκ′K, we know that such ω do exist. Further, let ω′ ∈ Jκ′K be
an arbitrary interpretation. Choosing ω and ω′ as stated above, the following holds:

ω �κ ω′

⇔ κ(ω) ≤ κ(ω′) (Prop. 2.42)

⇔ 0 ≤ κ(ω′) (ω ∈ JκK,Prop. 2.37)

Since 0 is smallest rank possible, 0 ≤ κ(ω′) holds for each ω′ ∈ ΩΣ. Furthermore,
we know that the following holds as well:

ω �κ′ ω
′

⇔ κ′(ω) � κ′(ω′) (Prop. 2.42)

⇔ κ′(ω) > κ′(ω′)

⇔ κ′(ω) > 0 (ω′ ∈ Jκ′K,Prop. 2.37)

Since ω /∈ Jκ′K, we know due to Prop. 2.37 that κ′(ω) 6= 0, and therefore that
κ′(ω) > 0 holds.
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In conclusion, we showed that κ cannot be a refinement of κ′, if we assume
JκK * Jκ′K. By means of contraposition, this concludes that JκK ⊆ Jκ′K must hold,
if κ refines κ′, i.e. κ v κ′.

Assuming that κ refines κ′ also affects the relations of the minimal models. This
will be discussed in the later sections. Finally, we want to give an example on the
refinement relation in Ex. 2.3.

Example 2.3. In this example, we illustrate the refinement relation as stated in
Def. 2.56. For this, we assume the OCFs κ and κ′ as given in Tab. 5 below.

κ(ω) ω ∈ ΩΣTweety

∞ -
... -

6 -

5 pbf

4 pbf

3 pbf

2 pbf , pbf

1 pbf , pbf

0 pbf

κ′(ω) ω ∈ ΩΣTweety

∞ -
... -

6 -

5 -

4 -

3 pbf

2 pbf , pbf

1 pbf , pbf

0 pbf , pbf , pbf

Table 5: OCF κ, κ′ over signature ΣTweety, where κ v κ′.

We see that κ refines κ′, i.e. κ v κ′, since each relation ω �κ ω′ that holds
for κ, also holds for κ′. The differences of �κ and �κ′ are only with respect to the
interpretations pbf , pbf and pbf . While for example pbf �κ′ pbf and pbf �κ′ pbf
holds for κ′, only pbf �κ pbf holds for κ. This shows that the relations in κ also
hold in κ′, but that there can exist relations in κ′ that can be omitted in κ due to the
refinement.

In summary, we presented ordinal conditional functions as epistemic states and
showed how they can be used to represent knowledge by means of a faithful rank-
ing of interpretations and a corresponding belief set. We further stated some of
the fundamental properties of OCFs and several equivalence needed in this work.
Furthermore, we stated their capability of handling conditional and uncertain knowl-
edge, which can be represented by conditionals – plausible if-then rules. Similar to
propositions, we defined the inference of conditionals by OCFs as well as further
properties. Lastly, we introduced the concept of minimal models including several
properties that state relations of the minimal models of propositions to their con-
junctions and disjunctions, respectively. Moreover, we stated the refinement relation
of two OCFs κ and κ′, that holds if and only if the order of κ is preserved by κ′.
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3 Forgetting

Many of the hitherto existing forgetting approaches refer to a specific logic such
as propositional logic [Boo54], first order logic [LR94] or answer set programming
[Won09, ZF06]. In general, these approaches provide definitions on how to compute
the results of forgetting, but less common they state properties capturing the general
notions of forgetting. However, there exist attempts on unifying these logic-specific
approaches. One of the most prominent is the approach of Delgrande [Del17]. This
more general approach is capable of representing several of the logic-specific defini-
tions, which is an important step towards a general framework of forgetting. But
even more important is the fact that Delgrande also elaborated properties that re-
flect the intuitive notions of forgetting according to their opinion. These properties,
even if depending on their given definition of forgetting, form a promising basis for
elaborating more general properties.

Another approach that attempts to generalize the concept of forgetting is pre-
sented by Kern-Isberner et al. in [BKIS+19]. However, both works pursue very
different approaches. The first major difference is that Kern-Isberner et al. do pro-
vide multiple forgetting definitions. Each of them is motivated by certain cognitive
considerations, and therefore describes a different kind of forgetting. Moreover, the
there presented kinds of forgetting are not applied to sets of formulas as Delgrande’s
approach, but more generally to epistemic states, concretely OCFs. Thus, the major
goal of [BKIS+19] is to capture the cognitively different kinds of forgetting, instead
of unifying the existing logic-specific approaches.

In this section, we will present the general approaches given in [Del17] and
[BKIS+19], since they form the basis for our examinations towards a general frame-
work for kinds of forgetting. First, we will present Delgrande’s general approach in
Section 3.1. Thereby, we cover its basic definition as well as their postulated proper-
ties of forgetting and some model theoretical considerations. Finally, we show how
their approach can be applied to a specific logic, by expressing Boole’s well-known
forgetting in propositional logic [Boo54] by means of Delgrande’s forgetting. Af-
terwards, we present in Section 3.2 three of the eight kinds of forgetting given in
[BKIS+19], concretely the marginalization, contraction and revision. We chose these
three kinds, since we think that they form the most relevant and essential kinds pre-
sented by Kern-Isberner et al. The marginalization is the only kind of forgetting
that describes forgetting in the sense of forgetting signature elements. Thus, it is
especially interesting for a comparison to Delgrande’s approach. The contraction in
our opinion forms the most intuitive and direct kind of forgetting, since it describes
the removal of a certain belief. Furthermore, it is of particular interest since the con-
cept of contraction describes one of the three fundamental belief change operators
stated in AGM theory. It also forms the basis for some of the other kinds presented
in [BKIS+19]. Lastly, we discuss the concept of revision as a kind of forgetting.
What is special about revisions in this context is the fact that they form the only
kind of forgetting, whose actual intuition does not describe the forgetting, but the
incorporation of information into our present beliefs. In addition to this, they are
of particular interest since they also describe one of the three fundamental belief
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change operators stated in AGM theory.

3.1 Delgrande’s General Approach of Forgetting

In the last decades, several definitions of forgetting have been developed. One com-
mon feature of all those definitions is that they refer to a specific logic, such as
first-order logic [LR94], answer set programming [Won09, ZF06], or propositional
logic [Boo54]. Delgrande presents a general approach of forgetting [Del17] with the
objective to unify the known specific approaches, and to elaborate general properties
of forgetting. This general approach is motivated by the idea that forgetting should
be performed at the knowledge level. This means that it argues about the knowledge
that follows logically from a given set of formulas, instead of their syntactic structure
or the chosen kind of representation. This allows the approach to be applicable to all
logics with a well-defined Tarskian consequence relation (Def. 2.12) or consequence
operator (Def. 2.16), respectively. Beyond that, no further constraints must be ful-
filled. In this section, we will first introduce Delgrande’s general forgetting approach.
Thereby, we state its main properties (DFP-1)-(DFP-7), which Delgrande refers
to as elementary and right, in the sense that they display the properties generally
associated with forgetting by common sense. After this, we discuss some model the-
oretical considerations that give further insights on this approach, and furthermore
allow us to compare it to other kinds of forgetting in the later sections. Finally, we
will present how Delgrande’s approach can be applied in propositional logic and how
it relates to the already established definition of forgetting in propositional logic as
presented by Boole [Boo54].

F – a general forgetting operator. Motivated by the above-mentioned con-
siderations, Delgrande defines forgetting as a reduction of the logic’s language such
that the knowledge that should be forgotten can no longer be inferred, since it is not
part of the language anymore. The reduction of the language can be achieved by
removing certain elements from the underlying signature. Therefore, Delgrande’s
approach can also be understood as a signature reduction, which means that in-
stead of forgetting a certain formula, we forget the signature elements themselves.
This is contrary to most other approaches, which are generally applied to elements
of the language. If we for example believe that penguins are able to fly and then
come to know that they are actually not, Delgrande’s approach would forget about
penguins and the ability to fly in general, such that we are not able to argue about
them anymore, whereas forgetting just our present beliefs about penguins does not
prevent us from doing so. Thus, intuitively Delgrande’s approach forgets about the
objects and concepts of our world, instead of beliefs about them. Formally, this kind
of forgetting is defined in Def. 3.1. In the following, we omit the subscript of the
consequence operator CnΣ when the signature is clearly given by the context.

Definition 3.1. [Del17] Let Σ and P be signatures, LΣ\P a language with cor-
responding consequence operator CnΣ, then forgetting a signature P in a set of
formulas Γ ⊆ LΣ is defined as

F(Γ, P ) = CnΣ(Γ) ∩ LΣ\P .
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When forgetting a signature P in a set of formulas Γ, the deductively closed
set of conclusions CnΣ(Γ) with respect to the original signature Σ is determined
first, because we want to argue about the knowledge that can be inferred, instead
of the formulas themselves. The goal of forgetting the signature elements P from Γ
is then to result in a deductively closed set of formulas that does not contain any
knowledge mentioning P . Therefore, those conclusions that mention elements of
P will be removed by intersecting the deductive closure CnΣ(Γ) with the reduced
language LΣ\P . The result of forgetting P in Γ is then the knowledge that can be
inferred deductively from Γ and does not mention elements of P . Furthermore, we
want to point out that forgetting the signature P cannot directly be applied to the
set of formulas Γ. Determining the deductive closure before the intersection with
the reduced language is crucial. If we assume that F(Γ, P ) would reduce Γ to the
formulas in LΣ\P first, and then determine the deductive closure of the remaining
formulas, there would exist formulas ϕ ∈ LΣ\P in the reduced language that are a
consequence of Γ, but not of Γ∩LΣ\P . By changing the order, the forgetting operator
would even forget consequences that are part of the reduced language, and would
therefore forget more than actually intended by Def. 3.1. In the worst case, Γ only
contains formulas mentioning elements in P . Thus, intersecting Γ with the reduced
language would result in an empty set of formulas, from which only tautologies
could be inferred. This states that Delgrande’s definition of forgetting must always
be applied to a belief set, and can especially not be applied to a knowledge base.

One of the main goals of the general approach is the unification of the logic-
specific forgetting approaches, which requires the comparability of their results in
order to verify, if the general approach is able to model the more specific ones. Many
forgetting approaches in specific logics, such as Boole’s approach in propositional
logic [Boo54], consider forgetting in the sense of forgetting formulas, and therefore do
not reduce the language to a subsignature. This makes it difficult to compare their
results to those of the general approach stated above. To be able to compare the
results nevertheless, Delgrande provides a second definition of forgetting (Def. 3.2),
expressing the resulting belief set in the original signature Σ. For this the deductive
closure with respect to the original signature Σ will be determined for the result of
forgetting P in Γ.

Definition 3.2. [Del17] Let Σ and P be signatures and LΣ a language with corre-
sponding consequence operator CnΣ, then forgetting a signature P in the original
signature Σ in a set of formulas Γ ⊆ LΣ is defined as

FO(Γ, P ) = CnΣ(F(Γ, P )).

By doing so, the result of forgetting will again contain formulas mentioning
elements of the forgotten signature P . At this point the question may arise, whether
forgetting as described in Def. 3.2 still captures the idea that it should not be possible
to infer any knowledge mentioning elements of the forgotten signature P . However,
since we know from Lem. 2.17 that the deductive closure of a set of formulas Γ is
equivalent to Γ itself, we can further conclude that both the forgetting with respect
to the reduced signature Σ \ P and to the original signature Σ are equivalent with
respect to Σ (Lem. 3.3).
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Lemma 3.3. Let Γ ⊆ LΣ be a set of formulas and P a signature, then the following
holds:

FO(Γ, P ) ≡ F(Γ, P )

Therefore, we know that FO(Γ, P ) might contain formulas mentioning elements
in P , but since the above-stated equivalence holds, these formulas do not provide
any new knowledge that could not already be inferred by the result of forgetting P in
Γ. Consequently, FO(Γ, P ) can be regarded as forgetting P in Γ as well. Further, we
know that if a forgetting approach for a specific logic results in formulas equivalent to
FO(Γ, P ), then its result is also equivalent to F(Γ, P ). In [Del17], Delgrande shows
the connection of their approach to some of the established forgetting operators in
specific logics. Since these will not be part of this work, with exception of Boole’s
forgetting in propositional logic, we will refer to [Del17] for more information.

Besides the unification of the specific approaches, another major goal of Del-
grande’s approach is the elaboration of general properties of forgetting. Most logic-
specific approaches only state ways of computing the result of forgetting, instead of
discussing properties that each forgetting approach should satisfy. In Th. 3.4, the
properties of this general approach are given. Delgrande emphasizes that these prop-
erties are elementary and right [Del17], in the sense that they display the properties
associated with forgetting by common sense. Thus, we will refer to these properties
as Delgrande’s forgetting postulates (DFP-1)-(DFP-7). Note that the postulates
can also be found in Appendix A.1 for faster access.

Theorem 3.4. [Del17] Let LΣ be a language over signature Σ and CnΣ the cor-
responding consequence operator, then the following relations hold for all sets of
formulas Γ,Γ′ ⊆ L and signatures P, P ′.

(DFP-1) Γ |= F(Γ, P )

(DFP-2) If Γ |= Γ′, then F(Γ, P ) |= F(Γ′, P )

(DFP-3) F(Γ, P ) = CnΣ\P (F(Γ, P ))

(DFP-4) If P ′ ⊆ P , then F(Γ, P ) = F(F(Γ, P ′), P )

(DFP-5) F(Γ, P ∪ P ′) = F(Γ, P ) ∩ F(Γ, P ′)

(DFP-6) F(Γ, P ∪ P ′) = F(F(Γ, P ), P ′)

(DFP-7) F(Γ, P ) = FO(Γ, P ) ∩ LΣ\P

Before we continue explaining the above-stated postulates, we want to comment
on Delgrande’s opinion of (DFP-1)-(DFP-7) displaying the right properties that
are associated with forgetting by common sense. In our opinion, (DFP-1)-(DFP-
7) might display the right properties when assuming forgetting as a reduction of
the language, or as forgetting signature elements, respectively. However, this is
clearly not the only kind of forgetting, neither from an intuitive nor from a cognitive
perspective. If (DFP-1)-(DFP-7) also display the right properties for other kinds
of forgetting is still to be investigated. For this we refer to the later sections.
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Even though these properties specifically refer to the definition of Delgrande’s
general approach (Def. 3.1), they can be used as a basis for discussing and devel-
oping more general postulates that do not require a specific definition of forgetting,
regardless of how general this definition might be. In the further course, we explain
each of the postulates (DFP-1)-(DFP-7).

(DFP-1) describes the monotony of forgetting. This means that forgetting
a signature P in a set of formulas Γ cannot result in new consequences. Every
consequence of F(Γ, P ) must be a consequence of Γ as well. This property can be
traced back to the fact that F(Γ, P ) = Cn(Γ) ∩ LΣ\P is a subset of the conclusions
of Γ.

Given two sets of formulas Γ and Γ′, where Γ′ can be inferred from Γ, (DFP-2)
states that if the signature P is forgotten in both sets of formulas, then F(Γ′, P )
must also be inferred by F(Γ, P ). When intersecting the consequences Cn(Γ) and
Cn(Γ′) with the reduced language LΣ\P , those formulas mentioning elements of P
will be removed. Due to

Γ |= Γ′ ⇔ Cn(Γ′) ⊆ Cn(Γ), (Prop. 2.21)

each formula that will be removed from Cn(Γ′) will also be removed from Cn(Γ).
Therefore, we know that after forgetting P in Γ and Γ′ the following holds:

Cn(Γ′) ∩ LΣ\P ⊆ Cn(Γ) ∩ LΣ\P

⇔ F(Γ′, P ) ⊆ F(Γ, P ) (Def. 3.1)

⇔ CnΣ\P (F(Γ′, P )) ⊆ CnΣ\P (F(Γ, P )) (DFP-3)

⇔ CnΣ\P (F(Γ, P )) |= CnΣ\P (F(Γ′, P )) (Prop. 2.21)

⇔ F(Γ, P ) |= F(Γ′, P ) (DFP-3)

Formally, this property is based on the monotony of the Cn operator. An inter-
esting implication of (DFP-2) is that forgetting in semantically equivalent sets of
formulas again results in semantically equivalent sets (Prop. 3.5).

Proposition 3.5. [Del17] Let Γ,Γ′ ∈ LΣ be sets of formulas and P a signature,
then the following holds:

If Γ ≡ Γ′, then F(Γ, P ) ≡ F(Γ′, P )

Prop. 3.5 follows straightforwardly from (DFP-2) and the definition of semantic
equivalence (Def. 2.13).

(DFP-3) shows that the general forgetting operator F captures the idea that
forgetting should be performed on the knowledge level by stating that forgetting is
not only performed on, but also results in a belief set. The resulting belief set is
deductively closed with respect to the reduced signature Σ\P . This property follows
among others from the reflexivity of the presumed Tarskian consequence relation or
consequence operator, respectively.

(DFP-4), (DFP-5) and (DFP-6) state properties arguing about iterated and
simultaneous forgetting. From (DFP-6) we know that forgetting a signature P
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can also be expressed as forgetting two signatures P1 and P2 consecutively with
P = P1 ∪ P2. This property is based on simple set theoretical considerations. By
definition, forgetting P = P1 ∪ P2 in Γ results in

F(Γ, P1 ∪ P2) = CnΣ(Γ) ∩ LΣ\(P1∪P2).

Since the reduced language LΣ\(P1∪P2) can also be expressed as LΣ\P1 ∩ LΣ\P2 , the
property stated in (DFP-6) can easily be derived:

CnΣ(Γ) ∩ LΣ\(P1∪P2) = CnΣ(Γ) ∩ (LΣ\P1 ∩ LΣ\P2)

= (CnΣ(Γ) ∩ LΣ\P1) ∩ LΣ\P2

= F(Γ, P1) ∩ LΣ\P2 (Def. 3.1)

= CnΣ\P1(F(Γ, P1)) ∩ LΣ\P2 (DFP-3)

= F(F(Γ, P1), P2) (Def. 3.1)

Therefore, we know that each signature P = P1 ∪P2 can be forgotten consecutively
by forgetting P1 first, and P2 afterwards. This property also allows us to express
forgetting as a sequence of forgetting operations, where each operation forgets a
single signature element (Cor. 3.6).

Corollary 3.6. Let P = {ρ1, . . . , ρn} be a signature with n ∈ N and Γ ⊆ LΣ a set
of formulas.

F(Γ, P ) = F(. . .F(F(Γ, {ρ1}), {ρ2}) . . . , {ρn})

Due to the commutativity and associativity of the set union, the order in which
the signature elements are forgotten is arbitrary, which means that F satisfies com-
mutativity and associativity as well (Cor. 3.7).

Corollary 3.7. [Del17] Let Γ ⊆ LΣ be a set of formulas and P1, P2, P3 signatures,
then the following equations hold:

F(F(Γ, P1), P2) = F(F(Γ, P2), P1) (Commutativity)

F(F(Γ, P1), P2 ∪ P3) = F(F(Γ, P1 ∪ P2), P3) (Associativity)

(DFP-5) states that signatures cannot only be forgotten iteratively as stated in
(DFP-6), but also simultaneously. Thereby, (DFP-5) can be derived similarly to
(DFP-6), by means of LΣ\(P1∪P2) = LΣ\P1∩LΣ\P2 and set theoretical considerations:

F(Γ, P1 ∪ P2) = CnΣ(Γ) ∩ (LΣ\P1 ∩ LΣ\P2) (Def. 3.1)

= (CnΣ(Γ) ∩ LΣ\P1) ∩ (CnΣ(Γ) ∩ LΣ\P2)

= F(Γ, P1) ∩ F(Γ, P2) (Def. 3.1)

In analogy to Cor. 3.6 we can express the forgetting of P as the intersection of
simultaneously performed forgetting operations, where each operation is applied to
a single signature element in P (Cor. 3.8).
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Corollary 3.8. Let P = {ρ1, . . . , ρn} be a signature with n ∈ N and Γ ⊆ LΣ a set
of formulas.

F(Γ, P ) =
n⋂
i=1

F(Γ, {ρi})

(DFP-4) states that forgetting two signatures P ′ and P consecutively results in
the same beliefs as just forgetting P , if P ′ ⊆ P holds. Thus, previously forgetting
a smaller signature, has no effect on the result of forgetting a greater signature
afterwards. Moreover, forgetting P after P ′, only removes the remaining signature
elements P \ P ′. This can also be expressed by means of (DFP-6), since P =
P ′ ∪ (P \ P ′):

F(F(Γ, P ′), P ) = F(F(Γ, P ′), (P ′ ∪ (P \ P ′)))
= F(F(F(Γ, P ′), P ′), (P \ P ′)) (DFP-6)

= F(F(Γ, P ′), (P \ P ′)) (P ′ ⊆ P ′, (DFP-4))

We state this property in Cor. 3.9 below.

Corollary 3.9. Let P and P ′ be signatures and Γ ⊆ LΣ a set of formulas.

If P ′ ⊆ P , then F(Γ, P ) = F(F(Γ, P ′), P \ P ′)

As already seen in the equation stated above, we can conclude from (DFP-4)
that forgetting the same signature twice is just the same as forgetting it once, which
corresponds to the intuition that forgetting something we are not aware of does not
affect our present beliefs. This forms a special case of (DFP-4) that shows that
forgetting is idempotent (Cor. 3.10).

Corollary 3.10. [Del17] Let Γ ⊆ LΣ be a set of formulas and P a signature. F
satisfies idempotence.

F(Γ, P ) = F(F(Γ, P ), P ) (Idempotence)

The last postulate (DFP-7) describes that we can obtain the result of forgetting
in the reduced signature F(Γ, P ), by removing all formulas mentioning elements
from P in the result of forgetting in the original signature FO(Γ, P ). Thus, the
intersection with LΣ\P acts as the inverse operation to CnΣ. Delgrande provides
proofs for all properties (DFP-1)-(DFP-7) in [Del17], but we think that the proof
of (DFP-7) is not elaborated enough and misses too many steps that are crucial
for understanding it. This is why we provide a more detailed and at the same time
even shorter proof of (DFP-7).

Proof of (DFP-7). Let Γ ⊆ LΣ be a set of formulas and P be a signature.

FO(Γ, P ) ∩ LΣ\P = CnΣ(F(Γ, P )) ∩ LΣ\P (Def. 3.2)

= F(F(Γ, P ), P ) (Def. 3.1)

= F(Γ, P ) (Cor. 3.10)
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Model theoretical considerations. After providing the general definitions and
properties of Delgrande’s forgetting approach, we further want to elaborate some of
its model theoretical considerations as presented in [Del17]. By this, we will gain
a better understanding of this approach, and furthermore be able to compare it to
other approaches by means of their models. Before we argue about the models of
F(Γ, P ) we further have to introduce two definitions, that allow us to argue about
interpretations over different signatures Σ′, Σ with Σ′ ⊆ Σ. First, we define the ele-
mentary equivalence of two interpretations ω, ω′ ∈ ΩΣ that states their equivalence
with the exception of signature elements P .

Definition 3.11. [Del17] Let Σ and P be signatures. Two interpretations ω, ω′ ∈ ΩΣ

are elementary equivalent with the exception of the signature elements P , denoted
as

ω ≡P ω′,

if and only if they agree on the interpretation of all signature elements in Σ \ P .

Given the definition of elementary equivalence, we can define the reduct and
expansion of models in Def. 3.12

Definition 3.12. [Del17] Let Σ′ ⊆ Σ be signatures and ϕ ∈ LΣ, ϕ′ ∈ LΣ′ formulas
with ϕ /∈ LΣ′. The reduction to Σ′ of models JϕKΣ is defined as

(JϕKΣ)|Σ′ = {ω′ ∈ ΩΣ′ | there exists ω ∈ JϕKΣ with ω |= ω′}.

The expansion to Σ of models Jϕ′KΣ′ is defined as

(Jϕ′KΣ′)↑Σ =
⋃

ω′∈Jϕ′KΣ′

ω′↑Σ,

where ω′↑Σ = {ω ∈ ΩΣ | ω |= ω′}.

The reduct of the models JϕKΣ to a subsignature Σ′ contains all interpretations
ω′ ∈ ΩΣ′ that are satisfied by a model of ϕ. For each of these interpretations ω′ we
know that they must agree on the interpretation of all elements in Σ′ with a model
ω ∈ JϕKΣ. Thus, ω′ exactly corresponds to ω when omitting the elements Σ \ Σ′

(Lem. 3.13).

Lemma 3.13. Let Σ′ ⊆ Σ be signatures and ω ∈ ΩΣ, ω′ ∈ ΩΣ′ interpretations, then
the following holds:

ω |= ω′ ⇔ ω|Σ′ ≡ ω′

This allows us to express multiple iteratively performed reductions to subsigna-
tures Σ′ and Σ′′ by a single reduct, if Σ′′ ⊆ Σ′ ⊆ Σ holds (Lem. 3.14), which exactly
corresponds to the property stated by (DFP-4).

Lemma 3.14. Let ϕ ∈ LΣ be a formula and Σ′′ ⊆ Σ′ ⊆ Σ subsignatures, then the
following holds:

(JϕK|Σ′)|Σ′′ = JϕK|Σ′′
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The expansion of models Jϕ′KΣ′ to Σ, where Σ′ ⊆ Σ, contains all interpretations
ω ∈ ΩΣ that satisfy a model of ϕ′. This can be described as mapping each model
ω′ of ϕ′ to the set of interpretations ω ∈ ΩΣ that extend ω′ by every possible
interpretation of the elements in Σ \ Σ′. Therefore, the expansion of the models
Jϕ′KΣ′ exactly corresponds to the models of ϕ′ with respect to Σ (Lem. 3.15).

Lemma 3.15. Let ϕ′ ⊆ LΣ′ be a formula and Σ′ ⊆ Σ a subsignature, then the
following holds:

Jϕ′K↑Σ = Jϕ′KΣ

Since all interpretations ω ∈ ω′↑Σ agree on the interpretation of Σ′ but differ on
the remaining values Σ\Σ′, we know that by means of a resolution their disjunction
must be equivalent to ω′ (Lem. 3.16).

Lemma 3.16. Let ω′ ∈ ΩΣ′ be an interpretation and Σ′ ⊆ Σ a subsignature, then
the following holds: ∨

ω∈ω′
↑Σ

ω ≡ ω′

We think that understanding the relations of models to their reduct and expan-
sion is crucial for understanding the relations of forgetting in the reduced and in
the original signature. Therefore, we want to further illustrate them by giving a
concrete example in Ex. 3.1.

Example 3.1. In this example, we illustrate how the models of a formula relate to
their reduct and expansion. For this, we consider the formulas

ϕ′ ≡ p ∈ L{p},
ϕ ≡ (b→ f) ∧ (p→ b) ∈ LΣTweety

in propositional logic, where {p} ⊆ ΣTweety. The corresponding models Jϕ′K{p} and
JϕKΣTweety are given in Tab. 6 below.

Jϕ′K{p} p

ω′0 true

JϕKΣTweety p b f

ω0 false false false
ω1 true false false
ω2 true true false
ω3 true true true

Table 6: Models of ϕ′ ≡ p and ϕ ≡ (b→ f)∧ (p→ b) with respect to their corresponding
signatures {p} and ΣTweety.

When we determine the expansion of Jϕ′K{p} to ΣTweety, we obtain all interpre-
tations ω ∈ ΩTweety with ω |= ω′, for each ω′ ∈ Jϕ′K{p} (Def. 3.12). Since Jϕ′K{p}
only consists of a single model, namely p, we concretely obtain all interpretations
ω ∈ ΣTweety that assign p to true as seen in Tab. 7 below.
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(Jϕ′K{p})↑ΣTweety p b f

ω′0↑ true false false

ω′1↑ true false true

ω′2↑ true true false

ω′3↑ true true true

(JϕKΣTweety)|{p,b} p b

ω0| false false
ω1| true false
ω2| true true

Table 7: Expansion of Jϕ′K{p} to ΣTweety and reduction of JϕKΣTweety to the subsignature
{p, b}.

Therefore, the expansion (Jϕ′K{p})↑ΣTweety equals the models of p in ΣTweety, i.e.
(Jϕ′K{p})ΣTweety , as stated in Lem. 3.15. Furthermore, we know from Lem. 3.16 that
their disjunction is equivalent to p:∨

ω∈p↑ΣTweety

ω = pbf ∨ pbf ∨ pbf ∨ pbf ≡ p

The reduction of JϕKΣTweety to the subsignature {p, b} (Tab. 7) contains all inter-
pretations ω′ ∈ Ω{p,b} that are satisfied by a model ω ∈ JϕKΣTweety . Thus, we obtain
all interpretations ω′ that match a model ω when omitting f . When we now further
reduce (JϕKΣTweety)|{p,b} to the subsignature {p}, we obtain the interpretations stated
in Tab. 8 below.

((JϕKΣTweety)|{p,b})|{p} p

ω0 false
ω1 true

Table 8: Reduction of (JϕKΣTweety)|{p,b} to subsignature {p}.

The further reduction of (JϕKΣTweety)|{p,b} to {p} results in the same interpreta-
tions as the reduction of JϕKΣTweety to {p}, and therefore we see that

((JϕKΣTweety)|{p,b})|{p} = {p, p} = (JϕKΣTweety)|{p}

holds. Thus, first reducing the models to {p, b}, and to {p} afterwards results in the
same interpretations as just reducing the models to {p} as stated in Lem. 3.14.

By means of the reduct and expansion of models, we can now state in Th. 3.17
how the models after forgetting P in Γ correspond to those of Γ before forgetting.

Theorem 3.17. [Del17] Let Γ ⊆ LΣ be a set of formulas and Σ′ ⊆ Σ a subsignature,
then the following equations hold:

1. JF(Γ,Σ \ Σ′)KΣ′ = (JΓKΣ)|Σ′

2. JF(Γ,Σ \ Σ′)KΣ = ((JΓKΣ)|Σ′)↑Σ
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We see that the models of F(Γ,Σ \Σ′) with respect to the reduced signature Σ′

correspond to the reduct of JΓK to Σ′, while the models of F(Γ,Σ \Σ′) with respect
to Σ correspond to the expansion of the previously reduced models of Γ. This
illustrates that forgetting only affects the prior models by removing the forgotten
elements, and that in case of forgetting in the original signature, the reduced models
are expanded by the forgotten signature elements, such that the expanded models all
agree on the interpretation of Σ′, but differ on the interpretation of Σ\Σ′. However,
according to Lem. 3.16 they are still equivalent to those of the reduced signature.
Thus, the models of forgetting with respect to Σ can also be described by means of
the elementary equivalence as stated in Th. 3.18.

Theorem 3.18. [Del17] Let Γ ⊆ LΣ be a set of formulas and P a signature.

JF(Γ, P )KΣ = {ω ∈ ΩΣ | there exists ω′ ∈ JΓKΣ with ω ≡P ω′}

Finally, we know that the models of forgetting in the original signature are equal
to the expansion of the models of forgetting in the reduced signature (Cor. 3.19).

Corollary 3.19. Let Γ ⊆ LΣ be a set of formulas and P a signature, then the
following holds:

JFO(Γ, P )KΣ = (JF(Γ, P )KΣ′)↑Σ

Forgetting in Propositional Logic. As mentioned above, the generalization
of the different logic specific forgetting approaches is the main intention behind
Delgrande’s attempt of defining a general forgetting operator. In [Del17], they
presented how their approach can be applied to several logics in order to realize
existing forgetting approaches in them. In this last paragraph, we want to exemplary
show how Delgrande’s forgetting definition can be applied to propositional logic.
We do so by comparing it to one of the most well-known forgetting approaches
in propositional logic that was presented by Boole in [Boo54]. Boole’s definition of
forgetting forms the basis for many other forgetting approaches, and therefore is very
fundamental. In the following, we will first discuss Boole’s definition of forgetting
in propositional logic by examining its result in contrast to the original formula and
the effect of forgetting on its models. Afterwards, we state the equivalence of both
forgetting operators together with the conclusions that can be drawn from it.

Boole describes forgetting in propositional logic in the sense of forgetting an
atomic proposition from a formula. At first glance, this might seem very similar
to the idea of Delgrande, because atomic propositions can also be regarded as sig-
nature elements (Def. 2.2), but both definitions differ in many aspects. Unlike the
general forgetting approach, forgetting in propositional logic is not performed on
the knowledge level, i.e. it is neither performed on nor does it result in a belief set.
Forgetting in propositional logic is purely syntactic, concluding that the forgetting
of two equivalent formulas does not necessarily result in the same formula and that
forgetting does neither reduce the signature nor the language. Def. 3.20 states the
definition of syntactically forgetting an atomic proposition ρ in a formula ϕ, which
is done by substituting ρ by ⊥ and > and combining the results disjunctively.
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Definition 3.20. [Boo54] Let ϕ ∈ LΣ be a formula and ρ ∈ LΣ be an atom. For-
getting ρ in ϕ is then defined as

forget(ϕ, ρ) = ϕ[ρ/>] ∨ ϕ[ρ/⊥],

where ϕ[ρ/>] denotes the substitution of ρ by >, and ϕ[ρ/⊥] the substitution by ⊥.

The idea behind this procedure is that the resulting formula should be satisfied
by the same interpretations as before, but act invariantly towards the interpretation
of ρ since it is no longer mentioned in the formula. The substitutions ϕ[ρ/>] and
ϕ[ρ/⊥] describe the situations in which ϕ is satisfied by an interpretation that
interprets ρ as true or false, respectively. Since the interpretation of ρ should not
affect the truth value of forget(ϕ, ρ), it is sufficient that either ϕ[ρ/>] or ϕ[ρ/⊥] is
true.

In the following, we want to illustrate how Boole’s forgetting in propositional
logic works in detail and how the resulting formula forget(ϕ, ρ) relates to the original
formula ϕ. For this, we consider ϕ to be in conjunctive normal form (Def. 2.6), which
allows us to argue about ϕ more easily. Regarding a fixed atom ρ, the clauses of
ϕ can be divided into three classes. The first class is represented by formula ϕ0

and contains all clauses that do not mention ρ. The second class is represented by
formula ϕ− and contains all clauses in which ρ occurs as a negative literal. The
remaining clauses contain ρ as a positive literal and are denoted by formula ϕ+.
Given these three classes, ϕ can also be written as ϕ0∧ϕ−∧ϕ+. When substituting
ρ by > we obtain

(ϕ0 ∧ ϕ− ∧ ϕ+)[ρ/>] ≡ ϕ0 ∧ ϕ−[ρ/>],

because ϕ+ ≡ > and all clauses in ϕ0 do not mention ρ, which is why the substitution
has no effect on ϕ0. Substituting ρ by ⊥ works analogously to the substitution by
>. Thus, we obtain

(ϕ0 ∧ ϕ− ∧ ϕ+)[ρ/⊥] ≡ ϕ0 ∧ ϕ+[ρ/⊥].

In conclusion, forgetting in propositional logic can also be expressed as

forget(ϕ, ρ) = ϕ[ρ/>] ∨ ϕ[ρ/⊥]

≡ (ϕ0 ∧ ϕ−[ρ/>]) ∨ (ϕ0 ∧ ϕ+[ρ/⊥])

≡ ϕ0 ∧ (ϕ−[ρ/>] ∨ ϕ+[ρ/⊥]).

(3.1)

This shows, that all clauses not mentioning ρ must also be true after forgetting,
in order to fulfil the whole formula. Regarding those clauses that mention ρ, it is
no longer necessary that all of them are true after forgetting. It is sufficient that
either the clauses mentioning ρ as a positive literal or the clauses mentioning ρ as a
negative literal are true, which is on par with the intuitive explanation given above.

At this point, we want to go more into detail and demonstrate what would
happen if all clauses had to be true after forgetting, which would be the case if the
disjunction of ϕ−[ρ/>] and ϕ+[ρ/⊥] would be a conjunction instead. In view of
this assumption, it would be possible to infer knowledge that could not be inferred
before, which in fact would conflict with the fundamental idea of forgetting, that
knowledge should be removed without obtaining new information. We illustrate this
scenario in Ex. 3.2.
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Example 3.2. Let ΣTweety′ = {b, p, w} be a signature, where b and p have the same
extra-logical meanings as in Ex. 2.1 and w can be understood as the observed animal
has wings. Further, let

ϕ ≡ (p→ w) ∧ (b→ p)

≡ (¬p ∨ w) ∧ (¬b ∨ p)
≡ ϕ− ∧ ϕ+

be a formula in LΣTweety′
and p the atom we want to forget. The result of forgetting

p in ϕ is then given by

forget(ϕ, p) = ϕ[p/>] ∨ ϕ[p/⊥]

≡ ϕ−[p/>] ∨ ϕ+[p/⊥]

= (¬p ∨ w)[p/>] ∨ (¬b ∨ p)[p/⊥]

= (⊥ ∨ w) ∨ (¬b ∨ ⊥)

≡ w ∨ ¬b,

which is equivalent to b→ w. Since b→ w could also be inferred from ϕ, forgetting p
did not result in new knowledge. On the first glance, it might seem intuitive that the
result of forget(ϕ, p) could also be the conjunction of ϕ0, ϕ−[p/>] and ϕ+[p/⊥] in-
stead, requiring that all clauses of the CNF must be fulfilled after forgetting. We want
to illustrate why this does not capture the idea of forgetting by assuming forget(ϕ, p)
to be equivalent to ϕ0 ∧ ϕ−[p/>] ∧ ϕ+[p/⊥] instead. Forgetting would then result in

ϕ−[p/>] ∧ ϕ+[p/⊥] ≡ w ∧ ¬b,

which could not be inferred from ϕ before forgetting ρ. This contradicts the funda-
mental idea that forgetting should not result in new knowledge.

The insights on how forgetting changes formulas can further be used to examine
the influence of forgetting on the formula’s models, which will be necessary to show
that the results of Boole’s forgetting are equivalent to the results of the general
approach when applied to propositional logic. In the following, we want to examine
the resulting models in detail. Considering the original proposition ϕ ≡ ϕ0∧ϕ−∧ϕ+

to be in CNF again, the models of ϕ are then given by

JϕK = Jϕ0K ∩ Jϕ−K ∩ Jϕ+K

according to Lem. 2.10. In order to determine the models after forgetting, we con-
sider the equivalence forget(ϕ, ρ) ≡ ϕ0 ∧ (ϕ−[ρ/>] ∨ ϕ+[ρ/⊥]) (Eq. 3.1), which
allows us to argue about the resulting models and compare them to the original
models more easily. ϕ0 ∧ (ϕ−[ρ/>]∨ϕ+[ρ/⊥]) shows that all models have to satisfy
ϕ0 due to the conjunction, and at least ϕ−[ρ/>] or ϕ+[ρ/⊥] due to the disjunction.
Since ϕ0 is not affected by the forgetting, the models of ϕ0 remain unchanged. Un-
like ϕ0, the clauses of ϕ− and ϕ+ are affected by the substitutions, and therefore
their models change. When we want to determine the models of ϕ− after forgetting,
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we have to examine how the clauses of ϕ− change due to it. For each clause in ϕ−

we know that it is of the form (¬ρ ∨ x0 ∨ x1 ∨ · · · ∨ xn), where (x0, . . . , xn)n∈N0 are
arbitrary literals. We assume that each atom only occurs once per clause. When
substituting ρ by >, the resulting clauses are of the form (x0 ∨ x1 ∨ · · · ∨ xn). The
only point where the clauses differ is the occurrence of ρ. This means, the original
models can be extended by those interpretations that agree on all signature elements
with the original models, but possibly differ on the interpretation of ρ, since ρ no
longer occurs in the formula. Therefore, the models of the clauses in ϕ−[ρ/>] are
given by

Jϕ−[ρ/>]K = {ω′ ∈ ΩΣ | there exists ω ∈ Jϕ−K with ω ≡ρ ω′}.

The models of ϕ+[ρ/⊥] can be obtained analogously. Given the models of ϕ0,
ϕ− and ϕ+ after forgetting, Th. 3.21 characterizes the models of forget(ϕ, ρ). The
relation between the original models and the models after forgetting is illustrated in
Fig. 2.

Theorem 3.21. Let ϕ ∈ LΣ be a proposition in conjunctive normal formal and
ρ ∈ LΣ an atom, then ϕ can be expressed as ϕ ≡ ϕ0∧ϕ−∧ϕ+, where ϕ0 contains all
clauses not mentioning ρ, ϕ− all clauses mentioning ρ as a negative literal, and ϕ+

all clauses mentioning ρ as a positive literal. The models of forget(ϕ, ρ) are then
given by

Jforget(ϕ, ρ)K = Jϕ0K ∩ (Jϕ−[ρ/>]K ∪ Jϕ+[ρ/⊥]K).

− +

0

(a) JϕK

−

>

+

⊥

0

(b) Jforget(ϕ, ρ)K

Figure 2: Models before and after forgetting an atom ρ in a formula ϕ ≡ ϕ0∧ϕ−∧ϕ+ in
conjunctive normal form illustrated by Venn diagrams. The sets 0, − and + denote
the models of ϕ0, ϕ− and ϕ+. The sets > and ⊥ denote the models of ϕ−[ρ/>] and
ϕ+[ρ/⊥].

After discussing Boole’s forgetting in propositional logic in detail, including con-
siderations on the syntactic changes as well as changes of the models, we finally
state the equivalence of this approach to the general approach presented by Del-
grande (Th. 3.22).
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Theorem 3.22. [Del17] Let LΣ be the language in propositional logic with signature
Σ and let ρ ∈ Σ be an atom.

forget(ϕ, ρ) ≡ F(ϕ, ρ)

Even though the signature is not reduced after applying Boole’s forgetting in
propositional logic, we say that forget(ϕ, ρ) is equivalent to F(ϕ, ρ) instead of
FO(ϕ, ρ), since we know from Lem. 2.17 that F(ϕ, ρ) and FO(ϕ, ρ) are already
equivalent with respect to the original signature. For understanding this equiva-
lence more intuitively, we compare the model sets of both forgetting results. Since
F(ϕ, ρ) results in all conclusions that can be inferred from Γ but do not mention ρ,
the models that satisfy these conclusions are the models of ϕ itself together with all
interpretations that agree with these models on the interpretation of all signature
elements except for ρ. By means of the substitutions in forget(ϕ, ρ), the models
of ϕ are extended by the same interpretations as in F(ϕ, ρ). This concludes that
the models of both forgetting results are equal, and therefore the results must be
equivalent. Further, we can obtain the same belief set as obtained by F(ϕ, ρ) when
determining the deductive closure of forget(ϕ, ρ):

CnΣ\{ρ}(forget(ϕ, ρ)) = F(ϕ, ρ).

In conclusion, we know that Delgrande’s general approach is able to model the more
specific and very fundamental approach of forgetting in propositional language as
presented by Boole [Boo54]. However, this also illustrates that a forgetting definition
that results in equivalent beliefs to that of Delgrande does not necessarily have to
satisfy the (DFP-1)-(DFP-7) postulates. In case of forget(ϕ, ρ), we know for
instance that the result is not deductively closed. Therefore, (DFP-3) and (DFP-
7) do not hold.

Summary. In this section, we presented Delgrande’s general forgetting approach
[Del17] that is capable of representing several logic specific forgetting approaches.
In contrast to many other approaches, Delgrande describes forgetting in the sense of
a signature reduction and states seven properties, which we refer to as Delgrande’s
forgetting postulates (DFP-1)-(DFP-7), and argues that these properties capture
the right notions of forgetting. By right they mean that they display the proper-
ties that are usually associated with forgetting by common sense. At this point,
we argued that these properties might only be right, when assuming forgetting in
the sense of forgetting signature elements, but not if we consider other kinds of
forgetting. Nonetheless, (DFP-1)-(DFP-7) form a basis on which more general
forgetting postulates can be elaborated. Furthermore, we discussed some of the
model theoretical properties and finally showed how the general approach can be
applied to propositional logic. Thereby, we showed that it is capable of expressing
Boole’s well-known forgetting approach in propositional logic [Boo54].

3.2 Kinds of Forgetting in Epistemic States

After presenting Delgrande’s general forgetting approach [Del17] in Section 3.1, we
will present three of the eight kinds of forgetting presented by Kern-Isberner et al.
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[BKIS+19] in the following sections. Other than Delgrande’s approach, they specify
kinds of forgetting in epistemic states, concretely OCFs, and thereby follow cer-
tain cognitive considerations. In the following, we will present the marginalization,
contraction and revision as kinds of forgetting in Sections 3.2.1 to 3.2.3.

3.2.1 Marginalization / Focussing

One kind of forgetting that is ever-present in the everyday life of most people is the
concept of focussing. Even if it might not obviously be related to forgetting at the
first sight, focussing on some specific aspects, e.g. while working on a difficult task
or studying, always involves the temporary blinding out of irrelevant aspects. The
meaning of irrelevance in this context will not be discussed in this work. Instead,
we assume the irrelevant aspects to be given and focus on the transformation of
the belief state, represented by an OCF, such that the notions of focussing are
realized. When we focus on a difficult task like writing a master thesis, we (ideally)
do not distract ourselves with thoughts about unrelated things like playing video
games or petting dogs. Moreover, since video games and dogs are irrelevant aspects,
temporarily forgetting about them does not influence our knowledge relevant for
the master thesis. This small example already illustrates the two main notions of
focussing:

1. Focussing on relevant aspects changes our beliefs temporarily such that they
do not contain any information about irrelevant aspects anymore.

2. Focussing on relevant aspects retains our beliefs about them.

As already described in Section 2.4, OCFs can be understood as a qualitative
abstraction of discrete probability distributions, and therefore it is worth mention-
ing that the notions of focussing are already captured by the concept of marginal
distributions. In probability theory, a marginal distribution describes a distribution
function that originates from a joint distribution over several variables Σ, but is
restricted to a subset Σ′ ⊆ Σ of relevant variables. The impact of the remaining
irrelevant variables Σirrel, where Σ′ and Σirrel form a partitioning of Σ, is then can-
celled out in the marginal distribution, since the probability of a certain event over
Σ′ will be determined by taking all those assignments of Σ into account that agree on
the assignment of Σ′, but differ on the assignment of Σirrel. By accumulating those
probabilities, we obtain the total probability that a certain event over Σ′ occurs.
The resulting marginal distribution P|Σ′ then assigns the same probabilities to all
events over Σ′ as the prior joint distribution P , but no longer assigns probabilities
to events over Σirrel. Thus, marginal distributions capture the notions of focussing.

Shenoy originally translated the concept of marginal distributions to OCFs in
[She91], which in turn builds upon Spohn’s work on OCFs [Spo88], and thus cap-
tured the notions of focussing qualitatively. However, we will refer to the definition
of marginalization as given by Kern-Isberner et al. [BKIS+19], since the examina-
tion of the kinds of forgetting presented there are one of the main goals of this thesis.
Moreover the notation used by Kern-Isberner et al. suits better for the comparison
to Delgrande’s forgetting approach [Del17]. The reduction of the regarded random
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variables to a relevant subset corresponds to the reduction of the signature, mean-
ing that the marginalized OCF will be defined over a subset of relevant signature
elements Σ′, and thus fulfils the first notion of focussing. The ranks of the marginal-
ized interpretations are similarly determined to the probabilities in the marginal
distribution by taking all interpretations over Σ into account that agree on the in-
terpretation of Σ′, but differ on the interpretation of the remaining elements Σ \Σ′.
Considering those interpretations, the marginalized interpretation is assigned to the
smallest rank among them. This way a marginalized interpretation is as plausible as
the most plausible interpretation over Σ that satisfies it. The marginalization of an
OCF is formally given in Def. 3.23. The rank of formulas after the marginalization
follows directly from the marginalization itself and the rank of formulas as given in
Def. 2.31.

Definition 3.23 ([BKIS+19]). Let κ be an OCF over signature Σ and ω ∈ ΩΣ′ an
interpretation with Σ′ ⊆ Σ. κ|Σ′ is called a marginalization of κ to Σ′ with

κ|Σ′(ω′) = min{κ(ω) | ω ∈ ΩΣ with ω |= ω′}.

Furthermore, this concludes that the most plausible interpretations after the
marginalization can be determined by means of reducing the signature of the prior
most plausible interpretations from Σ to Σ′ (Prop. 3.24).

Proposition 3.24. Let κ be an OCF over signature Σ and Σ′ ⊆ Σ a subsignature.

Jκ|Σ′K = JκK|Σ′

Proof of Prop. 3.24.

