

Journal of Arti�cial Intelligence Research 1 (1994) 231-255 Submitted 12/93; published 2/94

Substructure Discovery Using Minimum Description

Length and Background Knowledge

Diane J. Cook cook@cse.uta.edu

Lawrence B. Holder holder@cse.uta.edu

Department of Computer Science Engineering

Box 19015

University of Texas at Arlington

Arlington, TX 76019 USA

Abstract

The ability to identify interesting and repetitive substructures is an essential compo-

nent to discovering knowledge in structural data. We describe a new version of our Sub-

due substructure discovery system based on the minimum description length principle.

The Subdue system discovers substructures that compress the original data and represent

structural concepts in the data. By replacing previously-discovered substructures in the

data, multiple passes of Subdue produce a hierarchical description of the structural reg-

ularities in the data. Subdue uses a computationally-bounded inexact graph match that

identi�es similar, but not identical, instances of a substructure and �nds an approximate

measure of closeness of two substructures when under computational constraints. In addi-

tion to the minimumdescription length principle, other background knowledge can be used

by Subdue to guide the search towards more appropriate substructures. Experiments in

a variety of domains demonstrate Subdue's ability to �nd substructures capable of com-

pressing the original data and to discover structural concepts important to the domain.

1. Introduction

The large amount of data collected today is quickly overwhelming researchers' abilities to
interpret the data and discover interesting patterns within the data. In response to this
problem, a number of researchers have developed techniques for discovering concepts in
databases. These techniques work well for data expressed in a non-structural, attribute-
value representation, and address issues of data relevance, missing data, noise and uncer-
tainty, and utilization of domain knowledge. However, recent data acquisition projects
are collecting structural data describing the relationships among the data objects. Corre-
spondingly, there exists a need for techniques to analyze and discover concepts in structural
databases.

One method for discovering knowledge in structural data is the identi�cation of com-
mon substructures within the data. The motivation for this process is to �nd substructures
capable of compressing the data and to identify conceptually interesting substructures that
enhance the interpretation of the data. Substructure discovery is the process of identifying
concepts describing interesting and repetitive substructures within structural data. Once
discovered, the substructure concept can be used to simplify the data by replacing instances
of the substructure with a pointer to the newly discovered concept. The discovered sub-
structure concepts allow abstraction over detailed structure in the original data and provide

c1994 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Cook & Holder

new, relevant attributes for interpreting the data. Iteration of the substructure discovery
and replacement process constructs a hierarchical description of the structural data in terms
of the discovered substructures. This hierarchy provides varying levels of interpretation that
can be accessed based on the goals of the data analysis.

We describe a system called Subdue (Holder, Cook, & Bunke, 1992; Holder & Cook,
1993) that discovers interesting substructures in structural data based on the minimum
description length principle. The Subdue system discovers substructures that compress
the original data and represent structural concepts in the data. By replacing previously-
discovered substructures in the data, multiple passes of Subdue produce a hierarchical de-
scription of the structural regularities in the data. Subdue uses a computationally-bounded
inexact graph match that identi�es similar, but not identical, instances of a substructure and
�nds an approximate measure of closeness of two substructures when under computational
constraints. In addition to the minimum description length principle, other background
knowledge can be used by Subdue to guide the search towards more appropriate substruc-
tures.

The following sections describe the approach in detail. Section 2 describes the process of
substructure discovery and introduces needed de�nitions. Section 3 compares the Subdue
discovery system to other work found in the literature. Section 4 introduces the minimum
description length encoding used by this approach, and Section 5 presents the inexact
graph match algorithm employed by Subdue. Section 6 describes methods of incorporating
background knowledge into the substructure discovery process. The experiments detailed
in Section 7 demonstrate Subdue's ability to �nd substructures that compress the data and
to re-discover known concepts in a variety of domains. Section 8 details the hierarchical
discovery process. We conclude with observations and directions for future research.

2. Substructure Discovery

The substructure discovery system represents structured data as a labeled graph. Objects
in the data map to vertices or small subgraphs in the graph, and relationships between
objects map to directed or undirected edges in the graph. A substructure is a connected
subgraph within the graphical representation. This graphical representation serves as input
to the substructure discovery system. Figure 1 shows a geometric example of such an input
graph. The objects in the �gure (e.g., T1, S1, R1) become labeled vertices in the graph, and
the relationships (e.g., on(T1,S1), shape(C1,circle)) become labeled edges in the graph.
The graphical representation of the substructure discovered by Subdue from this data is
also shown in Figure 1.

An instance of a substructure in an input graph is a set of vertices and edges from
the input graph that match, graph theoretically, to the graphical representation of the
substructure. For example, the instances of the substructure in Figure 1 are shown in
Figure 2.