Jκ|Σ′K = {ω′ ∈ ΩΣ′ | κ|Σ′(ω′) = 0} (Def. 2.30)

= {ω′ ∈ ΩΣ′ | min{κ(ω) | ω ∈ ΩΣ with ω |= ω′} = 0} (Def. 3.23)

= {ω′ ∈ ΩΣ′ | there exist ω ∈ ΩΣ with ω |= ω′ and κ(ω) = 0}
= {ω′ ∈ ΩΣ′ | there exist ω ∈ ΩΣ with ω |= ω′ and ω ∈ JκK} (Prop. 2.37)

= {ω′ ∈ ΩΣ′ | there exist ω ∈ JκK with ω |= ω′}
= JκK|Σ′ (Def. 3.12)

Before we show that also the second notion of focussing is captured by the
marginalization, we want to discuss a slight difference between marginalized OCFs
and marginal distributions in the way the resulting ranks and probabilities are de-
termined. While summing up the probabilities for all events that agree on a certain
variable assignment over Σ′ in marginal distributions, we only select the most plau-
sible interpretation that agrees on the interpretation of Σ′ in marginalized OCFs.
Due to the qualitative abstraction, the marginalization is not able to capture the
phenomena that multiple small probabilities in the joint distribution can result in
the highest probability in the marginal distribution. From a cognitive perspective
this can also be viewed as a rather positive aspect, since it might not always be
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a pleasant behaviour when multiple small probabilities accumulated form an event
more probable than an event that is much likelier to occur than each of the other,
especially when the difference between the probabilities magnitudes is rather great.
Given the joint distribution over Σ = {X, Y } in Tab. 9, where both random vari-
ables are binary, we see that (X = 0, Y = 0) is the likeliest event, followed by
(X = 1, Y = 0), (X = 1, Y = 1) and (X = 0, Y = 1). Note that we denote X = 0
by x, and X = 1 by x for a more uniform notation.

P (X, Y ) ω ∈ ΩΣ

0.10 xy

0.25 xy

0.30 xy

0.35 xy

Table 9: Joint discrete distribution over Σ = {X,Y }. The first column P (X,Y ) describes
the probability assigned to the possible variable assignments of X and Y in the second
column.

Ordering the events by their probabilities, we can also represent the joint dis-
tribution by an OCF as seen in Tab. 10. Thereby, the variables X and Y the
joint distribution is defined over correspond to the signature elements x and y. The
possible variable assignments of X and Y correspond to the interpretations ΩΣ.
Note that since the OCF representing the joint distribution is not unique, other
OCFs might be possible as well. However, they would all agree on the order of the
interpretations.

κ(ω) ω ∈ ΩΣ

∞ -
... -

4 -

3 xy

2 xy

1 xy

0 xy

Table 10: OCF over Σ = {x, y} abstracting from the joint distribution in Tab. 9.

Marginalizing both the joint distribution and the OCF to Σ′ = {X} results in
the marginal distribution P|Σ′ and the marginalized OCF κ|Σ′ as seen in Tab. 11
and 12 below.
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P|Σ′(X) ω ∈ ΩΣ′

0.45 x

0.55 x

Table 11: Marginal discrete distribution P|Σ′ obtained by marginalizing the joint proba-
bility from Tab. 9

κ|Σ′(ω) ω ∈ ΩΣ′

∞ -
... -

2 -

1 x

0 x

Table 12: Marginalization of the OCF from Tab. 10.

In the marginal distribution, the summation results in x being likelier than x,
even though the highest probability in the joint distribution is P (xy) = 0.35. The
same effect cannot be observed in the marginalized OCF. The selection of the min-
imal rank results in x still being more plausible than x. The order of x and x is
not inverted, because by abstracting the joint distribution we lose information on
the exact values, and therefore we do not know if the interpretations xy and xy
with ranks 1 and 2 together are more plausible than xy with rank 0. Despite those
differences, Prop. 3.25 shows that the marginalization captures the second notion
of focussing nevertheless, since all conditional over Σ′ that could be inferred by κ
can also be inferred after the marginalization. Since Kern-Isberner et al. did not
include the proof of Prop. 3.25 in [BKIS+19], we prove it in the following.

Proposition 3.25. [BKIS+19] Let κ be an OCF over Σ and Σ′ ⊆ Σ, then for each
conditional (ψ|ϕ) ∈ (LΣ′|LΣ′) the following holds:

κ|Σ′ |= (ψ|ϕ)⇔ κ |= (ψ|ϕ)

Proof of Prop. 3.25.

κ |= (ψ|ϕ)

⇔ κ(ϕ ∧ ψ) < κ(ϕ ∧ ¬ψ) (Prop. 2.49)

⇔min{κ(ω) | ω ∈ ΩΣ and ω |= ϕ ∧ ψ}
< min{κ(ω) | ω ∈ ΩΣ and ω |= ϕ ∧ ¬ψ}

(Def. 2.31)

⇔min{κ(ω) | ω ∈ ΩΣ, ω
′ ∈ ΩΣ′ with ω |= ω′ and ω′ |= ϕ ∧ ψ}

< min{κ(ω) | ω ∈ ΩΣ, ω
′ ∈ ΩΣ′ with ω |= ω′ and ω′ |= ϕ ∧ ¬ψ}

(Note)

⇔min{κ|Σ′(ω) | ω′ ∈ ΩΣ′ with ω′ |= ϕ ∧ ψ}
< min{κ|Σ′(ω) | ω′ ∈ ΩΣ′ with ω′ |= ϕ ∧ ¬ψ}

(Def. 3.23)
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⇔ κ|Σ′(ϕ ∧ ψ) < κ|Σ′(ϕ ∧ ¬ψ) (Def. 2.31)

⇔ κ|Σ′ |= (ψ|ϕ) (Prop. 2.49)

Note: Since (ψ|ϕ) is already defined over the reduced signature Σ′, we know that
the predicates ω |= ϕ∧ψ and ω |= ω′, ω′ |= ϕ∧ψ are equivalent. This holds
analogously for ϕ ∧ ¬ψ.

If we consider ϕ ≡ > in Prop. 3.25, we can explicitly state the preservation of
the prior beliefs that only mention elements of the reduced signature Σ′ (Lem. 3.26).

Lemma 3.26. Let κ be an OCF over Σ and Σ′ ⊆ Σ, then for each ϕ ∈ LΣ′ the
following holds:

κ|Σ′ |= ϕ⇔ κ |= ϕ

Moreover, from Lem. 3.26 we know that if a set of interpretations Θ ∈ ΩΣ satisfies
a formula ϕ ∈ L|Σ′ , where Σ′ ⊆ Σ, then Θ|Σ′ satisfies ϕ as well, since the truth values
assigned to Σ \ Σ′ do not influence whether ϕ is true or not (Lem. 3.27).

Lemma 3.27. Let Θ ⊆ ΩΣ and Σ′ ⊆ Σ, then for each ϕ ∈ LΣ′ the following holds:

If Θ |= ϕ, then Θ|Σ′ |= ϕ

After marginalizing an OCF κ to a reduced signature Σ′, the resulting OCF κ|Σ′

can be lifted to the original signature Σ again. This is of particular interest when we
want to compare the result of forgetting to other belief states or sets that argue about
the original signature. Since forgetting in the sense of marginalization is defined as
a signature reduction, it is important that lifting to the original signature does not
violate the considered notions of focussing described above. This means, that after
lifting the marginalized OCF, we still want to be able to infer the exact same beliefs
over the reduced signature Σ′ as before, and additionally all inferences mentioning
elements of Σ \ Σ′ should either be tautologies or follow trivially from our beliefs
over Σ′. However, we want to mention that even if we use the concept of lifting
in the sense of re-introducing certain signature elements to the marginalized OCF,
the concepts of lifting and marginalization do not necessarily relate to each other,
but can also be regarded independently. In general, lifting describes the process
of becoming aware of new objects or concepts of the world, which we usually refer
to as signature elements. Thus, these new signature elements will be added to the
hitherto signature. Ideally, we want to be unbiased towards the just added signature
elements, and therefore neither of their interpretations should be regarded as more
plausible than the other, while the relations of the interpretations over the prior
signature should be retained. In general, there exist two different notions of lifting.
The first notion describes lifting such that each possible OCF κ over signature Σ is
considered a lifting of another OCF κ′ over signature Σ′ ⊆ Σ, if κ′ can be obtained
by marginalizing κ, i.e. κ|Σ′ = κ′. By means of this notion, the lifting of an OCF
κ′ is ambiguous, since there might exist multiple OCFs κ, from which κ′ can be
originated. However, when we argue about lifting in this work, we always refer to
the unique lifting of an OCF κ′ as defined in Def. 3.28.
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Definition 3.28. Let κ′ be an OCF over signature Σ′ ⊆ Σ. A lifting of κ′ to Σ,
denoted by κ′↑Σ, is uniquely defined by κ′↑Σ(ω) = κ′(ω|Σ′) for all ω ∈ ΩΣ.

Here, the lifted OCF κ′↑Σ is obtained by assigning all interpretations ω, ω′ ∈ ΩΣ

with ω ≡Σ\Σ′ ω′ to the same rank, namely κ|Σ′(ω|Σ′). This definition exactly corre-
sponds to the lifting as described by Kern-Isberner et al. in [BKIS+19]. Due to the
expansion of Σ′ to Σ, each interpretation ω′ ∈ ΩΣ′ is mapped to a set of interpreta-
tions ω ∈ Ω with ω|Σ′ ≡ ω′. This set contains all interpretations that agree on the
interpretation of the prior signature elements Σ′, but differ on the interpretation of
Σ \ Σ′. According to Def. 3.28, the rank of each ω ∈ ΩΣ corresponds to the rank
of the interpretations ω′ ∈ ΩΣ′ with ω|Σ′ ≡ ω′. Therefore, all interpretations that
agree on the interpretation of Σ′ are assigned to the same rank, realising an unbiased
behaviour towards the newly added signature elements. Moreover, the order and
ranks of the prior interpretations are preserved.

In the following, we focus on lifting a previously marginalized OCF back to its
original signature in order to illustrate the relations between the two concepts. For
this, we first show that lifting an OCF κ′ over signature Σ′ will retain the inferences
of all conditionals that are defined over Σ′ (Prop. 3.29).

Proposition 3.29. Let κ′ be an OCF over signature Σ′ ⊆ Σ, then

κ′↑Σ |= (ψ|ϕ)⇔ κ′ |= (ψ|ϕ)

holds for each conditional (ψ|ϕ) ∈ (LΣ′ |LΣ′).

Proof of Prop. 3.29.

κ′↑Σ |= (ψ|ϕ)

⇔ κ′↑Σ(ϕ ∧ ψ) < κ′↑Σ(ϕ ∧ ¬ψ) (Prop. 2.49)

⇔ min{κ′↑Σ(ω) | ω |= ϕ ∧ ψ} < min{κ′↑Σ(ω) | ω |= ϕ ∧ ¬ψ} (Def. 2.31)

⇔min{κ′(ω|Σ′) | ω ∈ ΩΣ with ω |= ϕ ∧ ψ}
< min{κ′(ω|Σ′) | ω ∈ ΩΣ with ω |= ϕ ∧ ¬ψ}

(Def. 3.28)

⇔min{κ′(ω′) | ω′ ∈ ΩΣ′ with ω′ |= ϕ ∧ ψ}
< min{κ′(ω′) | ω′ ∈ ΩΣ′ with ω′ |= ϕ ∧ ¬ψ}

(Note)

⇔ κ′(ϕ ∧ ψ) < κ′(ϕ ∧ ¬ψ) (Def. 3.23)

⇔ κ′ |= (ψ|ϕ) (Prop. 2.49)

Note: Since ϕ∧ψ ∈ LΣ′ , we know that ω|Σ′ |= ϕ∧ψ if and only if ω |= ϕ∧ψ. We
further refer to ω|Σ′ as ω′.

Since Prop. 3.29 states that lifting an OCF from Σ′ to Σ always retains the
conditional inferences of the prior OCF, we know that this must especially hold for
any previously marginalized OCF κ|Σ′ . Therefore, we can also conclude that the
first marginalized and then lifted OCF (κ|Σ′)↑Σ and the initial OCF κ over signature
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Σ infer the exact same conditionals over the reduced signature Σ′ (Cor. 3.30). This
directly concludes from Prop. 3.25 and Prop. 3.29. Thus, the second notion of
focussing is retained, even if we lift the marginalized OCF back to the original
signature Σ.

Corollary 3.30. Let κ be an OCF over signature Σ and κ|Σ′ the marginalization of
κ to the subsignature Σ′ ⊆ Σ, then

κ |= (ψ|ϕ)⇔ (κ|Σ′)↑Σ |= (ψ|ϕ)

holds for each (ψ|ϕ) ∈ (LΣ′|LΣ′)

Since the lifted OCF (κ|Σ′)↑Σ is also capable of arguing about those signature
elements that were forgotten by the marginalization, we have to examine which
conditionals mentioning elements of Σ \ Σ′ are satisfied by it. First, we examine
the belief set Bel((κ|Σ′)↑Σ), e.g. the behaviour of (κ|Σ′)↑Σ towards formulas over Σ
or conditionals of the form (ψ|ϕ) with ϕ ≡ > respectively. For this, we state in
Prop. 3.31, that the most plausible interpretations after lifting an OCF can analo-
gously be determined to those of the marginalization (Prop. 3.24) by extending the
signature of the prior most plausible interpretations from Σ′ to Σ. Note that the
J·K↑Σ states the extension of the models to Σ as defined in Def. 3.12.

Proposition 3.31. Let κ′ be an OCF over signature Σ′ ⊆ Σ.

Jκ′↑ΣK = Jκ′K↑Σ

Proof of Prop. 3.31.

Jκ′K↑Σ =
⋃

ω′∈Jκ′K

{ω ∈ ΩΣ | ω |= ω′} (Def. 3.12)

= {ω ∈ ΩΣ | there exist ω′ ∈ Jκ′KΣ′ with ω |= ω′}
= {ω ∈ ΩΣ | there exist ω′ ∈ Jκ′KΣ′ with ω|Σ′ ≡ ω′} (Lem. 3.13)

= {ω ∈ ΩΣ | ω|Σ′ ∈ Jκ′KΣ′} (Note)

= {ω ∈ ΩΣ | κ′(ω|Σ′) = 0} (Prop. 2.37)

= {ω ∈ ΩΣ | κ′↑Σ(ω) = 0} (Def. 3.28)

= Jκ′↑ΣK (Def. 2.30)

Note: We know that if there exists an interpretation ω′ ∈ Jκ′KΣ′ that is equivalent
to ω|Σ′ , then ω|Σ′ is included in Jκ′KΣ′ as well, and vice-versa.

Due to Prop. 3.31 and the relation between the theory operator Th and the
consequence operator Cn (Lem. 2.23), we can express the belief set of (κ|Σ′)↑Σ by
means of the prior beliefs Bel(κ|Σ′) (Prop. 3.32).
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Proposition 3.32. Let κ′ be an OCF over signature Σ′ ⊆ Σ and κ′↑Σ be a lifting of
κ′ to Σ, then the beliefs of κ′↑Σ are given by

Bel(κ′↑Σ) = CnΣ(Bel(κ′)).

Proof of Prop. 3.32.

Bel(κ′↑Σ) ≡ Th(Jκ′↑ΣK) (Lem. 2.39)

≡ CnΣ(
∨

ω∈Jκ′↑ΣK

ω) (Lem. 2.23)

≡ CnΣ(
∨

ω∈Jκ′K↑Σ

ω) (Prop. 3.31)

≡ CnΣ(
∨

ω∈
⋃

ω′∈Jκ′K
ω′
↑Σ

ω) (Def. 3.12)

≡ CnΣ(
∨

ω′∈Jκ′K

(
∨

ω∈ω′
↑Σ

ω))

≡ CnΣ(
∨

ω′∈Jκ′K

ω′) (Lem. 3.16)

≡ CnΣ(CnΣ′(
∨

ω′∈Jκ′K

ω′)) (Lem. 2.17)

≡ CnΣ(Th(Jκ′K)) (Lem. 2.23)

≡ CnΣ(Bel(κ′)) (Lem. 2.39)

We further illustrate the relation between marginalization and lifting, in which
lifting a previously marginalized OCF back to its original signature does not yield
new beliefs over the reduced signature Σ′, and only adds beliefs over the re-introduced
signature elements that are either tautologies or can already be inferred by the be-
liefs of the marginalized OCF. If we consider the marginalized OCF κ|Σ′ in Tab. 12
and lift it back to the original signature Σ = {x, y}, we obtain the OCF (κ|Σ′)↑Σ as
given by Tab. 13.

(κ|Σ′)↑Σ(ω) ω ∈ ΩΣ

∞ -
... -

2 -

1 xy, xy

0 xy, xy

Table 13: Lifting of the marginalized OCF from Tab. 12 to the original signature Σ =
{x, y}.
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Given the above-mentioned considerations from Prop. 3.32, the belief set of
(κ|Σ′)↑Σ in Tab. 13 is given by CnΣ(xy ∨ xy), which can be simplified to CnΣ(x)
by resolution and equals the deductive closure of all interpretations with rank 0
in the marginalized OCF κ|Σ′ (Tab. 12) with respect to the original signature Σ.
Note that at this point we make use of the fact that interpretations can also be
considered as a conjunction of literals, such that the formula’s only model is the
interpretation it represents. Further we know CnΣ(x) = CnΣ(CnΣ′(x)), because
the deductive closure over Σ also contains all formulas that can be inferred over
the subsignature Σ′. Finally, we know that CnΣ(CnΣ′(x)) = CnΣ(Bel(κ|Σ′)) due to
the properties of Bel. Note that even though a belief set is deductively closed by
definition, CnΣ(Bel(κ|Σ′)) still adds new formulas to Bel(κ|Σ′), since the belief set is
defined over the reduced signature Σ′, while CnΣ determines the deductive closure
with respect to the original signature Σ.

This relation shows that Bel((κ|Σ′)↑Σ) extends Bel(κ|Σ′) by those formulas men-
tioning elements of Σ\Σ′ that are either tautologies or can be inferred trivially from
some formula in Bel(κ|Σ′), e.g. x |= x ∨ y 5. Resulting in a belief set that cannot
make non trivial statements on elements of Σ \ Σ′, we consider the second notion
of focussing to be fulfilled, and therefore lifting the marginalized OCF can still be
regarded as focussing on Σ′. However, keep in mind that focussing and marginal-
ization are still different operations and follow different cognitive considerations as
already described above.

Next, we examine the influence of lifting on the behaviour of (κ|Σ′)↑Σ towards
general conditionals (ψ|ϕ) ∈ (LΣ|LΣ) instead of only those where ϕ ≡ >. As already
stated in Prop. 3.29, all conditionals (ψ|ϕ) ∈ (LΣ′|LΣ′) that can be inferred by κ|Σ′

can also be inferred by (κ|Σ′)↑Σ, but we additionally want (κ|Σ′)↑Σ to act invariantly
towards elements of Σ \ Σ′ in order to still capture the notions of focussing. More
precisely, for each conditional (ψ|ϕ) ∈ (LΣ′|LΣ′) with (κ|Σ′)↑Σ |= (ψ|ϕ) we want the
lifted OCF to infer each conditional (ψ|ϕ∧ξ) for ξ ∈ LΣ\Σ′ as well. Kern-Isberner et
al. touch on this property briefly in [BKIS+19] without going much into detail. This
being a fundamental property of lifting a marginalized OCF, we generally formalize
it in Prop. 3.33 and prove it afterwards.

Proposition 3.33. Let κ′ be an OCF over Σ′ ⊆ Σ, (ψ|ϕ) ∈ (LΣ′ |LΣ′) a conditional
and ξ ∈ LΣ\Σ′ a formula.

κ′↑Σ |= (ψ|ϕ)⇔ κ′↑Σ |= (ψ|ϕ ∧ ξ)

Proof of Prop. 3.33.

κ′↑Σ |= (ψ|ϕ ∧ ξ)
⇔ κ′↑Σ(ψ ∧ ϕ ∧ ξ) < κ′↑Σ(¬ψ ∧ ϕ ∧ ξ) (Prop. 2.49)

⇔min{κ′↑Σ(ω) | ω ∈ ΩΣ with ω |= ψ ∧ ϕ ∧ ξ}
< min{κ′↑Σ(ω) | ω ∈ ΩΣ with ω |= ¬ψ ∧ ϕ ∧ ξ}

(Def. 2.31)

5We will take up and prove the relation between the two belief sets in the comparison of
Delgrande’s forgetting approach and the marginalization in Section 4.1.
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⇔min{κ′(ω|Σ′) | ω ∈ ΩΣ with ω |= ψ ∧ ϕ ∧ ξ}
< min{κ′(ω|Σ′) | ω ∈ ΩΣ with ω |= ¬ψ ∧ ϕ ∧ ξ}

(Def. 3.28)

⇔min{κ′(ω′) | ω ∈ ΩΣ, ω
′ ∈ ΩΣ′

with ω |= ψ ∧ ϕ ∧ ξ and ω′ ≡ ω|Σ′}
< min{κ′(ω′) | ω ∈ ΩΣ, ω

′ ∈ ΩΣ′

with ω |= ¬ψ ∧ ϕ ∧ ξ and ω′ ≡ ω|Σ′}
⇔min{κ′(ω′) | ω′ ∈ ΩΣ′ with ω′ |= ψ ∧ ϕ}

< min{κ′(ω′) | ω′ ∈ ΩΣ′ with ω |= ¬ψ ∧ ϕ}
(Note)

⇔ κ′ |= (ψ|ϕ) (Prop. 2.49)

⇔ κ′↑Σ |= (ψ|ϕ) (Prop. 3.29)

Note: The minimum is determined over the interpretations over the reduced sig-
nature Σ′ that satisfy ω′ ≡ ω|Σ′ , where ω |= ψ ∧ ϕ ∧ ξ. Since ξ ∈ LΣ\Σ′ ,
we know that the interpretations considered for the minimum do not change,
if we assume ω |= ψ ∧ ϕ instead. Since ψ ∧ ϕ ∈ LΣ′ , we especially know
ω|Σ′ |= ψ ∧ ϕ. Therefore, the conditions ω |= ψ ∧ ϕ ∧ ξ and ω′ ≡ ω|Σ′ can be
simplified to ω′ |= ψ ∧ ϕ.

Even though, lifting to the original signature fulfils certain properties that corre-
spond to the notions of focussing and the fundamental ideas of forgetting, we were
able to show that after marginalizing and lifting an OCF it is possible to infer non-
trivial conditionals mentioning the forgotten signature elements. These conditionals
could not be inferred by the initial OCF κ. For this let κ be an OCF over signature
ΣTweety, κ|ΣTweety\{b} its marginalization, and (κ|ΣTweety\{b})↑ΣTweety the lifting of the
previously marginalized OCF back to the original signature as given in Tab. 14 be-
low. The resulting OCF (κ|ΣTweety\{b})↑ΣTweety is capable of inferring (b|pbf ∨ pbf),
which contains the forgotten signature element b and is non-trivial in the sense that
Jpbf ∨ pbfKΣ * JbKΣ and b /∈ Bel((κ|ΣTweety\{b})↑ΣTweety). On the contrary, the initial
OCF κ is not capable of inferring the same conditional.

κ |= (b|pbf ∨ pbf)

⇔ κ(pbf) < κ(pbf)

⇔ 2 < 1  

The reason why new inferences became possible after lifting is the changed or-
der of the interpretations compared to the initial belief state, in which not only
interpretations with different ranks are now assigned to the same rank, but also
interpretations that were less plausible than others are more plausible afterwards,
as illustrated in Tab. 14 above. There, it can be seen that pbf ≺κ pbf holds in
the original OCF κ, while the pbf ≺(κ|ΣTweety\{b})↑ΣTweety

pbf holds after marginal-

izing and lifting κ. In general, the changed order occurs when there already exist
interpretations for which all other interpretations that are equivalent in the reduced
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κ(ω) ω ∈ ΩΣTweety

∞ -
... -

3 -

2 pbf , pbf

1 pbf , pbf , pbf , pbf

0 pbf , pbf

κ|ΣTweety\{b}(ω) ω ∈ ΩΣTweety\{b}

∞ -
... -

3 -

2 -

1 pf , pf

0 pf , pf

(κ|ΣTweety\{b})↑ΣTweety(ω) ω ∈ ΩΣTweety

∞ -
... -

3 -

2 -

1 pbf , pbf , pbf , pbf

0 pbf , pbf , pbf , pbf

Table 14: Top left: OCF κ over signature ΣTweety. Top right: Marginalization of κ to the
reduced signature ΣTweety \ {b}. Bottom: Lifting the marginalized OCF κ|ΣTweety\{b}
to the original signature ΣTweety.

signature are assigned to the same rank (see κ(ω) = 1 in Tab. 14). The ranks of
those interpretations are not affected by the marginalization and lifting. This makes
it possible for other interpretations to become more plausible, since the rank will
be reduced to the minimum rank among all interpretations that are equivalent in
the reduced signature. In the given example, the interpretations pbf and pbf were
assigned to rank 2, and therefore were less plausible than the interpretations with
rank 1. After marginalizing and lifting the OCF, pbf and pbf were assigned to rank
0, and therefore became more plausible than the interpretations assigned to rank 1.
We want to register this observation in Obs. 3.34.

Observation 3.34. Let κ be an OCF over signature Σ and Σ′ ⊆ Σ a subsignature.
When we first marginalize κ to Σ′, and lift the resulting OCF κ|Σ′ back to Σ, then
there exist non-trivial conditionals (ψ|ϕ) ∈ (LΣ|LΣ) with

κ |6= (ψ|ϕ) and (κ|Σ′)↑Σ |= (ψ|ϕ).

This raises the question whether a first marginalized and then lifted OCF (κ|Σ′)↑Σ
can still be regarded as focussing on Σ′, and furthermore as forgetting Σ \Σ′ or not.
As long as we only consider the belief set, (κ|Σ′)↑Σ clearly can be considered as
focussing on Σ′, since all inferences over Σ′ remain unchanged and only trivial in-
ferences over the forgotten elements are possible (Prop. 3.32). But when we also
consider conditionals, we are able to infer new non-trivial conditionals that could
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not be inferred by the initial belief state. This contradicts the general notion of
forgetting, that the knowledge should be reduced without gaining any new informa-
tion. However, there are a few aspects worth mentioning at this point. First, even
though new conditionals could be inferred after marginalizing and lifting an OCF,
the belief sets are only expanded by tautologies and formulas that can be inferred
by the beliefs of the marginalized OCF. Thus, both belief sets are equivalent with
respect to the original signature Σ. Moreover, we know that the minimization of
changes in conditional beliefs is not always worth striving for, and that in most cases
there do not exist optimal solutions, since preserving conditional beliefs often results
in greater changes in propositional beliefs and vice-versa [DP97, Bou93]. Nonethe-
less, some properties of lifting the marginalized belief state to the original signature
reflect the notions of focussing, such as the preservation of the conditionals over
the reduced signature and the invariant behaviour towards the extension of their
antecedences.

3.2.2 Contraction

When it comes to the principle of forgetting, different kinds like forgetting certain
information over time or rejecting present knowledge due to new insights come to our
minds. Many of those kinds were described by Kern-Isberner et al. in [BKIS+19],
but probably the most obvious kind is the direct forgetting of certain beliefs about
objects of our world – the contraction. Everyday life examples for contractions could
be forgetting where we parked the car, when our train arrives or whether penguins
can fly. The most prominent and widely agreed on understanding of contractions
was presented by Alchourrón, Gärdenfors and Makinson (AGM) be means of the
AGM postulates [AGM85], which describe general properties a contraction should
fulfil (see Section 2.3). They describe among others the property that after the
contraction, we are no longer able to infer the just contracted formula, or that due to
the contraction no new knowledge is generated. Since those postulates as originally
stated by AGM only argue about knowledge as sets of formulas, which is not always
an appropriate representation, they were generalized to arbitrary epistemic states by
Konieczny and Pérez in [KP17]. In the further course, we will focus our research on
c-contractions as presented as a kind of forgetting in [BKIS+19] and originally stated
in [KIBSB17], since they generalize the concept of contractions to epistemic states
and conditionals, and therefore can be used in a much more expressive framework.

Before we actually start the elaboration, we want to note that according to
Delgrande, contractions should not be considered as forgetting, since they are con-
ceptually different [Del17]. The notion of forgetting described by Delgrande, exactly
follows the definition of their general forgetting approach (Def. 3.1). Thus, forget-
ting, according to Delgrande, always means forgetting a certain object or concept
(signature element) of our world, such that we are no longer able to argue about
it. Taking up the small everyday life example from above again, this would mean
that we would forget about the ability to fly and penguins in general, instead of
just forgetting the simple fact that penguins cannot fly. Thus, we agree when they
argue that contractions are conceptually different from their understanding of for-
getting. But, even if Delgrande’s general approach is capable of expressing several



66 3 Forgetting

other logic specific forgetting approaches, such as Boole’s forgetting in propositional
logic [Boo54] (Th. 3.22), this clearly illustrates that Delgrande should not claim
the term of forgetting for their approach. From a commonsense and psychological
perspective, forgetting a certain fact can clearly be considered as a kind of forget-
ting, just as forgetting about objects or whole concepts of our world can. Thus, we
believe that the concept of forgetting is much wider than described by Delgrande,
which is why we disagree with them and consider their general approach just as one
kind of forgetting, instead of as the general approach. Nonetheless, we appreciate
the work of Delgrande, since the there presented insights are another important
building block towards the understanding of what forgetting actually is.

Following the AGM contraction postulates as originally presented in [AGM85],
contractions are always applied to knowledge sets and propositions. As mentioned
above, this is not always suitable, since knowledge is most often not just repre-
sented by sets of formulas, but more generally by epistemic states, which enrich our
beliefs by additional information like a quantitative or qualitative ranking of our
knowledge. Thus, applying a contraction to prior knowledge not only affects our
beliefs, but also the way our knowledge is organized. Therefore, it is of particu-
lar interest how previously performed belief changes affect the further. Applying
multiple belief changes consecutively is also known as iterated belief change. In
this context, Kern-Isberner et al. developed c-contractions, which are belief change
operators contracting conditionals or propositions from epistemic states [KIBSB17].
These belong to a more general family of belief change operators called c-changes
(Def. 3.35), which describe a general scheme for belief change operators satisfying
the fundamental principle of conditional preservation. The principle of conditional
preservation [Ker18] can be viewed as a conditional counter part to the minimal
change paradigm, since it guarantees that conditional relations will not be rejected
due to a belief change, if there is no need to reject them.

Definition 3.35. [KIBSB17] Let κ be an OCF over signature Σ, (ψ|ϕ) ∈ (LΣ|LΣ)
a conditional, and ◦ a belief change operator. ◦ fulfils the principle of conditional
preservation and is called a c-change, if there exist γ+, γ−, κ0 ∈ Z such that

κ ◦ (ψ|ϕ)(ω) = κ(ω)− κ0 +


γ+, if ω |= ϕ ∧ ψ
γ−, if ω |= ϕ ∧ ¬ψ
0, if ω |= ¬ϕ

A c-change κ ◦ (ψ|ϕ) divides all interpretations ω into three classes, depending
on whether ω verifies or falsifies (ψ|ϕ), or is not applicable at all. The latter in-
terpretations are neutral towards (ψ|ϕ), since they neither verify nor falsify (ψ|ϕ).
Thus, their plausibility is not affected by the belief change, which corresponds to
changing their ranks by 0. For the remaining interpretations, we change their ranks
by a constant factor γ+ or γ−, respectively. This way, the ranks of all interpreta-
tions that behave the same towards (ψ|ϕ) are changed in the same manner, and
further unmotivated changes are prevented. κ0 works as a normalization constant
maintaining the conditions necessary for an OCF, i.e. all ranks are positive and
there exist interpretations with rank 0. C-changes can also be applied in a purely
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propositional framework. In this case the interpretations are only separated into two
classes. An interpretation either satisfies or falsifies a formula. Thus, the third case
of non-applicability is omitted. The actual effect of a c-change is then determined
by further restrictions on the parameters γ+, γ− and κ0. Thus, by means of the
definition of c-changes, we can define c-contractions as follows (Def. 3.36).

Definition 3.36. [KIBSB17] A c-change � is called c-contraction, if and only if
for κ� (ψ|ϕ) the parameters γ−, γ+, κ0 ∈ Z fulfil the following constraints:

κ0 = min{γ− + κ(ϕ ∧ ¬ψ), κ(¬ϕ)}
γ− − γ+ ≤ κ(ϕ ∧ ψ)− κ(ϕ ∧ ¬ψ).

The parameters γ−, γ+, κ0 originate from the definition of c-changes (Def. 3.35).

The further restrictions stated in Def. 3.36 can be directly derived from the c-
contraction’s underlying success postulate, which says that after the contraction of
a certain conditional, we will not be able to infer it anymore, i.e. κ�(ψ|ϕ) |6= (ψ|ϕ).
The restrictions on γ+ and γ− are equivalent to the contraction’s success postulate:

κ� (ψ|ϕ) |6= (ψ|ϕ)

⇔ κ� (ψ|ϕ) (¬ψ|ϕ) ≤ κ� (ψ|ϕ) (ψ|ϕ) (Lem. 2.48)

⇔ κ(¬ψ|ϕ)− κ0 + γ− ≤ κ(ψ|ϕ)− κ0 + γ+ (Def. 3.36)

⇔ κ(¬ψ|ϕ) + γ− ≤ κ(ψ|ϕ) + γ+

⇔ κ(ϕ ∧ ¬ψ)− κ(ϕ) + γ− ≤ κ(ϕ ∧ ψ)− κ(ϕ) + γ+ (Def. 2.46)

⇔ κ(ϕ ∧ ¬ψ) + γ− ≤ κ(ϕ ∧ ψ) + γ+

⇔ γ− − γ+ ≤ κ(ϕ ∧ ψ)− κ(ϕ ∧ ¬ψ).

When shifting the ranks by γ+ or γ−, we know that there are two cases in which
the ranks must be adjusted by the normalization constant κ0 in order to maintain
the OCF’s conditions. In the first case, the rank of ϕ ∧ ¬ψ becomes negative when
shifting by γ−. Therefore, all ranks must be increased by κ0 = γ− + κ(ϕ ∧ ¬ψ),
such that they are greater or equal to 0 in the posterior OCF. In the other case,
when increasing the rank of ϕ ∧ ψ it can happen that no more interpretations
are assigned to rank 0 afterwards. Thus, we have to decrease all ranks by either
κ0 = γ−+κ(ϕ∧¬ψ) or κ0 = κ(¬ϕ), whichever is smaller. This way it is guaranteed
that there exist interpretations with rank 0 in the posterior OCF. In Ex. 3.3 we
illustrate a c-contraction and how the parameter choice guarantees the success of
the contraction.

Example 3.3. In this example we illustrate how c-contractions affect a prior OCF
and how the parameter restrictions guarantee the fulfilment of the corresponding
success postulate. For this let κ be the OCF given in Tab. 15 below.
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κ(ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 pbf

3 -

2 pbf , pbf

1 pbf , pbf

0 pbf , pbf, pbf

κ� (¬f |p) (ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 -

3 pbf , pbf

2 pbf , pbf, pbf , pbf , pbf

1 -

0 pbf

Table 15: Left: OCF κ over signature ΣTweety. Right: Result of contracting (¬f |p) in κ
with parameters γ− = −4, γ+ = −1 and κ0 = −2.

If we now want to contract that penguins usually cannot fly (¬f |p) from κ, the
parameters γ+, γ− and κ0 must fulfil the following restrictions:

γ− − γ+ ≤ κ(p ∧ ¬f)− κ(p ∧ f) = 1− 2 = −1

κ0 = min{γ− + κ(p ∧ f), κ(¬p)} = min{γ− + 2, 0}

According to these restrictions, we choose γ− = −4, γ+ = −1 and κ0 = −2. The
choice of the parameters in this example is rather arbitrary and does not follow
any particular strategy. Contracting (¬f |p) with the parameters as chosen above
results in the posterior OCF κ � (¬f |p), which is also given in Tab. 15. Due to
the contraction, the ranks of all models of p ∧ ¬f are increased by −κ0 + γ+ =
1, while the ranks of all models of p ∧ f are shifted by −κ0 + γ− = −2. The
remaining interpretations that are not applicable since they satisfy ¬p, are only
shifted by the normalization constant −κ0 = 2. This way all interpretations that
behave equivalently towards (¬f |p) are treated the same by the c-contraction. Since
the parameter restrictions directly derive from the underlying success postulate, it
is guaranteed that the minimal models of ¬f ∧ p are no more plausible than the
minimal models of f ∧ p after the contraction. Therefore, we are no longer able to
infer (¬f |p) afterwards.

κ� (¬f |p) |= (¬f |p)
⇔ κ� (¬f |p) (¬f ∧ p) < κ� (¬f |p) (f ∧ p) (Prop. 2.49)

⇔ 2 < 0  

Furthermore, it is worth mentioning that due to the c-contraction the prior beliefs
have changed completely, since none of the prior most plausible interpretations were
maintained.

As seen in Ex. 3.3 above, c-contractions, even if called contractions, do not
generally satisfy the AGM postulates for epistemic states (AGMes-1)-(AGMes-
6) (see Section 2.3 or Appendix A.1), since it is possible to induce almost arbitrary
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changes to the prior beliefs, as long as the contracted conditional cannot be inferred
by the posterior OCF. Moreover, it would be necessary to consider propositional
c-contractions only, since the AGM postulates are of a purely propositional nature.
This can be traced back to the fact, that c-contractions are based on the principle
of conditional preservation, while AGM theory is based on the minimal change
paradigm. Moreover, this makes it difficult to argue about the changes induced by a
c-contraction in general, and therefore to argue about properties of c-contractions.
However, this problem can be solved by considering c-contractions of propositions
that only induce minimal changes to the prior beliefs. We refer to them as minimal
change c-contractions (Def. 3.37).

Definition 3.37. [KIBSB17] Let κ be an OCF over signature Σ and ϕ ∈ LΣ a
formula. A minimal change c-contraction κ�ϕ is a propositional c-contraction with
γ+ = 0, γ− = min{0, κ(ϕ) − κ(¬ϕ)}, and κ0 = γ− + κ(¬ϕ), where γ−, γ+, κ0 are
the parameters originating from the definition of c-changes (Def. 3.35).

Note that Kern-Isberner et al. refer to minimal change c-contractions as propo-
sitional minimal type α c-contractions [KIBSB17]. But since neither the differ-
entiation between type α and type β c-contractions, nor conditional type α c-
contractions are necessary for our examinations, we only refer to them as minimal
change c-contractions. Given this definition, we see that only the ranks of those
interpretations falsifying ϕ are changed. By choosing γ− as the minimum of 0 and
κ(ϕ) − κ(¬ϕ), we know that the ranks of the models of ¬ϕ are only shifted by
the minimum amount necessary in order to guarantee that ϕ cannot be inferred
by the posterior beliefs. Concretely, this means that if ϕ could be inferred by the
prior beliefs, γ− will be chosen as −κ(¬ϕ), since we know that κ |= ϕ holds only if
κ(ϕ) = 0. This way, both ϕ and ¬ϕ are assigned to rank 0 by the posterior OCF,
and ϕ can no longer be inferred. If ϕ could not be inferred by the prior beliefs,
we choose γ− = 0, which means that no ranks will be changed at all, since γ+ = 0
holds as well. Therefore, following Def. 3.37, the posterior rank assignment can be
described as given in Lem. 3.38.

Lemma 3.38. Let κ be an OCF over signature Σ, ϕ ∈ LΣ a formula, and � a
minimal change c-contraction, then the following holds for all ω ∈ ΩΣ:

If κ(ϕ) = 0, then κ� ϕ (ω) = κ(ω) +

{
0, if ω |= ϕ

−κ(¬ϕ), if ω |6= ϕ

If κ(ϕ) > 0, then κ� ϕ (ω) = κ(ω)

Kern-Isberner et al. elaborated in [KIBSB17] that the form of a propositional
c-contraction determines, whether it satisfies (AGMes-1)-(AGMes-7) (Th. 3.39).

Theorem 3.39. [KIBSB17] A propositional c-contraction � satisfies (AGMes-1)-
(AGMes-7), if and only if it has the form

κ� ϕ (ω) = κ(ω) +

{
γ+ − γ−, if ω |= ϕ

0, if ω |6= ϕ
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for all ϕ ∈ LΣ with κ(ϕ) > 0, and

κ� ϕ (ω) = κ(ω) +

{
0, if ω |= ϕ

−κ(¬ϕ), if ω |6= ϕ

for all ϕ ∈ LΣ with κ(ϕ) = 0.

Minimal change c-contractions obviously match the form stated in Th. 3.39
above. For those ϕ ∈ LΣ with κ(ϕ) = 0, the form in Lem. 3.38 exactly matches
the form in Th. 3.39. For those ϕ ∈ LΣ with κ(ϕ) > 0 a minimal change c-
contraction chooses γ− = 0 = γ+, and therefore the form matches as well. In conclu-
sion, we know that minimal change c-contractions satisfy (AGMes-1)-(AGMes-7)
(Prop. 3.40).

Proposition 3.40. Let � be a minimum change c-contraction, then � satisfies
(AGMes-1)-(AGMes-7).

Finally, we want to state how the prior most plausible interpretations are changed
due to minimal change c-contractions. This is of particular importance, since this
directly describes how the corresponding posterior beliefs relate to the prior. Kern-
Isberner et al. state that the posterior most plausible interpretations Jκ � ϕK of
a propositional c-contraction satisfying (AGMes-1)-(AGMes-7) is given by the
unification of the prior most plausible interpretations JκK and the minimal models
falsifying ϕ (Prop. 3.41). In case that ϕ could not be inferred by the prior OCF in
the first place, no changes are applied at all, since the minimal models of ¬ϕ are
already included in the most plausible interpretations JκK. This exactly corresponds
to the idea of changing the prior OCF just as much as necessary in order to guarantee
that ϕ can no longer be inferred.

Proposition 3.41. [KIBSB17] Let κ be an OCF over signature Σ, ϕ ∈ LΣ a for-
mula, and � a minimal change c-contraction. The posterior most plausible inter-
pretations of κ� ϕ are given by

Jκ� ϕK = JκK ∪min{J¬ϕK,�κ}.

Prop. 3.41 directly concludes from the relations of (AGMes-1)-(AGMes-7)
and the underlying total preorder �κ stated by Konieczny and Pérez in [KP17], and
Caridroit et al. in [CKM17] (Th. 3.42).

Theorem 3.42. [KP17] Let Ψ be an epistemic state and ϕ ∈ LΣ a formula. An
operator − satisfies (AGMes-1)-(AGMes-7), if and only if there exists a corre-
sponding faithful preorder �Ψ, such that

JΨ− ϕK = JΨK ∪min{J¬ϕK,�Ψ}.

There they show that the AGM contraction postulates for epistemic states re-
strict the changes of the prior most plausible interpretations to the minimal models
falsifying the contracted formula. However, Konieczny and Pérez formalize this re-
lation in a more general manner, by just assuming an epistemic state Ψ with an
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underlying faithful preorder �Ψ. Therefore, the epistemic state does not necessarily
have to be represented by an OCF. The following example Ex. 3.4 illustrates the
changes of the most plausible interpretations due to a minimal change c-contraction.

Example 3.4. In this example, we illustrate how minimal change c-contractions
affect a prior OCF and how the parameter restrictions guarantee that the prior
most plausible interpretations are only expanded by the minimal models falsifying
the contracted formula. For this let κ be the OCF given in Tab. 16 below.

κ(ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 pbf

3 -

2 pbf , pbf

1 pbf , pbf

0 pbf , pbf, pbf

κ� ϕ (ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 -

3 pbf

2 -

1 pbf , pbf , pbf

0 pbf , pbf, pbf , pbf

Table 16: Left: OCF κ over signature ΣTweety. Right: Result of contracting ϕ ≡ ¬p in
κ with parameters γ− = −1, γ+ = 0 and κ0 = 0.

In the following, we contract ϕ ≡ ¬p from κ by means of a minimal change c-
contraction. Thus, the parameters γ−, γ+ and κ0 must fulfil the following conditions:

γ+ = 0

γ− = min{0, κ(¬p)− κ(p)} = min{0, 0− 1} = −1

κ0 = γ− + κ(p) = −1 + 1 = 0

Other than for arbitrary c-contractions as seen in Ex. 3.3, the further restrictions
for minimal change c-contractions already set the parameters to specific values, such
that they are uniquely given. Thus, applying the minimal change c-contraction of
¬p to κ results in κ � ϕ as given in Tab. 16 above. We see that due to the min-
imal change c-contraction only the ranks of those interpretations falsifying ¬p are
affected. Concretely, they are decreased by the minimum value necessary, such that
p is assigned to rank 0 afterwards. Since we were able to infer ¬p before, we know
that both p and ¬p are assigned to rank 0 by the posterior OCF, and therefore ¬p
can no longer be inferred. Moreover, we see that all of the prior most plausible
interpretations are still assigned to rank 0 by the posterior OCF. In addition, the
minimal models of ϕ were added:

Jκ� ¬pK = {pbf, pbf, pbf, pbf}
= {pbf, pbf, pbf} ∪ {pbf}
= JκK ∪min{JpK,�κ}
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In summary, we illustrated c-contractions as a kind of forgetting formulas in
OCFs, and thereby disagreed with Delgrande’s statement that contractions are
conceptually different to forgetting [Del17]. Due to the almost arbitrary changes
that can be induced by c-contractions, we further introduced minimal change c-
contractions, which perform a contraction with respect to the minimal change
paradigm, and therefore satisfy the AGM contraction postulates for epistemic states
(AGMes-1)-(AGMes-7). Note, that in contrast to arbitrary c-changes, it is nec-
essary to restrict minimal change c-contraction to propositions, in order to satisfy
the AGM postulates and further properties. Afterwards, we showed that due to the
underlying total preorder of the OCF and the AGM postulates, the posterior most
plausible interpretations after a minimal change c-contraction are given by the unifi-
cation of the prior most plausible interpretations and the minimal models falsifying
the contracted formula. This directly allows us to argue about the induced belief
changes as well.

3.2.3 Revision

Besides the marginalization (Section 3.2.1) and the contraction (Section 3.2.2),
Kern-Isberner et al. presented several different kinds of forgetting in [BKIS+19].
The third and last we discuss in this work is the concept of revision. What dis-
tinguishes revisions from the remaining kinds of forgetting is the fact that they do
not explicitly describe a kind of forgetting, since the underlying intention states
the incorporation of new knowledge into presented beliefs. However, since it is not
guaranteed that the new knowledge does not contradict any of our present beliefs, it
might be necessary to reject some of them. Thus, the forgetting stated by revisions
is of implicit nature. If we for example consider that we believe that penguins are
able to fly, but then come to know that penguins are actually not able to fly, we have
to forget our present beliefs about flying penguins in order to incorporate the new
fact without inducing any contradictions. This illustrates that forgetting by means
of a revision describes the forgetting of beliefs about the objects and concepts of our
world, instead of the objects and concepts themselves, which again contradicts to
Delgrande’s understanding of forgetting, as already discussed in Section 3.2.2. More-
over, the example given above illustrates that the forgetting stated by revisions is
of particular interest when it comes to intentional forgetting, which describes the
act of actively and knowingly rejecting certain beliefs. Just as for contractions, the
understanding of what revisions actually are is strongly influenced by AGM theory,
in which the fundamental properties of revisions were postulated [AGM85, GR95].
Since a purely propositional framework as assumed by AGM is not always appropri-
ate to argue about belief changes, the revision postulates as originally stated were
later generalized to arbitrary epistemic states and extended by Darwiche and Pearl
[DP97]. In this context, Kern-Isberner et al. discussed the concept of revision as a
kind of forgetting in [BKIS+19] by means of c-revisions [KI04]. In the following, we
specify the definition of c-revisions, their relation to the established revision postu-
lates, and state further properties that are necessary for the examinations in this
work.

As already stated in Section 3.2.2, knowledge sets and a purely propositional
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framework are not always suitable for arguing about belief changes, especially when
it comes to conditional beliefs and iterated belief changes. In this context, the
principle of conditional preservation [Ker18] is of particular importance, since it
states that conditional relations are not rejected by belief changes, if not necessary.
In Def. 3.35, we already specified c-changes – a family of belief change operators that
satisfy the principle of conditional preservation by definition. Just as c-contractions,
c-revisions are defined by means of c-changes as well (Def. 3.43).

Definition 3.43. [KI04] A c-change ~ is called c-revision, if and only if for κ ~
(ψ|ϕ) the parameters γ−, γ+, κ0 ∈ Z fulfil the following constraints:

κ0 = min{γ+ + κ(ϕ ∧ ψ), κ(¬ϕ)}
γ− − γ+ > κ(ϕ ∧ ψ)− κ(ϕ ∧ ¬ψ)

The parameters γ−, γ+, κ0 originate from the definition of c-changes (Def. 3.35).

The further parameter restrictions stated in Def. 3.43 can directly be derived
from, and therefore also reflect the underlying success postulate of c-revisions,
namely that after revising κ with a conditional (ψ|ϕ), we want to be able to in-
fer (ψ|ϕ), i.e. κ~ (ψ|ϕ) |= (ψ|ϕ):

κ~ (ψ|ϕ) |= (ψ|ϕ)

⇔ κ~ (ψ|ϕ) (¬ψ|ϕ) > κ~ (ψ|ϕ) (ψ|ϕ) (Def. 2.32)

⇔ κ(¬ψ|ϕ)− κ0 + γ− > κ(ψ|ϕ)− κ0 + γ+ (Def. 3.43)

⇔ κ(ϕ ∧ ¬ψ)− κ(ϕ)− κ0 + γ− > κ(ϕ ∧ ψ)− κ(ϕ)− κ0 + γ+ (Def. 2.46)

⇔ κ(ϕ ∧ ¬ψ) + γ− > κ(ϕ ∧ ψ) + γ+

⇔ γ− − γ+ > κ(ϕ ∧ ψ)− κ(ϕ ∧ ¬ψ)

Thus, when shifting all models of (ψ|ϕ) by γ+ and all models of (¬ψ|ϕ) by γ−,
we know that the most plausible models of (ψ|ϕ) are more plausible than those
of (¬ψ|ϕ), and therefore we are able to infer (ψ|ϕ) afterwards. The normalization
constant κ0 guarantees that all ranks in the posterior OCF are positive, and that
there exist interpretations assigned to rank 0. In case that there exist negative
ranks, we know that it is sufficient to choose κ0 = γ+ + κ(ϕ ∧ ψ), even though
there might exist models of κ(ϕ ∧ ¬ψ) with a negative rank as well. This is due
to the fact, that ϕ ∧ ψ is more plausible than ϕ ∧ ¬ψ after shifting, as stated by
the c-revision’s success postulate. Thus, when there exist negative ranks due to the
shifting, γ+ + κ(ϕ ∧ ψ) must be the lowest rank. In case that shifting the models
does not result in negative ranks, it can still be possible that no interpretations are
assigned to rank 0. Therefore, the ranks of all interpretations must be decreased
by the minimum rank available, in order to maintain this condition. Since we know
that due to the shifting ϕ∧ψ is more plausible than ϕ∧¬ψ, it is sufficient to choose
κ0 as the minimum of γ+ +κ(ϕ∧ψ) and κ(¬ϕ). In the following example Ex. 3.5, we
want to illustrate that the parameter restrictions guarantee the inference of (ψ|ϕ)
by the posterior OCF.
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Example 3.5. This example illustrates how the parameter restrictions given in
Def. 3.43 guarantee that after a c-revision κ ~ (ψ|ϕ) we are able to infer (ψ|ϕ).
For this we consider the prior OCF κ as given in Tab. 17 below.

κ(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 pbf , pbf

2 pbf

1 pbf , pbf

0 pbf , pbf, pbf

κ~ (¬f |p) (ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 -

2 pbf , pbf

1 pbf , pbf , pbf, pbf

0 pbf , pbf

Table 17: Left: OCF κ over signature ΣTweety. Right: Result of revising κ with (¬f |p),
where γ− = −2, γ+ = −5 and κ0 = −2.

In the following, we want to revise κ with the conditional (¬f |p). First, we want
to state that (¬f |p) cannot be inferred by κ, which means that κ must actually be
changed in order to be able to infer (¬f |p):

κ |= (¬f |p)
⇔ κ(p ∧ ¬f) < κ(p ∧ f) (Prop. 2.49)

⇔ 3 < 1  

Due to the parameter restrictions given by the definition of c-revisions, we know that
κ~ (¬f |p) constrains γ+, γ− and κ0 as follows:

γ− − γ+ > κ(p ∧ ¬f)− κ(p ∧ f) = 3− 1 = 2

κ0 = min{γ+ + κ(p ∧ ¬f), κ(¬p)} = min{γ+ + 3, 0}

For this example, we choose γ+ = −5, γ− = −2 and κ0 = −2. Revising κ with
(¬f |p) and the parameters as mentioned above, we obtain κ ~ (¬f |p) as given in
Tab. 17 above. We see that all models of ¬f ∧ p are shifted by −κ0 + γ+ = −3,
while all models of f ∧p are shifted by −κ0 +γ− = 0. The remaining interpretations
that are not applicable to (¬f |p) are only shifted by the normalization constant κ0

in order to prevent negative ranks. Shifting the ranks this way, the resulting OCF
is capable of inferring (¬f |p), since the minimal models of ¬f ∧ p are now more
plausible than those of f ∧ p:

κ~ (¬f |p) |= (¬f |p)
⇔ κ~ (¬f |p) (p ∧ ¬f) < κ~ (¬f |p) (p ∧ f) (Prop. 2.49)

⇔ 0 < 1 X
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Despite the fact that c-revisions can generally be applied to conditionals, we
only focus on propositional c-revisions in the further course. We do so, since the
general properties of forgetting we examine in this work only argue about a purely
propositional framework. Therefore, elaborating c-revisions of conditionals in detail
is not necessary. In Def. 3.44 we state the definition of propositional c-revisions,
which corresponds to Def. 3.43, when assuming the ϕ ≡ > in (ψ|ϕ).

Definition 3.44. [KIH17] A c-revision κ ~ ϕ is called propositional c-revision, if
and only if ϕ ∈ L is a formula and the parameters γ−, γ+, κ0 ∈ Z fulfil the following
constraints:

κ0 = γ+ + κ(ϕ)

γ− − γ+ > κ(ϕ)− κ(¬ϕ)

The parameters γ−, γ+, κ0 originate from the definition of c-changes (Def. 3.35).

In the following, we want to elaborate the connections between the minimal mod-
els of a formula ϕ, the (AGMes∗1)-(AGMes∗6) (see Section 2.3 or Appendix A.1)
revision postulates, and propositional c-revisions with ϕ. These connections are al-
ready common in the domain of knowledge representation and go back to the work of
Darwiche and Pearl [DP97]. However, since they are often just implicitly assumed
when working with revisions, we want to explicitly state and prove them at this
point. Other than propositional c-contractions, different propositional c-revisions
with the same formula and OCF are not able to result in different posterior beliefs,
even though the parameters can be chosen freely with respect to the stated restric-
tions. In fact, it can be shown that the posterior most plausible interpretations after
revising an OCF with a formula ϕ, always correspond to the minimal models of ϕ
(Th. 3.45).

Theorem 3.45. Let κ be an OCF over signature Σ and ~ a propositional c-revision,
then

Jκ~ ϕK = min{JϕK,�κ}
holds for each formula ϕ ∈ LΣ.

Proof of Th. 3.45. We prove the equation stated in Th. 3.45, by first showing that
the posterior most plausible interpretations can be divided into two subsets. The
first subset only contains models of ϕ, whereas the second subset only contains
models of ¬ϕ.

Jκ~ ϕK
= {ω ∈ ΩΣ | κ~ ϕ (ω) = 0} (Def. 2.30)

= {ω ∈ ΩΣ | κ(ω)− κ0 +

{
γ+, if ω |= ϕ

γ−, if ω |= ¬ϕ
= 0} (Def. 3.44)

= {ω ∈ JϕK | κ(ω)− κ0 + γ+ = 0} ∪ {ω ∈ J¬ϕK | κ(ω)− κ0 + γ− = 0}

Next, we conclude that the second subset {ω ∈ J¬ϕK | κ(ω)−κ0 +γ− = 0} must
be empty due to the c-revision’s success postulate κ ~ ϕ |= ϕ, which holds if and
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only if κ~ϕ(ϕ) < κ~ϕ(¬ϕ) (Def. 2.32). Thus, we know that no models of ¬ϕ are
assigned to rank 0 by κ~ ϕ.

Jκ~ ϕK = {ω ∈ JϕK | κ(ω)− κ0 + γ+ = 0}

Furthermore, we can conclude that the models of ϕ that are assigned to rank 0
afterwards, must be the minimal models of ϕ in κ.

Jκ~ ϕK = {ω ∈ JϕK | κ(ω)− κ0 + γ+ = 0}
= {ω ∈ JϕK | κ(ω) = κ0 − γ+}
= {ω ∈ JϕK | κ(ω) = γ+ + κ(ϕ)− γ+} (Def. 3.44)

= {ω ∈ JϕK | κ(ω) = κ(ϕ)}
= min{JϕK,�κ} (Def. 2.50)

While it is necessary for propositional c-contractions to further restrict them to
minimal change c-contractions in order to satisfy the AGM contraction postulates
(AGMes-1)-(AGMes-7), Th. 3.45 alone is sufficient for propositional c-revisions
to satisfy the AGM revision postulates (AGMes∗1)-(AGMes∗6) (Prop. 3.47).
The relation of minimal models and (AGMes∗1)-(AGMes∗6) goes back to the
work of Katsuno and Mendelzon [KM91], in which it was admittedly described with
respect to total preorders, but nevertheless the revision was still performed on a
knowledge set represented as a single formula. Darwiche and Pearl [DP97] then
generalized this relation to revisions of epistemic states (Th. 3.46).

Theorem 3.46. [DP97] Let Ψ be an epistemic state and ϕ ∈ LΣ a formula. A
revision operator ∗ satisfies (AGMes∗1)-(AGMes∗6), if and only if there exists
a corresponding faithful total preorder �Ψ, such that

JΨ ∗ ϕK = min{JϕK,�Ψ}.

Proposition 3.47. Let ~ be a propositional c-revision, then ~ satisfies
(AGMes∗1)-(AGMes∗6).

When we argue about revisions in the context of epistemic states and iterated
belief change, we know that in addition to the postulates stated by AGM, the
principle of conditional preservation plays an essential role as well. In [Ker18] Kern-
Isberner stated the principle of conditional preservation by means of a property
that does not argue about revisions in particular, but is applicable to arbitrary
belief change operators. However, when we assume the belief change operator in
this generalized form to be a revision, then it exactly corresponds to the postulates
(DP1)-(DP4) (see Section 2.3 or Appendix A.1) formulated by Darwiche and Pearl
[DP97] in order to capture the same principle specifically for revisions. Since we
already know from the definition of c-changes (Def. 3.35) that c-revisions fulfil the
principle of conditional preservation, they must especially satisfy (DP1)-(DP4) in
conclusion (Prop. 3.48). For a detailed explanation on the relation between (DP1)-
(DP4) and the generalized form of the principle of conditional preservation, we
refer to [Ker18].
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Proposition 3.48. Let ~ be a c-revision, then ~ satisfies (DP1)-(DP4).

In the following, we state some of the properties of c-revisions that are implied by
(AGMes∗1)-(AGMes∗6). First of all, from the (Third identity) of AGM theory
(see Section 2.3), we know that an expansion with ϕ can also be expressed by means
of a revision, in case that ¬ϕ cannot be inferred by our present beliefs. When we
consider the revision to be a c-revision, we cannot make use of the identities of
AGM theory, since they do not apply to epistemic states. Thus, we instead refer to
the corresponding (Third equivalence) as stated in Section 2.3. This translates
the idea of the (Third identity) to the equivalence of belief sets, stating that the
beliefs of a revision Ψ ∗ϕ are equivalent to those of expanding the prior belief by ϕ,
if they do not contradict ϕ. Notice that in contrast to the identity, this equivalence
is not capable of defining an expansion by means of a given revision. We show in
Prop. 3.49 that c-revisions satisfy the (Third equivalence) 6.

Proposition 3.49. Let κ be an OCF over signature Σ and ~ a c-revision, then ~
satisfies the (Third equivalence)

if κ |6= ¬ϕ, then Bel(κ~ ϕ) ≡ Bel(κ) + ϕ

for each formula ϕ ∈ LΣ.

Proof of Prop. 3.49. In the following, we assume κ |6= ¬ϕ⇔ κ(ϕ) = 0 (Lem. 2.33).

Bel(κ~ ϕ) ≡ Th(Jκ~ ϕK) (Lem. 2.39)

≡ Th(min{JϕK,�κ}) (Th. 3.45)

≡ Th({ω ∈ JϕK | κ(ω) = κ(ϕ)}) (Def. 2.50)

≡ Th({ω ∈ JϕK | κ(ω) = 0}) (κ(ϕ) = 0)

≡ Th({ω ∈ JϕK | ω |= Bel(κ)}) (Prop. 2.37)

≡ Th({ω ∈ ΩΣ | ω |= Bel(κ) and ω |= ϕ})
≡ Th({ω ∈ ΩΣ | ω |= Bel(κ) ∪ {ϕ}}) (Lem. 2.11)

≡ Th(JBel(κ) ∪ {ϕ}K) (Def. 2.9)

≡ Cn(Bel(κ) ∪ {ϕ}) (Prop. 2.26)

≡ Bel(κ) + ϕ (Th. 2.28)

Furthermore, Prop. 3.49 concludes that the changes induced to the prior beliefs
by a c-revision satisfy the AGM expansion postulates (AGM+1)-(AGM+6) (see
Section 2.3 or Appendix A.1), and therefore describe an AGM expansion, if κ(ϕ) = 0.

Proposition 3.50. Let ~ be a c-revision, then the change from Bel(κ) to Bel(κ~ϕ)
satisfies (AGM+1)-(AGM+6), if κ(ϕ) = 0.

6Note that Prop. 3.49 and Prop. 3.50 are also part of the lecture ”Fortgeschrittene Themen der
Wissensrepräsentation” by Kern-Isberner at TU Dortmund University.
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At this point, we like to highlight two details of Prop. 3.50. Firstly, the condition
under which c-revisions satisfy (AGM+1)-(AGM+6), namely κ(ϕ) = 0, exactly
corresponds to the idea that ¬ϕ must not be inferable by the prior epistemic state,
since κ(ϕ) = 0 guarantees that ¬ϕ cannot be inferred, even if κ(¬ϕ) = 0 holds
as well. Secondly, Prop. 3.50 argues about the extension postulates as originally
stated by AGM, and not about a generalized form for epistemic states, even though
~ applies to OCFs. But since we only argue about the effect of c-revisions on the
prior beliefs the postulates (AGM+1)-(AGM+6) are sufficient.

Knowing that a c-revision with ϕ represent a belief expansion in case that κ(ϕ) =
0, we further want to argue about the relation of c-revisions and the (Levi identity),
which states that a revision is defined by subsequently performing a contraction,
rejecting any contradicting beliefs, and an expansion that actually adds the new
knowledge. As already stated for the (Third identity) above, it is not possible
to directly apply the (Levi identity) to epistemic states. Therefore, we refer to
the corresponding (Levi equivalence) as stated in Section 2.3. This translates the
idea of the (Levi identity) to the equivalence of belief sets, but does not define a
revision by means of a contraction and an expansion. In Prop. 3.51, we show that
c-revisions generally satisfy the (Levi equivalence).

Proposition 3.51. Let κ be an OCF over signature Σ, − a belief change opera-
tor satisfying (AGMes-1)-(AGMes-7), and ~ a c-revision, then ~ satisfies the
(Levi equivalence)

Bel(κ~ ϕ) ≡ Bel(κ− ¬ϕ) + ϕ

for each ϕ ∈ LΣ.

Proof of Prop. 3.51. We know from Th. 3.42 that

JΨ− ϕK = JΨK ∪min{J¬ϕK,�Ψ}

holds for any epistemic state Ψ with faithful ranking �Ψ, and belief change operator
satisfying (AGMes-1)-(AGMes-7). Since there exist a faithful ranking �κ for
each OCF κ (Prop. 2.43) we can further conclude

Jκ− ¬ϕK = JκK ∪min{JϕK,�κ}. (3.2)

Eq. 3.2 especially states that after contracting ¬ϕ from κ, ϕ is assigned to rank
0, i.e. κ − ¬ϕ (ϕ) = 0, since its minimal models were added to the most plausible
interpretations. Thus, due to Prop. 3.50 we know that

Bel(κ− ¬ϕ) + ϕ ≡ Bel((κ− ¬ϕ)~ ϕ) (Prop. 3.50)

holds. Next, we show that the posterior most plausible interpretations must be the
same, and therefore the posterior beliefs equivalent.

Bel(κ~ ϕ) ≡ Bel((κ− ¬ϕ)~ ϕ)

⇔ Jκ~ ϕK = J(κ− ¬ϕ)~ ϕK (Prop. 2.38)

⇔ min{JϕK,�κ} = min{JϕK,�κ−¬ϕ} (Th. 3.45)
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As stated by Eq. 3.2, the minimal models of ϕ with respect to �κ are assigned to
rank 0 in the posterior OCF κ − ¬ϕ. Therefore, we know that there cannot exist
any other models of ϕ with a lower rank. This concludes that the minimal models
of ϕ are the same in both κ and κ− ¬ϕ.

Furthermore, we can express an even stronger form of the (Levi equivalence)
for c-revisions, since they also satisfy the (Third equivalence) (Prop. 3.49), in
which we can generally replace the expansion by another c-revision (Prop. 3.52).

Proposition 3.52. Let κ be an OCF over signature Σ, � a belief change operator
satisfying (AGMes-1)-(AGMes-7), and ~ a c-revision, then

Bel(κ~ ϕ) ≡ Bel((κ� ¬ϕ)~ ϕ)

holds for each ϕ ∈ LΣ.

This follows directly from Prop. 3.51 above. This way it is not necessary to
define an extra expansion over epistemic states. Note that this is possible since the
previously performed contraction guarantees the condition κ(ϕ) = 0, which is neces-
sary for c-revisions to express an expansion as stated in the (Third equivalence).
In the following, we want to illustrate the equivalence stated in Prop. 3.52 with an
example (Ex. 3.6).

Example 3.6. This example illustrates the relation between c-revisions and contrac-
tions that satisfy (AGMes-1)-(AGMes-7) by means of the (Levi equivalence)
and the (Third equivalence) as stated in Prop. 3.52. For this example we con-
sider � to be a minimal change c-contraction, since we know that they satisfy the
above-mentioned AGM postulates (Prop. 3.40). Furthermore, we consider the OCF
κ over signature ΣTweety as given in Tab. 18 below. First, we revise κ with ϕ ≡ p.
According to the definition of c-revisions (Def. 3.44), the following constraints must
hold:

γ− − γ+ > κ(ϕ)− κ(¬ϕ) = 1− 0 = 1

κ0 = γ+ + κ(ϕ) = γ+ + 1

We freely choose γ− = 2, γ+ = 0 and κ0 = 1, which results in κ ~ ϕ as given in
Tab. 18. We see that all rank of the models of ϕ are decreased by 1, resulting in the
minimal models of ϕ as the posterior most plausible interpretations. The ranks of
the remaining interpretations are increased by 1.

Next, we show that when we first contract ¬ϕ from κ by means of a minimal
change c-contraction, and afterwards perform a revision with ϕ, we result in equiv-
alent beliefs. For the minimal change c-contraction κ◦c = κ� ¬ϕ, we know that the
parameters cannot be chosen, but are clearly given by definition. In this particular
case, the parameters are γ− = −1, γ+ = 0 and κ0 = 0. The resulting OCF is also
given in Tab. 18. We see that due to the minimal change c-contraction only the
models of ϕ were affected, such that ϕ is assigned to rank 0 afterwards. When we
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κ(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 pbf , pbf

2 pbf

1 pbf , pbf

0 pbf , pbf, pbf

κ~ ϕ (ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 -

2 pbf , pbf , pbf

1 pbf , pbf, pbf , pbf

0 pbf

κ� ¬ϕ (ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 -

2 pbf , pbf

1 pbf , pbf

0 pbf , pbf, pbf , pbf

κ◦c ~ ϕ (ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 -

2 pbf , pbf , pbf

1 pbf , pbf, pbf , pbf

0 pbf

Table 18: Top left: OCF κ over signature ΣTweety. Top right: Result of revising κ with
ϕ ≡ p, where γ− = 2, γ+ = 0 and κ0 = −1. Bottom left: Result of the minimal
change c-contracting κ � ¬p. Bottom right: Result of revising κ◦c = κ � ¬p with ϕ,
where γ− = −1, γ+ = 0 and κ0 = 0.

revise κ◦c with ϕ afterwards, the parameters must be chosen according to the following
constraints:

γ− − γ+ > κ(ϕ)− κ(¬ϕ) = 0− 0 = 0

κ0 = γ+ + κ(ϕ) = γ+ + 0 = γ+

Thus, we freely choose γ− = −1, γ+ = 0 and κ0 = 0 and result in κ◦c � ϕ as stated
in Tab. 18. Comparing the most plausible interpretations of κ � ϕ and κ◦c � ϕ, we
see that the minimal models of ϕ with respect to �κ form the only interpretations
assigned to rank 0 in both posterior OCFs. This is guaranteed, since the contraction
moves the minimal models of ϕ to rank 0 in order to prevent inferring ¬ϕ, and thus
the following revision just removes the models of ¬ϕ from rank 0, such that only
the minimal models of ϕ remain. Note that in this example we not just result in
equivalent beliefs, but also in identical posterior OCFs. However, this does not hold
in general, but requires further assumptions on the parameters of the c-revision.

Finally, we want to state some properties of c-revisions that argue about the
preservation of minimal models. These properties will be needed for the further
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examinations presented in this work. In Prop. 3.53, we state that revising an OCF
κ with a formula ϕ preserves the minimal models of those formulas ψ, if its minimal
models are included in those of ϕ.

Proposition 3.53. Let κ be an OCF over signature Σ, ϕ, ψ ∈ LΣ formulas and ~
a propositional c-revision.

If min{JψK,�κ} ⊆ min{JϕK,�κ}, then min{JψK,�κ} = min{JψK,�κ~ϕ}.

Proof of Prop. 3.53. We know from Th. 3.45, that after revising κ with ϕ the prior
minimal models of ϕ form the posterior most plausible interpretations. Thus, we
know that all prior minimal models of ψ must be included in the posterior most
plausible interpretations as well, i.e.

κ~ ϕ (ω) = 0, for all ω ∈ min{JψK,�κ}.

Moreover, we can conclude from the above that the prior minimal models of ψ are
the only models of ψ assigned to rank 0 after the revision. Therefore, all other
models of ψ are assigned to a rank greater than 0. In conclusion, the prior and
posterior minimal models of ψ must be equal.

Intuitively, the equality stated in Prop. 3.53 holds, since all minimal models of ψ
are included in those of ϕ, and therefore we know that the minimal models of ψ are
assigned to rank 0 by the posterior OCF. If they are already assigned to rank 0 by
the prior OCF, we know that they are not affected by the revision. Otherwise, we
know that there cannot exist any other model of ψ that is assigned to an even lower
rank. In both cases, we can conclude that the prior and posterior minimal models
of ψ are equal.

In Prop. 3.54, we state that the revision of κ with ψ preserves the minimal
models of all formulas ϕ that are more specific than ψ. This is due to the fact that
c-revisions change the ranks of all interpretations that behave equivalently towards
ψ in the same way. Therefore, the order of all models of ϕ |= ψ is preserved, and
so are the minimal models.

Proposition 3.54. Let κ be an OCF over signature Σ, ϕ, ψ ∈ LΣ formulas, and ~
a propositional c-revision.

If ϕ |= ψ, then min{JϕK,�κ} = min{JϕK,�κ~ψ}.

Proof of Prop. 3.54. Since all models of ϕ are models of ψ as well, we know that
the posterior rank for each ω ∈ JϕK after the revision κ~ ψ is given by

κ~ ψ (ω) = κ(ω)− κ0 + γ+. (Def. 3.44)

Shifting the ranks of all ω ∈ JϕK by the same constant factor −κ0 + γ+, we know
that the order of those models does not change:

κ(ω) < κ(ω′)⇔ κ(ω)− κ0 + γ+ < κ(ω′)− κ0 + γ+, for all ω, ω′ ∈ JϕK.

Therefore, we know that the prior and posterior minimal models of ϕ must be equal,
if ϕ |= ψ.



82 3 Forgetting

In summary, we presented the concept of revision as a kind of forgetting. For this,
we argued that the forgetting aspect of revisions is of purely implicit nature, since
the main notion of revisions is the incorporation of new knowledge into present be-
liefs. Nonetheless, incorporating new knowledge might require the rejection of some
presented beliefs in order to prevent contradictions. Therefore, revisions can be un-
derstood as intentionally forgetting those beliefs that contradict the new knowledge.
Since our work will focus on forgetting in epistemic states, concretely OCFs, we fur-
ther examined c-revisions as a concrete implementation of the revision concept,
which were presented as a kind of forgetting in [BKIS+19]. Just as c-contractions,
c-revisions belong to the family of belief change operators determined by the def-
inition of c-changes (Def. 3.35), and therefore satisfy the principle of conditional
preservation. Since the (DP1)-(DP4) (see Section 2.3 or Appendix A.1) postulates
describe the same principle, but specifically for revisions, we know that c-revisions
satisfy them as well. Moreover, we showed that the posterior most plausible models
of a c-revision with κ exactly correspond to the minimal models of ϕ. This is of par-
ticular importance, since it is essential for c-revisions to satisfy the well-established
revision postulates for epistemic state (AGMes∗1)-(AGMes∗6) (see Section 2.3
or Appendix A.1). The fact that c-revisions satisfy the AGM postulates without fur-
ther restrictions shows that they are also conform to the minimal change paradigm.
Further, we showed that c-revision satisfy the (Levi equivalence) and the (Third
equivalence) (see Section 2.3), which correspond to the eponymous identities of
the AGM theory. Finally, we formulated some properties stating the preservation
of minimal models under certain conditions.
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4 Towards a General Framework for Kinds of For-

getting

The main goal of this section is the elaboration of general forgetting postulates for
epistemic states. Kern-Isberner et al. already presented certain forgetting postu-
lates in [BKIS+19], stating the success conditions of the different kinds of forgetting.
However, the here elaborated attempt of postulating general properties of forget-
ting goes beyond that, and states further properties arguing about the behaviour
of forgetting in epistemic states. For this we make use of the postulates (DFP-1)-
(DFP-7) (Th. 3.4) as presented by Delgrande in [Del17], and generalize them such
that they extend to epistemic states. Furthermore, we elaborate the relations be-
tween them and the three kinds of forgetting from [BKIS+19] presented in Section 3,
namely the marginalization, contraction and revision.

Since the marginalization describes forgetting in the sense of a signature reduc-
tion, we will first examine in Section 4.1 whether it is possible to express Delgrande’s
approach by means of the marginalization, and thus if the kinds of forgetting pre-
sented in [BKIS+19] also cover the notions of forgetting as stated by Delgrande.
Additionally, we compare the model theoretical considerations of both approaches.
After this, we present a generalized version of (DFP-1)-(DFP-7) arguing about
forgetting signature elements in epistemic states, and examine whether the marginal-
ization satisfies them. At this point, we will also state the particular importance of
the marginalization for the generalized postulates.

In Section 4.2, we will once again generalize the postulates (DFP-1)-(DFP-
7) to epistemic states, but this time we transfer the fundamental notions of these
postulates such that they argue about the forgetting of formulas. Thus, we present
two types of forgetting postulates for epistemic states. We will then examine the
latter for contractions in detail. Thereby, we emphasize the particular importance
of the minimal change paradigm and the refinement relation of OCFs. Lastly, we
elaborate the relations between the generalized forgetting postulates and the estab-
lished AGM contraction postulates for epistemic states (AGMes-1)-(AGMes-7)
(see Section 2.3 or Appendix A.1).

In Section 4.3, we will first state an explicit representation for the implicit forget-
ting performed by a revision by means of contractions. Afterwards, we examine how
revisions relate to the generalized forgetting postulates and the forgetting properties
of contractions. Finally, we will also elaborate the relations between the general-
ized forgetting postulates and the AGM revision postulates for epistemic states
(AGMes∗1)-(AGMes∗6), as well as for the postulates for iterated belief revision
(DP1)-(DP4) (see Section 2.3 or Appendix A.1).

Finally, in Section 4.4 we want to discuss that the here elaborated attempt of
postulating general properties of forgetting formulas is only partly suitable for the
different kinds of forgetting. We do so by highlighting some controversial properties
that are implied by them. Furthermore, we examine if a belief change operator sat-
isfying them can exist at all. Lastly, we will present adjustments to the postulates
that prevent some undesired behaviour, and therefore show that even if the gen-
eralized postulates are not yet suitable, they form another step towards a general
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framework for kinds of forgetting.

4.1 Marginalization / Focussing

In this section, we will compare Delgrande’s general forgetting approach [Del17]
presented in Section 3.1 to the OCF marginalization [BKIS+19] presented in Sec-
tion 3.2.1. The comparison of the approaches is straight-forward since they both
consider forgetting as a reduction of the signature elements. In the following, we
first show that the beliefs of κ|Σ′ are equivalent to the result of forgetting a subsig-
nature Σ \ Σ′ from a set of formulas Γ, i.e. F(Γ,Σ \ Σ′). We will also discuss the
relation between Γ and Bel(κ) necessary for a meaningful comparison of the two
approaches. Note that due to the fact that Delgrande’s approach only considers
formulas and deductive inferences, we will not consider conditionals in the compar-
ison of the approaches. Afterwards, we translate Delgrande’s forgetting postulates
(DFP-1)-(DFP-7) (Th. 3.4) such that they are applicable to OCFs and prove that
the marginalization satisfies all of them. Moreover, we show that the marginalization
is not the only operator that satisfies these postulates, but clearly is of particular
importance, because each other operator must induce additional propositional or
conditional changes to the prior OCF.

4.1.1 On the Equivalence of Marginalizations and Delgrande’s Forget-
ting Approach

In order to show the equivalence of the approaches, we first define some pre-
conditions that are crucial for a meaningful comparison. Unlike the marginalization
(Def. 3.23), which realizes forgetting by reducing the signature of an OCF, and thus
of the corresponding beliefs in particular, F(Γ, P ) (Def. 3.1) defines a function that
applies the forgetting to a set of formulas Γ. This set of formulas can be regarded
as the knowledge base from which the belief set Cn(Γ) can be inferred deductively.
This states the initial situation F(Γ, P ) is applied to. For a meaningful comparison,
we want the marginalization to work on the same initial situation, meaning that the
beliefs of κ should be equivalent to Cn(Γ). Otherwise, we would apply forgetting to
two different initial situations, which makes a comparison pointless, because we then
cannot expect the results of forgetting to be the same. This requirement can be ful-
filled by choosing κ such that the most plausible interpretations JκK equal the models
of Γ. Since Lem. 2.39 states Bel(κ) ≡ Th(JκK), we can conclude that we then obtain
all formulas that are satisfied by the models of Γ, and therefore guarantee the same
initial situation for both forgetting approaches. Given these pre-conditions, we show
the equivalence of Delgrande’s approach and the OCF marginalization in Th. 4.1
with respect to the beliefs that can be inferred after forgetting certain signature
elements.

Theorem 4.1. Let Γ ⊆ LΣ be a set of formulas and κ an OCF over signature Σ
with Bel(κ) ≡ Γ, then

F(Γ,Σ \ Σ′) ≡ Bel(κ|Σ′)

holds for each subsignature Σ′ ⊆ Σ.
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Proof of Th. 4.1.

Bel(κ|Σ′) ≡ ThΣ′(Jκ|Σ′K) (Lem. 2.39)

≡ ThΣ′(JκK|Σ′) (Prop. 3.24)

≡ ThΣ′(JΓK|Σ′) (Bel(κ) ≡ Γ)

≡ ThΣ′(JF(Γ,Σ \ Σ′)K) (Th. 3.17)

≡ CnΣ′(F(Γ,Σ \ Σ′)) (Lem. 2.23)

≡ F(Γ,Σ \ Σ′) (DFP-3)

Delgrande shows in [Del17] that the there presented forgetting approach is capa-
ble of expressing several of the hitherto logic-specific forgetting definitions. This
includes among other constant forgetting in first order logic [Del17], forgetting
in disjunctive logic programs [Del17] and Boole’s forgetting in propositional logic
[Del17, Boo54]. Due to the equivalence stated in Th. 4.1, we can conclude that
the marginalization should be capable of expressing those logic specific approaches,
too. However, further examinations are needed for this. Since Boole’s forgetting
in propositional logic is also addressed in this work, we want to state the semantic
equivalence of its result to the beliefs of a marginalized OCF explicitly in Cor. 4.2.
For further relations that conclude directly from Th. 4.1, we refer to [Del17].

Corollary 4.2. Let κ be an OCF over signature Σ and ϕ ∈ LΣ a formula with
Bel(κ) ≡ ϕ, then

forget(ϕ, ρ) ≡ Bel(κ|Σ\{ρ})

holds for each atom ρ ∈ Σ.

Besides the relations to the specific approaches, we can conclude that Delgrande’s
model theoretical considerations (Th. 3.17 and 3.18) hold for the marginalization,
too. In fact, we can even show that they correspond to the definition of marginal-
ization. In Th. 4.3, we state that the models of the beliefs of a marginalized OCF
relate to the models of the prior beliefs analogously to the relations of the models
that hold for Delgrande’s approach (Th. 3.17). Thereby, we argue about the models
with respect to both the original and the reduced signature. Note that the signature
Σ in the index of J·KΣ denotes the signature of the regarded models, which can also
be omitted if it is clearly given by the context (see Def. 2.9). This is not to be
confused with the reduction J·K|Σ or extension J·K↑Σ of a model set (see Def. 3.12).

Theorem 4.3. Let κ be an OCF over signature Σ and Σ′ ⊆ Σ, then the following
equations hold:

1. JBel(κ|Σ′)KΣ′ = (JBel(κ)KΣ)|Σ′

2. JBel(κ|Σ′)KΣ = ((JBel(κ)KΣ)|Σ′)↑Σ
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Proof of Th. 4.3. First, we prove the first equation stated in Th. 4.3.
JBel(κ|Σ′)KΣ′ = (JBel(κ)KΣ)|Σ′ is identical to JBel(κ|Σ′)K = JBel(κ)K|Σ′ , because
J·KΣ only explicitly denotes the signature the models are defined over. Such anno-
tations can be omitted, if the signature is clearly given by the context. Since we
know from Lem. 2.40 that JBel(κ)K = JκK holds and already showed Jκ|Σ′K = JκK|Σ′

in Prop. 3.24, we know that the first equation must hold.
Next, we prove the second equation stated.

((JBel(κ)KΣ)|Σ′)↑Σ

= (JBel(κ)K|Σ′)↑Σ (JBel(κ)KΣ = JBel(κ)K)
= (JκK|Σ′)↑Σ (Lem. 2.40)

= Jκ|Σ′K↑Σ (Prop. 3.24)

= JBel(κ|Σ′)K↑Σ (Lem. 2.40)

= JBel(κ|Σ′)KΣ (Lem. 3.15)

The equations in Th. 4.3 correspond to the definitions of marginalization
(Def. 3.23) and lifting (Def. 3.28) respectively. The models of Bel(κ|Σ′) are those
interpretations that are assigned to rank 0 by κ|Σ′ . These interpretations correspond
to the most plausible interpretations of κ when reducing them to Σ′. Furthermore,
each expansion of the models of Bel(κ|Σ′) to a signature Σ with Σ′ ⊆ Σ results in
turn in models of Bel(κ|Σ′) as well, since the formulas in Bel(κ|Σ′) do not mention
any of the added signature elements, and thus act invariantly towards their interpre-
tations. Therefore, Delgrande’s model theoretical considerations (Th. 3.17 and 3.18)
correspond to those of the marginalization and lifting. In conclusion, the models
of Bel(κ|Σ′) can also be defined analogously to those of F(Γ,Σ \ Σ′) (Th. 3.18) as
stated in Cor. 4.4 below.

Corollary 4.4. Let κ be an OCF over signature Σ and Σ′ ⊆ Σ.

JBel(κ|Σ′)KΣ = {ω ∈ ΩΣ | there exists ω′ ∈ JBel(κ)KΣ with ω ≡Σ\Σ′ ω′}

4.1.2 Postulates for Forgetting Signatures in Epistemic States

After we have shown that the beliefs of a marginalized OCF κ|Σ′ are equivalent
to the result of Delgrande’s forgetting F(Γ,Σ \ Σ′) when applied to Γ ≡ Bel(κ)
(Th. 4.1), and furthermore showed that the corresponding model theoretical consid-
eration also hold for the marginalization (Th. 4.3 and Cor. 4.4), we want to continue
with an examination on which of Delgrande’s forgetting postulates (DFP-1)-(DFP-
7) (Th. 3.4) are satisfied by the marginalization. Since Delgrande describes those
properties with respect to F(Γ, P ) (Def. 3.1), they are not suitable to state general
properties of forgetting. Thus, we extend (DFP-1)-(DFP-7) in the following, such
that they do not depend on the definition of any particular forgetting operator.
Furthermore, we introduce them to epistemic states in order to apply them to more
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expressive semantic frameworks, and apply them to the marginalization of OCFs.
Thus, we refer to this extension as the signature forgetting postulates for epistemic
states (DFPes-1)Σ-(DFPes-6)Σ. Note that the just mentioned postulates can also
be found in Appendix A.1 for a quick and easy access. Let Ψ,Φ be epistemic states
over the same signature Σ and P, P ′, P1, P2 ⊆ Σ be subsignatures:

(DFPes-1)Σ Bel(Ψ) |= Bel(Ψ ◦Σ
f P )

(DFPes-2)Σ If Bel(Ψ) |= Bel(Φ), then Bel(Ψ ◦Σ
f P ) |= Bel(Φ ◦Σ

f P )

(DFPes-3)Σ If P ′ ⊆ P , then Bel((Ψ ◦Σ
f P

′) ◦Σ
f P ) ≡ Bel(Ψ ◦Σ

f P )

(DFPes-4)Σ Bel(Ψ ◦Σ
f (P1 ∪ P2)) ≡ Bel(Ψ ◦Σ

f P1) ∩Bel(Ψ ◦Σ
f P2)

(DFPes-5)Σ Bel(Ψ ◦Σ
f (P1 ∪ P2)) ≡ Bel((Ψ ◦Σ

f P1) ◦Σ
f P2)

(DFPes-6)Σ Bel(Ψ ◦Σ
f P ) ≡ Bel((Ψ ◦Σ

f P )↑Σ) ∩ LΣ\P

We refer to Section 3.1 for a detailed explanation of the postulates, since
(DFPes-1)Σ-(DFPes-6)Σ capture the same underlying ideas as (DFP-1)-(DFP-
7) and the extension to epistemic states is straightforward. However, there are a few
points we want to emphasize in particular. Since the beliefs of an epistemic state are
deductively closed by definition, it is not necessary to maintain (DFP-3). Notice
that due to omitting (DFP-3) the postulates (DFP-4)-(DFP-7) correspond to
(DFPes-3)Σ-(DFPes-6)Σ. Furthermore, we expressed the forgetting in the origi-
nal signature FO(Γ, P ) in (DFP-7) as the beliefs after forgetting P and lifting the
posterior epistemic state back to the original signature. The models of FO(Γ, P )
are equal to the models of forgetting P in Γ in the reduced signature lifted back to
the original signature, i.e. JF(Γ, P )K↑Σ (Cor. 3.19). When we consider the models
of Bel((Ψ ◦Σ

f P )↑Σ), i.e. JΨ ◦Σ
f P K↑Σ, we see that this also describes the models after

forgetting P lifted back to the original signature. Therefore, (DFPes-6)Σ matches
the property originally stated in (DFP-7).

Finally, we prove that the marginalization satisfies all of the signature forgetting
postulates (DFPes-1)Σ-(DFPes-6)Σ. For this, we want to introduce an alternative
notation of the marginalization by means of an operator ◦Σ,m

f . This way, we can
formulate the marginalization with a focus on which signature elements should be
forgotten instead of which should be retained, and furthermore using ◦Σ,m

f , the
marginalization follows the notation given by (DFPes-1)Σ-(DFPes-6)Σ. Thus, we
refer to κ|Σ\P as κ ◦Σ,m

f P in the further course. Moreover, we want to show that
the beliefs of a marginalized OCF can be determined analogously to the result of
Delgrande’s forgetting approach (Def. 3.1) by means of intersecting with the reduced
language in Prop. 4.5, since this will allow us to prove that the marginalization
satisfies (DFPes-1)Σ-(DFPes-6)Σ more conveniently.

Proposition 4.5. Let κ be an OCF over signature Σ and Σ′ ⊆ Σ a reduced signa-
ture.

Bel(κ|Σ′) = Bel(κ) ∩ LΣ′
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Proof of Prop. 4.5.

Bel(κ) ∩ LΣ′ = Bel(κ|Σ′) ∩ LΣ′ (Lem. 3.26)

= Bel(κ|Σ′) (Bel(κ|Σ′) ⊆ LΣ′)

Finally, we state in Th. 4.6 that the marginalization satisfies all of the above-
mentioned signature forgetting postulates (DFPes-1)Σ-(DFPes-6)Σ.

Theorem 4.6. Let κ be an OCF over signature Σ. The marginalization κ|Σ′ to a
subsignature Σ′ ⊆ Σ satisfies (DFPes-1)Σ-(DFPes-6)Σ.

Proof of Th. 4.6. In the following, we assume the epistemic states Ψ and Φ to
be OCFs, since the marginalization is specifically defined over OCFs, and further
denote the marginalization κ|Σ\P as κ ◦Σ,m

f P .

(DFPes-1)Σ: Let Σ′ = Σ \ P , then

Bel(κ) |= Bel(κ ◦Σ,m
f P )

⇔ if Bel(κ ◦Σ,m
f P ) |= ϕ, then Bel(κ) |= ϕ, for all ϕ ∈ LΣ′

⇔ if Bel(κ|Σ′) |= ϕ, then Bel(κ) |= ϕ, for all ϕ ∈ LΣ′

holds, since we already know from Lem. 3.26 that the beliefs of κ and κ|Σ′

consist of the same formulas ϕ ∈ LΣ′ .

(DFPes-2)Σ: Let Σ′ = Σ \ P , then

Bel(κ ◦Σ,m
f P ) |= Bel(κ′ ◦Σ,m

f P )

⇔ Bel(κ|Σ′) |= Bel(κ′|Σ′)

⇔ Bel(κ) ∩ LΣ′ |= Bel(κ′) ∩ LΣ′ (Prop. 4.5)

⇔ Bel(κ′) ∩ LΣ′ ⊆ Bel(κ) ∩ LΣ′

holds, since (DFPes-2)Σ assumes Bel(κ) |= Bel(κ′), which is equivalent to
Bel(κ′) ⊆ Bel(κ). Thus, when intersecting both belief sets with LΣ′ their
subset relation is retained.

(DFPes-3)Σ:

Bel((κ ◦Σ,m
f P ′) ◦Σ,m

f P )

≡ Bel(κΣ\P ′ ◦Σ,m
f P )

≡ Bel((κ|Σ\P ′)|(Σ\P ′)\P )

≡ Bel((κ|Σ\P ′)|(Σ\(P ′∪P )))

≡ Th(J(κ|Σ\P ′)|(Σ\(P ′∪P ))K) (Lem. 2.39)

≡ {ϕ ∈ LΣ\(P ′∪P ) | J(κ|Σ\P ′)|(Σ\(P ′∪P ))K |= ϕ} (Def. 2.22)
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≡ {ϕ ∈ LΣ\(P ′∪P ) | Jκ|Σ\P ′K|Σ\(P ′∪P ) |= ϕ} (Prop. 3.24)

≡ {ϕ ∈ LΣ\(P ′∪P ) | (JκK|Σ\P ′)|Σ\(P ′∪P ) |= ϕ} (Prop. 3.24)

≡ {ϕ ∈ LΣ\(P ′∪P ) | JκK|Σ\(P ′∪P ) |= ϕ} (Lem. 3.14)

≡ {ϕ ∈ LΣ\P | JκK|Σ\P |= ϕ} (P ′ ⊆ P )

≡ {ϕ ∈ LΣ\P | Jκ|Σ\P K |= ϕ} (Prop. 3.24)

≡ Th(Jκ|Σ\P K) (Def. 2.22)

≡ Bel(κ|Σ\P ) (Lem. 2.39)

≡ Bel(κ ◦Σ,m
f P )

(DFPes-4)Σ:

Bel(κ ◦Σ,m
f (P1 ∪ P2)) ≡ Bel(κ|Σ\(P1∪P2))

≡ Bel(κ) ∩ LΣ\(P1∪P2) (Prop. 4.5)

≡ Bel(κ) ∩ LΣ\P1 ∩ LΣ\P2

≡ Bel(κ) ∩Bel(κ) ∩ LΣ\P1 ∩ LΣ\P2

≡ (Bel(κ) ∩ LΣ\P1) ∩ (Bel(κ) ∩ LΣ\P2)

≡ Bel(κ|Σ\P1) ∩Bel(κ|Σ\P2) (Prop. 4.5)

≡ Bel(κ ◦Σ,m
f P1) ∩Bel(κ ◦Σ,m

f P2)

(DFPes-5)Σ:

Bel(κ ◦Σ,m
f P1 ∪ P2) ≡ Bel(κ|Σ\(P1∪P2))

≡ Bel(κ) ∩ LΣ\(P1∪P2) (Prop. 4.5)

≡ Bel(κ) ∩ LΣ\(P1∪(P1∪P2))

≡ Bel(κ) ∩ (LΣ\P1 ∩ LΣ\(P1∪P2))

≡ (Bel(κ) ∩ LΣ\P1) ∩ LΣ\(P1∪P2) (Associativity)

≡ Bel(κ|Σ\P1) ∩ LΣ\(P1∪P2) (Prop. 4.5)

≡ Bel(κ|Σ\P1) ∩ L(Σ\P1)\P2

≡ Bel((κ|Σ\P1)|(Σ\P1)\P2) (Prop. 4.5)

≡ Bel((κ ◦Σ,m
f P1)|(Σ\P1)\P2)

≡ Bel((κ ◦Σ,m
f P1) ◦Σ,m

f P2)

(DFPes-6)Σ:

Bel((κ ◦Σ,m
f P )↑Σ) ∩ LΣ′ ≡ Bel((κ|Σ\P )↑Σ) ∩ LΣ′

≡ CnΣ(Bel(κ|Σ\P )) ∩ LΣ′ (Prop. 3.32)

≡ Bel(κ|Σ\P ) ∩ LΣ′ (Note)

≡ Bel(κ|Σ\P )

≡ Bel(κ ◦Σ,m
f P )
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Note: CnΣ extends Bel(κ|Σ′) by formulas mentioning elements of Σ\Σ′, while
the overall result does not change because the same formulas are removed
by the intersection with LΣ′ . Thus, we can omit CnΣ.

Since we showed in Th. 4.6 that the marginalization not only results in equivalent
beliefs as Delgrande’s forgetting approach (Th. 4.1), but also satisfies the signature
forgetting postulates (DFPes-1)Σ-(DFPes-6)Σ, we know in conclusion that the
marginalization exactly captures Delgrande’s idea of forgetting and extends it to
OCFs.

In the further course, we want to illustrate that the marginalization is not the
only operator satisfying (DFPes-1)Σ-(DFPes-6)Σ, but clearly is of particular im-
portance. For this, we first show that the posterior beliefs of κ ◦Σ

f P can always be
inferred by the beliefs of the marginalized OCF κ|Σ\P , for each arbitrary operator
◦Σ
f satisfying (DFPes-1)Σ-(DFPes-6)Σ (Prop. 4.7).

Proposition 4.7. Let κ be an OCF over signature Σ, P ⊆ Σ a subsignature, and
◦Σ
f an operator satisfying (DFPes-1)Σ-(DFPes-6)Σ, where κ◦Σ

f P is an OCF over
the reduced signature Σ \ P , then the following relation holds:

Bel(κ|Σ\P ) |= Bel(κ ◦Σ
f P )

Proof of Prop. 4.7.

Bel(κ) |= Bel(κ ◦Σ
f P ) (DFPes-1)Σ

⇔ Bel(κ) |= Bel((κ ◦Σ
f P )↑Σ) ∩ LΣ\P (DFPes-6)Σ

⇔ Bel(κ) |= ϕ, for all ϕ ∈ Bel((κ ◦Σ
f P )↑Σ) ∩ LΣ\P ⊆ LΣ\P

⇔ κ |= ϕ, for all ϕ ∈ Bel((κ ◦Σ
f P )↑Σ) ∩ LΣ\P ⊆ LΣ\P (Prop. 2.41)

⇔ κ|Σ\P |= ϕ, for all ϕ ∈ Bel((κ ◦Σ
f P )↑Σ) ∩ LΣ\P ⊆ LΣ\P (Lem. 3.26)

⇔ Bel(κ|Σ\P ) |= ϕ, for all ϕ ∈ Bel((κ ◦Σ
f P )↑Σ) ∩ LΣ\P ⊆ LΣ\P (Prop. 2.41)

⇔ Bel(κ|Σ\P ) |= Bel((κ ◦Σ
f P )↑Σ) ∩ LΣ\P

⇔ Bel(κ|Σ\P ) |= Bel(κ ◦Σ
f P ) (DFPes-6)Σ

From Prop. 4.7 and Prop. 3.25 we can conclude that the marginalization forms
the operation satisfying (DFPes-1)Σ-(DFPes-6)Σ that induces minimal change to
both the prior beliefs and the conditionals over the reduced signature that could
be inferred by the prior OCF. This means that every other operator ◦Σ

f satisfying
(DFPes-1)Σ-(DFPes-6)Σ removes additional formulas from the prior beliefs or
changes the conditionals that could be inferred by the prior OCF, while possibly
resulting in the same beliefs as the marginalization. Thus, the marginalization
could also be regarded as the only pure signature reduction satisfying (DFPes-
1)Σ-(DFPes-6)Σ. At this point, we want to note that even though other operators
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satisfying these postulates exist, we are sceptical about their capability of describing
meaningful cognitive procedures, since the additional changes they apply to the
prior epistemic state are rather random. We illustrate two such signature forgetting
operators in Ex. 4.1.