The substructure discovery algorithm used by Subdue is a computationally-constrained
beam search. The algorithm begins with the substructure matching a single vertex in the
graph. Each iteration through the algorithm selects the best substructure and expands the
instances of the substructure by one neighboring edge in all possible ways. The new unique
generated substructures become candidates for further expansion. The algorithm searches

232

Substructure Discovery

S1

T1

T2 T3 T4

S2 S3 S4

C1

R1

SubstructureInput Graph

on

sh
ap
e

sh
ap
e

triangle

square

Figure 1: Example substructure in graph form.

T2

S2

T3

S3

T4

S4

T1

S1

Instance 1 Instance 2 Instance 3 Instance 4

Figure 2: Instances of the substructure.

for the best substructure until all possible substructures have been considered or the total
amount of computation exceeds a given limit. The evaluation of each substructure is guided
by the MDL principle and other background knowledge provided by the user.

Typically, once the description length of an expanding substructure begins to increase,
further expansion of the substructure will not yield a smaller description length. As a
result, Subdue makes use of an optional pruning mechanism that eliminates substructure
expansions from consideration when the description lengths for these expansions increases.

3. Related Work

Several approaches to substructure discovery have been developed. Winston's Arch pro-
gram (Winston, 1975) discovers substructures in order to deepen the hierarchical description
of a scene and to group objects into more general concepts. The Arch program searches for
two types of substructure in the blocks-world domain. The �rst type involves a sequence
of objects connected by a chain of similar relations. The second type involves a set of
objects each having a similar relationship to some \grouping" object. The main di�erence
between the substructure discovery procedures used by the Arch program and Subdue is
that the Arch program is designed speci�cally for the blocks-world domain. For instance,
the sequence discovery method looks for supported-by and in-front-of relations only.
Subdue's substructure discovery method is domain independent, although the inclusion of
domain-speci�c knowledge would improve Subdue's performance.

Motivated by the need to construct a knowledge base of chemical structures, Levinson
(Levinson, 1984) developed a system for storing labeled graphs in which individual graphs

233

Cook & Holder

are represented by the set of vertices in a universal graph. In addition, the individual graphs
are maintained in a partial ordering de�ned by the subgraph-of relation, which improves
the performance of graph comparisons. The universal graph representation provides a
method for compressing the set of graphs stored in the knowledge base. Subgraphs of
the universal graph used by several individual graphs suggest common substructure in the
individual graphs. One di�erence between the two approaches is that Levinson's system
is designed to incrementally process smaller individual graphs; whereas, Subdue processes
larger graphs all at once. Also, Levinson's system discovers common substructure only
as an indirect result of the universal graph construction; whereas, Subdue's main goal
is to discover and output substructure de�nitions that reduce the minimum description
length encoding of the graph. Finally, the subgraph-of partial ordering used by Levinson's
system is not included in Subdue, but maintaining this partial ordering would improve the
performance of the graph matching procedure by pruning the number of possible matching
graphs.

Segen (Segen, 1990) describes a system for storing graphs using a probabilistic graph
model to represent subsets of the graph. Alternative models are evaluated based on a min-
imum description length measure of the information needed to represent the stored graphs
using the model. In addition, Segen's system clusters the graphs into classes based on
minimizing the description length of the graphs according to the entire clustering. Apart
from the probabilistic representation, Segen's approach is similar to Levinson's system in
that both methods take advantage of commonalities in the graphs to assist in graph stor-
age and matching. The probabilistic graphs contain information for identifying common
substructure in the exact graphs they represent. The portion of the probabilistic graph
with high probability de�nes a substructure that appears frequently in the exact graphs.
This notion was not emphasized in Segen's work, but provides an alternative method to
substructure discovery by clustering subgraphs of the original input graphs. As with Levin-
son's approach, graphs are processed incrementally, and substructure is found across several
graphs, not within a single graph as in Subdue.

The Labyrinth system (Thompson & Langley, 1991) extends the Cobweb incremental
conceptual clustering system (Fisher, 1987) to handle structured objects. Labyrinth uses
Cobweb to form hierarchical concepts of the individual objects in the domain based on
their primitive attributes. Concepts of structured objects are formed in a similar manner
using the individual objects as attributes. The resulting hierarchy represents a componential
model of the structured objects. Because Cobweb's concepts are probabilistic, Labyrinth
produces probabilistic models of the structured objects, but with an added hierarchical
organization. The upper-level components of the structured-object hierarchy produced by
Labyrinth represent substructures common to the examples. Therefore, although not the
primary focus, Labyrinth is discovering substructure, but in a more constrained context
than the general graph representation used by Subdue.

Conklin et al. (Conklin & Glasgow, 1992) have developed the i-mem system for con-
structing an image hierarchy, similar to that of Labyrinth, used for discovering common
substructures in a set of images and for e�cient retrieval of images similar to a given image.
Images are expressed in terms of a set of relations de�ned by the user. Speci�c and general
(conceptual) images are stored in the hierarchy based on a subsumption relation similar

234

Substructure Discovery

to Levinson's subgraph-of partial ordering. Image matching utilizes a transformational
approach (similar to Subdue's inexact graph match) as a measure of image closeness.