Example 4.1. In the following, we give two examples for signature forgetting op-
erators satisfying (DFPes-1)Σ-(DFPes-6)Σ that are different from the marginal-
ization. The first operator ◦Σ,1

f illustrates that it is possible for signature forgetting
operators to satisfy (DFPes-1)Σ-(DFPes-6)Σ, if the posterior beliefs are always
equivalent to those of the marginalization, while the order of all interpretations with
a rank greater than 0 is changed every time. The second operator ◦Σ,2

f illustrates
that it is even possible to satisfy (DFPes-1)Σ-(DFPes-6)Σ, if the most plausible
interpretations extend those after the marginalization. In the following, we only in-
tuitively explain why ◦Σ,1

f and ◦Σ,2
f satisfy (DFPes-1)Σ-(DFPes-6)Σ. For detailed

proofs we refer to Appendix A.2.
First, we examine ◦Σ,1

f , which is given by

κ ◦Σ,1
f P (ω) =

{
0, if κ|Σ\P (ω) = 0

max{κ|Σ\P (ω) | ω ∈ ΩΣ\P} − κ|Σ\P (ω) + 1, otherwise
.

Intuitively, this κ◦Σ,1
f P assigns the same interpretations to rank 0 as the marginalized

OCF κΣ\P , while inverting the order of the remaining interpretations (Tab. 19).

Since the most plausible interpretations after reducing the signature with ◦Σ,1
f are

always the same as for the marginalization, we further know Bel(κ|Σ\P ) ≡ Bel(κ◦Σ,1
f

P ) for all P ⊆ Σ. Moreover, since (DFPes-1)Σ-(DFPes-6)Σ only argue about
the beliefs of epistemic states, we know in conclusion that ◦Σ,1

f also satisfies them.
Next, we give an example for a signature forgetting operator that does not always

result in beliefs equivalent to those of the marginalization, but nonetheless satisfies
(DFPes-1)Σ-(DFPes-6)Σ. We refer to this operator as ◦Σ,2

f with

κ ◦Σ,2
f P (ω) =

{
0, if ω ∈ σ(P )|Σ\P

κ|Σ\P (ω), otherwise
,

where

σ(P ) =



⋃
ρ∈P

σ({ρ}), if |P | > 1

{pbf}, if P = {p}
{pbf}, if P = {b}
{pbf} if P = {f}

is a selection function that determines which interpretation should be added to rank
0, depending on the subsignature that should be forgotten. Since the ranks for all
interpretations that are not selected by σ equal the ranks assigned by the marginal-
ized OCF, we know that the posterior most plausible interpretations of κ ◦Σ,2

f P
must be equal to or extend those of the marginalized OCF κ|Σ\P , which matches
the property described in Prop. 4.7. In the further course, we first illustrate the
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κ(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 pbf , pbf , pbf

2 pbf , pbf

1 pbf , pbf

0 pbf

κ|Σ\{p}(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 bf

2 -

1 bf , bf

0 bf

κ ◦Σ,1
f {p} (ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 bf , bf

2 -

1 bf

0 bf

Table 19: Forgetting p ∈ ΣTweety in the OCF κ over signature ΣTweety. κΣ\{p} denotes the

marginalization of κ and κ ◦Σ,1f {p} the forgetting of p by means of ◦Σ,1f , respectively.
The most plausible interpretations after applying both operators are the same, while
the order of the remaining interpretations is inverted.

results of κ|Σ\{p} and κ ◦Σ,2
f {p} in Tab. 20, and afterwards argue that ◦Σ,2

f satisfies
(DFPes-1)Σ-(DFPes-6)Σ even though it does not result in beliefs equivalent to
the marginalization.

Next, we argue why ◦Σ,2
f satisfies (DFPes-1)Σ-(DFPes-6)Σ. For (DFPes-

1)Σ, we know that it holds due to Prop. 4.7, which concludes

Bel(κ) |= Bel(κΣ\P ) |= Bel(κ ◦Σ,2
f P ).

For (DFPes-2)Σ, we know that due to the selection function σ the same interpre-
tations are added to the most plausible interpretations of κ and κ′, and therefore the
assumed subset relation JκK ⊆ Jκ′K is retained after applying ◦Σ,2

f for any P ⊆ Σ. For

(DFPes-3)Σ, we know that Bel((κ ◦Σ,2
f P ′) ◦Σ,2

f P ) is equivalent to Bel(κ ◦Σ,2
f P ),

if P ′ ⊆ P , since the added interpretations σ(P ′) ∪ σ(P ) and σ(P ) must be equal
by definition, and therefore the same interpretations are added to the most plausible
interpretations in both cases. Due to σ(P1∪P2) = σ(P1)∪σ(P2), we can further con-
clude that (DFPes-4)Σ and (DFPes-5)Σ do also hold for ◦Σ,2

f . Finally, we know
that (DFPes-6)Σ is satisfied as well, since the lifting to the original signature and
the intersection with the reduced language cancel each other out, and therefore does



4.1 Marginalization / Focussing 93

κ|Σ\{p}(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 bf

2 -

1 bf , bf

0 bf

κ ◦Σ,2
f {p} (ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 bf

2 -

1 bf

0 bf , bf

Table 20: Forgetting p ∈ ΣTweety in the OCF κ over signature ΣTweety as given by

Tab. 19. κΣ\{p} denotes the marginalization of κ and κ ◦Σ,2f {p} the forgetting of p

by means of ◦Σ,2f . The most plausible interpretations after applying both operators
are the same, except for bf , which is added due to the selection function σ({p}). The
remaining interpretations are assigned to the same ranks in both posterior OCFs.

not affect the beliefs of κ ◦Σ,2
f P .

Summary. In summary, we elaborated the relations of the marginalization of
OCFs and Delgrande’s general forgetting approach [Del17]. By doing so, we proved
that the result of forgetting according to Delgrande is equivalent to the beliefs of
a marginalization, if the prior beliefs of the OCF are equivalent to the set of for-
mulas we apply Delgrande’s forgetting to. Furthermore, we extended the postu-
lates (DFP-1)-(DFP-7) as originally stated in [Del17] to epistemic states, denoted
by (DFPes-1)Σ-(DFPes-6)Σ, and proved that the marginalization satisfies all of
them. Thus, the marginalization not only results in equivalent beliefs, but also ex-
actly captures the notions of forgetting according to Delgrande. By means of the
shown equivalence, we can further conclude that all relations to other logic-specific
forgetting approaches, such as forgetting in propositional logic or literal forgetting
as examined by Delgrande in [Del17], can be transferred to the marginalization as
well. However, further research on this is needed. Moreover, we illustrated in Ex. 4.1
that the marginalization is not the only operator satisfying (DFPes-1)Σ-(DFPes-
6)Σ, and at the same time resulting in beliefs equivalent to the result of Delgrande’s
forgetting approach. Nonetheless, it can be considered the only pure signature re-
duction operator, since each other operator satisfying (DFPes-1)Σ-(DFPes-6)Σ

must induce further changes to the prior OCF, either propositional or conditional.
Thus, the induced changes are not restricted to the removal of certain signature el-
ements. Finally, we conclude that Delgrande’s general approach is covered by those
presented by Kern-Isberner et al. [BKIS+19], and therefore describes one of several
kinds of forgetting, rather than providing a comprehensive definition.
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4.2 Contraction

In this section, we examine the relations between Delgrande’s forgetting approach
and c-contractions, which were presented as a kind of forgetting in [BKIS+19] by
Kern-Isberner et al. We do so by applying the forgetting postulates (DFP-1)-
(DFP-7) (Th. 3.4) as originally stated by Delgrande [Del17] to c-contractions
(Def. 3.36). For this, we first have to generalize the forgetting postulates in a manner
that they are applicable to c-contractions. This must be done for the same reasons we
had to extend them for the marginalization in Section 4.1 – the postulates describe
general ideas, but heavily depend on Delgrande’s definition of forgetting. After this,
we examine which of the postulates are satisfied by general c-contractions. Due to
the almost arbitrary belief changes that can occur when applying c-contractions to
epistemic states, we further examine which of the postulates are satisfied by such
c-contractions that only induce minimal change to the prior beliefs, which we refer
to as minimal change c-contractions (Def. 3.37) in Section 3.2.2. The examinations
for the latter are of particular interest, since we already know from [KIBSB17] that
they also satisfy the AGM contraction postulates for epistemic states (AGMes-1)-
(AGMes-7) (Prop. 3.40). In case that the properties induced by (AGMes-1)-
(AGMes-7) are sufficient for a certain result, we will not explicitly state it with
respect to minimal change c-contractions, but with respect to operators satisfying
(AGMes-1)-(AGMes-7). Afterwards, we compare the concepts of forgetting and
contraction by means of the corresponding postulates. Lastly, after comparing the
postulates of both concepts, we focus on the resulting inferences of the approaches
by showing that minimal change c-contractions do not results in beliefs equivalent
to those of Delgrande’s forgetting approach.

4.2.1 Postulates for Forgetting Formulas in Epistemic States

In order to apply the forgetting postulates to c-contractions, we have to generalize
them such that they argue about OCFs and their beliefs instead of sets of formulas.
Other than the postulates for forgetting signature elements (DFPes-1)Σ-(DFPes-
6)Σ (see Section 4.1 or Appendix A.1), we cannot translate them easily, because c-
contractions are belief changes that are not based on a reduction of the corresponding
signature. Thus, c-contractions describe a different kind of forgetting, in which
we do not want to forget about objects or concepts of our worlds, i.e. signature
elements, but instead forget certain information about those objects. Therefore,
we cannot make use of the postulates formulated for the marginalization either.
Instead, we have to examine the general concepts behind the postulates and express
them as the forgetting of formulas in epistemic states. Since this procedure is more
general than just re-expressing the postulates to be applicable to c-contractions,
we elaborated forgetting postulates for epistemic states (DFPes-1)L-(DFPes-6)L
that capture the same ideas as (DFP-1)-(DFP-7) (Th. 3.4) and at the same time
are applicable to arbitrary belief change operators. In the following, let Ψ and Φ be
epistemic states, ϕ, ψ ∈ L formulas, and ◦Lf an arbitrary belief change operator.

(DFPes-1)L Bel(Ψ) |= Bel(Ψ ◦Lf ϕ)
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(DFPes-2)L If Bel(Ψ) |= Bel(Φ), then Bel(Ψ ◦Lf ϕ) |= Bel(Φ ◦Lf ϕ)

(DFPes-3)L If ϕ |= ψ, then Bel(Ψ ◦Lf ϕ) ≡ Bel((Ψ ◦Lf ψ) ◦Lf ϕ)

(DFPes-4)L Bel(Ψ ◦Lf (ϕ ∨ ψ)) ≡ Bel(Ψ ◦Lf ϕ) ∩Bel(Ψ ◦Lf ψ)

(DFPes-5)L Bel(Ψ ◦Lf (ϕ ∨ ψ)) ≡ Bel((Ψ ◦Lf ϕ) ◦Lf ψ)

(DFPes-6)L If ϕ 6≡ >, then Bel(Ψ ◦Lf ϕ) |6= ϕ

In contrast to (DFPes-1)Σ-(DFPes-6)Σ, a belief change operator ◦Lf satisfying
(DFPes-1)L-(DFPes-6)L describes a general forgetting operator that is applied to
an epistemic state and a proposition, instead of a subsignature. Since the above-
mentioned postulates are frequently used in several sections they can also be found
in Appendix A.1. In the following, we explain why (DFPes-1)L-(DFPes-6)L gen-
eralize (DFP-1)-(DFP-7) to epistemic states and formulas, while still capturing
the same fundamental ideas.

(DFP-1) and (DFP-2) can be transferred in a straight-forward manner by sub-
stituting the sets of formulas Γ,Γ′ with the epistemic states Ψ,Φ, and the deductive
closure Cn with the corresponding beliefs. Thus, the resulting postulate (DFPes-
1)L is equivalent to the first contraction postulate for epistemic states (AGMes-1)
(see Section 2.3 or Appendix A.1). Since the beliefs of epistemic states are deduc-
tively closed by definition, it is pointless to transfer the idea behind (DFP-3) to
epistemic states. Notice that due to the omission of (DFP-3), the numbering of
the postulates as originally stated by Delgrande is not preserved. Thus, (DFP-4)-
(DFP-6) correspond to (DFPes-3)L-(DFPes-5)L. (DFP-4)-(DFP-6) cannot
be re-expressed in the same straight-forward manner as the first two postulates,
which is why we elaborate their main ideas in the following in order to formulate
them in the sense of belief changes afterwards.

(DFP-4) states that iteratively forgetting two subsignatures P ′ and P with
P ′ ⊆ P should result in the same set of formulas as only forgetting P . In our view,
the main idea behind this postulate can be described more abstractly as forgetting
two pieces of information iteratively, where one piece of information is fully included
in the other, results in the same beliefs as just forgetting the more general piece of
information. We found this concept to be described most accurately by assuming
that a formula ψ is fully included in a formula ϕ, if ϕ is more specific than ψ,
i.e. ϕ |= ψ. Thus, (DFPes-3)L states that consecutively forgetting ψ and ϕ in
Ψ results in beliefs equivalent to those of forgetting ϕ in Ψ, if we assume ϕ |= ψ.
Note that this is equivalent to the first postulate for iterated revision (DP1) (see
Section 2.3 or Appendix A.1) as presented by Darwiche in Pearl [DP97].

(DFP-5) describes that the result of forgetting two subsignatures P and P ′

at once, i.e. P ∪ P ′, can also be expressed as forgetting P and P ′ separately and
intersecting the results afterwards. Again, we describe the idea of this postulate
in a more abstract manner, by saying that forgetting two pieces of information
at once yields the same beliefs as forgetting them separately and combining the
corresponding results such that the final result contains only those formulas that
are included in both of them. The unification of two pieces of information can be
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expressed as the disjunction of formulas. Even if the conjunction might seem to
be the more intuitive choice, it does not capture the idea of unifying two pieces of
information. Forgetting the conjunction of two formulas ϕ ∧ ψ would result in a
belief set in which ϕ∧ψ can no longer be inferred. Nonetheless, either ϕ or ψ could
still be inferred afterwards, since forgetting ϕ ∧ ψ only means, that both formulas
cannot be true at the same time. Thus, we combine ϕ and ψ disjunctively. This way,
forgetting results in a belief set in which neither ϕ nor ψ can be inferred. The final
result is then obtained by the conjunction of the two forgetting results. This way
the final result contains only those beliefs both interim results agree on. (DFP-6)
can then be re-expressed following the same ideas as (DFP-5).

Since (DFP-7) assumes the forgetting operator to reduce the signature of the
prior beliefs to a subsignature, we do not think that it describes any property that
is applicable to forgetting propositions, and therefore we omit it. Instead, we like to
introduce an additional postulate (DFPes-6)L that describes the success of forget-
ting a proposition ϕ, meaning that forgetting should result in an epistemic state that
cannot infer ϕ in case that ϕ is non-tautologous. We think that it is important to
formulate this additional postulate, because it describes the most fundamental idea
of forgetting, which was just implicitly given by Delgrande’s forgetting postulates.
Note that (DFPes-6)L is equivalent to the success postulates for contractions in
epistemic states (AGMes-3) (see Section 2.3 or Appendix A.1).

After extending (DFP-1)-(DFP-7) to epistemic states and formulas, we show
that the commutativity, associativity and idempotence of Delgrande’s forgetting
definition (Cor. 3.7,Cor. 3.10) are retained by the generalized postulates (DFPes-
1)L-(DFPes-6)L (Prop. 4.8). However, notice that these properties are considered
with respect to the prior and posterior beliefs instead of the epistemic states them-
selves.

Proposition 4.8. Let Ψ be an epistemic state, ϕ, ψ, ξ ∈ LΣ formulas, and ◦Lf a belief
change operator satisfying (DFPes-5)L, then ◦Lf satisfies the following properties:

Bel((Ψ ◦Lf ϕ) ◦Lf ψ) ≡ Bel((Ψ ◦Lf ψ) ◦Lf ϕ) (Commutativity)

Bel((Ψ ◦Lf ϕ) ◦Lf ψ ∨ ξ) ≡ Bel((Ψ ◦Lf ϕ ∨ ψ) ◦Lf ξ) (Associativity)

Bel((Ψ ◦Lf ϕ) ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ϕ) (Idempotence)

Proof of Prop. 4.8.

(Commutativity):

Bel((Ψ ◦Lf ϕ) ◦Lf ψ) ≡ Bel(Ψ ◦Lf ϕ ∨ ψ) (DFPes-5)L

≡ Bel(Ψ ◦Lf ψ ∨ ϕ) (Commutativity of ∨)

≡ Bel((Ψ ◦Lf ψ) ◦Lf ϕ) (DFPes-5)L

(Associativity):

Bel((Ψ ◦Lf ϕ) ◦Lf ψ ∨ ξ) ≡ Bel(Ψ ◦Lf ϕ ∨ (ψ ∨ ξ)) (DFPes-5)L
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≡ Bel(Ψ ◦Lf (ϕ ∨ ψ) ∨ ξ) (Associativity of ∨)

≡ Bel((Ψ ◦Lf ϕ ∨ ψ) ◦Lf ξ) (DFPes-5)L

(Idempotence):

Bel((Ψ ◦Lf ϕ) ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ϕ ∨ ϕ) (DFPes-5)L

≡ Bel(Ψ ◦Lf ϕ)

4.2.2 General C-Contractions as Forgetting Operators

In the following, we examine which of the generalized forgetting postulates (DFPes-
1)L-(DFPes-6)L are satisfied by arbitrary c-contractions. Since c-contractions are
defined over OCFs, we further refer to the epistemic states Ψ,Ψ′ as OCFs κ, κ′ over
signature Σ. Furthermore, we restrict the examinations to contractions of formulas
or conditionals of the form (ψ|>), respectively, despite the fact that c-contractions
are generally defined over conditionals, since the postulates only argue about the
forgetting of formulas and the beliefs of epistemic states.

(DFPes-1)L forms one of the most fundamental ideas of forgetting, saying that
knowledge can only be inferred after forgetting, if it could already be inferred by the
prior beliefs. It can be shown that even this rather simplistic postulate is not satisfied
by arbitrary c-contractions. For a counter example, we consider our epistemic state
to be the OCF κ given by Tab. 21 and ¬p as the formula we want to forget.

κ(ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 pbf

3 -

2 pbf , pbf

1 pbf , pbf

0 pbf , pbf, pbf

κ◦c(ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 -

3 pbf

2 pbf

1 pbf, pbf, pbf, pbf, pbf

0 pbf

Table 21: Left: OCF κ over signature ΣTweety. Right: Result of forgetting ¬p in κ,
κ◦c = κ� ¬p, with parameters γ− = −3, γ+ = −1 and κ0 = −2.

By definition of c-contractions, the contraction of a formula is not unique, but can
be achieved by multiple c-contractions, which differ in the choice of the parameters
γ−, γ+ and κ0 as already explained in Section 3.2.2. The chosen parameters must
fulfil the constraints γ−−γ+ ≤ κ(ϕ)−κ(¬ϕ) and κ0 = γ−+κ(¬ϕ), which correspond
to those given in Def. 3.36 when assuming ϕ ≡ >. These constraints only guarantee
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that forgetting a formula ϕ results in an OCF that cannot infer ϕ, which is not
sufficient to prevent further belief changes affecting other formulas as well. In our
example, the parameters must fulfil the following constraints:

κ0 = γ− + κ(p), κ(⊥)

= γ− + 1

γ− − γ+ ≤ κ(¬p)− κ(p)

= 0− 1 (4.1)

= −1

Given these constraints, we can choose the parameters such that the prior beliefs
cannot be inferred by the posterior and vice-versa. For this we choose γ− = −3,
γ+ = −1 and κ0 = −2 and obtain κ � ¬p as given in Tab. 21. The ranks of
those interpretations satisfying ¬p are shifted by −(γ− + 1) + γ+ = 1, while the
interpretations satisfying the contrary are shifted by −(γ− + 1) + γ− = −1. This
also shows that the impact on the models of p is constant, while the impact on
the models of ¬p increases with a greater absolute difference of γ− and γ+. When
choosing γ− and γ+ such that the difference is greater than necessary, we remove
the models of ¬p from the most plausible interpretations in κ, which in this case
affects all interpretations with rank 0. But in order to satisfy (DFPes-1)L, the
resulting most plausible interpretations Jκ◦cK should at least consist of those of the
prior OCF. Since the contraction of ¬p changed the epistemic state such that none
of the previous most plausible interpretations JκK are assigned to rank 0 anymore,
it is possible to infer formulas from the posterior beliefs that could not be inferred
before, e.g. κ◦c |= p ∧ b, but κ |6= p ∧ b. In conclusion, we see that depending on
the parameter choice the prior and the posterior beliefs do not necessarily relate
to each other. This makes it difficult to argue about the changes induced by the
c-contraction aside from the desired behaviour of not being able to infer a certain
formula anymore and the principle of conditional preservation, which holds due to
the definition of c-changes (Def. 3.35). Further assumptions would be necessary
in order to restrict the changes applied to the beliefs corresponding to the OCFs.
Darwiche and Pearl already discussed this unpleasant behaviour in the context of
iterated belief revision in [DP97], by showing that minimizing conditional changes
can result in subsequently performed belief changes, where the second annihilates the
effect of the first completely, which may further produce unmotivated propositional
changes.

The way the beliefs of an OCF can change due to arbitrary c-contractions is also
a problem in (DFPes-2)L, even though it assumes the belief set of one of the OCFs
to be inferable from the other. There, the assumptions on the prior beliefs cannot
guarantee any relation of the resulting beliefs, since the way both belief sets change
can be fundamentally different. In general, this is not an undesired behaviour, when
applying belief change operators to epistemic states, since the posterior beliefs not
only depend on the prior, but also on further properties of the epistemic state.
Thus, we can show that (DFPes-2)L is not satisfied by arbitrary c-contractions by
giving a counter example. For this, let κ be the OCF given in Tab. 22 and κ′ = κ
for reasons of simplicity. We perform two different c-contractions of ¬p in κ. For
the first c-contraction, we choose the parameters γ− = 0, γ+ = 1 and κ0 = 1 and
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κ(ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 pbf

3 -

2 pbf , pbf

1 pbf , pbf

0 pbf , pbf, pbf

κ◦c(ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 -

3 pbf

2 -

1 pbf , pbf , pbf

0 pbf , pbf, pbf , pbf

Table 22: Left: OCF κ over signature ΣTweety. Right: Result of forgetting ¬p in κ,
κ◦c = κ� ¬p, with parameters γ− = 0, γ+ = 1 and κ0 = 1.

obtain κ � ¬p as given in Tab. 22. Notice that the choice of the parameters for
this contraction must satisfy the same constraints as in the given counter example
to (DFPes-1)L (Eq. 4.1), since we are considering the same OCF κ and formula
¬p. This contraction results in a belief set that can actually be inferred by the
prior beliefs, because the most plausible interpretations in the prior OCF JκK are
included in Jκ�¬pK. For the second c-contraction κ′�¬ϕ, we refer to the contraction
described in Tab. 21 above, in which the belief set changed such that its prior and
posterior models are disjunct. Comparing the posterior beliefs of the c-contractions
described above, we see that they do not preserve the assumed relation of the prior
beliefs stated in (DFPes-2)L, because the second contraction replaces Jκ′K by {pbf},
whereas the first contraction only extends JκK by {pbf}.

γ− = 0, γ+ = 1, κ0 = 1 : γ− = −3, γ+ = −1, κ0 = −2 :

Bel(κ� ¬p)
≡ Th(Jκ� ¬pK)
≡ Th({pbf, pbf, pbf, pbf})

Bel(κ′ � ¬p)
≡ Th(Jκ� ¬pK)
≡ Th({pbf})

Since Jκ�¬pK is not included in Jκ′�¬pK, we know that Bel(κ′�¬p) cannot be
inferred from Bel(κ � ¬p) due to Prop. 2.41. Finally, this example illustrates that
(DFPes-2)L is not satisfied by arbitrary c-contractions due to the possible impact
on the prior most plausible interpretations.

Next, we show that (DFPes-3)L is not satisfied by arbitrary c-contractions
either, due to the same problem as for both previous forgetting postulates. From
the counter example on (DFPes-1)L, we already know that a c-contraction of a
formula ψ from an OCF κ can change its most plausible interpretations such that
the prior do not relate to the posterior. Furthermore, if we want to contract another
formula ϕ from both κ and κ�ψ, it is not possible to guarantee any relation between
the posterior beliefs, especially not their equivalence, since the contraction is applied
to two OCFs with possibly disjunct beliefs, even though we assume ϕ |= ψ. In the
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following, we give a counter example showing that (DFPes-3)L is not satisfied by
arbitrary c-contractions. For this, we assume κ as in Tab. 23 and the formulas
ψ ≡ ¬p ∨ ¬f and ϕ ≡ ¬p.

κ(ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 pbf

3 -

2 pbf , pbf

1 pbf , pbf

0 pbf , pbf, pbf

κ� ϕ (ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 -

3 pbf

2 -

1 pbf , pbf , pbf

0 pbf , pbf, pbf , pbf

κ� ψ (ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 pbf

3 pbf , pbf

2 pbf , pbf , pbf , pbf

1 -

0 pbf

κ◦c � ϕ (ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 pbf

3 pbf , pbf

2 pbf , pbf , pbf , pbf

1 -

0 pbf

Table 23: Different contractions of ψ ≡ ¬p ∨ ¬f and ϕ ≡ ¬p. Top left: OCF κ over
signature ΣTweety. Top right: Result of forgetting ¬p in κ with parameters γ− = 0,
γ+ = 1 and κ0 = 1. Bottom left: Result of forgetting ψ ≡ ¬p ∨ ¬f in κ with
parameters γ− = −5, γ+ = −2 and κ0 = −3. Bottom Right: Result of forgetting
ϕ ≡ ¬p in κ◦c = κ� ψ with parameters γ− = γ+ = κ0 = 0.

First, we contract ψ ≡ ¬p ∨ ¬f from the initial OCF κ, where the choice of the
parameters γ−, γ+ and κ0 must satisfy the following constraints:

κ0 = γ− + κ(p ∧ f)

= γ− + 2

γ− − γ+ ≤ κ(¬p ∨ ¬f)− κ(p ∧ f)

= −2

We choose the parameters γ− = −5, γ+ = −2 and κ0 = −3, resulting in κ◦c =
κ�¬p∨¬f (Tab. 23). Since all interpretations in JκK satisfy ¬p∨¬f , their ranks will
be increased such that they are no longer part of the most plausible interpretations.
On the other hand, the ranks of the models of p∧f will be decreased, adding pbf as
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the only interpretation to rank 0. Therefore, the prior and posterior most plausible
interpretations are disjunct. Given the two OCFs κ and κ◦c , we can contract the more
specific piece of information ϕ ≡ ¬p from both and result in unrelated posterior
beliefs. For the contraction κ � ¬p (Tab. 23), we again choose the parameters
γ− = 0, γ+ = 1 and κ0 = 1. For the contraction κ◦c � ¬p (Tab. 23), we can choose
γ− = γ+ = κ0 = 0 since ¬p cannot be inferred by κ◦c , and therefore we do not have
to change any of the ranks to satisfy the underlying success postulate κ◦c |6= ¬p.
Since the most plausible interpretations of κ � ϕ and (κ � ψ) � ϕ are disjunct,
their beliefs can neither be equivalent nor be inferred from each other, and therefore
(DFPes-3)L is not satisfied by arbitrary c-contractions.

For (DFPes-4)L, we can give another counter example showing that this postu-
late cannot be satisfied by arbitrary c-contractions as well. In this case, the problem
that occurs is that the contraction of a certain formula can be realized by multi-
ple c-contraction that result in different belief sets. This enables the possibility of
choosing the c-contractions of two formulas ϕ and ψ such that the intersected beliefs
of κ � ϕ and κ � ψ can be different to the beliefs of κ � ϕ ∨ ψ. We illustrate this
using the OCFs κ, κ�¬p and κ�¬p∨¬f as given in Tab. 23. Since ¬f cannot be
inferred by κ, we choose γ− = γ+ = κ0 = 0 for the c-contraction of ¬f in κ resulting
in κ� ¬f , which is identical to κ. Comparing the corresponding beliefs

Bel(κ� ¬f) ≡ Th({pbf, pbf, pbf}),
Bel(κ� ¬p) ≡ Th({pbf, pbf, pbf, pbf}),

Bel(κ� ¬f ∨ ¬p) ≡ Th({pbf}),

we can infer p∧b∧f from Bel(κ�¬f∨¬p), but not from Bel(κ�¬f)∩Bel(κ�¬p).
In conclusion, the beliefs of forgetting both formulas at once does not result in equiv-
alent beliefs as the intersection of forgetting both formulas separately. Therefore,
we showed that arbitrary c-contractions do not satisfy (DFPes-4)L.

After showing that none of the hitherto postulates are satisfied by arbitrary c-
contractions, we show the (DFPes-5)L is not satisfied either. For this, let κ be
as given in Tab. 23 and ¬f , ¬p the formulas we want to forget consecutively. For
the results of contracting ¬p and ¬p ∨ ¬f we also refer to those given in Tab. 23.
For the contraction κ � ¬f , we again choose γ+ = γ− = κ0 = 0 as in the counter
example on (DFPes-4)L. Therefore, we know that κ�¬f and κ must be identical.
Comparing the corresponding beliefs

Bel((κ� ¬f)� ¬p) ≡ Bel(κ� ¬p) ≡ Th({pbf, pbf, pbf, pbf}),
Bel(κ� ¬f ∨ ¬p) ≡ Th({pbf}),

we see that their models are disjunct, and therefore the beliefs of forgetting
¬f and ¬p consecutively and simultaneously are not equivalent. In conclusion, we
showed that (DFPes-5)L is not satisfied by arbitrary c-contractions.

The only forgetting postulate that is actually satisfied by all c-contraction is
(DFPes-6)L, since it matches their underlying success postulate, which is guaran-
teed by the parameter constraints. In conclusion, we showed that none of the for-
getting postulates for epistemic states, but (DFPes-6)L, is satisfied by arbitrary c-
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contractions. We record the results of our examinations for arbitrary c-contractions
in Th. 4.9.

Theorem 4.9. Each propositional c-contraction � satisfies (DFPes-6)L, but there
exist � for which (DFPes-1)L-(DFPes-5)L do not hold.

The main reason why arbitrary c-contractions are only capable of satisfying
(DFPes-6)L in general, is that the success postulate of c-contractions is the only
constraint the parameters must fulfil. Without further restrictions it is possible
to change the beliefs of an epistemic state by contracting a formula in way that
the prior and the posterior beliefs do not relate to each other, meaning that the
prior beliefs cannot infer the posterior beliefs and vice-versa. In order to tackle this
problem, we want to examine the relations between the forgetting postulates and
c-contractions that only induce minimal changes to the beliefs.

4.2.3 Minimal Change C-Contractions as Forgetting Operators

As shown in the previous paragraph, arbitrary c-contractions do not satisfy
(DFPes-1)L-(DFPes-6)Lin general, except for (DFPes-6)L, due to the changes
they are able to induce to the prior beliefs. Therefore, we examine (DFPes-1)L-
(DFPes-6)L for such c-contractions that only induce minimal changes to the prior
beliefs in the following. For those postulates that cannot be satisfied by mini-
mal change c-contractions either, we determine further restrictions that might be
necessary in order to satisfy them, and investigate if weakened variants might be
generally satisfied instead. Note that we will focus on minimal change c-contractions
(Def. 3.37) in the following examinations, but at the same time will formulate the
results as general as possible. Thus, if it sufficient to assume a contraction sat-
isfying (AGMes-1)-(AGMes-7) (see Section 2.3 or Appendix A.1), we will not
explicitly formulate a property for minimal change c-contractions. However, assum-
ing (AGMes-1)-(AGMes-7) always includes minimal change c-contractions, since
we know from Prop. 3.40 that they satisfy these postulates.

Examining (DFPes-1)L and (DFPes-6)L for minimal change c-
contractions. The first forgetting postulate (DFPes-1)L is satisfied by minimal
change c-contractions (Lem. 4.10), because it equals the first contraction postu-
late (AGMes-1) for which we already know that it is satisfied by minimal change
c-contractions (Prop. 3.40).

Lemma 4.10. Let � be a minimal change c-contraction, then � satisfies (DFPes-
1)L.

We refer to [KIBSB17] for a detailed proof and only present the idea behind it at
this point. A minimal change c-contraction of a formula ϕ in an OCF κ only affects
the models of ¬ϕ in a way that their ranks are decreased by the minimum absolute
value necessary to add them to the most plausible interpretations JκK. According
to Prop. 3.41, we know that the posterior most plausible interpretations Jκ � ϕK
consist of JκK unified with min{JϕK,�κ}, and therefore JκK ⊆ Jκ� ϕK holds, which
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is equivalent to (AGMes-1)/(DFPes-1)L. Furthermore, we know that (DFPes-
6)L holds for minimal change c-contraction, since we already showed above that it
holds for any arbitrary c-contraction (Th. 4.9).

Examining (DFPes-2)L for minimal change c-contractions. In the fol-
lowing, we examine (DFPes-2)L for minimal change c-contractions (Def. 3.37).
Thereby, we first elaborate why assuming a c-contraction to be a minimal change
c-contractions is not sufficient for satisfying (DFPes-2)L. Afterwards, we state the
importance of the relation between the minimal models in both OCFs, and show
that (DFPes-2)L is satisfied, if we assume the minimal models in κ to be included
in those in κ′ for each formula ϕ ∈ LΣ.

We start our elaborations on minimal change c-contractions and (DFPes-2)L
by showing that they are not capable of satisfying (DFPes-2)L in general. In con-
trast to arbitrary c-contractions that do not underlie further conditions, minimal
change c-contractions allow us to argue about the resulting belief sets Bel(κ � ϕ)
and Bel(κ′ � ϕ) as described in (DFPes-2)L more easily, since we know due to
Prop. 3.41 how the prior most plausible interpretations are affected by them, i.e.
Jκ � ϕK = JκK ∪ min{J¬ϕK,�κ}. However, the expansion of JκK by the minimal
models that falsify the contracted formula ϕ is not sufficient to guarantee the fulfil-
ment of the consequence of (DFPes-2)L. Its antecedence Bel(κ) |= Bel(κ′) only
makes assumptions about the interpretations with rank 0, concretely JκK ⊆ Jκ′K
(Prop. 2.41), and does not argue about the remaining interpretations with a rank
greater than 0, since those do not affect the corresponding beliefs. Since there are
no assumptions on the interpretations ω ∈ ΩΣ with κ(ω) > 0, we cannot guarantee
min{J¬ϕK,�κ} to be a subset of min{J¬ϕK,�κ′}, which would be necessary for the
consequence of (DFPes-2)L to hold. Therefore, minimal change c-contractions do
not generally satisfy (DFPes-2)L either (Prop. 4.11).

Proposition 4.11. Let � be a minimal change c-contraction, then there exist OCFs
κ, κ′ and formulas ϕ ∈ LΣ, such that

if Bel(κ) |= Bel(κ′), then Bel(κ� ϕ) |= Bel(κ′ � ϕ) (DFPes-2)L

does not hold.

In the following, we illustrate that minimal change c-contractions are not capable
of generally satisfying (DFPes-2)L (Prop. 4.11) in Ex. 4.2.

Example 4.2. In this example, we illustrate that it is not sufficient for c-contraction
to follow the minimal change paradigm in order satisfy (DFPes-2)L. For this, let
κ and κ′ (Tab. 24) be OCFs over signature ΣTweety = {p, b, f} that agree on all rank
assignments, except for the rank they assign to the interpretation pbf . κ assigns
pbf to rank 1, while κ′ assigns it to rank 2. Due to the equality of their most
plausible interpretations JκK and Jκ′K, we know that the beliefs of κ and κ′ must
be equivalent (Prop. 2.38), and therefore the antecedence of (DFPes-2)L, namely
Bel(κ) |= Bel(κ′), is satisfied. When we forget ϕ ≡ ¬p in κ and κ′, the ranks of
the models of p will be decreased such that the minimal models of p are assigned to
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κ(ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 pbf

3 -

2 pbf

1 pbf , pbf , pbf

0 pbf , pbf , pbf

κ′(ω) ω ∈ ΩΣTweety

∞ -
... -

5 -

4 pbf

3 -

2 pbf , pbf

1 pbf , pbf

0 pbf , pbf , pbf

Table 24: OCFs κ and κ′ defined over signature ΣTweety. κ and κ′ agree on all ranks
they assign to the interpretations ω ∈ ΩΣTweety , except for pbf .

rank 0 afterwards. This concludes from Prop. 3.41, which states that the posterior
most plausible models consist of the prior and the minimal models falsifying ¬p:

Jκ� ¬pK = JκK ∪min{JpK,�κ} = {pbf, pbf, pbf} ∪ {pbf, pbf}
Jκ′ � ¬pK = Jκ′K ∪min{JpK,�κ′} = {pbf, pbf, pbf} ∪ {pbf}

The corresponding minimal models of p are {pbf, pbf} for κ, and {pbf} for κ′. As
a consequence, the posterior beliefs after contracting ¬p from κ cannot infer those
after the contraction from κ′, because there exists an interpretation that is assigned
to rank 0 in κ� ¬p but not in κ′ � ¬p, which violates the necessary subset relation
of their most plausible interpretations, namely pbf .

Bel(κ� ¬p) |= Bel(κ′ � ¬p)
⇔ Jκ� ¬pK ⊆ Jκ′ � ¬pK (Prop. 2.41)

⇔ {pbf, pbf, pbf} ∪ {pbf, pbf} ⊆ {pbf, pbf, pbf} ∪ {pbf}  

Ex. 4.2 shows that minimal change c-contractions do not satisfy (DFPes-2)L
in general (Prop. 4.11), due to the different minimal models of p that can be added
to JκK and Jκ′K, respectively. This means that (DFPes-2)L is satisfied, if the
contraction of ϕ is applied to two OCFs κ and κ′ in which the minimal models
of ¬ϕ with respect to �κ are included in those with respect to �κ′ . We state this
implication in Prop. 4.12.

Proposition 4.12. Let κ, κ′ be OCFs over signature Σ, ϕ ∈ LΣ a formula, and �
a minimal change c-contraction, then � satisfies

if Bel(κ) |= Bel(κ′), then Bel(κ� ϕ) |= Bel(κ′ � ϕ), (DFPes-2)L

if min{J¬ϕK,�κ} ⊆ min{J¬ϕK,�κ′}.
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Proof of Prop. 4.12. In the following, we show that the consequence of (DFPes-
2)L Bel(κ � ϕ) |= Bel(κ′ � ϕ) holds under the assumptions stated in Prop. 4.12.
We refer to these assumptions as:

Bel(κ) |= Bel(κ′)⇔ JκK ⊆ Jκ′K ( |=)

min{J¬ϕK,�κ} ⊆ min{J¬ϕK,�κ′} (⊆min)

Bel(κ� ϕ) |= Bel(κ′ � ϕ) (DFPes-2)L

⇔ Jκ� ϕK ⊆ Jκ′ � ϕK (Prop. 2.41)

⇔ JκK ∪min{J¬ϕK,�κ} ⊆ Jκ′K ∪min{JϕK,�κ′} (Prop. 3.41)

⇐ JκK ⊆ Jκ′K and min{J¬ϕK,�κ} ⊆ min{J¬ϕK,�κ′}
⇔ ( |=) and (⊆min)

Since this holds due to the assumptions ( |=) and (⊆min), we know that Prop. 4.12
holds.

Thus, we know that if we want the contraction to generally satisfy (DFPes-2)L,
the minimal models with respect to �κ must be subsets of those with respect to
�κ′ for every formula ϕ ∈ LΣ. We formulate this relation in Th. 4.13 below. Since
this is only based on the way minimal change c-contractions affect the prior most
plausible interpretations, we know that this generally holds for each belief change op-
erator satisfying the contraction postulates (AGMes-1)-(AGMes-7) (Section 2.3,
Appendix A.1).

Theorem 4.13. Let Ψ,Φ be epistemic states equipped with faithfully assigned total
preorders �Ψ,�Φ and − a belief change operator satisfying (AGMes-1)-(AGMes-
7), then the following holds:

If min{JϕK,�Ψ} ⊆ min{JϕK,�Φ} for all ϕ ∈ LΣ, then − satisfies (DFPes-2)L

Proof of Th. 4.13. In the following, we refer to the assumptions in Th. 4.13 as

Bel(Ψ) |= Bel(Φ)⇔ JΨK ⊆ JΦK, (⊆J·K)

min{JϕK,�Ψ} ⊆ min{JϕK,�Φ} for all ϕ ∈ LΣ. (⊆min)

Bel(Ψ− ϕ) |= Bel(Φ− ϕ)

⇔ JΨ− ϕK ⊆ JΦ− ϕK (Def. 2.12)

⇔ JΨK ∪min{J¬ϕK,�Ψ} ⊆ JΦK ∪min{J¬ϕK,�Φ} (Th. 3.42)

⇐ JΨK ⊆ JΦK and min{J¬ϕK,�Ψ} ⊆ min{J¬ϕK,�Φ}
⇔ (⊆J·K) and (⊆min)

Due to (⊆min) and (⊆J·K), we know that this subset relation holds. Therefore, −
satisfies (DFPes-2)L, if the minimal models in Ψ are included in those in Φ for all
formulas ϕ ∈ LΣ.



106 4 Towards a General Framework for Kinds of Forgetting

In Cor. 4.14, we explicitly state the property from Th. 4.13 for OCFs and minimal
change c-contractions, which directly concludes from the fact that minimal change
c-contractions satisfy (AGMes-1)-(AGMes-7) (Prop. 3.40).

Corollary 4.14. Let κ, κ′ be OCFs over signature Σ and � a minimal change c-
contraction, then the following holds:

If min{JϕK,�κ} ⊆ min{JϕK,�κ′} for all ϕ ∈ LΣ, then � satisfies (DFPes-2)L

Notice that the underlying total preorders �κ and �κ′ do not have to be identical
for this. It is sufficient that each relation that holds in κ also holds in κ′, i.e.
�κ⊆�κ′ , which means that it is sufficient for κ to be a refinement of κ′ (Def. 2.56).
We formalize the relation between the underlying total preorders and the subset
relation of the minimal models in Th. 4.15 and prove it in the following.

Theorem 4.15. Let κ, κ′ be OCFs over signature Σ and with corresponding total
preorders �κ,�κ′, then the following holds:

If κ v κ′, then min{JϕK,�κ} ⊆ min{JϕK,�κ′} for all ϕ ∈ LΣ.

Proof of Th. 4.15. We prove the implication stated in Th. 4.15 by contraposition.
Thereby, we assume that min{JϕK,�κ} ⊆ min{JϕK,�κ′} does not hold for each
ϕ ∈ LΣ, and show that under this assumption κ v κ′ cannot hold either. The
subset relation min{JϕK,�κ} ⊆ min{JϕK,�κ′} does not hold for each ϕ ∈ LΣ, if and
only if there exists a formula ϕ for which there exists an interpretation ω ∈ ΩΣ that
is included in the minimal models of ϕ with respect to �κ, but not with respect to
�κ′ . Therefore, we distinguish two cases in which the intersection of min{JϕK,�κ}
and min{JϕK,�κ′} is either empty or not, and show that in both cases κ cannot be
a refinement of κ′.

Case min{JϕK,�κ} ∩min{JϕK,�κ′} = ∅:
Since the intersection min{JϕK,�κ′} ∩min{JϕK,�κ′} is empty, we know that there
must exist an interpretation ω ∈ ΩΣ with

ω ∈ min{JϕK,�κ} and ω /∈ min{JϕK,�κ′}.

Furthermore, we can conclude

κ(ω) ≤ κ(ω′), for all ω′ ∈ JϕK,

since ω is a minimal model of ϕ, and thus there cannot exist a model of ϕ with a
smaller rank than κ(ω). Since ω is not included in min{JϕK,�κ′}, we know that

there exists ω′ ∈ JϕK with κ′(ω) 6≤ κ′(ω′).

Thus, there exists a relation in �κ that does not hold in �κ′ , and therefore κ cannot
be a refinement of κ′.
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Case min{JϕK,�κ} ∩min{JϕK,�κ′} 6= ∅:
In this case we assume that min{JϕK,�κ} ∩ min{JϕK,�κ′} is not empty, and that
min{JϕK,�κ} is not a subset of min{JϕK,�κ′}. Thus, we know again that there
exists an interpretation ω ∈ ΩΣ with

ω ∈ min{JϕK,�κ} and ω /∈ min{JϕK,�κ′}.

Since ω is a minimal model of ϕ with respect to �κ, we know that

κ(ω) ≤ κ(ω′)

holds for each ω′ ∈ min{JϕK,�κ}∩min{JϕK,�κ′}. However, since ω 6∈ min{JϕK,�κ′
}, we further know

κ′(ω) 6≤ κ′(ω′)

for each ω′ ∈ min{JϕK,�κ} ∩min{JϕK,�κ′}. Thus, there exist relations in �κ that
do not hold in �κ′ . Therefore, κ cannot be a refinement of κ′.

In conclusion, we showed that if we assume that the minimal models of a formula
ϕ with respect to �κ are not included in those with respect to �κ′ , then κ v κ′

cannot hold. By means of contraposition, we can further conclude that if κ v κ′

holds, then min{JϕK,�κ} ⊆ min{JϕK,�κ′} must hold for every ϕ ∈ LΣ.

Moreover, since min{JϕK,�κ} ⊆ min{JϕK,�κ′} for all ϕ ∈ LΣ is sufficient to
satisfy (DFPes-2)L (Th. 4.13,Cor. 4.14), we know in conclusion that (DFPes-2)L
is also satisfied, if κ is a refinement of κ′ (Prop. 4.16).

Proposition 4.16. Let κ, κ′ be OCFs over signature Σ, ϕ ∈ LΣ a formula and � a
minimal change c-contraction, then the following holds:

If κ v κ′, then � satisfies (DFPes-2)L.

Prop. 4.16 directly concludes from Cor. 4.14 and Th. 4.15, since we know from
Th. 4.15 that the refinement relation of two OCFs κ, κ′ implies that the minimal
models of ϕ in κ are included in those in κ′ for all ϕ ∈ LΣ, which further implies
the fulfilment of (DFPes-2)L due to Cor. 4.14.

In the following, we want to further elaborate the relations between minimal
change c-contractions, minimal models and (DFPes-2)L. For this, we will define a
subset relation ⊆min,κ that relates sets of interpretations to each other according to
their minimal elements with respect to �κ, and examine some of its order theoretical
properties. Finally, we show that we can visualize ⊆min,κ using Hasse diagrams. This
allows us to understand the relations of minimal models in one or even multiple
OCFs more easily. We will also illustrate this in several examples and explain how
the differences of OCFs reflect in ⊆min,κ.

Apart from the relation stated in Th. 4.15, the underlying total preorders of
OCFs do not allow us to directly argue about the relations of minimal models.
Knowing that they play an essential role for minimal change c-contractions, and
belief changes in general, we define the subset relation of minimal models ⊆min,κ

in Def. 4.17 in order to further examine the connections between minimal change
c-contractions, minimal models, and (DFPes-2)L.
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Definition 4.17. Let κ be an OCF over signature Σ with corresponding total pre-
order �κ. The minimal model subset relation ⊆min,κ of two sets of interpretations
Θ,Θ′ ⊆ ΩΣ is defined as

Θ ⊆min,κ Θ′ ⇔ min{Θ,�κ} ⊆ min{Θ′,�κ}.

Next, we want to examine some of the order theoretical properties of ⊆min,κ.
In Th. 4.18 we show that ⊆min,κ forms a non-total preorder, satisfying reflexivity
and transitivity. Thereby, ⊆min,κ is non-total, because if two sets of interpretations
Θ and Θ′ are disjunct, their minimal models will be disjunct as well, and thus,
neither Θ ⊆min,κ Θ′ nor Θ′ ⊆min,κ Θ holds. In order to form a partial order, ⊆min,κ

would have to fulfil antisymmetry additionally, which states that if Θ ⊆min,κ Θ′ and
Θ′ ⊆min,κ Θ hold, then Θ and Θ′ must be equal. However, the antisymmetry is not
satisfied, since ⊆min,κ is defined over the minimal models of Θ and Θ′, and therefore
it is possible for the minimal models of Θ and Θ′ to be equal, while Θ and Θ′ differ.