As with the approaches of Segen and Levinson, i-mem is designed to process individual
images. Therefore, the general image concepts that appear higher in i-mem's hierarchy
will represent common substructures across several images. Subdue is designed to discover
common substructures within a single image. Subdue can mimic the individual approach
of these systems by processing a set of individual images as one disconnected graph. The
substructures found will be common to the individual images. The hierarchy also represents
a componential view of the images. This same view can be constructed by Subdue using
multiple passes over the graph after replacing portions of the input graph with substructures
discovered during previous passes. i-mem has performed well in a simple chess domain
and molecular chemistry domains (Conklin & Glasgow, 1992). However, i-mem requires
domain-speci�c relations for expressing images in order for the hierarchy to �nd relevant
substructures and for image matching to be e�cient. Again, maintaining the concepts
(images, graphs) in a partially-ordered hierarchy improves the e�ciency of matching and
retrieval, and suggests a possible improvement to Subdue.

The CLiP system (Yoshida, Motoda, & Indurkhya, 1993) for graph-based induction is
more similar to Subdue than the previous systems. CLiP iteratively discovers patterns in
graphs by expanding and combining patterns discovered in previous iterations. Patterns
are grouped into views based on their collective ability to compress the original input
graph. During each iteration CLiP uses existing views to contract the input graph and
then considers adding to the views new patterns consisting of two vertices and an edge from
the contracted graph. The compression of the new proposed views is estimated, and the
best views (according to a given beam width) are retained for the next iteration.

CLiP discovers substructures (patterns) di�erently than Subdue. First, CLiP produces
a set of substructures that collectively compress the input graph; whereas, Subdue produces
only single substructures evaluated using the more principled minimum description length.
CLiP has the ability to grow substructures agglomeratively (i.e., merging two substructures
together); whereas, Subdue always produces new substructures using incremental growth
along one new edge. CLiP initially estimates the compression value of new views based on
the compression value of the parent view; whereas, Subdue performs an expensive exact
measurement of compression for each new substructure. Finally, CLiP employs an e�cient
graph match based on graph identity, not graph isomorphism as in Subdue. Graph identity
assumes an ordering over the incident edges of a vertex and does not consider all possible
mappings when looking for occurrences of a pattern in an input graph. These di�erences
in CLiP suggest possible enhancements to Subdue.

Research in pattern recognition has begun to investigate the use of graphs and graph
grammars as an underlying representation for structural problems (Schalko�, 1992). Many
results in grammatical inference are applicable to constrained classes of graphs (e.g., trees)
(Fu, 1982; Miclet, 1986). The approach begins with a set of sample graphs and produces a
generalized graph grammar capable of deriving the original sample graphs and many others.
The production rules of this general grammar capture regularities (substructures) in the
sample graphs. Jeltsch and Kreowski (Jeltsch & Kreowski, 1991) describe an approach that
begins with a maximally-speci�c grammar and iteratively identi�es common subgraphs in
the right-hand sides of the production rules. These common subgraphs are used to form

235

Cook & Holder

new, more general production rules. Although their method does not address the underlying
combinatorial nondeterminism, heuristic approaches could provide a feasible method for
extracting substructures in the form of graph grammars. Furthermore, the graph grammar
production-rule may provide a suitable representation for background knowledge during the
substructure discovery process.

4. Minimum Description Length Encoding of Graphs

The minimum description length principle (MDLP) introduced by Rissanen (Rissanen,
1989) states that the best theory to describe a set of data is that theory which minimizes
the description length of the entire data set. The MDL principle has been used for decision
tree induction (Quinlan & Rivest, 1989), image processing (Pednault, 1989; Pentland, 1989;
Leclerc, 1989), concept learning from relational data (Derthick, 1991), and learning models
of non-homogeneous engineering domains (Rao & Lu, 1992).

We demonstrate how the minimum description length principle can be used to discover
substructures in complex data. In particular, a substructure is evaluated based on how well
it can compress the entire dataset using the minimum description length. We de�ne the
minimum description length of a graph to be the number of bits necessary to completely
describe the graph.

According to the minimum description length (MDL) principle, the theory that best
accounts for a collection of data is the one that minimizes I(S) + I(GjS), where S is the
discovered substructure, G is the input graph, I(S) is the number of bits required to encode
the discovered substructure, and I(GjS) is the number of bits required to encode the input
graph G with respect to S.