Theorem 4.18. The subset relation of minimal models ⊆min,κ of an OCF κ is a
non-total preorder and fulfils reflexivity and transitivity. For all Θ,Θ′,Θ′′ ⊆ Ω:

Θ ⊆min,κ Θ (Reflexivity)

If Θ ⊆min,κ Θ′ and Θ′ ⊆min,κ Θ′′, then Θ ⊆min,κ Θ′′ (Transitivity)

Proof of Th. 4.18. Both the reflexivity and the transitivity of ⊆min,κ can be traced
back to the reflexivity and transitivity of ⊆. By definition of ⊆min,κ, we know that

Θ ⊆min,κ Θ⇔ min{Θ,�κ} ⊆ min{Θ,�κ}

holds for all Θ ⊆ Ω. Since the subset relation ⊆ is reflexive, we know in conclusion
that the subset relation of minimal models ⊆min,κ must be reflexive as well. The
same holds for the transitivity:

if Θ ⊆min,κ Θ′ and Θ′ ⊆min,κ Θ′′, then Θ ⊆min,κ Θ′′

⇔ if min{Θ,�κ} ⊆ min{Θ′,�κ} and min{Θ′,�κ} ⊆ min{Θ′′,�κ},
then min{Θ,�κ} ⊆ min{Θ′′,�κ}.

Therefore, ⊆min,κ fulfils reflexivity and transitivity and forms a non-total preorder.

Further, we define the unified minimal models of two interpretation sets with
respect to �κ (Def. 4.19), allowing us to determine the minimal models when com-
bining two sets of interpretations. Furthermore, the unified minimal models can also
be used to constructively determine, whether two interpretations sets Θ,Θ′ are in
a minimal model subset relation Θ ⊆min,κ Θ′. Therefore, we will discuss how the
unified minimal models exactly relate to ⊆min,κ in the following.

Definition 4.19. Let κ be an OCF over signature Σ with corresponding total pre-
order �κ. The unified minimal models Θ ∪min,κ Θ′ of two sets of interpretations
Θ,Θ′ ⊆ ΩΣ with respect to �κ are defined as

Θ ∪min,κ Θ′ = min{Θ ∪Θ′,�κ}.
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If we look at Θ and Θ′ as the models of two formulas ϕ and ψ, the unified
minimal models Θ ∪min,κ Θ′ describe the minimal models of the disjunction ϕ ∨ ψ,
since Jϕ ∨ ψK = JϕK ∪ JψK (Lem. 2.10). It is important to note that the unification
of Θ and Θ′ cannot be performed on the minimal model sets directly. If we would
perform the unification on the minimal models of Θ and Θ′ instead, the unified
minimal models would also contain models of ϕ∨ψ that are less plausible than some
of the other models with respect to �κ, and therefore would contain non-minimal
models. Thus, the unification must be performed on Θ and Θ′ before determining
the minimal models. Additionally, we denote the unified minimal models of multiple
sets of interpretations Θ0, . . . ,Θn with n ∈ N0 by⋃

min,κ

Θ∈{Θ0,...,Θn}

Θ = Θ0 ∪min,κ Θ1 ∪min,κ . . . ∪min,κ Θn,

analogously to the set unification ∪. Given the definition of unified minimal models,
we show in Prop. 4.20 that two sets of interpretations Θ,Θ′ are in a minimal model
subset relation Θ ⊆min,κ Θ′, if and only if the unified minimal models in Θ are
included in those of Θ′.

Proposition 4.20. Let κ be an OCF over signature Σ and Θ,Θ′ ⊆ ΩΣ sets of
interpretations, then the following equivalence holds:

Θ ⊆min,κ Θ′ ⇔
⋃

min,κ

ω∈Θ

{ω} ⊆
⋃

min,κ

ω′∈Θ′

{ω′}

Proof of Prop. 4.20.⋃
min,κ

ω∈Θ

{ω} ⊆
⋃

min,κ

ω′∈Θ′

{ω′}

⇔ min{
⋃
ω∈Θ

{ω},�κ} ⊆ min{
⋃
ω′∈Θ′

{ω′},�κ} (Def. 4.19)

⇔ min{Θ,�κ} ⊆ min{Θ′,�κ}
⇔ Θ ⊆min,κ Θ′ (Def. 4.17)

Prop. 4.20 again states that the minimal model subset relation ⊆min,κ can be
constructively determined by means of the unified minimal models. Starting with
those interpretation sets only containing a single interpretation, and then proceeding
with the interpretation sets containing two interpretations and so on, until we reach
Θ = ΩΣ. This will also be useful for understanding the later stated examples Ex. 4.3
to 4.6 on how the differences between OCFs reflect in their minimal model subset
relations. Furthermore, we know that if both Θ and Θ′ are in a minimal model
subset relation with their unified minimal models, then the latter are equal to the
unification of the minimal models of Θ and Θ′ (Prop. 4.21).
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Proposition 4.21. Let κ be an OCF over signature Σ with corresponding total
preorder �κ and Θ,Θ′ ⊆ ΩΣ sets of interpretations, then the following equivalence
holds:

Θ ∪min,κ Θ′ = min{Θ,�κ} ∪min{Θ′,�κ}
⇔ Θ ⊆min,κ (Θ ∪min,κ Θ′) and Θ′ ⊆min,κ (Θ ∪min,κ Θ′)

Proof of Prop. 4.21.

Θ ⊆min,κ (Θ ∪min,κ Θ′) and Θ′ ⊆min,κ (Θ ∪min,κ Θ′)

⇔ min{Θ,�κ} ⊆ min{(Θ ∪min,κ Θ′),�κ}
and min{Θ′,�κ} ⊆ min{(Θ ∪min,κ Θ′),�κ}

(Def. 4.17)

⇔ min{Θ,�κ} ⊆ min{min{Θ ∪Θ′,�κ},�κ}
and min{Θ′,�κ} ⊆ min{min{Θ ∪Θ′,�κ},�κ}

(Def. 4.19)

⇔ min{Θ,�κ} ⊆ min{Θ ∪Θ′,�κ}
and min{Θ′,�κ} ⊆ min{Θ ∪Θ′,�κ}

⇔ min{Θ,�κ} ∪min{Θ′,�κ} ⊆ min{Θ ∪Θ′,�κ}
⇔ min{Θ,�κ} ∪min{Θ′,�κ} = min{Θ ∪Θ′,�κ} (Note)

⇔ min{Θ,�κ} ∪min{Θ′,�κ} = Θ ∪min,κ Θ′ (Def. 4.19)

(Note): Since we know that both the minimal models of Θ and Θ′ are included in
the minimal models of Θ ∪ Θ′, there cannot exist another model ω ∈ Θ ∪ Θ′

that is minimal in Θ ∪ Θ′, but not in Θ or Θ′. Therefore, the sets must be
equal.

The property stated in Prop. 4.21 will also be useful for understanding the fol-
lowing examples.

After defining the minimal model subset relation (Def. 4.17) and the unified
minimal models of two sets of interpretations (Def. 4.19), we want to illustrate their
relations given in Prop. 4.20 and Prop. 4.21. We do so by visualizing ⊆min,κ as
Hasse diagrams for multiple OCFs κ, and examining the relations of their minimal
models by means of the unified minimal models. Furthermore, this visualization
allows us to understand and argue about the differences of multiple OCFs. This
can be of particular interest when examining how an OCF is affected by certain
belief changes. Even though this is not part of this work, it shows that using Hasse
diagrams for visualising ⊆min,κ might be potentially interesting in future works. In
the following examples Ex. 4.3 to 4.6 we will compare the OCF κ to four other OCFs
κ′, κ′′, κ′′′, κ′′′′, all given in Tab. 25, and thereby elaborate the impact of the OCFs’
differences on the corresponding preorders of the minimal models ⊆min,·. Since Hasse
diagrams quickly become very complex with an increasing number of elements, the
above-mentioned OCFs only assign ranks to three of the four interpretations possible
over the signature Σ = {a, b}. The Hasse diagrams corresponding to the OCFs in



4.2 Contraction 111

Tab. 25 are illustrated in Figure 3. Before discussing the relations of the different
OCFs, we want to note that the property stated in Prop. 4.21 exactly corresponds to
the incoming unidirectional edges of a node in Figure 3, which corresponds to a set of
interpretations Θ ⊆ ΩΣ, e.g. min{{ab, ab},�κ′′′} = min{{ab},�κ′′′}∪min{{ab},�κ′′′
} in Figure 3c.

Example 4.3. In this example we consider the OCFs κ and κ′ as given in Tab. 25
and the corresponding Hasse diagrams in Figure 3a. First, we take a look at the com-
monalities and differences between κ and κ′. The beliefs of κ and κ′ are equivalent,
since their most plausible interpretations both consist of the single interpretation ab:

Bel(κ) ≡ Th({ab}) ≡ Bel(κ′)

Comparing the remaining interpretations ab and ab in κ and κ′, we see that
their order is inverted, which also affects the order of the minimal models as seen in
Figure 3a. The relations of the interpretations that contain ab are not affected by
the inversion of the remaining interpretations, because ab is still the most plausible
interpretation, and therefore the only minimal model of these sets. The relations
that are affected are those between the interpretations that do not contain ab, since
the changed order also results in changed minimal models. This concretely affects the
interpretation sets {ab}, {ab} and {ab, ab}. Moreover, the unified minimal models
are affected as well. In κ, we see that the unified minimal models of {ab} and {ab}
are

{ab} ∪min,κ {ab} = {ab},

due to ab �κ ab, while in κ′

{ab} ∪min,κ {ab} = {ab}

holds, due to ab �κ′ ab. This again illustrates that the assumption Bel(κ) |= Bel(κ′)
is not sufficient to satisfy (DFPes-2)L, since forgetting a formula with models
{ab, ab} would add different interpretations to rank 0, due to the missing subset
relation of the unified minimal models. Concretely, contracting a ∧ b in both κ and
κ′ would result in

Bel(κ� a ∧ b) |= Bel(κ′ � a ∧ b)
⇔ Jκ� a ∧ bK = Jκ′ � a ∧ bK (Prop. 2.41)

⇔ JκK ∪min{J¬a ∨ ¬bK,�κ} = Jκ′K ∪min{J¬a ∨ ¬bK,�κ′} (Prop. 3.41)

⇔ {ab} ∪ {ab} = {ab} ∪ {ab}  

In conclusion, we demonstrated in this example that the inversion of the order of
all interpretations ω ∈ ΩΣ with κ(ω) > 0 affects only the (unified) minimal models
of those interpretation sets that do not contain any of the interpretations assigned
to rank 0.

Example 4.4. In this example we consider the OCFs κ and κ′′ as given in Tab. 25
and the corresponding Hasse diagrams in Figure 3b. In contrast to κ and κ′, for
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κ(ω) ω ∈ ΩΣ

∞ -
... -
3 -
2 ab

1 ab
0 ab

κ′(ω) ω ∈ ΩΣ

∞ -
... -
3 -

2 ab
1 ab
0 ab

κ′′(ω) ω ∈ ΩΣ

∞ -
... -
3 -
2 ab

1 ab
0 ab

κ′′′(ω) ω ∈ ΩΣ

∞ -
... -
2 -

1 ab, ab
0 ab

κ′′′′(ω) ω ∈ ΩΣ

∞ -
... -
2 -

1 ab
0 ab, ab

Table 25: OCFs over signature Σ = {a, b}, where only the subset {ab, ab, ab} ⊆ ΩΣ of
interpretations is considered.

which only the order of the interpretations ω ∈ ΩΣ with κ(ω) > 0 is inverted, κ′′

inverts the order of all interpretations ω given by κ. Thus, its beliefs Bel(κ′′) are
neither equivalent to nor can they be inferred by those of κ:

Bel(κ) ≡ Th({ab}) |6= Th({ab}) ≡ Bel(κ′′).

We see that inverting the order affects the order of the minimal model sets such
that none of the relations in ⊆min,κ hold in ⊆min,κ′′.

Example 4.5. In this example we consider the OCFs κ and κ′′′ as given in Tab. 25
and the corresponding Hasse diagrams in Figure 3c. The OCFs κ and κ′′′ assign the
same ranks to all interpretations, but ab, for which κ(ab) = 2 and κ′′′(ab) = 1 holds.
Since the order �κ is preserved by κ′′′ when changing the rank of ab, we know that
κ is a refinement of κ′′′ (κ v κ′′′).

Due to the different ranks of ab, ⊆min,κ and ⊆min,κ′′′ only differ in the unified
minimal models of ab and ab:

{ab} ∪min,κ {ab} = {ab},
{ab} ∪min,κ′′′ {ab} = {ab, ab}.

In ⊆min,κ, the unified minimal models of ab and ab only contain ab, because ab is
more plausible than ab. Since the rank differences of ab and ab are missing in κ′′′,
which is where κ refines κ′′′, the unified minimal models of these interpretations equal
the unification min{{ab},�κ′′′} ∪ min{{ab},�κ′′′}. Note that this also corresponds
to the property stated in Prop. 4.21, which states that the unified minimal models
are equal to the unification of the minimal models, if and only if they are both in a
minimal model subset relation with the unified minimal models, i.e.

{ab} ∪min,κ′′′ {ab} = {ab, ab}
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∅

{ab}
{ab}

{ab}

{ab, ab}
{ab, ab}

{ab, ab}

{ab, ab, ab}

(a) Hasse diagram of ⊆min,κ and ⊆min,κ′ .

∅

{ab}
{ab}

{ab}

{ab, ab}
{ab, ab}

{ab, ab}

{ab, ab, ab}

(b) Hasse diagram of ⊆min,κ and ⊆min,κ′′ .

∅

{ab}
{ab}

{ab}

{ab, ab}
{ab, ab}

{ab, ab}

{ab, ab, ab}

(c) Hasse diagram of ⊆min,κ and ⊆min,κ′′′ .

∅

{ab}
{ab}

{ab}

{ab, ab}
{ab, ab}

{ab, ab}

{ab, ab, ab}

(d) Hasse diagram of ⊆min,κ and ⊆min,κ′′′′ .

Figure 3: Hasse diagrams of the minimal model subset relations corresponding to the
OCFs in Tab. 25. Each subfigure compares κ to one of the other OCFs. The coloured
edges correspond to a certain OCF, whereas the black edges are shared across all
OCFs. Bidirectional edges indicate the equality of the corresponding minimal models.

⇔ {ab} ⊆min,κ′′′ ({ab} ∪min,κ′′′ {ab}) and {ab} ⊆min,κ′′′ ({ab} ∪min,κ′′′ {ab}.

If we now contract a∧b in both κ and κ′′′, which will add the only unified minimal
models that are different in both OCFs, namely {ab} ∪min,· {ab}, we see that the
relation stated by (DFPes-2)L holds in this case:

Bel(κ� a ∧ b) |= Bel(κ′′′ � a ∧ b)
⇔ Jκ� a ∧ bK ⊆ Jκ′′′ � a ∧ bK (Prop. 2.41)

⇔ JκK ∪min{J¬a ∨ ¬bK,�κ} ⊆ Jκ′′′K ∪min{J¬a ∨ ¬bK,�κ′′′} (Prop. 3.41)

⇔ {ab} ∪ {ab} ⊆ {ab} ∪ {ab, ab} X

This is due to the fact that κ is a refinement of κ′′′ (Prop. 4.16). However, it can be
seen that this also relates to the relation of the unified minimal models. Each set of
unified minimal models in κ is a subset of those in κ′′′. In conclusion, we illustrated
how the refinement relation of two OCFs affects their minimal model subset relations
⊆min,·.

Example 4.6. In this example we consider the OCFs κ and κ′′′′ as given in Tab. 25
and the corresponding Hasse diagrams in Figure 3d. Just as κ and κ′′′, κ and κ′′′′
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only differ in the rank they assign to the interpretation ab. However, κ is not a
refinement of κ′′′′, since ab �κ ab holds in κ, while ab �κ′′′′ ab holds in κ′′′′. Thus,
the order of the interpretations in κ is changed by κ′′′′. Furthermore, since κ′′′′

assigns ab to rank 0, we know that the corresponding beliefs are not equivalent, but
Bel(κ) |= Bel(κ′′′′) holds instead:

Bel(κ) ≡ Th({ab}) |= Th({ab, ab}) ≡ Bel(κ′′′′)

In this case, the unified minimal models of all sets of interpretations in ⊆min,κ′′′′ that
contain ab extend the unified minimal models in ⊆min,κ, because both ab and ab are
assigned to rank 0 in κ′′′′, e.g.

{ab} ∪min,κ {ab} = {ab} ⊆ {ab, ab} = {ab} ∪min,κ′′′′ {ab},
{ab, ab} ∪min,κ {ab, ab} = {ab} ⊆ {ab.ab} = {ab, ab} ∪min,κ′′′′ {ab, ab}.

This can also be seen in Figure 3d, where for example the bidirectional edges
between {ab} and {ab, ab} for κ are replaced by two unidirectional incoming edges
from {ab} and {ab} to {ab, ab} for κ′′′′. However, due to the changed order, this does
not hold for all interpretations. The unified minimal models of those interpretations
that contain ab but not ab do not form extensions of the unified minimal models in
⊆min,κ, e.g.

{ab} ∪min,κ {ab} = {ab} * {ab} = {ab} ∪min,κ′′′′ {ab}.

In addition to Figure 3, we provide an overview of how the minimal models
subset relations and the unified minimal models of the OCFs given in Tab. 25 relate
to each other (Tab. 26). This also shows that the subset relation of the unified
minimal models of two interpretation sets Θ and Θ′ with respect to different OCFs
can only hold, if neither Θ nor Θ′ contains interpretations for which the subset
relation of their minimal models is not satisfied. This connection can be seen in
Tab. 26a, where the unified minimal models in κ are not included in those in κ′ for
any interpretation set that consist of ab or ab, because the minimal models {ab, ab}
in κ are not included in the minimal models in κ′.

Examining (DFPes-3)L for minimal change c-contractions. Next, we ex-
amine (DFPes-3)L for minimal change c-contractions and show that they are not
capable of satisfying this postulate in general, but only under further assumptions.
Afterwards, we examine the special case in which ϕ and ψ are equivalent, and show
that in this case (DFPes-3)L states the same property as (AGMes-5). While
examining (DFPes-3)L for arbitrary c-contraction, we showed that they cannot
satisfy this postulate due to the possible changes they induce to the prior beliefs.
However, assuming that a c-contraction only induces minimal changes to the prior
beliefs is not sufficient for satisfying (DFPes-3)L. When consecutively contracting
two formulas ϕ and ψ with ϕ |= ψ, we know that the models of the posterior beliefs
J(κ�ψ)�ϕK consist of the prior models JκK and the minimal models of ¬ϕ and ¬ψ
according to Prop. 3.41. Concretely, the posterior models are given by

J(κ� ψ)� ϕK = JκK ∪min{J¬ψK,�κ} ∪min{J¬ϕK,�κ�ψ}.
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Θ ⊆ Ω min ∪min,�

∅ X X
ab X X
ab X 7

ab X 7

ab, ab X X
ab, ab X X
ab, ab 7 7

ab, ab, ab X X

(a) Comparison of κ and κ′.

Θ ⊆ Ω min ∪min,�

∅ X X
ab X 7

ab X 7

ab X 7

ab, ab 7 7

ab, ab 7 7

ab, ab 7 7

ab, ab, ab 7 7

(b) Comparison of κ and κ′′.

Θ ⊆ Ω min ∪min,�

∅ X X
ab X X
ab X X
ab X X

ab, ab X X
ab, ab X X
ab, ab X X

ab, ab, ab X X

(c) Comparison of κ and κ′′′.

Θ ⊆ Ω min ∪min,�

∅ X X
ab X X
ab X 7

ab X 7

ab, ab X X
ab, ab X X
ab, ab 7 7

ab, ab, ab X X

(d) Comparison of κ and κ′′′′.

Table 26: Relations between the minimal model subset relation and the unified minimal
models of the OCFs illustrated in Tab. 25 and Figure 3. The min column indicates
whether the minimal models of Θ in κ are a subset of those in the other OCF, i.e.
min{Θ,�κ} ⊆ min{Θ,��}. The ∪min,� column indicates whether the unified minimal
models of Θ and all other subsets Θ′ in κ are subsets of the unified minimal models
in the other OCF, i.e. Θ ∪min,κ Θ′ ⊆ Θ ∪min,� Θ

′.

Notice that the minimal models of ¬ϕ are determined with respect to �κ�ψ, since
we have forgotten ψ before. Since (DFPes-3)L assumes ϕ |= ψ, we know that
JϕK ⊆ JψK holds (Def. 2.12), which is equivalent to J¬ψK ⊆ J¬ϕK due to Lem. 2.15.
Therefore, we know that contracting ψ from κ in a minimal way adds some of the
models of ¬ϕ to rank 0. Note that these models do not necessarily have to be
minimal models of ¬ϕ, what would be the case if κ(¬ϕ) < κ(¬ψ). Contracting ϕ
afterwards will not affect the OCF κ� ψ, because there already exist models of ¬ϕ
with rank 0 due to J¬ψK ⊆ J¬ϕK. Since it cannot be guaranteed that the contraction
of ψ adds all minimal models of ¬ϕ to JκK, we know that the minimal models added
to the prior most plausible interpretations due to the minimal change c-contractions
are not equal. Thus, the posterior beliefs cannot be equivalent. Furthermore, we
can especially conclude that neither of the posterior beliefs can be inferred from
each other, since it is also possible that the minimal models of ¬ϕ and ¬ψ are
disjunct, even though J¬ψK ⊆ J¬ϕK holds. This shows that the antecedence stated
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in (DFPes-3)L, namely ϕ |= ψ, is not sufficient for minimal change c-contraction
to satisfy the corresponding conclusion. In Prop. 4.22, we state that a minimal
change c-contraction only satisfies (DFPes-3)L, if at least one of the there stated
three conditions is satisfied. We will discuss these conditions in the following.

Proposition 4.22. Let � be a minimal change c-contraction, then the following
holds:

If � satisfies (DFPes-3)L,

then min{J¬ϕK,�κ} = min{J¬ψK,�κ} or κ(¬ϕ) = 0 = κ(¬ψ) or ϕ |6= ψ

Proof of Prop. 4.22. We prove Prop. 4.22 by means of contrapositions. Thus, we
show that a minimal change c-contraction � does not satisfy (DFPes-3)L, if the
minimal models of ¬ϕ and ¬ψ are not equal, at least ¬ϕ or ¬ψ is assigned to a rank
greater than 0, and ϕ |= ψ. Formally, this can be expressed as

min{J¬ϕK,�κ} 6= min{J¬ψK,�κ} and (κ(¬ϕ) > 0 or κ(¬ψ) > 0) and ϕ |= ψ

⇒ ¬(ϕ |= ψ ⇒ Bel(κ� ϕ) ≡ Bel((κ� ψ)� ϕ)),

and is equivalent to

min{J¬ϕK,�κ} 6= min{J¬ψK,�κ} and (κ(¬ϕ) > 0 or κ(¬ψ) > 0) and ϕ |= ψ

⇒ ¬(ϕ |= ψ ⇒ Bel(κ� ϕ) ≡ Bel((κ� ψ)� ϕ))

⇔ min{J¬ϕK,�κ} 6= min{J¬ψK,�κ} and (κ(¬ϕ) > 0 or κ(¬ψ) > 0) and ϕ |= ψ

⇒ ¬(ϕ |6= ψ or Bel(κ� ϕ) ≡ Bel((κ� ψ)� ϕ))

⇔ min{J¬ϕK,�κ} 6= min{J¬ψK,�κ} and (κ(¬ϕ) > 0 or κ(¬ψ) > 0) and ϕ |= ψ

⇒ (ϕ |= ψ and Bel(κ� ϕ) 6≡ Bel((κ� ψ)� ϕ))

⇔ min{J¬ϕK,�κ} = min{J¬ψK,�κ} or κ(¬ϕ) = 0 = κ(¬ψ) or ϕ |6= ψ

or (ϕ |= ψ and Bel(κ� ϕ) 6≡ Bel((κ� ψ)� ϕ))

⇔ min{J¬ϕK,�κ} = min{J¬ψK,�κ} or κ(¬ϕ) = 0 = κ(¬ψ)

or ((ϕ |6= ψ or ϕ |= ψ) and (ϕ |6= ψ or Bel(κ� ϕ)) 6≡ Bel((κ� ψ)� ϕ))

⇔ min{J¬ϕK,�κ} = min{J¬ψK,�κ} or κ(¬ϕ) = 0 = κ(¬ψ)

or ϕ |6= ψ or Bel(κ� ϕ) 6≡ Bel((κ� ψ)� ϕ)

⇔ min{J¬ϕK,�κ} 6= min{J¬ψK,�κ} and (κ(¬ϕ) > 0 or κ(¬ψ) > 0) and ϕ |= ψ

⇒ Bel(κ� ϕ) 6≡ Bel((κ� ψ)� ϕ).

(4.2)

For the stated antecedence, there are two cases to distinguish, since κ(¬ϕ) >
0 or κ(¬ψ) > 0 is true, if κ(¬ψ) = 0 = κ(¬ϕ) or κ(¬ψ) > 0 = κ(¬ϕ) holds.
Technically, κ(¬ϕ) > 0 or κ(¬ψ) > 0 would also true if κ(¬ϕ) > 0 = κ(¬ψ) holds.
However, this case is excluded by the assumption ϕ |= ψ, which is equivalent to
¬ψ |= ¬ϕ due to Lem. 2.10, since this means that each model of ¬ψ is also a model
of ¬ϕ. Thus, if κ(¬ψ) = 0, then κ(¬ϕ) = 0 must hold as well. In the further course,
we show that the implication in Eq. 4.2 holds in both of these cases.
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Case κ(¬ψ) > 0, κ(¬ϕ) = 0:

Bel(κ� ϕ) 6≡ Bel((κ� ψ)� ϕ)

⇔ Jκ� ϕK 6= J(κ� ψ)� ϕK (Prop. 2.38)

⇔ JκK 6= J(κ� ψ)� ϕK (Lem. 3.38)

⇔ JκK 6= JκK ∪min{J¬ψK,�κ} ∪min{J¬ϕK,�κ�ψ} (Prop. 3.41)

⇐ JκK 6= JκK ∪min{J¬ψK,�κ}
⇐ JκK ⊂ JκK ∪min{J¬ψK,�κ}
⇐ JκK ⊂ Jκ� ψK (Prop. 3.41)

Since κ(¬ψ) > 0, we know that there do not exist models of ¬ψ that are assigned
to rank 0, and therefore JκK∩min{J¬ψK,�κ} = ∅. Thus, JκK is a subset of, but not
equal to Jκ � ψK, and therefore we showed that in this case to a minimal change
c-contraction cannot satisfy (DFPes-3)L.

Case κ(¬ψ) > 0, κ(¬ϕ) > 0:

Bel(κ� ϕ) 6≡ Bel((κ� ψ)� ϕ)

⇔ Jκ� ϕK 6= J(κ� ψ)� ϕK (Prop. 2.38)

By means of the contraction κ�ψ the minimal models of ψ with respeect to �κ will
be added to the most plausible interpretations (Prop. 3.41), and thus κ�ψ (¬ψ) =
0. As already mentioned above, we know that J¬ψK ⊆ J¬ϕK holds due to the
assumption ϕ |= ψ. Therefore, κ� ψ (¬ϕ) = 0 holds as well, which concludes that
the subsequently performed contraction of ϕ does not affect κ� ψ (Lem. 3.38):

Jκ� ϕK 6= J(κ� ψ)� ϕK (Prop. 2.38)

⇔ Jκ� ϕK 6= Jκ� ψK (Lem. 3.38)

⇔ JκK ∪min{J¬ϕK,�κ} 6= JκK ∪min{J¬ψK,�κ} (Prop. 3.41)

⇔ min{J¬ϕK,�κ} 6= min{J¬ψK,�κ} (κ(¬ψ), κ(¬ϕ) > 0, Prop. 2.37)

Since min{J¬ϕK,�κ} 6= min{J¬ψK,�κ} holds by assumption, we also showed that
in the second case a minimal change c-contraction cannot satisfy (DFPes-3)L.

In conclusion, we showed that a minimal change c-contraction cannot satisfy
(DFPes-3)L, if we assume min{J¬ϕK,�κ} 6= min{J¬ψK,�κ}, (κ(¬ϕ) > 0 or
κ(¬ψ) > 0) and ϕ |= ψ. By means of contraposition, this means that a minimal
change c-contraction only satisfies (DFPes-3)L, if min{J¬ϕK,�κ} = min{J¬ψK,�κ
}, κ(¬ϕ) = 0 = κ(¬ψ) or ϕ |6= ψ holds.

If a minimal change c-contraction satisfies (DFPes-3)L, we know that this
can only be the case, if at least one of the following conditions holds. The first
condition is the falsification of the antecedence of (DFPes-3)L, since the there
stated implication is always true if the antecedence is false. In case that the an-
tecedence ϕ |= ψ holds, we know that one of the other two conditions must hold,
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i.e. min{J¬ϕK,�κ} = min{J¬ψK,�κ} or κ(¬ϕ) = 0 = κ(¬ψ). The equality of the
minimal models min{J¬ϕK,�κ} = min{J¬ψK,�κ} states that the models added to
the prior most plausible interpretations are exactly the same, and thus the posterior
beliefs must be equivalent. However, this relation of the minimal models cannot be
guaranteed by ϕ |= ψ. Lastly, if the antecedence ϕ |= ψ holds, but the minimal
models of ¬ϕ and ¬ψ are not equal, then we can conclude that neither ϕ nor ψ
was believed by the prior OCF κ, and therefore none of the performed contractions
affect κ.

After showing that (DFPes-3)L only holds for minimal change c-contractions
under further assumptions, we want to examine the special case in which ϕ ≡ ψ.
When first contracting ψ in an OCF κ and ϕ afterwards with respect to the minimal
change paradigm, we know that the second contraction will not affect κ � ψ, since
models of ¬ϕ are already assigned to rank 0 due to J¬ψK ⊆ J¬ϕK, meaning that κ�ψ
does not believe ϕ in the first place, and therefore it does not have to be changed.
Given the special case ϕ ≡ ψ, we know that the contraction of ψ adds all minimal
models of ¬ϕ to JκK since the equivalence of ϕ and ψ implies J¬ψK = J¬ϕK. In
conclusion, we know that forgetting two equivalent formulas also results in equivalent
posterior beliefs. Thus, when assuming ϕ ≡ ψ, we know that (DFPes-3)L and
(AGMes-5) (see Section 2.3 or Appendix A.1) are equivalent (Lem. 4.23).

Lemma 4.23. Let ϕ, ψ ∈ L be formulas. If ϕ ≡ ψ holds, then (DFPes-3)L is
equivalent (AGMes-5).

Since we know from Prop. 3.40 that minimal change c-contractions satisfy
(AGMes-5), we especially know that under the assumption ϕ ≡ ψ, minimal change
c-contractions satisfy (DFPes-3)L as well (Lem. 4.24).

Lemma 4.24. Let κ be an OCF over signature Σ, ϕ, ψ ∈ LΣ formulas, and � a
minimal change c-contraction, then � satisfies (DFPes-3)L, if ϕ ≡ ψ.

Examining (DFPes-4)L for minimal change c-contractions. For (DFPes-
4)L we show that minimal change c-contractions do not satisfy (DFPes-4)L in
general, but only under further assumptions on the contracted formulas. Thus, the
assumption of a minimal change c-contraction is not sufficient to satisfy (DFPes-
4)L. Since the equivalence stated in (DFPes-4)L can be traced back to the equality
of the posterior models, i.e.

JκK ∪min{J¬ϕ ∧ ¬ψK,�κ} = (JκK ∪min{J¬ϕK,�κ}) ∪ (JκK ∪min{J¬ψK,�κ}),

we show in Prop. 4.25 below, that minimal change c-contractions only satisfy
(DFPes-4)L in case that at least ¬ψ or ¬ϕ is assigned to rank 0 or in case that
both are assigned to the same rank. In the following, we will discuss these conditions
more detailed.

Proposition 4.25. Let κ be an OCF over signature Σ, ϕ, ψ ∈ LΣ formulas, and �
a minimal change c-contraction, then � satisfies

Bel(κ� ϕ ∨ ψ) ≡ Bel(κ� ϕ) ∩Bel(κ� ψ), (DFPes-4)L

only if κ(¬ϕ) = κ(¬ψ) or κ(¬ϕ) = 0 or κ(¬ψ) = 0.
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Proof of Prop. 4.25. First of all, we state that (DFPes-4)L holds if and only if
the prior most plausible interpretations JκK together with the minimal models of
¬ϕ ∧ ¬ψ are equal to JκK together with the minimal models of ¬ϕ and ¬ψ:

Bel(κ� ϕ ∨ ψ) ≡ Bel(κ� ϕ) ∩Bel(κ� ψ) (DFPes-4)L

⇔ Th(Jκ� ϕ ∨ ψK) ≡ Th(Jκ� ϕK) ∩ Th(Jκ� ψK) (Prop. 2.38)

⇔ Th(Jκ� ϕ ∨ ψK) ≡ Th(Jκ� ϕK ∪ Jκ� ψK) (Lem. 2.25)

⇔ Jκ� ϕ ∨ ψK = Jκ� ϕK ∪ Jκ� ψK (Prop. 2.38)

⇔ JκK ∪min{J¬ϕ ∧ ¬ψK,�κ}
= (JκK ∪min{J¬ϕK,�κ}) ∪ (JκK ∪min{J¬ψK,�κ})

(Prop. 2.38)

⇔ JκK ∪min{J¬ϕ ∧ ¬ψK,�κ}
= JκK ∪min{J¬ϕK,�κ} ∪min{J¬ψK,�κ}

In the following, we prove Prop. 4.25 by means of a contraposition. Thus, we
show

if κ(¬ϕ) 6= κ(¬ψ) and κ(¬ϕ) > 0 and κ(¬ψ) > 0,

then JκK ∪min{J¬ϕ ∧ ¬ψK,�κ} 6= JκK ∪min{J¬ϕK,�κ} ∪min{J¬ψK,�κ}.

We refer to κ(¬ϕ) 6= κ(¬ψ) as (κ6=) and κ(¬ϕ) > 0 and κ(¬ψ) > 0 as (κ>0). Due
to (κ>0), we know that the minimal models added to JκK are not included in JκK,
since this would require ¬ψ and ¬ϕ to be assigned to rank 0.

JκK ∪min{J¬ϕ ∧ ¬ψK,�κ} 6= JκK ∪min{J¬ϕK,�κ} ∪min{J¬ψK,�κ}
⇔ min{J¬ϕ ∧ ¬ψK,�κ} 6= min{J¬ϕK,�κ} ∪min{J¬ψK,�κ} (κ>0)

From Lem. 2.51 together with the assumption (κ6=), we know that the inter-
section of the minimal models min{J¬ϕK,�κ} ∩ min{J¬ψK,�κ} must be empty
(= ∅). If we then assume κ(¬ϕ) < κ(¬ψ) without loss of generality, we can
further conclude min{J¬ϕK,�κ} ∩ J¬ψK = ∅, because otherwise ¬ψ could not be
assigned to a rank greater than that of ¬ϕ. Due to this, we especially know
min{J¬ϕK,�κ} ∩ min{J¬ϕ ∧ ¬ψK,�κ} = ∅, since min{J¬ϕ ∧ ¬ψK,�κ} ⊆ J¬ψK.
Therefore, we know that min{J¬ϕ ∧ ¬ψK,�κ} 6= min{J¬ϕK,�κ} ∪ min{J¬ψK,�κ}
holds. In conclusion, we showed that (DFPes-4)L cannot hold, if we assume (κ>0)
and (κ6=). Thus, by means of contraposition, we know that Prop. 4.25 holds.

The equivalence stated in (DFPes-4)L depends on the minimal models of ¬ϕ,
¬ψ and ¬ϕ∧¬ψ added to the prior most plausible interpretations due to the contrac-
tion. The problem that occurs at this point is that the minimal models of ¬ϕ∧¬ψ
do not necessarily have to relate to those of ¬ϕ and ¬ψ. Thus, the minimal mod-
els of ¬ϕ ∧ ¬ψ and those of ¬ϕ and ¬ψ are potentially disjunct. This concludes
that if (DFPes-4)L holds for a minimal change c-contraction, then we know that
both none of the contractions affect the prior OCF κ, since both ϕ and ψ are not
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believed in the first place, or the minimal models of ¬ϕ ∧ ¬ψ must be equal to the
unification of those of ¬ϕ and ¬ψ. The latter can be guaranteed when assuming
κ(¬ϕ) = κ(¬ψ). We want to illustrate the relation between the minimal models of
¬ϕ, ¬ψ and ¬ϕ ∧ ¬ψ in Ex. 4.7.

Example 4.7. In the following, we illustrate how the fulfilment of (DFPes-4)L
relates to the minimal models of ¬ϕ, ¬ψ and ¬ϕ ∧ ¬ψ. For this, we consider the
prior OCF κ as given in Tab. 27 below, and the formulas ϕ ≡ f, ψ ≡ p.

κ(ω) ω ∈ ΩΣTweety

∞ -
... -

3 -

2 pbf , pbf , pbf , pbf

1 pbf , pbf

0 pbf , pbf

Table 27: OCF κ over signature ΣTweety.

Note that κ neither assigns ¬p nor ¬f to rank 0. Thus, we know according
to Prop. 4.25 that if a minimal change c-contraction satisfies (DFPes-4)L, then
κ(¬f) = κ(¬p) must hold. Next, we want to illustrate that (DFPes-4)L cannot be
satisfied, since κ(¬f) = 2 6= 1 = κ(¬p) holds.

As already mentioned above, we know that the equivalence stated in (DFPes-
4)L holds, if and only if the posterior most plausible interpretations of the minimal
change c-contractions are equal, i.e.

JκK ∪min{J¬f ∧ ¬pK,�κ} = (JκK ∪min{J¬fK,�κ}) ∪ (JκK ∪min{J¬pK,�κ}),

which is furthermore equivalent to

min{J¬f ∧ ¬pK,�κ} = min{J¬fK,�κ} ∪min{J¬pK,�κ}, (4.3)

since JκK does not consist of models of ¬f or ¬p. For the minimal models stated
above, we know that they are equal to

min{J¬f ∧ ¬pK,�κ} = {pbf, pbf},
min{J¬fK,�κ} = {pbf, pbf, pbf, pbf},
min{J¬pK,�κ} = {pbf, pbf}.

Thus, Eq. 4.3 does not hold, since

{pbf, pbf} 6= {pbf, pbf, pbf, pbf} ∪ {pbf, pbf}.

This illustrates, that (DFPes-4)L cannot be satisfied if ¬p and ¬f are assigned to
different ranks greater than 0, since this implies that the minimal models of ¬f ∧¬p
and those of ¬f and ¬p are disjunct.
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Examining (DFPes-5)L for minimal change c-contractions. Next, we exam-
ine (DFPes-5)L for minimal change c-contraction. For this, we show that (DFPes-
5)L is satisfied under further assumptions on the minimal models of the formulas
we would like to forget (Th. 4.26). Furthermore, we give an example why mini-
mal change c-contractions do not satisfy (DFPes-5)L in general, if those further
assumptions do not hold.

Theorem 4.26. Let κ be an OCF over signature Σ, ϕ, ψ ∈ LΣ formulas and � a
minimal change c-contraction, then � satisfies

Bel(κ� ϕ ∨ ψ) ≡ Bel((κ� ϕ)� ψ), ((DFPes-5)L)

if min{J¬ϕK,�κ} ∩min{J¬ψK,�κ} 6= ∅.

Proof of Th. 4.26. In the following, we distinguish two cases. In the first case we
assume κ(¬ϕ ∧ ¬ψ) = 0, whereas we assume κ(¬ϕ ∧ ¬ψ) > 0 in the second case.

Bel(κ� ϕ ∨ ψ) ≡ Bel((κ� ϕ)� ψ)

⇔ Jκ� ϕ ∨ ψK = J(κ� ϕ)� ψK (Prop. 2.38)

⇔ JκK ∪min{J¬ϕ ∧ ¬ψK,�κ} = Jκ� ϕK ∪min{J¬ψK,�κ�ϕ} (Prop. 3.41)

⇔ JκK ∪min{J¬ϕ ∧ ¬ψK,�κ}
= JκK ∪min{J¬ϕK,�κ} ∪min{J¬ψK,�κ�ϕ}

(Prop. 3.41)

Case κ(¬ϕ ∧ ¬ψ) = 0:
In case that ¬ϕ ∧ ¬ψ is assigned to rank 0, we know that the minimal models of
¬ϕ∧¬ψ must be included in JκK. Moreover, we can conclude that also the minimal
models of ¬ϕ and ¬ψ are included in JκK, since each model of ¬ϕ ∧ ¬ψ is also a
model of ¬ϕ and ¬ψ:

JκK ∪min{J¬ϕ ∧ ¬ψK,�κ} = JκK ∪min{J¬ϕK,�κ} ∪min{J¬ψK,�κ�ϕ}
⇔ JκK = JκK

Thus, in case κ(¬ϕ ∧ ¬ψ) = 0 the above-stated equality holds trivially.

Case κ(¬ϕ ∧ ¬ψ) > 0:
Since ¬ϕ∧¬ψ is assigned to rank greater than 0, we know that its minimal models
are not included in JκK. Thus,

JκK ∪min{J¬ϕ ∧ ¬ψK,�κ} = JκK ∪min{J¬ϕK,�κ} ∪min{J¬ψK,�κ�ϕ}

can only hold, if

min{J¬ϕ ∧ ¬ψK,�κ} ⊆ min{J¬ϕK,�κ} ∪min{J¬ψK,�κ�ϕ}.

Since we know from Lem. 2.55 that the minimal models of a conjunction ¬ψ∧¬ψ
equals the intersection of the minimal models of ¬ϕ and ¬ψ, if the intersection is
not empty, we can conclude that the above-stated subset relation holds.

min{J¬ϕ ∧ ¬ψK,�κ} ⊆ min{J¬ϕK,�κ} ∪min{J¬ψK,�κ�ϕ}
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⇔min{J¬ϕK,�κ} ∩min{J¬ψK,�κ}
⊆ min{J¬ϕK,�κ} ∪min{J¬ψK,�κ�ϕ}

(Lem. 2.55)

⇔ min{J¬ϕK,�κ} ∩min{J¬ψK,�κ} ⊆ min{J¬ϕK,�κ}

In conclusion, we showed that in both cases Bel(κ� ϕ∨ ψ) ≡ Bel((κ� ϕ)� ψ)
holds, if we assume the intersection of the minimal models of ¬ϕ and ¬ψ not to be
empty.

As stated in Th. 4.26, we know that the posterior beliefs after contracting κ with
ϕ ∨ ψ or ϕ and ψ subsequently are equivalent, if the minimal models falsifying ϕ
and ψ are not disjunct. This restriction is not necessary, but sufficient in order to
satisfy the equivalence stated in (DFPes-5)L, since this way it is guaranteed that
the same interpretations are added to the most plausible interpretations. Without
this further restriction it would be possible that subsequently contracting ϕ and ψ
only adds models of ¬ϕ ∧ ψ and ϕ ∧ ¬ψ to rank 0, which in fact would still allow
to infer ϕ ∨ ψ. We illustrate the sufficiency of min{J¬ϕK,�κ} ∩min{J¬ψK,�κ} 6= ∅
(Th. 4.26) in Ex. 4.8.

Example 4.8. In this example we illustrate why the antecedence of the implication
stated in Th. 4.26 is necessary to guarantee that the beliefs after contracting ϕ ∨ ψ
are equivalent to those after contracting ϕ and ψ subsequently. For this, we consider
the OCF κ in Tab. 28 and the formulas ϕ ≡ p and ψ ≡ f , where

min{J¬ϕK,�κ} ∩min{J¬ψK,�κ} = ∅.

When we first contract p from κ by means of a minimal change c-contraction,
we know that the ranks of all interpretations satisfying p remain unchanged, whereas
the ranks of all models of ¬p are decreased by γ− = κ(p) − κ(¬p), such that there
exist models of ¬ϕ with rank 0 in the posterior OCF. The resulting OCF κ � ϕ is
also given in Tab. 28. When we contract f from κ�ϕ afterwards, we again remain
the ranks of all models of f unchanged, while decreasing the ranks of all models of
¬f by γ− = κ(f)− κ(¬f), such that there exist models of ¬f in the posterior OCF.
The result of forgetting p and f subsequently is given as κ◦c � ψ in Tab. 28. The
corresponding posterior beliefs are then given by

Bel(κ◦c � ψ) ≡ Th({pbf, pbf, pbf, pbf, pbf, pbf}) (Prop. 2.38)

≡ Th(Jp ∨ fK)

≡ Cn(
∨

ω∈Jp∨fK

ω) (Lem. 2.23)

≡ Cn(p ∨ f) |= p ∨ f.

Since contracting p and f subsequently only guarantees that p and f can no
longer be inferred by the posterior beliefs, it can still be possible to infer p ∨ f
afterwards. In case of the above-stated contractions, the posterior beliefs are even
equivalent to Cn(p ∨ f), and therefore clearly differ from the beliefs of κ � p ∨ f
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κ(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 pbf , pbf

2 -

1 pbf , pbf , pbf , pbf

0 pbf , pbf

κ� ϕ ∨ ψ (ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 -

2 -

1 pbf , pbf , pbf , pbf

0 pbf , pbf , pbf , pbf

κ� ϕ (ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 -

2 pbf , pbf

1 pbf , pbf

0 pbf , pbf , pbf , pbf

κ◦c � ψ (ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 -

2 -

1 pbf , pbf

0 pbf , pbf , pbf , pbf , pbf , pbf

Table 28: Contractions of ϕ ≡ p, ψ ≡ f and ϕ ∨ ψ in κ. Top left: OCF κ over signature
ΣTweety. Top right: Minimal change c-contraction κ�ϕ∨ψ with parameters γ− = −3
and γ+ = κ0 = 0. Bottom left: Minimal change c-contraction κ� ϕ with parameters
γ− = −1 and γ+ = κ0 = 0. Bottom right: Minimal change c-contraction κ◦c �ψ with
parameters γ− = −1 and γ+ = κ0 = 0, where κ◦c corresponds to κ� ϕ.

(Tab. 28), which do not infer p ∨ f :

Bel(κ� p ∨ f) ≡ Th(Jκ� p ∨ fK) (Prop. 2.38)

≡ Th({pbf, pbf, pbf, pbf}) |6= p ∨ f

The reason for the different posterior beliefs lays in the disjunct minimal models of
¬p and ¬f . All minimal models of ¬p in κ are models of f . Thus, contracting κ
with p only adds models of ¬p∧f to the most plausible interpretations. Furthermore,
the contraction with p decreases the ranks of the models of ¬p, but since the minimal
models of ¬f do not contain models of ¬p they are not affected by this. In addition
to this, the rank difference between the minimal models of ¬f and ¬f ∧¬p is greater
than the rank difference of p and ¬p, such that the minimal models of f after the
contraction with p do not change. Thus, when contracting with f afterwards, only
models of ¬f∧p are added to the prior most plausible interpretations. In conclusion,
we know that no models of ¬p∧¬f were added to rank 0, since the minimal models
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of p and f were disjunct.

Summary of the examinations of (DFPes-1)L-(DFPes-6)L. Finally, we
want to summarize the results of our examinations on minimal change c-contractions
and the postulates (DFPes-1)L-(DFPes-6)L in Th. 4.27.

Theorem 4.27. Let � be a minimal change c-contraction, then the following holds:

� satisfies (DFPes-1)L,

� satisfies (DFPes-2)L, if κ v κ′,

� satisfies (DFPes-3)L,

only if min{J¬ϕK,�κ} = min{J¬ψK,�κ} or κ(¬ϕ) = 0 = κ(¬ψ) or ϕ |6= ψ,

� satisfies (DFPes-4)L,

only if κ(¬ϕ) = κ(¬ψ) or κ(¬ϕ) = 0 or κ(¬ψ) = 0,

� satisfies (DFPes-5)L, if min{J¬ϕK,�κ} ∩min{J¬ψK,�κ} 6= ∅,
� satisfies (DFPes-6)L.

For proofs and explanations of the stated relations, we refer to the elaborations
above. In summary, we showed that minimal change c-contractions are capable of
satisfying (DFPes-1)L and (DFPes-6)L. This goes back to the fact that minimal
change c-contractions also satisfy (AGMes-1)-(AGMes-7) (Prop. 3.40). For the
remaining forgetting postulates (DFPes-2)L-(DFPes-5)L, we showed that assum-
ing such c-contractions that only induce minimal change to the prior beliefs is not
sufficient to satisfy them. However, we further showed that these postulate can be
satisfied under further assumptions. These assumptions mostly argue about the re-
lation between the minimal models, either in general or with respect to the formulas
we like to forget. Another important aspect that occurs within these additional
assumptions is the question, whether the formula we want to forget can be inferred
by the prior beliefs in the first place. This concerns the postulates (DFPes-3)L and
(DFPes-4)L and is stated by assuming the formulas to be assigned to rank 0.

While examining the forgetting postulates for minimal change c-contraction, we
noted some connections between the forgetting and the AGM contraction postulates.
Since the AGM theory is very fundamental in the domain of knowledge representa-
tion, we want to examine further connections in the following.

4.2.4 Further Connections between AGM Contractions and Forgetting

In the previous section, we already elaborated some of the connections between the
AGM contraction and the forgetting postulates in the context of minimal change
c-contractions. In this section, we briefly examine more general connections that
are independent of the chosen belief change operator. By means of minimal change
c-contractions, we already showed that the AGM postulates (AGMes-1)-(AGMes-
7) (see Section 2.3 or Appendix A.1) are not sufficient for a belief change operator to
also satisfy the forgetting postulates. However, it can be shown that the forgetting
postulates imply all of the AGM contraction postulates except for (AGMes-2) and
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the recovery postulate (AGMes-4). We state this implication in Th. 4.28 and
intuitively explain it for each of the postulates afterwards.

Theorem 4.28. Let ◦Lf be a belief change operator satisfying (DFPes-1)L-
(DFPes-6)L, then ◦Lf also satisfies all AGM contraction postulates for epistemic
states (AGMes-1)-(AGMes-6), except for (AGMes-2) and (AGMes-4).

Proof of Th. 4.28.

(AGMes-1): ◦Lf satisfies (AGMes-1), since it is equivalent to (DFPes-1)L.

(AGMes-3): ◦Lf satisfies (AGMes-3), since it is equivalent to (DFPes-6)L.

(AGMes-5): Let ϕ and ψ be formulas with ϕ ≡ ψ, then the following holds:

Bel(Ψ ◦Lf ϕ) ≡ Bel((Ψ ◦Lf ψ) ◦Lf ϕ) (DFPes-3)L

≡ Bel((Ψ ◦Lf ϕ) ◦Lf ψ) (Prop. 4.8)

≡ Bel(Ψ ◦Lf ψ) (DFPes-3)L

(AGMes-6):

Bel(Ψ ◦Lf ϕ ∧ ψ) ≡ Bel((Ψ ◦Lf ϕ) ◦Lf ϕ ∧ ψ) (DFPes-3)L

≡ Bel(Ψ ◦Lf ϕ ∨ (ϕ ∧ ψ)) (DFPes-5)L

≡ Bel(Ψ ◦Lf ϕ) (AGMes-5)

|= Bel(Ψ ◦Lf ϕ) ∨Bel(Ψ ◦Lf ψ)

(AGMes-7): We prove that a forgetting operator ◦Lf satisfies the conclusion of
(AGMes-7) generally and thus, especially if Bel(Ψ ◦Lf ϕ ∧ ψ) |6= ϕ.

Bel(Ψ ◦Lf ϕ) |= Bel((Ψ ◦Lf ϕ) ◦Lf ψ) (DFPes-1)L

≡ Bel(Ψ ◦Lf ϕ ∨ ψ) (DFPes-5)L

≡ Bel(Ψ ◦Lf (ϕ ∨ ψ) ∨ (ϕ ∧ ψ)) (AGMes-5)

≡ Bel((Ψ ◦Lf ϕ ∨ ψ) ◦Lf ϕ ∧ ψ) (DFPes-5)L

≡ Bel(Ψ ◦Lf ϕ ∧ ψ) (DFPes-3)L

Since (AGMes-1) is equivalent to (DFPes-1)L it follows trivially from the
forgetting postulates. (AGMes-3) concludes from the forgetting postulates, be-
cause forgetting a certain information always results in beliefs that are not able to
infer this information anymore. Since this holds in general, it especially holds for
non-tautologous formulas.

(AGMes-5) holds, since forgetting two equivalent pieces of information always
results in the same knowledge, due to the fact that forgetting two pieces of informa-
tion, where one is already included in the other, results in the same beliefs as just
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forgetting the more general piece of information. The equivalence states that they
are mutually included, and therefore it is sufficient to forget either of them, since
they will both result in the same beliefs.

The implication of (AGMes-6) can be traced back to the fact that forgetting
two pieces of information together (ϕ∧ ψ) is equivalent to forgetting them simulta-
neously (ϕ∨ψ). Furthermore, we know that simultaneously forgetting two pieces of
information is equivalent to forgetting them separately and accepting those beliefs
both resulting belief sets agree on. Finally, the beliefs that are accepted this way can
at least infer those that are believed after forgetting one information or the other.

After forgetting a certain information ϕ, we can also infer all the beliefs that are
inferable, if we would forget it together with another information ψ, i.e. ϕ∧ψ. Since
this generally holds for the concept of forgetting, it especially holds if we assume
that ϕ can no longer be inferred after forgetting both information together. Thus,
we know that the forgetting postulates also imply (AGMes-7).

The only contraction postulates that are not implied by the forgetting postu-
lates are (AGMes-2) and (AGMes-4). The fact that the forgetting postulates
(DFPes-1)L-(DFPes-6)L do not imply (AGMes-2) means that it is possible for
a belief change operator ◦Lf satisfying these postulates to reduce the prior beliefs,
even if the formula we want to forget could not be inferred by them. Since the
recovery postulate (AGMes-4) is not implied by (DFPes-1)L-(DFPes-6)L ei-
ther, we know that after forgetting a formula ϕ, the prior beliefs cannot be restored
by adding ϕ and the posterior beliefs. This means that forgetting with an operator
◦Lf satisfying (DFPes-1)L-(DFPes-6)L potentially removes more information than
those that can be inferred by ϕ. The fact that such an forgetting operator ◦Lf does
not necessarily have to satisfy (AGMes-2) and (AGMes-4) clearly shows that ◦Lf
does not have to comply with the concept of minimal change. This can be espe-
cially interesting in the context of iterated belief change, where inducing minimal
changes is not always a desired behaviour, since it often requires dismissing further
conditional relations (see [DP97]).

4.2.5 On the Equivalence of Minimal Change C-Contractions and Del-
grande’s Forgetting Approach

Finally, we show that minimal change c-contractions not only fail at satisfying most
of the forgetting postulates (DFPes-1)L-(DFPes-6)L without further assumptions
(Th. 4.27), but neither do produce posterior beliefs equivalent to the result of Del-
grande’s forgetting approach as presented in Section 3.1. Instead of directly com-
paring the results of Delgrande’s approach F(Bel(κ), P ) to those of minimal change
c-contractions Bel(κ�ϕ), we want to make use of the fact that the marginalization of
an OCF results in beliefs Bel(κ|Σ\P ) equivalent to Delgrande’s forgetting (Th. 4.1).
This way, the comparison is more straight-forward, because both the marginaliza-
tion and minimal change c-contraction argue about OCFs. From Prop. 2.38 we
know that the beliefs after a contraction and a marginalization are equivalent, if
the posterior most plausible interpretations are the same. Since the marginalization
yields a posterior OCF, which is only defined over a subsignature of the prior, we
will lift the posterior OCF back to the original signature according to the defini-
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tion of the unique lifting given in Def. 3.28. Thus, we say that a minimal change
c-contraction κ � ϕ and a marginalization κ|Σ\P result in equivalent belief, if and
only if Jκ � ϕK = J(κ|Σ\P )↑ΣK. In addition to this consideration, it is necessary to
define how the marginalized signature P and the forgotten formula ϕ relate to each
other. For this, we recall the notions behind the marginalization from Section 3.2.1,
which is among others the focussing on relevant aspects Σ \P , such that our beliefs
do not contain any information about the irrelevant aspects P anymore. This means
that we are not capable of inferring any propositions about the forgotten signature
elements P afterwards, except for tautologies and those that directly conclude from
the beliefs of the marginalized OCF κ|Σ\P . Note that at this point we already assume
a consecutively performed lifting of the marginalized OCF back to the original sig-
nature Σ. When we restrict the marginalization to single signature elements ρ ∈ Σ,
this concludes that it is not sufficient to perform a single contraction in order to
capture the notions of the marginalization and result in equivalent beliefs. For this
it is necessary that we contract both the positive literal ρ, as well as its negative
counterpart ¬ρ. Otherwise, it could be possible to infer either ρ or ¬ρ afterwards.
At this point, we make use of the fact that signature elements can also be viewed
as atomic propositions (Def. 2.2). Therefore, we say that a marginalization of a sin-
gle signature element ρ ∈ Σ should be described by contracting the corresponding
positive and negative literal ρ and ¬ρ consecutively:

Bel((κ� ρ)� ¬ρ) ≡ Bel((κ|Σ\{ρ})↑Σ) (4.4)

Notice that the order in which ρ and ¬ρ are contracted is irrelevant, since we
know that either a model of ρ or ¬ρ must be assigned to rank 0 (Prop. 2.35), and
therefore at least one of the contractions will not affect κ, due to (AGMes-1) and
(AGMes-2) (Lem. 4.29).

Lemma 4.29. Let κ be an OCF over signature Σ, ρ ∈ LΣ an atomic formula, and
� a minimal change c-contraction, then the following holds:

(Bel((κ� ρ)� ¬ρ) ≡ Bel(κ� ρ)) or (Bel((κ� ρ)� ¬ρ) ≡ Bel(κ� ¬ρ))

However, it can be shown that the equivalence stated in Eq. 4.4 does not hold
in general. Therefore, it is not possible to relate minimal change c-contractions and
marginalizations by means of forgetting the literals ρ and ¬ρ consecutively. We
formalize this relation in Prop. 4.30 and prove it by means of a counterexample.

Proposition 4.30. Let κ be an OCF over signature Σ, ρ ∈ Σ a signature element
or atomic formula, respectively, and � a minimal change c-contraction, then

Bel((κ� ρ)� ¬ρ) ≡ Bel((κ|Σ\{ρ})↑Σ)

does not hold in general.

Proof of Prop. 4.30. We prove Prop. 4.30 by giving a concrete counterexample to
the there stated equivalence. For this, let κ be the OCF over signature ΣTweety =
{p, b, f} as given in Tab. 29 below.
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κ(ω) ω ∈ ΩΣTweety

∞ -
... -

3 -

2 pbf , pbf

1 pbf , pbf , pbf

0 pbf, pbf , pbf

Table 29: OCF κ over signature ΣTweety.

In the following, let ρ = p, be the signature element and ρ ≡ p, ¬ρ ≡ ¬p
the literals we want to forget. The marginalization of p in κ (Def. 3.23) and the
consecutively performed lifting to ΣTweety (Def. 3.28) are given in Tab. 30, and
denoted by κ|ΣTweety\{p} and (κ|ΣTweety\{p})↑ΣTweety .

κ|Σ\{p}(ω) ω ∈ ΩΣTweety\{p}

∞ -
... -

2 -

1 bf

0 bf , bf , bf

(κ|Σ\{p})↑ΣTweety(ω) ω ∈ ΩΣTweety

∞ -
... -

2 -

1 pbf , pbf

0 pbf , pbf pbf , pbf , pbf , pbf

Table 30: Top: Marginalization of κ (Tab. 29) to the subsignature ΣTweety\{p}. Bottom:
Lifting of κ|Σ\{p} to ΣTweety.

Next, we state the minimal change c-contraction of p and ¬p in κ. First, we show
that the first contraction κ � p does not affect κ, since Bel(κ) |6= p. According to
the definition of c-changes (Def. 3.35), we know that the ranks of all interpretations
are shifted by means of parameters γ+, γ− and κ0, where

κ� ϕ (ω) = κ(ω)− κ0 +

{
γ+, if ω |= ϕ

γ−, if ω |= ¬ϕ
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holds for all formulas ϕ ∈ LΣ. Due to the definition of minimal change c-contractions
(Def. 3.37), we know that the following holds for the parameters γ+, γ− and κ0:

γ+ = 0,

γ− = min{0, κ(ϕ)− κ(¬ϕ)},
κ0 = γ− + κ(¬ϕ).

For the OCF κ as given in Tab. 29 and the atomic formula p all of the parameters
equal 0. Therefore, we know that

κ� p (ω) = κ(ω)− κ0 +

{
γ+, if ω |= p

γ−, if ω |= ¬p
= κ(ω)− 0 +

{
0, if ω |= p

0, if ω |= ¬p
= κ(ω)

holds for each ω ∈ ΩΣTweety . This further concludes (κ � p) � ¬p = κ � ¬p. Thus,
we only have to consider the minimal change c-contraction of ¬p in the following,
which is given in Tab. 31. Note that the parameters γ+, γ−, κ0 are again determined
by Def. 3.37 as already stated above.

κ� ¬p (ω) ω ∈ ΩΣTweety

∞ -
... -

2 -

1 pbf , pbf , pbf

0 pbf, pbf , pbf , pbf , pbf

Table 31: Posterior OCF κ � ¬p after contracting ¬p in κ (Tab. 29) by means of a
minimal change c-contraction with parameters γ+ = 0, γ− = −1, κ0 = 0.

Given the resulting OCFs (κ|ΣTweety\{p})↑ΣTweety and κ � ¬p, we show that their
beliefs are not equivalent, since the corresponding most plausible interpretations are
not equal:

Bel((κ|ΣTweety\{p})↑ΣTweety) ≡ Bel(κ� ¬p)
⇔ J(κ|ΣTweety\{p})↑ΣTweetyK = Jκ� ¬pK (Prop. 2.38)

⇔ {pbf, pbfpbf, pbf, pbf, pbf} = {pbf, pbf, pbf, pbf, pbf}  

In conclusion, we showed that the equivalence stated in Prop. 4.30 does not hold
in general.

In the further course, we intuitively explain why the posterior beliefs after a
marginalization of a signature element ρ ∈ Σ cannot be expressed by means of
contracting the corresponding positive and negative literal ρ and ¬ρ as stated in
Prop. 4.30 above. From Th. 4.3, we know that due to the marginalization all inter-
pretations that are equivalent to those in JκK with respect to the reduced signature
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Σ \ {ρ} are additionally assigned to rank 0 in the posterior OCF κ|Σ\{ρ}. On the
other hand, a minimal change c-contraction only adds those minimal models to the
prior most plausible interpretations JκK that falsify the contracted literal. However,
due to the most plausible interpretations after a lifting (Th. 4.3 and Cor. 4.4), i.e.

J(κ|Σ\{ρ})↑ΣK = {ω ∈ ΩΣ | there exists ω′ ∈ JκK with ω ≡Σ\{ρ} ω
′},

we know that for each ω′ ∈ J(κ � ρ) � ¬ρK all ω ∈ ΩΣ with ω ≡Σ\{ρ} ω
′ must be

included in the posterior most plausible interpretations as well. This clearly cannot
be guaranteed when just adding the minimal models of ρ or ¬ρ to JκK as seen in the
proof of Prop. 4.30. Therefore, we know that the beliefs after a marginalization of
ρ are not generally equivalent to those after contracting ρ and ¬ρ.

Summary. In summary, we extended the forgetting postulates (DFP-1)-(DFP-
7) (Th. 3.4) as originally stated by Delgrande [Del17] such that they are applicable
to arbitrary belief change operators. This allows us to make use of them for fur-
ther research presented in this thesis and future work. We showed that arbitrary c-
contractions do not satisfy the forgetting postulates except for (DFPes-6)L, mostly
due to the changes they can induce to the prior beliefs. Because of this, we exam-
ined the forgetting postulates for minimal change c-contraction and showed that
contracting knowledge with respect to the minimal change paradigm is not suffi-
cient to satisfy the forgetting postulates either. However, we elaborated further
conditions that are necessary to satisfy the remaining postulates. These conditions
emphasize that arguing about the most plausible interpretations is often insuffi-
cient and that the order of the remaining interpretations plays an essential role,
too. Thus, the concept of refinement is of importance when it comes to comparing
the beliefs of multiple epistemic states. Furthermore, we elaborated further con-
nections between the generalized forgetting postulates (DFPes-1)L-(DFPes-6)L
and the AGM contraction postulates for epistemic states (AGMes-1)-(AGMes-
7) (see Section 2.3 or Appendix A.1). We showed that (DFPes-1)L-(DFPes-6)L
imply most of the contraction postulates, namely (AGMes-1),(AGMes-3) and
(AGMes-5)-(AGMes-7). Thus, only (AGMes-2) and (AGMes-4) are not im-
plied by (DFPes-1)L-(DFPes-6)L. However, both of the contraction postulates are
not excluded by the forgetting postulates either. The fact that especially (AGMes-
2) and (AGMes-4) are not implied, shows that a forgetting operator according to
(DFPes-1)L-(DFPes-6)L does not necessarily have to perform belief changes ac-
cording minimal change paradigm. This is of particular interest in the context of
iterated belief change, where the concept of minimal change is not always favourable.
In the examination of the connection between the forgetting and contraction postu-
lates, we noticed some implicit properties implied by the forgetting postulates, such
as Bel(κ ◦Lf ϕ ∨ ψ) ≡ Bel(κ ◦Lf ϕ ∧ ψ), which indicate that the postulates as formu-
lated in this work might not be appropriate to describe the concept of forgetting,
but rather form a first attempt of formalizing it. A more detailed elaboration of the
forgetting postulates is subject of Section 4.4. Finally, we examined how minimal
change c-contractions relate to Delgrande’s general forgetting approach. For this
we compared the posterior beliefs of minimal change c-contraction to those of the
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marginalization, for which we already know that they are equivalent to the result of
Delgrande’s approach (Th. 4.1). We showed that minimal change c-contractions do
not result in beliefs equivalent to Delgrande’s approach in general, when trying to
capture the notions of marginalizing a single signature element by contracting the
corresponding literals consecutively.

4.3 Revision

In this section, we discuss the concept of revision in the context of forgetting. For
this, we consider revisions in the sense of c-revisions [KI04] as already described in
Section 3.2.3 and examine their forgetting properties by means of the previously
stated forgetting postulates for epistemic states (DFPes-1)L - (DFPes-6)L. Since
the forgetting aspect of revisions is of implicit nature, we will elaborate an ex-
plicit representation of it first, and then examine how it relates to the concept of
forgetting. Afterwards, we examine which of the properties valid for the implicit
forgetting of c-revisions can be transferred to the revision itself. Note that even if
we focus on c-revisions in the further examinations, we will formulate our results
as general as possible. Therefore, some of the results will refer to revision opera-
tors satisfying (AGMes∗1)-(AGMes∗6) instead. However, this always includes
propositional c-revisions as well, since we know that they satisfy (AGMes∗1)-
(AGMes∗6) (Prop. 3.47). Finally, we examine more general relations between the
concepts of forgetting and revision, by comparing the corresponding postulates to
each other. For this, we concretely investigate which revision postulates are also
satisfied by belief change operators satisfying the forgetting postulates (DFPes-
1)L-(DFPes-6)L. For the revision postulates we consider the revision postulates
for epistemic states (AGMes∗1)-(AGMes∗6) on the one hand, and the postulates
for iterated revision (DP1)-(DP4) on the other (see Section 2.3 or Appendix A.1).

4.3.1 C-Revisions as Forgetting Operators

The forgetting described by c-revisions is of implicit nature, since its success pos-
tulate only describes that we should be able to infer a certain conditional (ψ|ϕ)
after the revision with (ψ|ϕ). The implicit forgetting is described by the removal
of knowledge contradictory to (ψ|ϕ), which in turn guarantees the fulfilment of the
c-revision’s success postulate. In concrete terms, this is done by adjusting the mod-
els of ϕ ∧ ψ and ϕ ∧ ¬ψ in such a way that ϕ ∧ ψ is more plausible than ϕ ∧ ¬ψ
in the resulting epistemic state. If we further want to describe the implicit forget-
ting of c-revisions explicitly, we can use the fact that c-revisions are revisions in
the sense of AGM (Prop. 3.47). For the latter we know, according to the (Levi
equivalence) (see Section 2.3), that the revision can also be represented as succes-
sively applying a contraction and an expansion to a prior epistemic state. Since the
c-revision is defined over OCFs, the contraction and expansion must also be defined
over OCFs, otherwise it would not be possible to apply the different belief change
operators consecutively. From this we can conclude that the implicit forgetting of
a c-revision can be explicitly described by an AGM contraction over OCFs. We
already formulated this connection between c-revisions and contractions satisfying
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(AGMes-1)-(AGMes-7) in Prop. 3.52. Therefore, we know that the implicit for-
getting, i.e. the contraction of beliefs contradicting the information we revise with,
can also be represented by minimal change c-contractions (Lem. 4.31).

Lemma 4.31. Let κ be an OCF over signature Σ, ϕ ∈ LΣ a formula, ~ a proposi-
tional c-revision, and � a minimal change c-contraction, then the following holds:

Bel(κ~ ϕ) ≡ Bel((κ� ¬ϕ)~ ϕ)

Lem. 4.31 directly concludes from Prop. 3.52, since we know that minimal
change c-contractions satisfy the contraction postulates (AGMes-1)-(AGMes-7)
(Prop. 3.40). Thus, we know that the implicit forgetting of c-revisions inherits the
forgetting properties of minimal change c-contractions, as elaborated and discussed
in detail in Section 4.2. Therefore, we will investigate in the following how the for-
getting properties of minimal change c-contractions can be transferred to c-revisions,
and how they change when the OCF’s beliefs are expanded after the contraction.

Moreover, in order to examine how the elaborated properties of minimal change
c-contractions from Section 4.2 behave for the c-revisions, we need to know how the
most plausible interpretations of an OCF are changed by them. For this we make
use of Lem. 4.31 above, which states that a c-revision can be expressed by means
of a minimal change c-contraction and a subsequently performed c-revision, and
the posterior most plausible interpretations after a minimal change c-contraction
(Def. 3.37). The minimal change c-contraction with ¬ϕ extends the previous most
plausible interpretations by the minimal models of ϕ (Prop. 3.41). Thus, there must
exist models of ϕ that are assigned to rank 0 after contracting ¬ϕ, and only the
models of ¬ϕ have to be removed from rank 0 by the following expansion with
ϕ in order to fulfil the c-revisions success postulate. Notice that this holds for
operators satisfying (AGMes-1)-(AGMes-7) and (AGMes∗1)-(AGMes∗6) in
general. Thus, we will first state and prove the general case in Prop. 4.32 below,
and afterwards state this relation explicitly for c-revision and minimal change c-
contractions in Lem. 4.33.

Proposition 4.32. Let Ψ be an epistemic state with faithfully assigned total preorder
�Ψ and ϕ ∈ LΣ a formula. Furthermore, let ∗ be a belief change operator satisfying
(AGMes∗1)-(AGMes∗6) and − a belief change operator satisfying (AGMes-
1)-(AGMes-7), then the following holds:

JΨ ∗ ϕK = JΨ− ¬ϕK \ J¬ϕK.

Proof of Prop. 4.32.

JΨ ∗ ϕK = JΨ− ¬ϕK \ J¬ϕK
⇔min{JϕK,�Ψ} = JΨ− ¬ϕK \ J¬ϕK (Th. 3.46)

⇔min{JϕK,�Ψ} = (JΨK ∪min{JϕK,�Ψ}) \ J¬ϕK (Th. 3.42)

⇔min{JϕK,�Ψ} = (JΨK \ J¬ϕK) ∪min{JϕK,�Ψ}

⇔min{JϕK,�Ψ} = min{JϕK,�Ψ} ∪

{
∅, if JΨK ∩ JϕK = ∅
min{JϕK,�Ψ}, if JΨK ∩ JϕK 6= ∅
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⇔min{JϕK,�Ψ} = min{JϕK,�Ψ}

Lemma 4.33. Let κ be an OCF over signature Σ and ϕ ∈ LΣ a formula. Further-
more, let ~ be a c-revision and � a minimal change c-contraction, then the following
holds:

Jκ~ ϕK = Jκ� ¬ϕK \ J¬ϕK.

Lem. 4.33 directly concludes from Prop. 4.32, since c-revision satisfy
(AGMes∗1)-(AGMes∗6) (Prop. 3.47) and minimal change c-contraction satisfy
(AGMes-1)-(AGMes-7) (Prop. 3.40).

After we have shown above that the implicit forgetting of c-revisions can be
represented by minimal change c-contractions and how the most plausible interpre-
tations change due to them, we will further examine how the relations of minimal
change c-contractions and the forgetting postulates (DFPes-1)L-(DFPes-6)L as
stated in Th. 4.27 behave for c-revisions.

At first we examine the postulates (DFPes-1)L and (DFPes-6)L, since these
are the only postulates satisfied by minimal change c-contractions without further
assumptions. (DFPes-1)L cannot be satisfied by revisions satisfying (AGMes∗1)-
(AGMes∗6) in general, because a revision expands the prior beliefs by definition,
which contradicts the idea behind the first forgetting postulate, in which a forgetting
operator never expands the prior beliefs (Prop. 4.34).

Proposition 4.34. Let Ψ be an epistemic state with faithfully assigned total preorder
�Ψ, ϕ ∈ LΣ a formula, and ∗ a belief change operator satisfying (AGMes∗1)-
(AGMes∗6), then ∗ satisfies

Bel(Ψ) |= Bel(Ψ ∗ ϕ), (DFPes-1)L

only if Bel(Ψ) |= ϕ.

Proof of Prop. 4.34.

Bel(Ψ) |= Bel(Ψ ∗ ϕ)

⇔ JΨK ⊆ JΨ ∗ ϕK (Def. 2.12)

⇔ JΨK ⊆ min{JϕK,�Ψ} (Th. 3.46)

⇒ JΨK ⊆ JϕK
⇒Bel(Ψ) |= ϕ (Def. 2.12)

(DFPes-1)L would only be satisfied in the trivial case, in which the formula
we revise with could already be concluded by the prior belief set. In this case, the
prior and posterior beliefs would be equivalent, since the c-revision would not affect
the most plausible interpretations. In Lem. 4.35, we explicitly state the relation of
revisions and (DFPes-1)L for propositional c-revisions.
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Lemma 4.35. Let κ be an OCF over signature Σ, ϕ ∈ LΣ a formula, and ~ a
propositional c-revision, then ~ satisfies

Bel(κ) |= Bel(κ~ ϕ), (DFPes-1)L

only if Bel(κ) |= ϕ.

Lem. 4.35 directly concludes from Prop. 4.34, since propositional c-revision sat-
isfy (AGMes∗1)-(AGMes∗6). However, the fact that c-revisions do not satisfy
(DFPes-1)L does not contradict the idea of regarding c-revisions, or the concept of
revision in general, as a kind of forgetting on an intuitive level. Firstly, the reduc-
tion of the belief set is not the actual intention of a revision, since it only reduces
the prior beliefs to guarantee that there are no conclusions contradicting the newly
added knowledge. Thus, when we argue about revisions in the sense of forgetting,
we should focus on the contraction of the contradicting conclusions performed by
the revision. Secondly, we know that the implicit forgetting performed by c-revisions
satisfies (DFPes-1)L, since any operator satisfying (AGMes-1)-(AGMes-7) can
be used to represent the implicit forgetting (Prop. 3.52) and (DFPes-1)L is equiv-
alent to (AGMes-1). We follow a similar argumentation for (DFPes-6)L. This
postulate is not satisfied by c-revisions either, because it also contradicts the un-
derlying success postulate of c-revisions. However, one must note at this point that
the implicit forgetting of c-revisions is not applied to ϕ itself, but to ¬ϕ, whereas
(DFPes-6)L also refers to ϕ. So in order to capture the success of the implicit
forgetting accurately, we have to consider (DFPes-6)L for ¬ϕ instead. In this case
we know that c-revisions satisfy (DFPes-6)L (Lem. 4.36). Therefore, in the context
of forgetting, revising with a formula ϕ can be regarded as forgetting ¬ϕ.

Lemma 4.36. Let κ be an OCF over signature Σ and ϕ ∈ LΣ a formula, then
κ~ ϕ |6= ¬ϕ holds for each c-revision κ~ ϕ.

In the following, we examine (DFPes-2)L in the context of c-revisions, which
states that revising with the same formula in two OCFs κ and κ′ results in posterior
beliefs Bel(κ ~ ϕ) |= Bel(κ′ ~ ϕ), if the prior beliefs of κ′ could also be inferred
by the prior beliefs of κ. We show that the subsequently performed expansion after
the contraction has no effect on the fulfilment of (DFPes-2)L, and that it only
depends on the implicitly performed forgetting. Thus, we show that (DFPes-2)L
holds under the same conditions as for minimal change c-contractions. Additionally,
we prove that it is even possible to maintain the refinement relation of the two prior
OCFs after the revision, when choosing the parameters appropriately.

Since minimal change c-contractions form the implicit forgetting of c-revisions,
we can trace back the consequence of (DFPes-2)L to the most plausible interpre-
tations of κ and κ′ after performing the contractions κ� ¬ϕ and κ′ � ¬ϕ:

Bel(κ� ¬ϕ) |= Bel(κ′ � ¬ϕ)

⇔ Jκ� ¬ϕK ⊆ Jκ′ � ¬ϕK (Prop. 2.41)

⇔ JκK ∪min{JϕK,�κ} ⊆ JκK ∪min{JϕK,�κ} (Prop. 3.41)
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For minimal change c-contractions we already know that the above-stated equiv-
alence holds, if κ is a refinement of κ′ (Prop. 4.16). This on the other hand can be
traced back to the minimal models of ϕ according to the corresponding total pre-
orders of κ and κ′, since these are the interpretations that are added to the prior most
plausible interpretations JκK and Jκ′K (Th. 4.15). Thus, we know if κ refines κ′, the
prior most plausible interpretations are irrelevant for the fulfilment of (DFPes-2)L.
Since the most plausible interpretations after revising κ and κ′ exactly correspond
to the minimal models of ϕ (Th. 3.45), we know that Prop. 4.16, which says that
minimal change c-contractions satisfy (DFPes-2)L in cases that κ refines κ′, also
holds for c-revisions, and even more general for all belief change operators satisfying
(AGMes∗1)-(AGMes∗6) (Prop. 4.37).

Proposition 4.37. Let κ and κ′ be OCFs over the same signature Σ and ∗ a belief
change operator satisfying (AGMes∗1)-(AGMes∗6), then the following holds:

If κ v κ′, then ∗ satisfies (DFPes-2)L.

Proof of (Prop. 4.37). In order to prove Prop. 4.37, we show that the conclusion of
(DFPes-2)L, namely Bel(κ ∗ ϕ) |= Bel(κ′ ∗ ϕ), directly concludes from κ v κ′.
Thus, the antecedence of (DFPes-2)L is irrelevant, given the assumption κ v κ′.

Bel(κ ∗ ϕ) |= Bel(κ′ ∗ ϕ)

⇔ Jκ ∗ ϕK ⊆ Jκ′ ∗ ϕK (Prop. 2.41)

⇔ min{JϕK,�κ} ⊆ min{JϕK,�κ′} (Th. 3.46)

⇐ κ v κ′ (Th. 4.15)

Furthermore, we can also show that the refinement relation between κ and κ′

can be retained, when choosing the revision parameters γ+ and γ− according to an
appropriate revision strategy (Prop. 4.38). For more insights on strategic revisions
we refer to the work of Sezgin et al. [SKIB20].

Proposition 4.38. Let κ, κ′ be OCFs over the same signature Σ and ϕ ∈ LΣ a
formulas. Then there exist parameters γ−κ , γ

+
κ , γ

−
κ′ , γ

+
κ′ for c-revisions κ ~ ϕ and

κ′ ~ ϕ such that
if κ v κ′, then κ~ ϕ v κ′ ~ ϕ,

where γ−κ , γ
+
κ , γ

−
κ′ , γ

+
κ′ originate from the definition of c-changes (Def. 3.35).

Proof of Prop. 4.38. Since the refinement stated in the consequence of Prop. 4.38
is equivalent to

κ~ ϕ v κ′ ~ ϕ

⇔ if ω �κ~ϕ ω′, then ω �κ′~ϕ ω′ (Def. 2.56)

⇔ if κ~ ϕ (ω) ≤ κ~ ϕ (ω′), then κ′ ~ ϕ (ω) ≤ κ′ ~ ϕ (ω′) (4.5)

for all ω, ω′ ∈ ΩΣ, we distinguish three cases in order to prove Prop. 4.38. In the
first case, we assume both ω and ω′ to satisfy ϕ or falsify ϕ, respectively. In the
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second case, we assume ω |= ϕ and ω′ |6= ϕ, while we assume ω |6= ϕ and ω′ |= ϕ
in the third case. We show that in all three cases the implication stated in Eq. 4.5
holds, if we chose the revision parameters according to the additional restriction

γ− − γ+ > max{κ(ω) | ω |= ϕ} − κ(¬ϕ) (4.6)

for both κ and κ′. At this point, we briefly want to recall the general form of
propositional c-revisions (Def. 3.44):

κ~ ϕ (ω) = κ(ω)− κ0 +

{
γ+, if ω |= ϕ

γ−, if ω |= ¬ϕ

Case ω, ω′ |= ϕ or ω, ω′ |6= ϕ:
Since we assume both ω and ω′ to satisfy ϕ or falsify ϕ, a further differentiation
between γ+ and γ− for both OCFs is obsolete. Thus, we define the auxiliary variable

γ± =

{
γ+, ω |= ϕ

γ−, ω |6= ϕ
.

if κ~ ϕ (ω) ≤ κ~ ϕ (ω′), then κ′ ~ ϕ (ω) ≤ κ′ ~ ϕ (ω′)

⇔ if κ(ω)− κ0 + γ±κ ≤ κ(ω′)− κ0 + γ±κ , then κ′(ω)− κ′0 + γ±κ′ ≤ κ′(ω′)− κ′0 + γ±κ′

⇔ if κ(ω) ≤ κ(ω′), then κ′(ω) ≤ κ′(ω′)

⇔ κ v κ′

Due to the assumption that κ is a refinement of κ′, we can conclude that the
refinement property is retained after the revision for all pairs of interpretations that
agree on the satisfiability of ϕ.

Case ω |= ϕ, ω′ |6= ϕ:

if κ~ ϕ (ω) ≤ κ~ ϕ (ω′), then κ′ ~ ϕ (ω) ≤ κ′ ~ ϕ (ω′)

⇔ if κ(ω)− κ0 + γ+
κ ≤ κ(ω′)− κ0 + γ−κ , then κ′(ω)− κ′0 + γ+

κ′ ≤ κ′(ω′)− κ′0 + γ−κ′

⇔ if κ(ω) + γ+
κ ≤ κ(ω′) + γ−κ , then κ′(ω) + γ+

κ′ ≤ κ′(ω′) + γ−κ′

⇔ if κ(ω)− κ(ω′) ≤ γ−κ − γ+
κ , then κ′(ω)− κ′(ω′) ≤ γ−κ′ − γ

+
κ′

⇐ if κ(ω)− κ(ω′) ≤ max{κ(ω) | ω |= ϕ} − κ(¬ϕ),

then κ′(ω)− κ′(ω′) ≤ max{κ′(ω) | ω |= ϕ} − κ′(¬ϕ)

⇔ if κ(ω)−max{κ(ω) | ω |= ϕ}︸ ︷︷ ︸
≤0

≤ κ(¬ϕ)− κ(ω′)︸ ︷︷ ︸
≥0

,

then κ′(ω)−max{κ′(ω) | ω |= ϕ}︸ ︷︷ ︸
≤0

≤ κ′(¬ϕ)− κ′(ω′)︸ ︷︷ ︸
≥0

Since κ′(ω) must be smaller than or equal to the rank of the most implausible model
of ϕ, and κ′(¬ϕ) must be smaller than or equal to the rank of any model of ¬ϕ, we
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know that κ′(ω) − max{κ′(ω) | ω |= ϕ} can at most be equal to κ′(¬ϕ) − κ′(ω′).
The same holds for κ′. Therefore, we can conclude that the refinement property is
also retained for pairs of interpretations ω, ω′ with ω |= ϕ and ω |6= ϕ.

Case ω |6= ϕ, ω′ |= ϕ:
For the case that ω falsifies ϕ, while ω′ satisfies ϕ, we prove that the refinement is
retained by showing that the antecedence of Eq. 4.5 κ ~ ϕ (ω) ≤ κ ~ ϕ (ω′) does
not hold in the first place, and therefore the implication is fulfilled, since a relation
that does not hold in �κ~ϕ does not necessarily have to hold in �κ′~ϕ.

κ~ ϕ (ω) ≤ κ~ ϕ (ω′)

⇔ κ(ω)− κ0 + γ−κ ≤ κ(ω′)− κ0 + γ+
κ

⇔ κ(ω) + γ−κ ≤ κ(ω′) + γ+
κ

⇔ γ−κ − γ+
κ ≤ κ(ω′)− κ(ω)

⇒max{κ(ω) | ω |= ϕ} − κ(¬ϕ) < κ(ω′)− κ(ω)

⇔ κ(ω)− κ(¬ϕ)︸ ︷︷ ︸
≥0

< κ(ω′)−max{κ(ω) | ω |= ϕ}︸ ︷︷ ︸
≤0

Since κ(ω) − κ(¬ϕ) is always greater or equal to κ(ω′) − max{κ(ω) | ω |= ϕ}, we
know that γ−κ −γ+

κ ≤ κ(ω′)−κ(ω) cannot hold either. Thus, we know that if ω′ |= ϕ
and ω |6= ϕ, then κ~ϕ (ω) must be greater than κ~ϕ (ω′). Since the antecedence
does not hold in this case, we know that the implication stated in Eq. 4.5 holds.

In conclusion, we showed in the three cases above that there exist parameters
γ−κ , γ

+
κ , γ

−
κ′ , γ

+
κ′ for c-revisions κ ~ ϕ and κ′ ~ ϕ, and all ω, ω′ ∈ ΩΣ such that the

refinement property κ v κ′ is retained after the revision.

In the proof of Prop. 4.38, we showed that the refinement relation of two OCFs
can be preserved after revising them with a certain formula, when choosing the
revision properties according to an appropriate strategy. We proved the existence
of such a strategy by giving a concrete example (see Eq. 4.6). However, other
strategies might retain the refinement relation as well. In the following, we like to
illustrate Prop. 4.38 and show that choosing the parameters according to Eq. 4.6
always retains the refinement relation (Ex. 4.9). In addition to this, we want to
compare the above-mentioned strategy to a more simplistic one, which chooses the
same parameters for both OCFs, and show that it is inappropriate for retaining the
refinement relation.

Example 4.9. This example illustrates the maintenance of the refinement of two
OCFs κ v κ′ when revising them with the same formula ϕ as stated in Prop. 4.38,
and further illustrates that it is not sufficient to just choose the same parameters for
both OCFs. For this we assume κ and κ′ as in Tab. 32 and ϕ ≡ p.
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κ(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 pbf , pbf

2 pbf , pbf

1 pbf

0 pbf , pbf , pbf

κ′(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 -

2 pbf , pbf , pbf , pbf

1 -

0 pbf , pbf , pbf , pbf

Table 32: OCFs κ and κ′ over signature ΣTweety, where κ v κ′.

Furthermore, we choose the revision parameters according to the same additional
restriction (Eq. 4.5) as used in the proof of Prop. 4.38. Choosing the revision
parameters γ+, γ− this way obviously is on par with the parameter restrictions given
by the definition of propositional c-revisions (Def. 3.44):

γ− − γ+ > max{κ(ω) | ω |= ϕ} − κ(¬ϕ) > κ(ϕ)− κ(¬ϕ)

For the revisions κ~ ϕ and κ′ ~ ϕ this means that the parameters must fulfil

γ−κ − γ+
κ > 3− 0 = 3,

γ−κ′ − γ
+
κ′ > 2− 0 = 2.

Therefore, we choose γ−κ′ = 4, γ+
κ′ = 0, γ−κ = 3 and γ+

κ = 0 without loss of generality.
Revising κ and κ′ with ϕ then results in the OCFs stated in Tab. 33.

κ~ ϕ (ω) ω ∈ ΩΣTweety

∞ -
... -

6 pbf

5 pbf

4 pbf , pbf

3 pbf , pbf

2 pbf

1 -

0 pbf

κ′ ~ ϕ (ω) ω ∈ ΩΣTweety

∞ -
... -

6 -

5 pbf

4 -

3 pbf , pbf , pbf

2 pbf , pbf , pbf

1 -

0 pbf

Table 33: Revisions of κ and κ′ (Tab. 32) with ϕ ≡ p and parameters γ− = 4, γ+ = 0,
κ0 = 0 for κ~ ϕ, and γ− = 3, γ+ = 0, κ0 = 0 for κ′ ~ ϕ.

As shown in Prop. 4.38, we see that κ~ϕ refines κ′~ϕ, and therefore the refine-
ment relation of the prior OCFs is retained. Choosing the parameters as described
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above guarantees the maintenance of the refinement relation, because the rank of ¬ϕ
is greater than the rank of any model of ϕ. Thus, the models of ϕ and ¬ϕ become
separated such that there exists a rank r with {ω ∈ Ω | κ ~ ϕ (ω) < r} = JϕK and
{ω ∈ Ω | κ ~ ϕ (ω) ≥ r} = J¬ϕK. In the revised OCFs above r equals γ−κ and γ−κ′,
respectively. Moreover, we know that due to the principle of conditional preserving
the order of the models of ϕ remains unchanged, and so does the order of the models
of ¬ϕ. Therefore, κ~ ϕ must refine κ′ ~ ϕ, if κ v κ′.

This especially illustrates that it is not possible to just reuse the parameters from
κ~ ϕ for κ′ ~ ϕ or vice-versa, since without further assumptions it is possible that
the underlying total preorders change in a manner that the refinement relation of the
prior OCFs cannot be retained, even though the parameters might be valid according
to the restriction given in the definition of c-revisions. We show this by giving a
counter example, in which we again assume κ and κ′ as in Tab. 32. For the revision
parameters we choose γ− = 1, γ+ = 0 and κ0 = 0 for both κ and κ′, which result in
κ~ ϕ and κ′ ~ ϕ as given in Tab. 34 below.

κ(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 pbf

2 pbf , pbf , pbf

1 pbf , pbf , pbf

0 pbf

κ′(ω) ω ∈ ΩΣTweety

∞ -
... -

4 -

3 pbf , pbf , pbf

2 pbf , pbf

1 pbf , pbf

0 pbf

Table 34: Revisions κ~ϕ, κ′~ϕ, with ϕ ≡ p, γ− = 1, γ+ = 0, κ0 = 0 for both revisions,
and OCFs κ and κ′ with κ′ v κ as given in Tab. 21.

Since the orders of the interpretations do not have to be equal in both total pre-
orders �κ and �κ′, and the ranks of the models of ϕ and ¬ϕ are shifted by different
values (here 1 and 0), it is possible to induce changes in �κ′ that are not induced
in �κ. Given the posterior OCFs in Tab. 34, we see for example that pbf �κ′ pbf
holds, but not pbf �κ pbf . Therefore, the revisions changed the prior OCFs, such
that the refinement property is not maintained.

Next, we examine (DFPes-3)L for c-revisions. In Section 4.2, we showed that
minimal change c-contractions do not satisfy (DFPes-3)L, and furthermore that
neither the |= nor the =| direction of the there stated equivalence holds generally,
since the minimal models that were added to the prior most plausible interpre-
tations are potentially disjunct. In contrast to minimal change c-contractions, it
can be shown that propositional c-revisions are capable of satisfying (DFPes-3)L
(Prop. 4.39).
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Proposition 4.39. Let κ be an OCF over signature Σ, ϕ, ψ ∈ LΣ formulas, and ~
a propositional c-revision, then ~ satisfies

if ϕ |= ψ, then Bel(Ψ~ ϕ) ≡ Bel((Ψ~ ψ)~ ϕ). (DFPes-3)L

Prop. 4.39 concludes directly from the fact that (DFPes-3)L is equivalent to
(DP1) (see Section 2.3 or Appendix A.1), for which we already know that proposi-
tional c-revision are capable of satisfying of (Prop. 3.48). In order to understand why
the subsequently performed expansion changes the beliefs in a way that the third for-
getting postulate (DFPes-3)L is satisfied for c-revision, but not for c-contractions,
we briefly recap why minimal change c-contractions are not capable of satisfying
(DFPes-3)L. Due to the definition of minimal change c-contractions (Def. 3.37
and Prop. 3.41), we know that the posterior most plausible interpretations consist
of the prior most plausible interpretations and the minimal models that contradict
the formula we like to forget. When we apply the minimal change c-contraction
as stated in (DFPes-3)L, the following equation must hold in order to satisfy this
postulate:

Bel(κ� ϕ) ≡ Bel((κ� ψ)� ϕ)

⇔ JκK ∪min{J¬ϕK,�κ} = JκK ∪min{J¬ψK,�κ} ∪min{J¬ϕK,�κ�ψ}. (4.7)

Since (DFPes-3)L assumes ϕ |= ψ, we can conclude that the above-mentioned
Eq. 4.7 cannot hold in general, because adding the minimal models of ¬ϕ to rank
0 will not have any influence on JκK after the minimal models of ¬ψ were added
to rank 0, since they are models of ¬ϕ as well. However, this way contracting ϕ
and contracting ψ and ϕ consecutively will not result in equivalent posterior beliefs.
The reason why this changes for the revision lies in the relation of the formulas ϕ
and ψ. As already mentioned above, (DFPes-3)L assumes ψ to be inferable from
ϕ. When we apply the c-revision as stated in (DFPes-3)L, we know that

(JκK \ J¬ϕK) ∪min{JϕK,�κ}
= (JκK \ (J¬ψK ∪ J¬ϕK)) ∪ (min{JψK,�κ} \ J¬ϕK) ∪min{JϕK,�κ�¬ψ} (4.8)

must hold in order to satisfy (DFPes-3)L. Beside the set differences, the most
important difference between Eq. 4.7 and Eq. 4.8 is that in case of the revision
we do not forget ϕ and ψ, but ¬ϕ and ¬ψ. Thus, the relation of the formulas we
like to forget is inverted. This affects the minimal models added to rank 0. When
first forgetting ¬ψ, i.e. adding min{JψK,�κ} to the most plausible interpretations,
it is possible to either add some models of ϕ to rank 0 as well or only add those
models of ψ that do not satisfy ϕ. This is different to the contraction for which we
know that there will definitely be models of ¬ϕ added to rank 0 after forgetting ψ.
When forgetting ¬ϕ afterwards, there are two possible cases. Either the previous
forgetting of ¬ψ already added some models of ϕ to rank 0, or none of the models of
ϕ were added to rank 0 so far. In the first case we know that if the minimal models
of ψ contain models of ϕ, then they must be the minimal models of ϕ, since ϕ |= ψ:
If ϕ |= ψ and min{JψK,�κ} ∩ JϕK 6= ∅, then

(JκK \ (J¬ψK ∪ J¬ϕK)) ∪ (min{JψK,�κ} \ J¬ϕK) ∪min{JϕK,�κ�¬ψ}
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= (JκK \ (J¬ψK ∪ J¬ϕK)) ∪min{JϕK,�κ}.

In the other case, the minimal models of ϕ are just added to rank 0, because the
minimal models of ϕ are not affected by the previous revision due to the principle
of conditional preservation: If ϕ |= ψ and min{JψK,�κ} ∩ JϕK = ∅, then

(JκK \ (J¬ψK ∪ J¬ϕK)) ∪ (min{JψK,�κ} \ J¬ϕK) ∪min{JϕK,�κ�¬ψ}
= (JκK \ (J¬ψK ∪ J¬ϕK)) ∪min{JϕK,�κ}.

Either way we can conclude that the minimal models of ϕ are assigned to rank
0 after performing both revisions subsequently. Finally, the models contradicting ϕ
that were added by the contraction of ¬ψ are removed from the most plausible inter-
pretations by means of the expansion. Therefore, we know that the most plausible
interpretations after revising with ϕ or ψ and ϕ subsequently are the same.

In the following example Ex. 4.10, we want to illustrate why the way c-revisions
affect the most plausible interpretations ensures that (DFPes-3)L is satisfied as
discussed above.

Example 4.10. This example illustrates (DFPes-3)L for c-revisions by showing
how they affect the most plausible interpretations. For this we consider the OCF κ
given in Tab. 35 below as the prior epistemic state. On this OCF we will perform
several c-revisions. For the formulas we like to revise with, we assume ϕ ≡ p and
ψ ≡ p ∨ f , which fulfil the condition ϕ |= ψ assumed by (DFPes-3)L. The OCF
κ~ϕ (Tab. 35) shows that due to revising with p the minimal models of p are added
to JκK and at the same time all models of ¬p are shifted such that none of them is
assigned to rank 0 anymore. The removal of the models of ¬p from JκK guarantees
that p is believed by κ~ ϕ.

According to (DFPes-3)L, we obtain the same most plausible interpretations
when first revising with a formula ψ, that can be inferred by ϕ, and then revising
with ϕ afterwards. For this we consider the OCF κ~ ψ (Tab. 35) that results after
revising κ with p ∨ f . Since all most plausible interpretations of JκK falsify p ∨ f ,
they are removed from rank 0, while the minimal models of p ∨ f are added.

Next, we revise κ~ψ with p and obtain κ◦r~ϕ (Tab. 35), where κ◦r represents the
result of the previous revision. Since the minimal models of p ∨ f in κ also consists
of models of p, we know that the minimal models of p are assigned to rank 0 after
the revision κ~ψ. Thus, no new interpretations must be added to rank 0. Anyhow,
due to the previous revision with p ∨ f there still exist interpretations with rank 0
that satisfy p∨f , but contradict p. These interpretations are removed by the revision
κ◦r ~ ϕ, such that only the minimal models of p remain.

In conclusion, the most plausible interpretations after the revisions κ ~ ϕ and
κ◦r ~ ϕ are the same and so their beliefs are equivalent. Nonetheless, the OCFs are
not equal themselves, since the ranks they assign to the remaining interpretations
can differ.

Next, we examine the fourth forgetting postulate (DFPes-4)L for c-revisions.
In Section 4.2 we already showed that minimal change c-contractions are neither
capable of satisfying (DFPes-4)L, nor its |= or =| direction, since this would
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κ(ω) ω ∈ ΩΣTweety

∞ -
... -

3 -

2 pbf , pbf

1 pbf , pbf , pbf , pbf

0 pbf , pbf

κ~ ϕ (ω) ω ∈ ΩΣTweety

∞ -
... -

3 -

2 pbf , pbf

1 pbf , pbf , pbf , pbf

0 pbf , pbf

κ~ ψ (ω) ω ∈ ΩΣTweety

∞ -
... -

3 -

2 -

1 pbf , pbf , pbf , pbf

0 pbf , pbf , pbf , pbf

κ◦r ~ ϕ (ω) ω ∈ ΩΣTweety

∞ -
... -

3 -

2 pbf , pbf

1 pbf , pbf , pbf , pbf

0 pbf , pbf

Table 35: Revisions of ψ ≡ p ∨ f and ϕ ≡ p. γ+ = 0 for all of the stated revisions.
Top left: OCF κ over signature ΣTweety. Top right: Result of revising κ with p
and parameters κ0 = 1, γ− = 2. Bottom left: Result of revising κ with p ∨ f and
parameters κ0 = 1, γ− = 2. Bottom Right: Result of revising κ◦r = κ~ ψ with p and
parameters κ0 = 0, γ− = 1.

require the minimal models of ¬ϕ∧¬ψ to be equal to the unification of the minimal
models of ϕ and ψ. For c-revisions we will show in the following that they are not
capable of generally satisfying (DFPes-4)L either. However, other than for minimal
change c-contractions, we are able to show that (DFPes-4)L holds under certain
assumptions on the formulas ϕ and ψ we revise the OCF κ with, and that the |=
direction of (DFPes-4)L even holds in general.

First, we want to argue that (DFPes-4)L cannot be satisfied by c-revisions in
general, since this would require the minimal models of ¬ϕ∨¬ψ to be equal to the
unification of the minimal models of ϕ and ψ, which is similar to the requirement
for minimal change c-contractions. However, the fact that we consider the minimal
models of ¬ϕ ∨ ¬ψ instead of ¬ϕ ∧ ¬ψ in this case allows us to formulate further
assumptions on ϕ and ψ, such that the equivalence stated in (DFPes-4)L holds
when applying the c-revision to those formulas (Prop. 4.40).

Proposition 4.40. Let κ be an OCF over signature Σ, ϕ, ψ ∈ LΣ formulas, and ~
a propositional c-revision, then

Bel(κ~ ϕ ∨ ψ) ≡ Bel(κ~ ϕ) ∩Bel(κ~ ψ), (DFPes-4)L

if and only if κ(ϕ) = κ(ψ).
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Proof of (Prop. 4.40).

Bel(κ~ ϕ ∨ ψ) ≡ Bel(κ~ ϕ) ∩Bel(κ~ ψ)

⇔ Th(Jκ~ ϕ ∨ ψK) ≡ Th(Jκ~ ϕK) ∩ Th(Jκ~ ψK) (Prop. 2.38)

⇔ Th(Jκ~ ϕ ∨ ψK) ≡ Th(Jκ~ ϕK ∪ Jκ~ ψK) (Lem. 2.25)

⇔ Jκ~ ϕ ∨ ψK = Jκ~ ϕK ∪ Jκ~ ψK (Prop. 2.38)

⇔ min{Jϕ ∨ ψK,�κ} = min{JϕK,�κ} ∪min{JϕK,�κ} (Th. 3.45)

⇔ κ(ϕ) = κ(ψ) (Prop. 2.52)

As shown in Prop. 4.40 above, c-revisions are capable of satisfying the equivalence
stated in (DFPes-4)L, if and only if the formulas we revise κ with are equally
plausible. From Th. 3.45, we know that the most plausible interpretations after
the revision correspond to the minimal models of the formula we revised our prior
epistemic state with. Thus, min{Jϕ∨ψK,�κ} = min{JϕK,�κ}∪min{JϕK,�κ} must
hold in order to satisfy (DFPes-4)L. Furthermore, we know from Prop. 2.52 that
this equation holds, if and only if κ(ϕ) = κ(ψ). Therefore, we know in conclusion
that (DFPes-4)L holds, if and only if ϕ and ψ are equally plausible. However, if
one of the formulas is more plausible than the other, we know that the minimal
models of ϕ ∨ ψ correspond to the minimal models of the more plausible formula
ϕ or ψ (Lem. 2.53). This allows us to further conclude that the |= direction of
(DFPes-4)L must even hold in general (Prop. 4.41).

Proposition 4.41. Let κ be an OCF, ϕ, ψ ∈ L formulas and ~ a propositional
c-revision, then the following holds:

Bel(κ~ ψ ∨ ϕ) |= Bel(κ~ ψ) ∩Bel(κ~ ϕ)

Proof of Prop. 4.41.

Bel(κ~ ϕ ∨ ψ) |= Bel(κ~ ϕ) ∩Bel(κ~ ψ)

⇔ Th(Jκ~ ϕ ∨ ψK) |= Th(Jκ~ ϕK) ∩ Th(Jκ~ ψK) (Prop. 2.41)

⇔ Th(Jκ~ ϕ ∨ ψK) |= Th(Jκ~ ϕK ∪ Jκ~ ψK) (Lem. 2.25)

⇔ Jκ~ ϕ ∨ ψK ⊆ Jκ~ ϕK ∪ Jκ~ ψK (Prop. 2.41)

⇔ min{Jϕ ∨ ψK,�κ} ⊆ min{JϕK,�κ} ∪min{JψK,�κ} (Th. 3.45)

From Lem. 2.53, we can conclude that the above-stated subset relation holds, since
min{Jϕ ∨ ψK,�κ} must either be the minimal models of ϕ or ψ, or must be equal
to their unification. Thus, we further know that Prop. 4.41 is generally satisfied by
c-revisions.

Lastly, we examine (DFPes-5)L for c-revisions. For minimal change c-
contractions we were able to show that neither (DFPes-5)L nor one of the di-
rections of the stated equivalence ( |= or =|) holds. Furthermore, we were able
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to show that (DFPes-5)L holds for those minimal change c-contractions applied
to formulas ϕ and ψ with min{JϕK,�κ} ∩ min{JψK,�κ} 6= ∅ (Th. 4.26). In the
following, we show that (DFPes-5)L cannot be generally satisfied by c-revisions
either, and that the further restriction under which the postulate holds for minimal
change c-contractions is not sufficient for c-revisions to satisfy it. Instead, we show
that (DFPes-5)L is satisfied by c-revisions when applied to formulas ϕ and ψ with
min{JϕK,�κ} = min{JψK,�κ}.

First, we want to argue why the assumption min{JϕK,�κ} ∩min{JϕK,�κ} 6= ∅
is not sufficient for c-revisions to satisfy (DFPes-5)L. Considering the posterior
belief sets as stated in (DFPes-5)L, we know that the following equivalence must
hold.

Bel(κ~ ϕ ∨ ψ) ≡ Bel((κ~ ϕ)~ ψ)

⇔ Jκ~ ϕ ∨ ψK = J(κ~ ϕ)~ ψK (Prop. 2.38)

⇔ min{Jϕ ∨ ψK,�κ} = min{JψK,�κ~ϕ} (Th. 3.45)

First of all, it can clearly be seen, that the equality of min{Jϕ ∨ ψK,�κ} and
min{JψK,�κ~ϕ} cannot be guaranteed without further assumptions on ϕ and ψ.
However, if we assume that the intersection of the minimal models of ϕ and ψ is not
empty, we can admittedly conclude

min{Jϕ ∨ ψK,�κ} = min{JψK,�κ~ϕ}
⇔ min{JϕK,�κ} ∪min{JψK,�κ} = min{JψK,�κ~ϕ} (Lem. 2.51, Prop. 2.52)

⇔ min{JϕK,�κ} ∪min{JψK,�κ} = Jκ~ ϕK \ J¬ψK
⇔ min{JϕK,�κ} ∪min{JψK,�κ} = min{JϕK,�κ} \ J¬ψK, (Th. 3.45)

but on the other hand this concludes that the assumption is not sufficient, since
the above-stated equation also requires further assumptions on ϕ and ψ. Thus, the
restrictions for minimal change c-contractions cannot be transferred to c-revisions.

Next, we want to show in Ex. 4.11 that (DFPes-5)L does not hold for c-revisions
in general. This can be traced back to the relation of the minimal models of ϕ ∨ ψ
and the posterior minimal models of ψ after revising with ϕ, as already stated above.

Example 4.11. This example illustrates that c-revisions does neither satisfy
(DFPes-5)L nor one of the directions of the stated equivalence ( |= or =|) in
general. For this we assume the OCF κ as in Tab. 36 below.

κ(ω) ω ∈ ΩΣTweety

∞ -
... -

2 -

1 pbf , pbf , pbf , pbf

0 pbf , pbf , pbf , pbf

Table 36: OCF κ over signature ΣTweety.
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For the formulas we want to revise κ with, we consider ϕ ≡ p and ψ ≡ f .
According to Th. 3.45, the posterior most plausible interpretations after revising κ
with p ∨ f are

Jκ~ p ∨ fK = min{Jp ∨ fK,�κ} = {pbf, pbf}.

When consecutively revising κ with p and f we obtain

J(κ~ p)~ fK = min{JfK,�κ~p}.

The posterior most plausible interpretations after revising with p and f consecutively
are not unique, but depend on the choice of the parameters γ− and γ+, which origi-
nate form the definition of c-changes (Def. 3.35). However, since Jκ ~ p ∨ fK does
not consist of any models of f , we know that

J(κ~ p)~ fK ∩ Jκ~ p ∨ fK = ∅.

Therefore, we know that neither of the resulting beliefs can be inferred from the other.

As Ex. 4.11 illustrated, it is not possible for c-revisions to satisfy (DFPes-5)L
without further assumptions on the revised formulas ϕ and ψ. However, it seems
obvious that the property stated in (DFPes-5)L holds if the revision of ϕ∨ψ and ϕ
result in equivalent beliefs such that the subsequent revision of ψ has no influence on
the prior beliefs. This is the case if the prior minimal models of ϕ and ψ are equal.
We show in Prop. 4.42 that this equality implies the fulfilment of (DFPes-5)L.

Proposition 4.42. Let κ be an OCF over signature Σ, ϕ, ψ ∈ LΣ formulas, and ~
a propositional c-revision, then the following holds:

If min{JψK,�κ} = min{JϕK,�κ}, then Bel(κ~ ϕ ∨ ψ) ≡ Bel((κ~ ϕ)~ ψ).

Proof of Prop. 4.42. In the following, we prove the correctness of Prop. 4.42 above.
For this we assume the equality of min{JψK,�κ} and min{JϕK,�κ} and further refer

to it as ϕ
min,�κ

= ψ.

Bel(κ~ ϕ ∨ ψ) ≡ Bel((κ~ ϕ)~ ψ)

⇔ Jκ~ ϕ ∨ ψK = J(κ~ ϕ)~ ψK (Prop. 2.38)

⇔ min{Jϕ ∨ ψK,�κ} = min{JψK,�κ~ϕ} (Th. 3.45)

⇔ min{JϕK,�κ} = min{JψK,�κ~ϕ} (Lem. 2.53)

⇔ min{JϕK,�κ} = min{JψK,�κ} (ϕ
min,�κ

= ψ, Prop. 3.53)

Thus, we showed that neither c-contractions nor c-revisions satisfy (DFPes-
5)L in general, and that the additional assumptions sufficient for minimal change
c-contractions to satisfy (DFPes-5)L cannot be transferred to c-revisions. In this
case even stricter assumptions are necessary.

In Th. 4.43 and 4.44, we summarize the results we elaborated for revisions sat-
isfying (AGMes∗1)-(AGMes∗6) and propositional c-revisions so far.
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Theorem 4.43. Let Ψ be an epistemic state equipped with a faithfully assigned
total preorder �Ψ, ϕ, ψ ∈ LΣ formulas, and ∗ a belief change operator satisfying
(AGMes∗1)-(AGMes∗6), then the following holds:

∗ satisfies (DFPes-1)L, only if Bel(Ψ) |= ϕ

∗ satisfies (DFPes-3)L

∗ falsifies (DFPes-6)L

Theorem 4.44. Let κ be an OCF over signature Σ, ϕ, ψ ∈ LΣ formulas, and ~ a
propositional c-revision, then the following holds:

~ satisfies (DFPes-1)L, only if Bel(Ψ) |= ϕ

~ satisfies (DFPes-2)L, if κ v κ′

~ satisfies (DFPes-3)L

~ satisfies (DFPes-4)L, if and only if κ(ϕ) = κ(ψ)

~ satisfies the |= direction of (DFPes-4)L

~ falsifies (DFPes-6)L

For proofs and explanations of the relations stated in Th. 4.43 and 4.44, we refer
to the elaborations above.

4.3.2 Further Connections between AGM Revisions, Iterated Revisions
and Forgetting

In the following, we briefly examine some of the relations between the forgetting
postulates (DFPes-1)L-(DFPes-6)L and the widely accepted revision postulates
in order to check which revision postulates generally hold for forgetting operators
as well. For the latter we consider the AGM revision postulates for epistemic states
(AGMes∗1)-(AGMes∗6) (see Section 2.3 or Appendix A.1) on the one hand, and
the postulates for iterated revision (DP1)-(DP4) (see Section 2.3 or Appendix A.1)
as originally formulated by Darwiche and Pearl in [DP97] on the other. Since we
already showed above that revision operators in the sense of the above-stated pos-
tulates do not satisfy the forgetting postulates in general, we further examine which
of the revision postulates are satisfied by forgetting operators. Even though the ex-
amination of revision postulates for forgetting operators might not seem reasonable,
due to the contrary success postulates, we want to investigate which of the forgetting
operators relate to the revision postulates in order to gain further understanding on
the relations between these two concepts. We do so by investigating the relations
between the forgetting and the AGM revision postulates first, and afterwards we
focus on the postulates for iterated belief revision. In the following, we show that
forgetting operators do not satisfy most of the revision postulates, but that there
also exist several commonalities, especially to the postulates for iterated revisions.

For the first AGM revision postulate (AGMes∗1), which states the success of
a belief revision, we already discussed above that it contradicts the success of a
forgetting operator given by (DFPes-6)L (Lem. 4.45).



4.3 Revision 147

Lemma 4.45. Let Ψ be an epistemic state and ϕ ∈ LΣ a formula. Further, let ◦Lf
be a belief change operator satisfying (DFPes-6)L, then ◦Lf contradicts

Bel(Ψ ◦Lf ϕ) |= ϕ, (AGMes∗1)

if ϕ 6≡ >.

The revision’s success postulate (AGMes∗1) states that a certain formula can
be inferred by the posterior beliefs, while the success of forgetting (DFPes-6)L
states that a certain formula can no longer be inferred by the posterior beliefs, if it
is non-tautologous.

For the second revision postulate (AGMes∗2) we know that it cannot be sat-
isfied by forgetting operators either. The property described by this postulate says
that the posterior beliefs after revising the epistemic state with ϕ is equivalent to
the unification of the prior beliefs and ϕ unless the prior beliefs contradict ϕ. The
fact that forgetting operators are not capable of satisfying (AGMes∗2) can again
be traced back to the success postulate (DFPes-6)L.

Proposition 4.46. Let Ψ be an epistemic state and ϕ ∈ LΣ a formula. Further, let
◦Lf be a belief change operator satisfying (DFPes-6)L, then ◦Lf contradicts

if Bel(Ψ) ∪ {ϕ} 6≡ ⊥, then Bel(Ψ ◦Lf ϕ) ≡ Bel(Ψ) ∪ {ϕ}, (AGMes∗2)

if ϕ 6≡ >.

If we forget a non-tautologous formula ϕ in an epistemic state Ψ, then we know
that ϕ can no longer be inferred by the posterior beliefs. Under the assumption
that the prior beliefs do not contradict ϕ, we know that the unification of the prior
beliefs with ϕ can especially infer ϕ. From this we can conclude that

if Bel(Ψ) ∪ {ϕ} 6≡ ⊥, then Bel(Ψ ◦Lf ϕ)︸ ︷︷ ︸
|6=ϕ

≡ Bel(Ψ) ∪ {ϕ}︸ ︷︷ ︸
|=ϕ

 

cannot be satisfied. Note that even if we assume ◦Lf to satisfy the remaining for-
getting postulates (DFPes-1)L-(DFPes-5)L, we cannot argue whether ◦Lf satisfies
(AGMes∗2) in case that ϕ ≡ >, since the forgetting postulates do not prevent
changes in the prior beliefs, when forgetting a tautology.

Next, we examine (AGMes∗3), which says that a revision never results in con-
tradictory beliefs, if the formula that the epistemic state is revised with is not
contradictory. We will show that this postulate is satisfied by belief change oper-
ators satisfying (DFPes-1)L in case that the prior beliefs a non-contradictory as
well, since we know due to (DFPes-1)L that the beliefs cannot be expanded due
to forgetting (Prop. 4.47).

Proposition 4.47. Let Ψ be an epistemic state, ϕ ∈ LΣ a formula, and ◦Lf a belief
change operator satisfying (DFPes-1)L, then ◦Lf satisfies

if ϕ 6≡ ⊥, then Bel(Ψ ◦Lf ϕ) 6≡ ⊥, (AGMes∗3)

if Bel(Ψ) 6≡ ⊥.
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Proof of Prop. 4.47. In the following, we prove that ◦Lf satisfies (AGMes∗3), if we
assume the prior beliefs to be non-contradictory. Note that we show that under this
assumption the consequence of (AGMes∗3) holds in general, and thus especially
for ϕ 6≡ ⊥.

⊥ 6≡ Bel(Ψ) |= Bel(Ψ ◦Lf ϕ) (DFPes-1)L

⇔ Bel(Ψ ◦Lf ϕ) ⊆ Bel(Ψ) 6≡ ⊥
⇔ Bel(Ψ ◦Lf ϕ) ⊆ Bel(Ψ) 6≡ Cn(⊥) (Lem. 2.17)

⇔ Bel(Ψ ◦Lf ϕ) ⊆ Bel(Ψ) 6≡ LΣ (Lem. 2.20)

⇔ Bel(Ψ ◦Lf ϕ) ⊆ Bel(Ψ) ⊂ LΣ

⇒ Bel(Ψ ◦Lf ϕ) ⊂ LΣ

⇔ LΣ |= Bel(Ψ ◦Lf ϕ) and Bel(Ψ ◦Lf ϕ) |6= LΣ

⇒ Bel(Ψ ◦Lf ϕ) |6= LΣ

⇒ Bel(Ψ ◦Lf ϕ) |6= Cn(⊥)

⇒ Bel(Ψ ◦Lf ϕ) |6= ⊥
⇒ Bel(Ψ ◦Lf ϕ) 6≡ ⊥

The additional assumption Bel(Ψ) 6≡ ⊥ guarantees that the posterior beliefs are
not contradictory, since the forgetting postulates (DFPes-1)L-(DFPes-6)L do not
prevent us from resulting in posterior beliefs that are equivalent to the prior, when
forgetting a tautology. In this case it would be possible to result in contradictory
beliefs.

In contrast to the other AGM revision postulates, (AGMes∗4) is the only pos-
tulate that holds for forgetting operators satisfying (DFPes-1)L-(DFPes-6)L with-
out further assumption, since the property stated by (AGMes∗4) directly concludes
from (DFPes-2)L (Lem. 4.48).

Lemma 4.48. Let Ψ and Φ be epistemic states, ϕ, ψ ∈ LΣ formulas, and ◦Lf a belief
change operator satisfying (DFPes-2)L, then ◦Lf satisfies

if Ψ = Φ and ϕ ≡ ψ, then Bel(Ψ ◦Lf ϕ) ≡ Bel(Φ ◦Lf ψ). (AGMes∗4)

(DFPes-2)L already states that applying ◦Lf with a formula ϕ to two epistemic
states with equivalent beliefs will result in equivalent posterior beliefs:

if Bel(Ψ) ≡ Bel(Φ), then Bel(Ψ ◦Lf ϕ) ≡ Bel(Φ ◦Lf ϕ) (DFPes-2)L

The assumption Ψ = Φ stated in (AGMes∗4) implies that the beliefs of both
epistemic states must be equivalent, and since ϕ ≡ ψ is further assumed, we know
that Bel(Ψ ◦Lf ϕ) ≡ Bel(Φ ◦Lf ψ) holds especially.

Next, we show that (AGMes∗5) is satisfied by forgetting operators in case that
the posterior beliefs after forgetting ϕ, i.e. Bel(Ψ ◦Lf ϕ), and ϕ do not contradict
each other (Prop. 4.49).
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Proposition 4.49. Let Ψ be an epistemic state, ϕ, ψ ∈ LΣ formulas, and ◦Lf a belief
change operator satisfying (DFPes-1)L,(DFPes-3)L and (DFPes-6)L, then ◦Lf
satisfies

Bel(Ψ ◦Lf ϕ) ∪ {ψ} |= Bel(Ψ ◦Lf ϕ ∧ ψ), (AGMes∗5)

if Bel(Ψ ◦Lf ϕ) |6= ¬ψ and ψ 6≡ >.

Proof of Prop. 4.49. Since ϕ ∧ ψ |= ϕ, we know due to (DFPes-3)L that

Bel(Ψ ◦Lf ϕ ∧ ψ) ≡ Bel((Ψ ◦Lf ϕ) ◦Lf ϕ ∧ ψ)

holds. Given this equivalence we can further conclude

Bel(Ψ ◦Lf ϕ) |= Bel((Ψ ◦Lf ϕ) ◦Lf ϕ ∧ ψ)︸ ︷︷ ︸
(DFPes-1)L

≡ Bel(Ψ ◦Lf ϕ ∧ ψ) (4.9)

by means of (DFPes-1)L. The just shown relation stated in Eq. 4.9 can be shown
for ψ analogously, since ϕ ∧ ψ |= ψ:

Bel(Ψ ◦Lf ψ) |= Bel(Ψ ◦Lf ϕ ∧ ψ). (4.10)

After forgetting ψ in Ψ, we are no longer able to infer ψ according (DFPes-6)L, and
furthermore we know from Eq. 4.10, that the beliefs after forgetting ϕ ∧ ψ can be
inferred from those after forgetting ψ. Thus, we can conclude that Bel(Ψ ◦Lf ϕ∧ ψ)
cannot infer ψ either:

Bel(Ψ ◦Lf ϕ ∧ ψ) |6= ψ.

Given the assumption Bel(Ψ ◦Lf ϕ) |6= ¬ψ, we further know that

Bel(Ψ ◦Lf ϕ ∧ ψ) |6= ¬ψ

also holds, because of Bel(Ψ ◦Lf ϕ) |= Bel(Ψ ◦Lf ϕ ∧ ψ). Otherwise, this would
contradict Eq. 4.10 shown above. Thus, we know that after forgetting ϕ∧ψ neither
ψ nor ¬ψ can be inferred by the posterior beliefs. From this we can conclude that
the unification of Bel(Ψ ◦Lf ϕ) and ψ can still infer Bel(Ψ ◦Lf ϕ) and is also able to
infer Bel(Ψ ◦Lf ϕ ∧ ψ):

Bel(Ψ ◦Lf ϕ) ∪ {ψ} |= Bel(Ψ ◦Lf ϕ) |= Bel(Ψ ◦Lf ϕ ∧ ψ).

Therefore, we proved that Bel(Ψ ◦Lf ϕ) ∪ {ψ} |= Bel(Ψ ◦Lf ϕ ∧ ψ) holds under the
assumption Bel(Ψ ◦Lf ϕ) |6= ¬ψ.

The property described in Prop. 4.49 can be understood very intuitively, since
we already know that Bel(Ψ◦Lf ϕ∧ψ) forgets more beliefs from Ψ than Bel(Ψ◦Lf ϕ)
(Eq. 4.9) and thus, we know that Bel(Ψ ◦Lf ϕ) |= Bel(Ψ ◦Lf ϕ ∧ ψ). When we now
expand the beliefs Bel(Ψ◦Lf ϕ) with ψ, then we are still able to infer Bel(Ψ◦Lf ϕ∧ψ),
since only new information were added to the beliefs.

Finally, we examine the last AGM revision postulate (AGMes∗6) and show that
forgetting operators are not capable of satisfying this postulate either (Lem. 4.50).
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Lemma 4.50. Let Ψ be an epistemic state, ϕ, ψ ∈ LΣ formulas, and ◦Lf a belief
change operator satisfying (DFPes-6)L, then ◦Lf contradicts

if Bel(Ψ ◦Lf ϕ) ∪ {ψ} 6≡ ⊥,
then Bel(Ψ ◦Lf ϕ ∧ ψ) |= Bel(Ψ ◦Lf ϕ) ∪ {ψ},

(AGMes∗6)

if ϕ 6≡ > 6≡ ψ.

This can again be traced back to the contradicting success postulates
(AGMes∗1) and (DFPes-6)L. As already stated in Eq. 4.10, the posterior beliefs
after forgetting ϕ ∧ ψ can no longer infer ψ. On the other hand, we know that
Bel(Ψ ◦Lf ϕ)∪ {ψ} is a contradiction if Bel(Ψ ◦Lf ϕ) |= ¬ψ, or infers ψ if the beliefs
do not contradict ψ, i.e. Bel(Ψ ◦Lf ϕ) |6= ¬ψ. From this we can conclude that

Bel(Ψ ◦Lf ϕ ∧ ψ)︸ ︷︷ ︸
|6=ψ

|6= Bel(Ψ ◦Lf ϕ) ∪ {ψ}︸ ︷︷ ︸
≡⊥ or |=ψ

,

holds, which in fact contradicts (AGMes∗6).
We summarize the elaborated relations between the forgetting postulates

(DFPes-1)L-(DFPes-6)L and the AGM revision postulates (AGMes∗1)-
(AGMes∗6) in Th. 4.51.

Theorem 4.51. Let ◦Lf be a belief change operator satisfying (DFPes-1)L-
(DFPes-3)L and (DFPes-6)L, Ψ be an epistemic state and ϕ, ψ ∈ LΣ formulas
associated with (AGMes∗1)-(AGMes∗6), then the following holds:

◦Lf contradicts (AGMes∗1), if ϕ 6≡ >
◦Lf contradicts (AGMes∗2), if ϕ 6≡ >
◦Lf satisfies (AGMes∗3), if Bel(Ψ) 6≡ ⊥
◦Lf satisfies (AGMes∗4)
◦Lf satisfies (AGMes∗5), if Bel(Ψ ◦Lf ϕ) |6= ¬ψ and ψ 6≡ >
◦Lf contradicts (AGMes∗6), if ϕ 6≡ > 6≡ ψ

For explanations and proofs of the stated relations, we refer to the elaborations
above.

After we have examined the relations between the forgetting postulates and
the AGM revision postulates for epistemic states, we further like to examine the
relation to the postulates for iterated belief revision (DP1)-(DP4) (see Section 2.3
or Appendix A.1). For the first postulate (DP1), we know that it is satisfied by any
belief change operator satisfying the forgetting postulates (DFPes-1)L-(DFPes-
6)L, since (DP1) is equivalent to (DFPes-3)L as already mentioned in Section 4.2.
Also (DP4) holds for such operators ◦Lf generally. This postulate originally states
that a formula ¬ψ cannot be inferred after revising an epistemic state Ψ with ψ and
ϕ subsequently, if the revision with ϕ alone would already prevent concluding ¬ψ.
When we transfer this property to the concept of forgetting, then it states that if
forgetting ϕ is already sufficient to result in posterior beliefs not capable of inferring
¬ψ, then ¬ψ cannot be inferred especially if we forgot ψ previous to ϕ. We formalize
this property in Prop. 4.52.
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Proposition 4.52. Let Ψ be an epistemic state, ϕ, ψ ∈ LΣ formulas, and ◦Lf a belief
change operator satisfying (DFPes-1)L and (DFPes-5)L, then ◦Lf satisfies

if Bel(Ψ ◦Lf ϕ) |6= ¬ψ, then Bel((Ψ ◦Lf ψ) ◦Lf ϕ) |6= ¬ψ. (DP4)

Proof of Prop. 4.52.

Bel(Ψ ◦Lf ϕ) |= Bel((Ψ ◦Lf ϕ) ◦Lf ψ) (DFPes-1)L

≡ Bel((Ψ ◦Lf ψ) ◦Lf ϕ) (Prop. 4.8)

Thus, we know that if Bel(Ψ ◦Lf ϕ) does not infer ¬ψ, then Bel((Ψ ◦Lf ψ) ◦Lf ϕ) does
not either.

For the remaining two postulates (DP2) and (DP3), we show that they do not
hold for belief change operators satisfying (DFPes-1)L-(DFPes-6)L. For (DP2)
we know that its consequence cannot hold in general, since this would require that
the beliefs after forgetting two formulas ϕ and ψ consecutively are equivalent to
the beliefs after forgetting ϕ only. There might exist cases in which this relation
of the posterior beliefs holds. However, if we assume that ψ is non-tautologous
and ψ could be inferred by the prior beliefs before forgetting it, we can show that
(DP2) contradicts the assumed forgetting postulates. We formalize and proof this
in Prop. 4.53 below.

Proposition 4.53. Let Ψ be an epistemic state, ϕ, ψ ∈ LΣ formulas, and ◦Lf a belief
change operator satisfying (DFPes-1)L, (DFPes-5)L and (DFPes-6)L, then ◦Lf
contradicts

if ϕ |= ¬ψ, then Bel((Ψ ◦Lf ψ) ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ϕ), (DP2)

if Bel(Ψ ◦Lf ϕ) |= ψ and ψ 6≡ >.

Proof of Prop. 4.53. In the following, we show that the consequence of (DP2) gen-
erally contradicts the properties stated in (DFPes-1)L, (DFPes-5)L and (DFPes-
6)L, if we assume that Bel(Ψ ◦Lf ϕ) |= ψ holds, where ψ is non-tautologous.

Bel((Ψ ◦Lf ψ) ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ϕ)

⇔ Bel((Ψ ◦Lf ϕ) ◦Lf ψ) ≡ Bel(Ψ ◦Lf ϕ) (Prop. 4.8)

⇒ Bel((Ψ ◦Lf ϕ) ◦Lf ψ) |= Bel(Ψ ◦Lf ϕ) (Def. 2.13)

Due to (DFPes-6)L and the assumption ψ 6≡ >, we can conclude that Bel((Ψ◦Lf
ϕ) ◦Lf ψ) |6= ψ holds. Furthermore, we know by assumption that ψ can be inferred
by Bel(Ψ ◦Lf ϕ). Thus, we obtain

Bel((Ψ ◦Lf ϕ) ◦Lf ψ)︸ ︷︷ ︸
|6=ψ

|= Bel(Ψ ◦Lf ϕ)︸ ︷︷ ︸
|=ψ

,

which shows that Bel(Ψ ◦Lf ϕ) cannot be inferred by Bel((Ψ ◦Lf ϕ) ◦Lf ψ), and there-
fore (DP2) contradicts the forgetting postulates (DFPes-1)L, (DFPes-5)L and
(DFPes-6)L, in case that ψ is a non-tautologous formula that can be inferred before
forgetting it.
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Lastly, (DP3) cannot be satisfied by operators ◦Lf satisfying (DFPes-1)L-
(DFPes-6)L either, since it contradicts both the success postulate (DFPes-6)L
and (DFPes-1)L. When transferring (DP3) to the concept of forgetting, its as-
sumption reads that after forgetting formulas ψ and ϕ consecutively, ψ can still
be inferred by the posterior beliefs. But due to (DFPes-6)L this only holds, if
ψ is a tautology. Thus, we know that (DP3) contradicts the assumed forgetting
postulates, if ψ is non-tautologous (Prop. 4.54).

Proposition 4.54. Let Ψ be an epistemic state, ϕ, ψ ∈ LΣ formulas, and ◦Lf a belief
change operator satisfying (DFPes-5) and (DFPes-6), then ◦Lf contradicts

if Bel(Ψ ◦Lf ϕ) |= ψ, then Bel((Ψ ◦Lf ψ) ◦Lf ϕ) |= ψ, (DP3)

if ψ 6≡ >.

Proof of Prop. 4.54. In the following, we show that the consequence of (DP3)
contradicts the properties stated by the forgetting postulates (DFPes-5)L and
(DFPes-6)L. By means of (DFPes-5)L, we know that ◦Lf is commutative with
respect to the beliefs of an epistemic state:

Bel((Ψ ◦Lf ψ) ◦Lf ϕ) |= ψ ⇔ Bel((Ψ ◦Lf ϕ) ◦Lf ψ) |= ψ (Prop. 4.8)

At this point, we know due to (DFPes-6)L and the assumption ψ 6≡ > that

Bel((Ψ ◦Lf ϕ) ◦Lf ψ) |6= ψ

must hold. Thus, (DP2) contradicts (DFPes-5) and (DFPes-6), if ψ is assumed
to be non-tautologous.

Finally, we summarize the elaborated relations between the forgetting postulates
(DFPes-1)L-(DFPes-6)L and the postulates for iterated revision (DP1)-(DP4)
in Th. 4.55.

Theorem 4.55. Let Ψ be an epistemic state and ϕ, ψ ∈ LΣ formulas referring
to those in (DP1)-(DP4). Further, let ◦Lf be a belief change operator satisfying
(DFPes-1)L, (DFPes-3)L, (DFPes-5)L, and (DFPes-6)L, then the following
holds:

◦Lf satisfies (DP1)

◦Lf contradicts (DP2), if Bel(Ψ ◦Lf ϕ) |= ψ and ψ 6≡ >
◦Lf contradicts (DP3), if ψ 6≡ >
◦Lf satisfies (DP4)

For proofs and explanations of these relations, we refer to the elaborated propo-
sitions Prop. 4.52 to 4.54 above.
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Summary. In summary, we investigated the connections between propositional c-
revisions and revisions satisfying (AGMes∗1)-(AGMes∗6), respectively, and the
forgetting postulates (DFPes-1)L-(DFPes-6)L. For this, we first stated that the
implicit forgetting of such revisions can be explicated by means of contractions
satisfying (AGMes-1)-(AGMes-7), and thus in particular by means of minimal
change c-contractions. Given this assumption, we could refer to the relations be-
tween (DFPes-1)L-(DFPes-6)L and contractions as stated in Th. 4.27 for the
implicit forgetting of such revisions, and make use of them in order to investigate
whether they also hold for such revisions, or how they change due to the consecu-
tively performed expansion.

We were able to show that revisions satisfying (AGMes∗1)-(AGMes∗6), and
thus especially propositional c-revisions, contradict (DFPes-1)L and (DFPes-6)L,
since these postulates contradict the general notion of revision, which states that
we want to be able to infer a new formula ϕ after revising with ϕ. However, in
case of (DFPes-6)L it is more appropriate to formulate this postulate with respect
to ¬ϕ instead of ϕ, since the implicit forgetting of the c-revision is applied to ¬ϕ.
By doing so, we can conclude the fulfilment of (DFPes-6)L for c-revisions. For
(DFPes-2)L we were able to show that c-revision do satisfy this postulate under the
same additional restrictions as minimal change c-contractions and that the expansion
performed by the revision has no influence on this property. Moreover, we showed
that it is also possible to choose the revision parameters according to an appropriate
strategy such that the refinement relation between two OCFs is retained after the
revision. Other than minimal change c-contractions, both propositional c-revisions
and revisions satisfying (AGMes∗1)-(AGMes∗6) satisfy (DFPes-3)L. This can
mainly be traced back to the inverted relation of ϕ and ψ that is induced by the
revision. For (DFPes-4)L we showed that c-revisions only satisfy this postulate
under further restrictions on the formulas we revise with. Furthermore, we showed
that the |= direction of (DFPes-4)L holds in general. Finally, we showed that
(DFPes-5)L is neither satisfied by minimal change c-contractions nor by c-revisions,
and that the additional restrictions necessary to satisfy (DFPes-5)L cannot be
transferred to c-revisions.

In addition to the examinations on the forgetting postulates for c-revisions, we
investigated the relations between the forgetting postulates and both the AGM re-
vision postulates for epistemic states (AGMes∗1)-(AGMes∗6) and the postulates
for iterated belief revision (DP1)-(DP4). There, we showed that the postulates
(AGMes∗1), (AGMes∗2), (AGMes∗6), (DP2) and(DP3) are contradictory to
the properties stated by the forgetting postulates (DFPes-1)L-(DFPes-6)L, if we
assume the occurring formulas to be non-tautologous. Moreover, we were able to
show that (AGMes∗3) and (AGMes∗5) are satisfied under similar assumptions.
For the remaining postulates (AGMes∗4), (DP1) and (DP4) we were able to show
that they are satisfied without further assumptions. We summarized the elaborated
relations in Th. 4.43, Th. 4.44 and Th. 4.55.
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4.4 Properties of Forgetting

In the previous sections, we elaborated two generalized forms of Delgrande’s for-
getting postulates (DFP-1)-(DFP-7) (Th. 3.4, Appendix A.1). The first gener-
alization (DFPes-1)Σ-(DFPes-6)Σ (Section 4.1, Appendix A.1) is a first attempt
of applying Delgrande’s notions of forgetting to arbitrary operators that result in
epistemic states with a reduced signature. This was rather straightforward, since
Delgrande’s general forgetting approach was defined as a reduction of the signature
as well. We were able to show that the OCF marginalization satisfies all of these pos-
tulates, and at the same time results in beliefs equivalent to the result of Delgrande’s
forgetting. After this, we generalized (DFP-1)-(DFP-7) such that they are not
only applicable to epistemic states, but also to formulas instead of subsignatures. For
this, we elaborated the fundamental ideas of these postulates, and chose appropriate
representations in order to express these ideas with respect to formulas. However,
while examining the second generalization (DFPes-1)L-(DFPes-6)L (Section 4.2,
Appendix A.1) for c-contractions and c-revisions in Section 4.2 and Section 4.3, we
noticed some rather controversial properties that are either directly stated or im-
plied by them. In the following, we want to discuss these properties, arguing that
the notions of forgetting as postulated by Delgrande are suitable for forgetting sub-
signatures, but not for formulas. Moreover, we prove that there cannot exist any
useful belief change operator satisfying (DFPes-1)L-(DFPes-6)L. After this, we
address the role of (DFPes-3)L in this context, and suggest an adjusted variant
that seems better suited for forgetting formulas.

The first controversial property implied by (DFPes-1)L-(DFPes-6)L is that
forgetting a conjunction ϕ ∧ ψ always results in beliefs that are not only incapable
of inferring ϕ ∧ ψ, but also of inferring both ϕ and ψ (Prop. 4.56). This property
can mainly be traced back to (DFPes-3)L.

Proposition 4.56. Let Ψ be an epistemic state and ◦Lf a belief change operator
satisfying (DFPes-1)L-(DFPes-6)L, then

Bel(Ψ ◦Lf ϕ ∧ ψ) |6= ϕ, ψ

holds for all formulas ϕ, ψ ∈ L with ϕ 6≡ > 6≡ ψ.

Proof of Prop. 4.56.

Bel(Ψ ◦Lf ϕ) |= Bel((Ψ ◦Lf ϕ) ◦Lf ϕ ∧ ψ) (DFPes-1)L

≡ Bel(Ψ ◦Lf ϕ ∧ ψ) (DFPes-3)L

From (DFPes-6)L, we know that Bel(Ψ ◦Lf ϕ) |6= ϕ, and since Bel(Ψ ◦Lf ϕ) |=
Bel(Ψ ◦Lf ϕ ∧ ψ), we know Bel(Ψ ◦Lf ϕ ∧ ψ) |6= ϕ in conclusion. The same holds
analogously, if we consider ψ instead of ϕ. Thus, we showed that the beliefs after
forgetting ϕ ∧ ψ cannot infer ϕ and ψ either.

One can argue that the property stated in Prop. 4.56 yields unmotivated changes
to the prior beliefs, since it is not always necessary to reject the beliefs about both
ϕ and ψ in order to forget their conjunction. Au contraire, it is mostly sufficient
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to reject the beliefs about one of the formulas only, which could be the less plau-
sible formula for example. This again shows that a forgetting operator according
to (DFPes-1)L-(DFPes-6)L does not conform to the minimal change paradigm.
However, this can also be viewed as a positive aspect, since minimizing proposi-
tional changes can induce undesired conditional changes in epistemic states [DP97].
Nevertheless, even if the property stated in Prop. 4.56 might be appropriate for
some cognitive considerations, it is debatable if this property should be implied by
postulates stating the general properties of forgetting formulas.

The next controversial property that is implied by (DFPes-1)L-(DFPes-6)L, is
the fact that it does not matter, if we forget the conjunction or the disjunction of two
formulas. Both posterior beliefs are equivalent (Prop. 4.57). Just as for Prop. 4.56,
the implied property stated in Prop. 4.57 heavily depends on (DFPes-3)L.

Proposition 4.57. Let Ψ be an epistemic state and ◦Lf a belief change operator
satisfying (DFPes-1)L-(DFPes-6)L, then

Bel(Ψ ◦Lf ϕ ∧ ψ) ≡ Bel(Ψ ◦Lf ϕ ∨ ψ)

holds for all formulas ϕ, ψ ∈ L.

Proof of Prop. 4.57.

Bel(Ψ ◦Lf ϕ ∧ ψ) ≡ Bel((Ψ ◦Lf ϕ ∨ ψ) ◦Lf ϕ ∧ ψ) (DFPes-3)L

≡ Bel(Ψ ◦Lf (ϕ ∧ ψ) ∨ (ϕ ∨ ψ)) (DFPes-5)L

≡ Bel(Ψ ◦Lf ϕ ∨ ψ)

Forgetting ϕ ∨ ψ must result in posterior beliefs that are neither capable of
inferring ϕ nor of inferring ψ. Thus, in order to result in equivalent beliefs as
forgetting ϕ ∧ ψ, it is necessary for Bel(Ψ ◦Lf ϕ ∧ ψ) to infer neither ϕ nor ψ as
well. This shows that the equivalence stated in Prop. 4.57 is strongly related to
Prop. 4.56.

Finally, we want to discuss the last controversial property we noticed during
research. This property states that forgetting a conjunction ϕ ∧ ψ must result in
beliefs equivalent to just forgetting ϕ or ψ. (Prop. 4.58)

Proposition 4.58. Let Ψ be an epistemic state and ◦Lf a belief change operator
satisfying (DFPes-1)L-(DFPes-6)L, then

Bel(Ψ ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ϕ ∧ ψ) ≡ Bel(Ψ ◦Lf ψ)

holds for all formulas ϕ, ψ ∈ L.

Proof of (Prop. 4.58).

Bel(Ψ ◦Lf ϕ ∧ ψ) ≡ Bel((Ψ ◦Lf ϕ) ◦Lf ϕ ∧ ψ) (DFPes-3)L

≡ Bel(Ψ ◦Lf ϕ ∨ (ϕ ∧ ψ)) (DFPes-5)L

≡ Bel(Ψ ◦Lf ϕ)

The above-stated equivalence holds for ψ analogously. Thus, we can conclude
Bel(Ψ ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ϕ ∧ ψ) ≡ Bel(Ψ ◦Lf ψ).
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Furthermore, Prop. 4.58 implies that forgetting always results in equivalent be-
liefs, independent of which formulas we forget (Cor. 4.59).

Corollary 4.59. Let Ψ be an epistemic state and ◦Lf a belief change operator satis-
fying (DFPes-1)L-(DFPes-6)L, then

Bel(Ψ ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ψ)

holds for all formulas ϕ, ψ ∈ L.

With this obviously being an undesired behaviour, since it means that forgetting
works independently of what we would like to forget, it raises the question, whether
such a belief change operator capable of satisfying (DFPes-1)L-(DFPes-6)L can
exist at all. From (DFPes-1)L, we know that the prior beliefs cannot be extended
due to forgetting. Moreover, we know due to (DFPes-6)L, that after forgetting
a certain non-tautologous formula, we are no longer able to infer it. Nonetheless,
since forgetting is independent of the formula we forget (Cor. 4.59), we know that
once we apply ◦Lf to an epistemic state, we are no longer allowed to infer anything,
but tautologies. Thus, a belief change operator always resulting in posterior beliefs
equivalent to > can be the only belief change operator satisfying (DFPes-1)L-
(DFPes-6)L (Th. 4.60).

Theorem 4.60 (Triviality Result). Let Ψ be an epistemic state. A belief change
operator ◦Lf satisfies (DFPes-1)L-(DFPes-6)L, if and only if Bel(Ψ ◦Lf ϕ) ≡ >
holds for each ϕ ∈ L.

Proof of Th. 4.60. We prove Th. 4.60 in two steps. Firstly, we show that if a
belief change operator satisfies (DFPes-1)L-(DFPes-6)L, then it must always
result in posterior beliefs Bel(Ψ ◦Lf ϕ) equivalent to >. Secondly, we show that
each belief change operator ◦Lf with Bel(Ψ ◦Lf ϕ) ≡ > for each ϕ ∈ L satisfies
(DFPes-1)L-(DFPes-6)L. We refer to these two steps as (⇒) and (⇐). Note
that we assume all formulas ϕ, ψ ∈ L to be non-tautologous.

Case (⇒): From Cor. 4.59, we know that applying ◦Lf to an epistemic state Ψ
must result in equivalent beliefs for all formulas ϕ, ψ ∈ L. From (DFPes-6)L we
know that after forgetting a formula ϕ, we are no longer able to infer ϕ. Since the
posterior beliefs are equivalent for all formulas, we can conclude that after applying
◦Lf to Ψ, we are not able to infer any formula, but tautologies.

Bel(Ψ ◦Lf ϕ) ≡ Bel(Ψ ◦Lf ψ), for all ϕ, ψ ∈ L (Cor. 4.59)

⇒ Bel(Ψ ◦Lf ϕ) |6= ϕ, ψ, for all ϕ, ψ ∈ L (DFPes-1)L

⇔ Bel(Ψ ◦Lf ϕ) ≡ >, for all ϕ ∈ L

Case (⇐): Let Ψ and Φ be epistemic states and ϕ, ψ ∈ L be non-tautologous
formulas, and ◦Lf a belief change operator with Bel(Ψ ◦Lf ϕ) ≡ > for all epistemic
states Ψ and formulas ϕ. Further, we refer to the assumption Bel(Ψ ◦Lf ϕ) ≡ > as
(>).
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(DFPes-1)L:

Bel(Ψ) |= Bel(Ψ ◦Lf ϕ) (DFPes-1)L

⇔ Bel(Ψ) |= > (>)

Since Bel(Ψ) |= > holds in general, ◦Lf satisfies (DFPes-1)L.

(DFPes-2)L:

if Bel(Ψ) ≡ Bel(Φ), then Bel(Ψ ◦Lf ϕ) ≡ Bel(Φ ◦Lf ϕ) (DFPes-2)L

⇔ if Bel(Ψ) ≡ Bel(Φ), then > ≡ > (>)

Since > ≡ > holds trivially, it especially holds if Bel(Ψ) ≡ Bel(Φ). Thus, ◦Lf
satisfies (DFPes-2)L.

(DFPes-3)L:

if ϕ |= ψ, then Bel(Ψ ◦Lf ϕ) ≡ Bel((Ψ ◦Lf ψ) ◦Lf ϕ) (DFPes-3)L

⇔ if ϕ |= ψ, then > ≡ > (>)

Since > ≡ > holds trivially, it especially holds if ϕ |= ψ. Thus, ◦Lf satisfies
(DFPes-3)L.

(DFPes-4)L:

Bel(Ψ ◦Lf ϕ ∨ ψ) ≡ Bel(Ψ ◦Lf ϕ) ∩Bel(Ψ ◦Lf ψ) (DFPes-4)L

⇔ > ≡ Bel(Ψ ◦Lf ϕ)︸ ︷︷ ︸
≡>

∩Bel(Ψ ◦Lf ψ)︸ ︷︷ ︸
≡>

(>)

⇔ > ≡ {ϕ ∈ L | > |= ϕ} ∩ {ϕ ∈ L | > |= ϕ}
⇔ > ≡ {ϕ ∈ L | > |= ϕ}
⇔ > ≡ >

(DFPes-5)L:

Bel(Ψ ◦Lf ϕ ∨ ψ) ≡ Bel((Ψ ◦Lf ϕ) ◦Lf ψ) (DFPes-5)L

⇔ > ≡ > (>)

(DFPes-6)L:

if ϕ 6≡ >, then Bel(Ψ ◦Lf ϕ) |6= ϕ (DFPes-6)L

⇔ if ϕ 6≡ >, then > |6= ϕ (>)

We showed that both cases (⇒) and (⇐) hold, and therefore proved the triviality
result stated in Th. 4.60.
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Th. 4.60 clearly shows, that (DFPes-1)L-(DFPes-6)L are not appropriate
for stating general properties of forgetting formulas. However, all of the above-
mentioned controversial and undesired properties of forgetting can mainly be traced
back to (DFPes-3)L. Thus, we further want to discuss the third forgetting pos-
tulate (DFPes-3)L for forgetting formulas in epistemic states, which corresponds
to Delgrande’s fourth postulate (DFP-4). For the latter, we know that forgetting
a subsignature P will result in equivalent beliefs as forgetting two subsignatures
P and P ′ subsequently, if we assume P ′ ⊆ P . In Section 4.2 we tried to reflect
this property as accurate as possible when generalizing the postulates to epistemic
states and formulas. However, our examinations on the postulates for c-contractions
and c-revisions in Sections 4.2 and 4.3 revealed that expressing the subset relation
P ′ ⊆ P by means of ϕ |= ψ, where P ′ is more specific than P and ϕ is more
specific than ψ, admittedly captures the idea of the original postulate (DFP-4),
but affects the prior beliefs other than expected. In Section 4.2, we showed that
minimal change c-contractions do not satisfy (DFPes-3)L (Prop. 4.22) in general.
When we examined the same postulate for c-revisions in Section 4.3, we showed that
c-revisions are actually capable of satisfying (DFPes-3)L (Prop. 4.39). There, we
further discussed that the reason for this lays in the inverted relation of the formulas
ϕ and ψ. Due to the postulate we assumed ϕ |= ψ for the c-revisions, but since
the implicit forgetting of c-revisions is applied to ¬ϕ and ¬ψ instead, we actually
performed the forgetting of the more specific information first, and the forgetting
of the more general information afterwards, and compared the posterior beliefs to
those after just forgetting the more general information. The following example
Ex. 4.12 will intuitively illustrate why the inverted relation of ϕ and ψ seems to be
more appropriate for forgetting formulas.

Example 4.12. In this example, we want to illustrate why assuming ψ |= ϕ instead
of ϕ |= ψ in (DFPes-3)L is more appropriate for the forgetting of formulas. For
this, we consider the following scenario.

We are software developers working in our office in a software company. When
we tried to print some important documents, we recognized that the printer is not
working, because there is no paper left (¬p) and the cartridges are empty (¬c) as
well. Thus, our beliefs about the printer at this moment can be described as Bel(Ψ) ≡
¬p ∧ ¬c. Since it is almost time for lunch, we decide to go to the canteen first, and
print the documents later. Approximately one hour later, we come back to our office.
Since almost an whole hour has passed, we are no longer sure, if the printer is still
not ready for use. Therefore, we forget our belief about the printer not being ready
for use, i.e. we forget ¬p ∨ ¬c, since the printer cannot be used, if there is no
paper left (¬p) or the cartridge is empty (¬c). Thus, we do not know anything about
the printer’s status: Bel(Ψ◦) ≡ >. Suddenly, we see some co-worker with a big
stack of paper moving in the direction of the printer room. Maybe the co-worker
is re-filling the paper of the printer. At this point, we would actually forget that
the paper is gone (¬p), which is a more specific information than ¬p ∨ ¬c, because
¬p |= ¬p∨¬c. But since we are already unsure about the printer’s status, forgetting
¬p does not influence our current beliefs about the printer. Thus, when forgetting
the less specific information ¬p∨¬c first, forgetting the more specific information ¬p
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has no influence on our beliefs. This means that our posterior beliefs are equivalent
to those, when just forgetting ¬p ∨ ¬c.

As intuitively illustrated in Ex. 4.12, it seems more appropriate to invert the
relation of ϕ and ψ stated in (DFPes-3)L, since forgetting a more general informa-
tion also affects our beliefs about more specific information. Therefore, we suggest
to change (DFPes-3)L to:

(DFPes-3)?L If ϕ |= ψ, then Bel(Ψ ◦Lf ψ) ≡ Bel((Ψ ◦Lf ϕ) ◦Lf ψ)

This suggestion is strengthened by the fact that when replacing (DFPes-3)L by
(DFPes-3)?L, none of the above-stated unmotivated properties Prop. 4.56 to 4.58
and Cor. 4.59 is implied by the forgetting postulates anymore. If we assume a
belief change operator ◦Lf to satisfy (DFPes-3)?L instead of (DFPes-3)L, we can
no longer conclude that Prop. 4.56 holds in general, since it is not possible to show
Bel(Ψ ◦Lf ϕ) |= Bel(Ψ ◦Lf ϕ ∧ ψ) without (DFPes-3)L. On the other hand, it
is not implicitly excluded by the postulates. The fact that it is not possible to
conclude Prop. 4.56 without (DFPes-3)L further implies that it is not possible to
satisfy Prop. 4.57 either, since this would require that after forgetting a conjunction
ϕ ∧ ψ neither ϕ nor ψ can be inferred anymore. Finally, changing (DFPes-3)L to
(DFPes-3)?L also hinders us from concluding that the property stated in Prop. 4.58
holds in general. As a result, we know that Cor. 4.59 and Th. 4.60 do not hold
either.

In conclusion, we illustrate some of the controversial properties that are implied
by the forgetting postulates (DFPes-1)L-(DFPes-6)L, and argued that they can
mainly be traced back to (DFPes-3)L. Moreover, we showed that a belief change
operator satisfies (DFPes-1)L-(DFPes-6)L, if and only if it results in a poste-
rior epistemic state with beliefs equivalent to >. Due to this, we discussed that
(DFPes-3)L appropriately captures the idea stated by the corresponding original
postulate (DFP-4), but argued that other than for forgetting subsignatures, it is
not suitable for forgetting formulas. Therefore, we suggested an adjusted third for-
getting postulate (DFPes-3)?L, better suitable for forgetting formulas, and argued
that none of the here stated controversial and undesired properties hold, if we replace
(DFPes-3)L with (DFPes-3)?L. Even if this seems to legitimize the replacement
of (DFPes-3)L, we think further research on (DFPes-3)?L is required in order to
decide whether it is really appropriate as a forgetting postulate. In addition to this,
the influence of the remaining postulates to more controversial and unmotivated
implied properties should be investigated, as well.
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5 Conclusion and Future Work

Summary and Conclusion. In this work, we presented and elaborated the defi-
nitions and kinds of forgetting as given in [Del17] by Delgrande, and in [BKIS+19] by
Kern-Isberner et al. These works are two of the most recent works towards the gen-
eralization of forgetting in knowledge representation. In Section 3.1, we elaborated
Delgrande’s general approach of forgetting, which is capable of expressing several of
the hitherto logic-specific forgetting approaches, such as forgetting atoms in propo-
sitional logic [Boo54], or forgetting predicate symbols and constants in first-order
logic [LR94, ZZ10]. In contrast to most of the logic-specific approaches, Delgrande’s
definition (Def. 3.1) performs forgetting on the knowledge level instead of regard-
ing the syntactic appearance of the knowledge. With forgetting on the knowledge
level Delgrande refers to the deductive closure of a given set of formulas, and its
corresponding models. Thus, forgetting is always performed with respect to all the
knowledge that can be inferred priorly, and again results in a deductively closed set
of formulas that are believed afterwards. This way it is possible to apply this defi-
nition to any logic with some realisation of the concept of deductive reasoning, for
example by means of a Tarskian consequence relation (Def. 2.12) or a consequence
operator Cn (Def. 2.16). Thereby, Delgrande defines forgetting as a reduction of the
language or signature, respectively, which means that the prior conclusions we want
to forget are given by means of a subsignature instead of a set of formulas. Thus,
Delgrande considers forgetting as forgetting objects and concepts of our worlds, such
that it is not possible to argue about them afterwards. This is guaranteed, by the
fact that this forgetting approach results in a reduced language, which does not con-
tain formulas mentioning elements of the forgotten subsignature. However, this also
shows that Delgrande’s general forgetting approach is not capable of forgetting spe-
cific facts from our prior beliefs. Delgrande argues that the removal of facts from our
beliefs should not be considered as forgetting, since it is conceptually different from
their idea of forgetting. Instead, they argue that the removal of facts corresponds
the the concept of contraction. At this point, Delgrande claims the term forgetting
for their own definition. However, we disagree with this point of view, since we think
that Delgrande’s approach does not capture the whole variety of different cognitive
kinds of forgetting, but rather describes one of them.

Moreover, we elaborated the most important properties of Delgrande’s forget-
ting approach, and referred to them as postulates (DFP-1)-(DFP-7) in this work.
These postulates are of particular interest, since they seem to state properties that
are generally applicable to the concept of forgetting, even though they are explicitly
formulated with respect to Delgrande’s definition. Additionally, Delgrande empha-
sizes that these properties are right, in the sense that they correspond to the intuitive
idea of forgetting. Therefore, we used (DFP-1)-(DFP-7) as a starting point for
our elaborations towards more general forgetting postulates in Section 4.1 and Sec-
tion 4.2.

In Section 3.2, we elaborated three of the several kinds of forgetting presented
by Kern-Isberner et al. in [BKIS+19]. This is different to Delgrande’s attempt of
unifying the existing logic-specific approaches, since the major goal of Kern-Isberner
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et al. is the elaboration and axiomatization of cognitively different kinds of forget-
ting. Instead of deductively closed sets of formulas, the there presented kinds of
forgetting argue about epistemic states, and therefore are even more general, be-
cause this theoretically allows us to apply them to any kind of chosen knowledge
representation, e.g. probability distributions, Markov chains or other statistical and
machine learning models. The three kinds of forgetting we decided to elaborate in
this work are the marginalization (Section 3.2.1), the contraction (Section 3.2.2) and
the revision (Section 3.2.3). In our opinion, these are the most important kinds of
forgetting presented by Kern-Isberner et al., because of the following reasons. The
marginalization forms the only cognitive kind of forgetting stated in [BKIS+19] that
argues about forgetting concepts and objects of our worlds, i.e. signature elements,
instead of beliefs about them, and therefore is conceptually similar to Delgrande’s
definition of forgetting. The contraction, as well as the revision, forms two of the
most fundamental and important concepts of belief change in the domain of knowl-
edge representation, and are subject of many researches, not least because they are
part to the well-established AGM theory [AGM85, Mak88, GR95]. Moreover, the
revision forms the only kind of forgetting that does not explicitly state the removal
of any prior beliefs, since its success postulate states that after revising with a cer-
tain formula, it should be included in the posterior beliefs. The forgetting at this
point is of implicit nature, since successfully incorporating a new information might
require to give up some of the prior beliefs that contradict it. Concretely, we ex-
amined contractions and revisions by means of c-contractions and c-revisions. An
interesting observation we made during our elaboration of the marginalization is
its influence on conditional beliefs, when we lift an marginalized OCF back to its
original signature. In this case, the resulting OCF is not able to infer non-trivial
propositions mentioning the just forgotten signature elements, while it is possible to
infer non-trivial conditional beliefs mentioning the just forgotten signature elements
that could not be inferred by the prior beliefs (Obs. 3.34). Thus, marginalizing and
lifting an OCF might yield new conditional beliefs.

In Section 4, we then generalized and extended the properties of Delgrande’s for-
getting approach (DFP-1)-(DFP-7) as a first attempt of postulating general prop-
erties for different kinds of forgetting that are beyond those stated in [BKIS+19].
Thereby, we elaborated two sets of postulates. The first set of postulates (DFPes-
1)Σ-(DFPes-6)Σ states properties of forgetting signature elements, while the second
set (DFPes-1)L-(DFPes-6)L states properties of forgetting formulas. This differ-
entiation is necessary, since these both kinds of forgetting are conceptually different.
At this point, we agree with Delgrande when they argue that the removal of certain
facts is different to their idea of forgetting. Furthermore, we examined the different
kinds of forgetting with respect to the generalized forgetting postulates.

In Section 4.1, we first showed that the marginalization results in beliefs equiva-
lent to the result of Delgrande’s forgetting approach (Th. 4.1). Thus, we know that
Delgrande’s approach is also covered by the different kinds of forgetting presented by
Kern-Isberner et al., which further supports our position that Delgrande’s approach
just represents one kind of forgetting, rather than stating a comprehensive general
forgetting definition. Moreover, we showed that the marginalization satisfies all of
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the generalized forgetting postulates (DFPes-1)Σ-(DFPes-6)Σ (Th. 4.6), which is
a strong evidence that these postulates are suitable for stating general properties of
forgetting signature elements. Thereby, we also showed that the marginalization is
of particular importance for the concept of forgetting signature elements. Due to
(DFPes-1)Σ-(DFPes-6)Σ, we were able to show that the changes induced to an
epistemic state and its corresponding beliefs are bounded below by the changes of
the marginalization. This means that each other operator satisfying (DFPes-1)Σ-
(DFPes-6)Σ at least induces the same changes as the marginalization (Prop. 4.7).
We also illustrated this by means of two concrete examples (Ex. 4.1). Furthermore,
we were able to show that all of the model theoretical considerations that hold for
Delgrande’s approach, also hold for the marginalization (Th. 4.3, Cor. 4.4).

In Section 4.2, we stated a second set of forgetting postulates (DFPes-1)L-
(DFPes-6)L that generalizes and extends the properties stated in (DFP-1)-(DFP-
7), but in contrast to (DFPes-1)Σ-(DFPes-6)Σ, in a way that they argue about
formulas instead of signature elements. Thus, we formulated two sets of forgetting
postulates in total, distinguishing between the notions of forgetting concepts and
objects of worlds, and forgetting beliefs and facts about the latter. At this point, we
already noticed some commonalities to some of the already established belief change
postulates in the domain of knowledge representation, namely the equivalence of
(DFPes-1)L and (AGMes-1), (DFPes-3)L and (DP1), as well as (DFPes-6)L
and (AGMes-3). Further, we showed that c-contractions are not capable of satisfy-
ing (DFPes-1)L-(DFPes-6)L in general (Th. 4.9), with the exception of (DFPes-
6)L which exactly corresponds to the success postulate of contraction as stated in
[BKIS+19] and (AGMes-3). We noticed that this can be traced back to the way
c-contraction are allowed to affect the prior beliefs. Since c-contractions in general
are not contractions in the sense of AGM, they do not necessarily correspond to
the minimal change paradigm. Concretely, any c-change operator that guarantees
the contracted formula to be not inferable by the posterior beliefs is considered a
c-contraction. This makes it difficult to examine general properties of c-contractions.

With this not being sufficient to satisfy (DFPes-1)L-(DFPes-5)L, we further
examined the forgetting postulates for those c-contractions that only induce minimal
changes to the prior beliefs, and therefore satisfy the AGM contraction postulates for
epistemic states (AGMes-1)-(AGMes-7). We showed that such c-contractions,
which we referred to as minimal change c-contractions (Def. 3.37), do not gener-
ally satisfy the forgetting postulates either, with the exception of (DFPes-1)L and
(DFPes-6)L (Th. 4.27). However, we elaborated further conditions under which
the postulates are satisfied. These additional conditions make further assumptions
about the relation of the formulas that should be forgotten, as well as their minimal
models. Most interestingly, we showed that (DFPes-2)L strongly relates to the con-
cept of refinement, which is sufficient in order to satisfy (DFPes-2)L (Prop. 4.16).
As part of the examinations for minimal change c-contractions and (DFPes-2)L,
we elaborated the minimal model subset relation ⊆min,κ (Def. 4.17) that states how
minimal models relate to each other within an OCF κ. Visualizing ⊆min,κ by means
of a Hasse diagrams (see Figure 3) allows us to gain a better understanding of the
minimal model relations. Furthermore, this visualization can also be used to under-
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stand how differences in multiple OCFs affect the relations of the minimal models
more easily. We think that this is also a promising approach for visualizing the
effects of belief changes in future works. However, since these visualizations quickly
become very complex with an increasing number of signature elements, they are
most useful when arguing about OCFs with rather small signatures. This problem
could be tackled in future works with different and more appropriate visualization
approaches, such as unifying the cliques in the Hasse diagrams to a single node.

After this, we showed that the (DFPes-1)L-(DFPes-6)L imply all of the con-
traction postulates (AGMes-1)-(AGMes-7), except for (AGMes-2) and the re-
covery postulate (AGMes-4) (Th. 4.51). Nonetheless, the fulfilment of (AGMes-
2) and (AGMes-4) is not excluded by the forgetting postulates either. In our
opinion, this illustrates that the concepts of forgetting and contraction are compati-
ble, which again disagrees to Delgrande’s statement that contractions should not be
considered as forgetting. The fact that especially (AGMes-2) and (AGMes-4) are
not implied by (DFPes-1)L-(DFPes-6)L shows that forgetting formulas according
to these postulates does not necessarily correspond to the minimal change paradigm.
This can be a desired behaviour when arguing about iterated and conditional belief
changes as discussed by Darwiche and Pearl [DP97].

Finally, we showed in Section 4.3 that the implicit forgetting of c-revisions can
be realised by any contraction satisfying (AGMes-1)-(AGMes-7), and thus es-
pecially by minimal change c-contractions. Therefore, we elaborated how the rela-
tions of minimal change c-contractions and (DFPes-1)L-(DFPes-6)L behave for
c-revision. We showed that most of the conditions sufficient for contractions to sat-
isfy the forgetting postulates cannot be transferred to revisions, mainly because the
revision with a formula ϕ contracts ¬ϕ, while the postulates still argue about ϕ.
Most notably, the refinement relation assumed for (DFPes-2)L and minimal change
c-contraction is also sufficient for c-revisions to satisfy (DFPes-2)L (Prop. 4.37).
In contrast to minimal change c-contractions, c-revisions are satisfy (DFPes-3)L in
general (Prop. 4.39), which is again due to the fact that revisions argue about forget-
ting ¬ϕ, while the forgetting postulates argue about ϕ itself. We were also able to
prove that some of the relations between c-revisions and (DFPes-1)L-(DFPes-6)L
also hold for general AGM revisions (Th. 4.43), since they only depend on the way
the revision affects the most plausible interpretations. However, the other relation
could hold for AGM revisions as well. For this further elaborations about general
epistemic states would be necessary. During the examinations of the forgetting pos-
tulates and c-revisions, we noticed that it might be more appropriate to consider
revisions with ϕ as forgetting ¬ϕ, since many of the here elaborated relations are
based on the fact that the implicit forgetting of revisions concerns ¬ϕ, while the
forgetting postulates still argue about ϕ when applied straightforwardly to revisions.
Therefore, we suggest to consider revisions with ϕ as forgetting ¬ϕ in future works,
whenever arguing about revisions in the context of forgetting. Afterwards, we ex-
amined the connection between the forgetting postulates and the AGM revision
postulates (AGMes∗1)-(AGMes∗6), as well as the postulates for iterated revi-
sion (DP1)-(DP4). We showed that (AGMes∗1),(AGMes∗2) and (AGMes∗6)
are contradicted by the forgetting postulates, if we assume the formulas they argue
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about to be non-tautologous. On the other hand, we showed that (AGMes∗3) and
(AGMes∗5) hold under further assumptions, and that (AGMes∗4) is the only
postulate that is implied by (DFPes-1)L-(DFPes-6)L (Th. 4.51). For the postu-
lates of iterated revision, we showed that both (DP1) and (DP4) are implied by
the forgetting postulates, while (DP2) and (DP3) are contradicted when we again
assume the formulas to be non-tautologous (Th. 4.55).

During our examinations on the generalized forgetting postulates (DFPes-
1)L-(DFPes-6)L, we noticed several controversial properties (Prop. 4.56 to 4.58
and Cor. 4.59) that are implied by these postulates, and discussed them in Sec-
tion 4.4. All of them could be traced back to the third forgetting postulate (DFPes-
3)L. Furthermore, we were able to show that each operator satisfying (DFPes-1)L-
(DFPes-6)L must always result in posterior beliefs that only consist of tautologies
(Th. 4.60). This mainly goes back to the implied property that the result of for-
getting must be independent of the formula we like to forget. Due to this triviality
result and our insight on (DFPes-3)L from our examinations for c-revisions, we
suggested an alternative to (DFPes-3)L, namely (DFPes-3)?L, which states that
forgetting a more specific and a more general information consecutively must al-
ways result in beliefs equivalent to just forgetting the more general information.
Replacing (DFPes-3)L by (DFPes-3)?L should prevent the forgetting from being
independent of the formula we like to forget, and thus the triviality result as well.
However, its validation is still pending and could be subject in future works.

In conclusion, we believe that the here presented postulates for forgetting signa-
ture elements (DFPes-1)Σ-(DFPes-6)Σ are actually suitable for describing general
properties for this kind of forgetting, since the marginalization satisfies all of them
and at the same time defines a lower bound for the changes each other operator
satisfying these postulates induces to the prior beliefs. This is consistent with the
idea that the marginalization forms the signature forgetting that induces only min-
imal changes to the prior beliefs as indirectly given in [BKIS+19], where it is stated
that a marginalized OCF is capable of inferring all of the prior propositional and
conditional beliefs that are defined over the reduced signature. Moreover, this cor-
responds to the here shown equivalence between the result of Delgrande’s forgetting
approach and the beliefs of a marginalized OCF. In contrast to that, we believe
that the here presented first attempt of postulating general properties for forgetting
formulas is not yet suitable, not least because of the triviality result we elaborated
in our researches that states that an operator satisfying (DFPes-1)L-(DFPes-
6)L must always result in tautologous beliefs. This might be due to the fact that
we used the properties (DFP-1)-(DFP-7) stated for Delgrande’s forgetting ap-
proach, which clearly can be considered as the forgetting of signature elements, as
a basis for the elaboration of postulates for forgetting formulas. This supports our
assumption that it is necessary to state different sets of postulates for these two
kinds of forgetting, since they are conceptually different. Nevertheless, we believe
that (DFPes-1)L-(DFPes-6)L form a good basis for further research on general
properties for forgetting formulas, especially because of the shown relations to the
AGM contraction postulates (AGMes-1)-(AGMes-7), which are all implied the
forgetting postulates, except for those that enforce the minimal change paradigm.
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With the alternative variant of the third forgetting postulate, namely (DFPes-3)?L,
we paved the way for future works, since we believe that the difference between
(DFPes-3)L and (DFPes-3)?L illustrates one of the essential differences between
the forgetting of signature elements and the forgetting of formulas.

Future Work. Since the research towards a general framework for forgetting just
emerged in the last few years, the possible directions and open questions that can
be approached in future works are numerous. In the following, we state some of the
open questions that emerged from our examinations in this work, and furthermore
some general issues that could be covered in future works.

In our conclusion above, we already mentioned some open questions that could
be examined in future works. These concern among others how forgetting, or belief
changes in general, affect the relations of the minimal models within an epistemic
state. The changes could be visualized by means of Hasse diagrams and the min-
imal subset relation ⊆min,·, such that they can be understood and examined more
easily. However, since Hasse diagrams become rather complex with an increasing
number of signature elements, the elaboration of a more appropriate visualization
might be necessary. Moreover, the relations Delgrande states between their defi-
nition of forgetting and the logic-specific approaches in [Del17] should further be
examined in the general framework presented by Kern-Isberner et al. [BKIS+19],
since the here shown equivalence of the marginalization and Delgrande’s approach
with respect to the resulting beliefs (Th. 4.1) reveals that these relations should
hold for the marginalization as well. Thus, it seems promising that these relations
can be embedded in the general framework presented in [BKIS+19]. Concerning
the suggested revised third forgetting postulate (DFPes-3)?L, further examinations
on the impact of (DFPes-3)?L could be covered in future works, including which
new properties are implied by the postulates, and if the triviality result (Th. 4.60)
still holds when replacing (DFPes-3)L by (DFPes-3)?L. Moreover, it is still to be
examined if the remaining postulates should be revised as well.

So far, we only covered three of the several kinds of forgetting presented in
[BKIS+19]. Thus, it might be interesting to further elaborate the remaining kinds
of forgetting, as well as their relations to each other, especially with respect to the
generalized forgetting postulates. Since we mostly considered forgetting in a proposi-
tional framework, further examinations on the influence of forgetting on conditional
beliefs are necessary. In this context, it could be interesting to revise the relevance
of refinements, and elaborate if the here stated relation of refinements and the pos-
terior beliefs (Prop. 4.16 and 4.37) also hold for conditional beliefs and arbitrary
epistemic states, i.e. if

if Ψ v Φ, then Ψ◦ |≈ (ψ|ϕ)⇒ Φ◦ |≈ (ψ|ϕ)

holds for epistemic states Ψ and Φ and corresponding posterior states Ψ◦, Φ◦ af-
ter forgetting. Note that at this point v denotes an appropriate definition of the
refinement relation for arbitrary epistemic states with corresponding faithfully as-
signed total preorders �Ψ,�Φ, which could be defined analogously to the refinement
relation for OCFs (Def. 2.56). Additionally, it might be interesting to investigate
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the concept of forgetting conditionals, and if this requires another set of forgetting
postulates.

Concerning our research on contractions as a kind of forgetting in Section 4.2,
we think that it might be interesting to further investigate the importance of strate-
gic c-contraction in this context. We showed that the assumptions for general
c-contractions, which are given by the parameter restrictions defining them (see
Def. 3.36), are not sufficient to argue about any of the here presented forgetting
postulates (DFPes-1)L-(DFPes-6)L, except for the success postulate (DFPes-
6)L. Thus, our further examinations focussed on minimal change c-contractions.
However, it might also be appropriate to consider strategic c-contractions that
make further assumptions on the parameters without necessarily assuming to corre-
spond to the minimal change paradigm and satisfy the AGM contraction postulates
(AGMes-1)-(AGMes-7).

More general questions that could be tackled in the future are the influence of
forgetting on inductive inference via System Z [Pea90] or c-representations [KI04],
the connections between forgetting and irrelevance, and especially which kind of
irrelevance we need for forgetting, the concept of remembering, the distributed for-
getting in multi agent systems, which corresponds to the idea of collective forgetting
[EK19], and forgetting in other concrete epistemic states like probability functions
or Markov chains, which would pave the way for transferring the insights from the
domain of knowledge representation to the domain of statistical learning.
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A Appendix

A.1 Postulates

Let K and K ′ be belief sets and ϕ ∈ L a formula.

(AGM+1) K + ϕ is a belief set

(AGM+2) ϕ ∈ K + ϕ

(AGM+3) K ⊆ K + ϕ

(AGM+4) If ϕ ∈ K, then K + ϕ = K

(AGM+5) If K ⊆ K ′, then K + ϕ ⊆ K ′ + ϕ

(AGM+6) K+A is the smallest belief set, such that (AGM+1)-(AGM+5) hold

Let Ψ be an epistemic state, ϕ, ψ ∈ L be formulas and − be a belief change operator.

(AGMes-1) Bel(Ψ) |= Bel(Ψ− ϕ)

(AGMes-2) If Bel(Ψ) |6= ϕ, then Bel(Ψ− ϕ) |= Bel(Ψ)

(AGMes-3) If Bel(Ψ− ϕ) |= ϕ, then ϕ ≡ >

(AGMes-4) Bel(Ψ− ϕ) ∪ {ϕ} |= Bel(Ψ)

(AGMes-5) If ϕ ≡ ψ, then Bel(Ψ− ϕ) ≡ Bel(Ψ− ψ)

(AGMes-6) Bel(Ψ− ϕ ∧ ψ) |= Bel(Ψ− ϕ) ∨Bel(Ψ− ψ)

(AGMes-7) If Bel(Ψ− ϕ ∧ ψ) |6= ϕ, then Bel(Ψ− ϕ) |= Bel(Ψ− ϕ ∧ ψ)

Let Ψ and Φ be epistemic states, ϕ, ψ ∈ L formulas and ∗ a belief change operator.

(AGMes∗1) Bel(Ψ ∗ ϕ) |= ϕ

(AGMes∗2) If Bel(Ψ) ∪ {ϕ} 6≡ ⊥, then Bel(Ψ ∗ ϕ) ≡ Bel(Ψ) ∪ {ϕ}

(AGMes∗3) If ϕ 6≡ ⊥, then Bel(Ψ ∗ ϕ) 6≡ ⊥

(AGMes∗4) If Ψ = Φ and ϕ ≡ ψ, then Bel(Ψ ∗ ϕ) ≡ Bel(Φ ∗ ψ)

(AGMes∗5) Bel(Ψ ∗ ϕ) ∪ {ψ} |= Bel(Ψ ∗ ϕ ∧ ψ)

(AGMes∗6) If Bel(Ψ ∗ ϕ) ∪ {ψ} 6≡ ⊥, then Bel(Ψ ∗ ϕ ∧ ψ) |= Bel(Ψ ∗ ϕ) ∪ {ψ}

Let Ψ be an epistemic state, ϕ, ψ ∈ L formulas and ∗ a belief change operator.

(DP1) If ϕ |= ψ, then Bel((Ψ ∗ ψ) ∗ ϕ) ≡ Bel(Ψ ∗ ϕ)
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(DP2) If ϕ |= ¬ψ, then Bel((Ψ ∗ ψ) ∗ ϕ) ≡ Bel(Ψ ∗ ϕ)

(DP3) If Bel(Ψ ∗ ϕ) |= ψ, then Bel((Ψ ∗ ψ) ∗ ϕ) |= ψ

(DP4) If Bel(Ψ ∗ ϕ) |6= ¬ψ, then Bel((Ψ ∗ ψ) ∗ ϕ) |6= ¬ψ

Let Γ,Γ′ ⊆ LΣ be sets of formulas, P, P ′ signatures and F ,FO as defined in Def. 3.1
and 3.2.

(DFP-1) Γ |= F(Γ, P )

(DFP-2) If Γ |= Γ′, then F(Γ, P ) |= F(Γ′, P )

(DFP-3) F(Γ, P ) = CnΣ\P (F(Γ, P ))

(DFP-4) If P ′ ⊆ P , then F(Γ, P ) = F(F(Γ, P ′), P )

(DFP-5) F(Γ, P ∪ P ′) = F(Γ, P ) ∩ F(Γ, P ′)

(DFP-6) F(Γ, P ∪ P ′) = F(F(Γ, P ), P ′)

(DFP-7) F(Γ, P ) = FO(Γ, P ) ∩ LΣ\P

Let Ψ,Φ be epistemic states over the same signature Σ, P, P ′, P1, P2 ⊆ Σ be sub-
signatures and ◦Σ

f an operator that maps an epistemic state Ψ to another epistemic
state Ψ′, i.e. Ψ ◦Σ

f P = Ψ′.

(DFPes-1)Σ Bel(Ψ) |= Bel(Ψ ◦Σ
f P )

(DFPes-2)Σ If Bel(Ψ) |= Bel(Φ), then Bel(Ψ ◦Σ
f P ) |= Bel(Φ ◦Σ

f P )

(DFPes-3)Σ If P ′ ⊆ P , then Bel((Ψ ◦Σ
f P

′) ◦Σ
f P ) ≡ Bel(Ψ ◦Σ

f P )

(DFPes-4)Σ Bel(Ψ ◦Σ
f (P1 ∪ P2)) ≡ Bel(Ψ ◦Σ

f P1) ∩Bel(Ψ ◦Σ
f P2)

(DFPes-5)Σ Bel(Ψ ◦Σ
f (P1 ∪ P2)) ≡ Bel((Ψ ◦Σ

f P1) ◦Σ
f P2)

(DFPes-6)Σ Bel(Ψ ◦Σ
f P ) ≡ Bel((Ψ ◦Σ

f P )↑Σ) ∩ LΣ\P

Let Ψ and Φ be epistemic states, ϕ, ψ ∈ L be formulas and ◦Lf a belief change
operator.

(DFPes-1)L Bel(Ψ) |= Bel(Ψ ◦Lf ϕ)

(DFPes-2)L If Bel(Ψ) |= Bel(Φ), then Bel(Ψ ◦Lf ϕ) |= Bel(Φ ◦Lf ϕ)

(DFPes-3)L If ϕ |= ψ, then Bel(Ψ ◦Lf ϕ) ≡ Bel((Ψ ◦Lf ψ) ◦Lf ϕ)

(DFPes-4)L Bel(Ψ ◦Lf (ϕ ∨ ψ)) ≡ Bel(Ψ ◦Lf ϕ) ∩Bel(Ψ ◦Lf ψ)

(DFPes-5)L Bel(Ψ ◦Lf (ϕ ∨ ψ)) ≡ Bel((Ψ ◦Lf ϕ) ◦Lf ψ)

(DFPes-6)L If ϕ 6≡ >, then Bel(Ψ ◦Lf ϕ) |6= ϕ
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A.2 Proofs

κ ◦Σ,1
f P (ω′) =

{
0, if κ|Σ\P (ω′) = 0

max{κ|Σ\P (ω) | ω ∈ ΩΣ\P} − κ|Σ\P (ω′) + 1, otherwise
.

Proof. ◦Σ,1
f satisfies (DFPes-1)Σ-(DFPes-6)Σ. In order to prove, that ◦Σ,1

f sat-

isfies (DFPes-1)Σ-(DFPes-6)Σ, we first show that κ|Σ\P and κ ◦Σ,1
f P result in

equivalent beliefs for all P ⊆ Σ.

Bel(κ ◦Σ,1
f P ) ≡ Th(Jκ ◦Σ,1

f P K) (Lem. 2.39)

≡ Th({ω′ ∈ ΩΣ\P | κ ◦Σ,1
f P (ω′) = 0}) (Def. 2.30)

≡ Th({ω′ ∈ ΩΣ\P | κ|Σ\P (ω′) = 0})
≡ Th(Jκ|Σ\P K) (Def. 2.30)

≡ Bel(κ|Σ\P ) (Lem. 2.39)

In the following, we refer to the above stated equivalence as (| ≡ ◦Σ,1
f ). For all

postulates (DFPes-1)Σ-(DFPes-6)Σ, we that ◦Σ,1
f satisfying them can be traced

back to the above stated equivalence and the fact that the marginalization satisfies
them as well (Th. 4.6).

(DFPes-1)Σ:

Bel(κ) |= Bel(κΣ\P ) (Th. 4.6)

⇔ Bel(κ) |= Bel(κ ◦Σ,1
f P ) (| ≡ ◦Σ,1

f )

(DFPes-2)Σ:

if Bel(κ) |= Bel(κ′), then Bel(κΣ\P ) |= Bel(κ′Σ\P ) (Th. 4.6)

⇔ if Bel(κ) |= Bel(κ′), then Bel(κ ◦Σ,1
f P ) |= Bel(κ′ ◦Σ,1

f P ) (| ≡ ◦Σ,1
f )

(DFPes-3)Σ:

if P ′ ⊆ P, then Bel((κ|Σ\P ′)|(Σ\P ′)\P ) ≡ Bel(κ|Σ\P ) (Th. 4.6)

⇔ if P ′ ⊆ P, then Bel((κ ◦Σ,1
f P ′) ◦Σ,1

f P ) ≡ Bel(κ ◦Σ,1
f P ) (| ≡ ◦Σ,1

f )

(DFPes-4)Σ:

Bel(κΣ\(P1∪P2)) ≡ Bel(κΣ\P1) ∩Bel(κΣ\P2) (Th. 4.6)

⇔ Bel(κ ◦Σ,1
f (P1 ∪ P2)) ≡ Bel(κ ◦Σ,1

f P1) ∩Bel(κ ◦Σ,1
f P2) (| ≡ ◦Σ,1

f )

(DFPes-5)Σ

Bel(κΣ\(P1∪P2)) ≡ Bel((κΣ\P1)(Σ\P1)\P2) (Th. 4.6)

⇔ Bel(κ ◦Σ,1
f (P1 ∪ P2)) ≡ Bel((κ ◦Σ,1

f P1) ◦Σ,1
f P2) (| ≡ ◦Σ,1

f )
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(DFPes-6)Σ

Bel(κΣ\P ) ≡ CnΣ(Bel(κΣ\P )) ∩ LΣ\P (Th. 4.6)

⇔ Bel(κ ◦Σ,1
f P ) ≡ CnΣ(Bel(κ ◦Σ,1

f P )) ∩ LΣ\P (| ≡ ◦Σ,1
f )

κ ◦Σ,2
f P (ω′) =

{
0, if ω′ ∈ σ(P )|Σ\P

κ|Σ\P (ω′), otherwise
, σ(P ) =



⋃
ρ∈P

σ({ρ}), if |P | > 1

{pbf}, if P = {p}
{pbf}, if P = {b}
{pbf} if P = {f}

Proof. ◦Σ,2
f satisfies (DFPes-1)Σ-(DFPes-6)Σ. In order to prove that ◦Σ,2

f satisfies
(DFPes-1)Σ-(DFPes-6)Σ, we first show that the beliefs after marginalizing are
equivalent to those after applying ◦Σ,2

f to the same OCF κ. We further refer to this

equivalence as (| |= ◦Σ,2
f ).

Bel(κΣ\P ) |= Bel(κ ◦Σ,2
f P )

⇔ JκΣ\P K ⊆ Jκ ◦Σ,2
f P K (Prop. 2.41)

⇔ JκΣ\P K ⊆ JκΣ\P K ∪ σ(P )|Σ\P

Next, we show that ◦Σ,2
f satisfies (DFPes-1)Σ-(DFPes-6)Σ due to the above stated

relation to the marginalization and the way σ selects the interpretations that are
additionally added to the most plausible interpretations.

(DFPes-1)Σ:

Bel(κ) |= Bel(κΣ\P ) (Th. 4.6)

⇒ Bel(κ) |= Bel(κ ◦Σ,2
f P ) (| |= ◦Σ,2

f )

(DFPes-2)Σ: In the following, we assume Bel(κ) |= Bel(κ′).

Bel(κ ◦Σ,2
f P ) |= Bel(κ′ ◦Σ,2

f P )

⇔ Jκ ◦Σ,2
f P K ⊆ Jκ′ ◦Σ,2

f P K (Prop. 2.41)

⇔ JκΣ\P K ∪ σ(P )|Σ\P ⊆ Jκ′Σ\P K ∪ σ(P )|Σ\P

⇔ JκΣ\P K ⊆ Jκ′Σ\P K ∪ σ(P )|Σ\P

⇐ JκΣ\P K ⊆ Jκ′Σ\P K

⇔ Bel(κΣ\P ) |= Bel(κ′Σ\P ) (Prop. 2.41)

This holds, since we already know that the marginalization satisfies (DFPes-
2)Σ.
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(DFPes-3)Σ: In the following, we assume P ′ ⊆ P .

Bel((κ ◦Σ,2
f P ′) ◦Σ,2

f P ) ≡ Bel(κ ◦Σ,2
f P )

⇔ J(κ ◦Σ,2
f P ′) ◦Σ,2

f P K = Jκ ◦Σ,2
f P K (Prop. 2.38)

⇔ J(κ ◦Σ,2
f P ′)|(Σ\P ′)\P K ∪ σ(P )|(Σ\P ′)\P = JκΣ\P K ∪ σ(P )|Σ\P

⇔ Jκ ◦Σ,2
f P ′K|(Σ\P ′)\P ∪ σ(P )|(Σ\P ′)\P = JκΣ\P K ∪ σ(P )|Σ\P (Prop. 3.24)

⇔ Jκ ◦Σ,2
f P ′K|Σ\P ∪ σ(P )|Σ\P = JκΣ\P K ∪ σ(P )|Σ\P (P ′ ⊆ P )

⇔ (JκΣ\P ′K ∪ σ(P ′)|Σ\P ′)|Σ\P ∪ σ(P )|Σ\P = JκΣ\P K ∪ σ(P )|Σ\P

⇔ (JκKΣ\P ′ ∪ σ(P ′)|Σ\P ′)|Σ\P ∪ σ(P )|Σ\P = JκΣ\P K ∪ σ(P )|Σ\P (Prop. 3.24)

⇔ JκKΣ\P ∪ σ(P ′)|Σ\P ∪ σ(P )|Σ\P = JκΣ\P K ∪ σ(P )|Σ\P (P ′ ⊆ P )

⇔ JκKΣ\P ∪ (
⋃
ω∈P ′

σ(ω))|Σ\P ∪ (
⋃
ω∈P

σ(ω))|Σ\P = JκΣ\P K ∪ σ(P )|Σ\P

⇔ JκKΣ\P ∪ (
⋃
ω∈P

σ(ω))|Σ\P = JκΣ\P K ∪ σ(P )|Σ\P (P ′ ⊆ P )

⇔ JκKΣ\P ∪ σ(P )|Σ\P = JκΣ\P K ∪ σ(P )|Σ\P

⇔ JκΣ\P K ∪ σ(P )|Σ\P = JκΣ\P K ∪ σ(P )|Σ\P (Prop. 3.24)

(DFPes-4)Σ:

Bel(κ ◦Σ,2
f P1) ∩Bel(κ ◦Σ,2

f P2)

≡ Th(Jκ ◦Σ,2
f P1K) ∩ Th(Jκ ◦Σ,2

f P2K) (Lem. 2.39)

≡ Th(Jκ|Σ\P1K ∪ σ(P1)|Σ\P1) ∩ Th(Jκ|Σ\P2K ∪ σ(P2)|Σ\P2)

≡ Th(Jκ|Σ\P1K) ∩ Th(σ(P1)|Σ\P1) ∩ Th(Jκ|Σ\P2K) ∩ Th(σ(P2)|Σ\P2) (Lem. 2.25)

≡ Bel(κ|Σ\P1) ∩Bel(κ|Σ\P2) ∩ Th(σ(P1)|Σ\P1) ∩ Th(σ(P2)|Σ\P2) (Lem. 2.39)

≡ Bel(κ|Σ\(P1∪P2)) ∩ Th(σ(P1)|Σ\P1) ∩ Th(σ(P2)|Σ\P2) (Th. 4.6)

≡ Bel(κ) ∩ L|Σ\(P1∪P2) ∩ Th(σ(P1)|Σ\P1) ∩ Th(σ(P2)|Σ\P2) (Prop. 4.5)

≡ (Bel(κ) ∩ L|Σ\(P1∪P2))

∩ (Th(σ(P1)|Σ\P1) ∩ L|Σ\(P1∪P2))

∩ (Th(σ(P2)|Σ\P2) ∩ L|Σ\(P1∪P2))

≡ (Bel(κ) ∩ L|Σ\(P1∪P2))

∩ ({ϕ ∈ LΣ\P1 | σ(P1)|Σ\P1 |= ϕ} ∩ L|Σ\(P1∪P2))

∩ ({ϕ ∈ LΣ\P2 | σ(P2)|Σ\P2 |= ϕ} ∩ L|Σ\(P1∪P2))

(Def. 2.22)

≡ (Bel(κ) ∩ L|Σ\(P1∪P2))

∩ {ϕ ∈ LΣ\(P1∪P2) | σ(P1)|Σ\P1 |= ϕ}
∩ {ϕ ∈ LΣ\(P1∪P2) | σ(P2)|Σ\P2 |= ϕ}

≡ (Bel(κ) ∩ L|Σ\(P1∪P2))

∩ {ϕ ∈ LΣ\(P1∪P2) | σ(P1)Σ\(P1∪P2) |= ϕ}
∩ {ϕ ∈ LΣ\(P1∪P2) | σ(P2)Σ\(P1∪P2) |= ϕ}

(Lem. 3.27)
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≡ (Bel(κ) ∩ L|Σ\(P1∪P2))

∩ Th(σ(P1)Σ\(P1∪P2))

∩ Th(σ(P2)Σ\(P1∪P2))

(Def. 2.22)

≡ Bel(κ|Σ\(P1∪P2))

∩ Th(σ(P1)Σ\(P1∪P2))

∩ Th(σ(P2)Σ\(P1∪P2))

(Prop. 4.5)

≡ Th(Jκ|Σ\(P1∪P2)K)
∩ Th(σ(P1)Σ\(P1∪P2))

∩ Th(σ(P2)Σ\(P1∪P2))

(Lem. 2.39)

≡ Th(Jκ|Σ\(P1∪P2)K ∪ σ(P1)Σ\(P1∪P2) ∪ σ(P2)Σ\(P1∪P2)) (Lem. 2.25)

≡ Th(Jκ|Σ\(P1∪P2)K ∪ (σ(P1) ∪ σ(P2))Σ\(P1∪P2))

≡ Th(Jκ|Σ\(P1∪P2)K ∪ ((
⋃
ρ∈P1

σ(ρ)) ∪ (
⋃
ρ∈P2

σ(ρ)))Σ\(P1∪P2))

≡ Th(Jκ|Σ\(P1∪P2)K ∪ (
⋃

ρ∈P1∪P2

σ(ρ))|Σ\(P1∪P2))

≡ Th(Jκ|Σ\(P1∪P2)K ∪ σ(P1 ∪ P2)|Σ\(P1∪P2))

≡ Th(Jκ ◦Σ,2
f (P1 ∪ P2)K)

≡ Bel(κ ◦Σ,2
f (P1 ∪ P2)) (Lem. 2.39)

(DFPes-5)Σ:

Bel((κ ◦Σ,2
f P1) ◦Σ,2

f P2)

≡ Th(J(κ ◦Σ,2
f P1) ◦Σ,2

f P2K) (Lem. 2.39)

≡ Th(J(κ ◦Σ,2
f P1)|(Σ\P1)\P2K ∪ σ(P2)|(Σ\P1)\P2)

≡ Th(Jκ ◦Σ,2
f P1K|(Σ\P1)\P2 ∪ σ(P2)|(Σ\P1)\P2) (Prop. 3.24)

≡ Th((Jκ|Σ\P1K ∪ σ(P1)|Σ\P1)|(Σ\P1)\P2 ∪ σ(P2)|(Σ\P1)\P2)

≡ Th((JκK|Σ\P1 ∪ σ(P1)|Σ\P1)|(Σ\P1)\P2 ∪ σ(P2)|(Σ\P1)\P2) (Prop. 3.24)

≡ Th(JκK|(Σ\P1)\P2 ∪ σ(P1)|(Σ\P1)\P2 ∪ σ(P2)|(Σ\P1)\P2)

≡ Th(JκK|(Σ\P1)\P2 ∪ σ(P1)|(Σ\P1)\P2 ∪ σ(P2)|(Σ\P1)\P2)

≡ Th(JκK|Σ\(P1∪P2) ∪ σ(P1)|Σ\(P1∪P2) ∪ σ(P2)|Σ\(P1∪P2))

≡ Th(JκK|Σ\(P1∪P2) ∪ (σ(P1) ∪ σ(P2))|Σ\(P1∪P2))

≡ Th(JκK|Σ\(P1∪P2) ∪ ((
⋃
ρ∈P1

σ(ρ)) ∪ (
⋃
ρ∈P2

σ(ρ)))|Σ\(P1∪P2))

≡ Th(JκK|Σ\(P1∪P2) ∪ (
⋃

ρ∈P1∪P2

σ(ρ))|Σ\(P1∪P2))

≡ Th(JκK|Σ\(P1∪P2) ∪ σ(P1 ∪ P2)|Σ\(P1∪P2))

≡ Th(Jκ|Σ\(P1∪P2)K ∪ σ(P1 ∪ P2)|Σ\(P1∪P2)) (Prop. 3.24)
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≡ Th(Jκ ◦Σ,2
f (P1 ∪ P2)K)

≡ Bel(κ ◦Σ,2
f (P1 ∪ P2)) (Lem. 2.39)

(DFPes-6)Σ:

CnΣ(Bel(κ ◦Σ,2
f P )) ∩ LΣ\P

≡ {ϕ ∈ LΣ | Bel(κ ◦Σ,2
f P ) |= ϕ} ∩ LΣ\P (Def. 2.16)

≡ {ϕ ∈ LΣ\P | Bel(κ ◦Σ,2
f P ) |= ϕ}

≡ CnΣ\P (Bel(κ ◦Σ,2
f P ))

≡ Bel(κ ◦Σ,2
f P ) (Bel is deductively closed)



174 References

References

[AGM85] Carlos E Alchourrón, Peter Gärdenfors, and David Makinson. On the
logic of theory change: Partial meet contraction and revision functions.
The journal of symbolic logic, 50(2):510–530, 1985.

[BKI19] Christoph Beierle and Gabriele Kern-Isberner. Methoden wissens-
basierter Systeme. Springer, 2019.

[BKIS+19] Christoph Beierle, Gabriele Kern-Isberner, Kai Sauerwald, Tanja Bock,
and Marco Ragni. Towards a general framework for kinds of forgetting in
common-sense belief management. KI-Künstliche Intelligenz, 33(1):57–
68, 2019.

[Boo54] George Boole. An investigation of the laws of thought: on which are
founded the mathematical theories of logic and probabilities. Dover Pub-
lications, 1854.

[Bou93] Craig Boutilier. Revision sequences and nested conditionals. In IJCAI,
volume 93, pages 519–531, 1993.

[CH92] Gregory F Cooper and Edward Herskovits. A bayesian method for
the induction of probabilistic networks from data. Machine learning,
9(4):309–347, 1992.
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