The graph connectivity can be represented by an adjacency matrix. Consider a graph
that has n vertices, which are numbered 0; 1; : : : ; n� 1. An n� n adjacency matrix A can
be formed with entry A[i; j] set to 0 or 1. If A[i; j] = 0, then there is no connection from
vertex i to vertex j. If A[i; j] = 1, then there is at least one connection from vertex i to
vertex j. Undirected edges are recorded in only one entry of the matrix. The adjacency
matrix for the graph in Figure 3 is shown below.

x

triangle

y

square

r

rectangle

2
66666664

0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

3
77777775

The encoding of the graph consists of the following steps. We assume that the decoder
has a table of the lu unique labels in the original graph G.

1. Determine the number of bits vbits needed to encode the vertex labels of the graph.
First, we need (lg v) bits to encode the number of vertices v in the graph. Then,
encoding the labels of all v vertices requires (v lg lu) bits. We assume the vertices are
speci�ed in the same order they appear in the adjacency matrix. The total number
of bits to encode the vertex labels is

vbits = lg v + v lg lu

236

Substructure Discovery

sh
ap
e

sh
ap
e

triangle

square

x

on

y

on

sh
ap
e

rectangle

r

Figure 3: MDL example graph.

For the example in Figure 3, v = 6, and we assume that there are lu = 8 unique
labels in the original graph. The number of bits needed to encode these vertices is
lg 6 + 6 lg 8 = 20:58 bits.

2. Determine the number of bits rbits needed to encode the rows of the adjacency matrix
A. Typically, in large graphs, a single vertex has edges to only a small percentage of
the vertices in the entire graph. Therefore, a typical row in the adjacency matrix will
have much fewer than v 1s, where v is the total number of vertices in the graph. We
apply a variant of the coding scheme used by (Quinlan & Rivest, 1989) to encode bit
strings with length n consisting of k 1s and (n � k) 0s, where k � (n � k). In our
case, row i (1 � i � v) can be represented as a bit string of length v containing ki
1s. If we let b = maxi ki, then the ith row of the adjacency matrix can be encoded as
follows.

(a) Encoding the value of ki requires lg(b+ 1) bits.

(b) Given that only ki 1s occur in the row bit string of length v, only
�
vki

�
strings

of 0s and 1s are possible. Since all of these strings have equal probability of

occurrence, lg
�
vki

�
bits are needed to encode the positions of 1s in row i. The

value of v is known from the vertex encoding.

Finally, we need an additional lg(b+ 1) bits to encode the number of bits needed to
specify the value of ki for each row. The total encoding length in bits for the adjacency
matrix is

rbits = lg(b+ 1) +
vX

i=1

lg(b+ 1) + lg
�
vki

�

= (v + 1) lg(b+ 1)
vX

i=1

lg
�
vki

�

237

Cook & Holder

For the example in Figure 3, b = 2, and the number of bits needed to encode the

adjacency matrix is (7 lg 3)+lg
�
62
�
+lg

�
60
�
+lg

�
62
�
+lg

�
60
�
+lg

�
61
�
+lg

�
60
�
= 21:49

bits.

3. Determine the number of bits ebits needed to encode the edges represented by the
entries A[i; j] = 1 of the adjacency matrix A. The number of bits needed to encode
entry A[i; j] is (lgm) + e(i; j)[1 + lg lu], where e(i; j) is the actual number of edges
between vertex i and j in the graph andm = maxi;j e(i; j). The (lgm) bits are needed
to encode the number of edges between vertex i and j, and [1 + lg lu] bits are needed
per edge to encode the edge label and whether the edge is directed or undirected. In
addition to encoding the edges, we need to encode the number of bits (lgm) needed
to specify the number of edges per entry. The total encoding of the edges is

ebits = lgm+
vX

i=1

vX
j=1

lgm+ e(i; j)[1+ lg lu]

= lgm+ e(1 + lg lu) +
vX

i=1

vX
j=1

A[i; j] lgm

= e(1 + lg lu) + (K + 1) lgm

where e is the number of edges in the graph, andK is the number of 1s in the adjacency
matrix A. For the example in Figure 3, e = 5, K = 5, m = 1, lu = 8, and the number
of bits needed to encode the edges is 5(1 + lg 8) + 6 lg 1 = 20.

The total encoding of the graph takes (vbits + rbits + ebits) bits. For the example in
Figure 3, this value is 62:07 bits.

Both the input graph and discovered substructure can be encoded using the above
scheme. After a substructure is discovered, each instance of the substructure in the input
graph is replaced by a single vertex representing the entire substructure. The discovered
substructure is represented in I(S) bits, and the graph after the substructure replacement is
represented in I(GjS) bits. Subdue searches for the substructure S in graph G minimizing
I(S) + I(GjS).

5. Inexact Graph Match

Although exact structure match can be used to �nd many interesting substructures, many
of the most interesting substructures show up in a slightly di�erent form throughout the
data. These di�erences may be due to noise and distortion, or may just illustrate slight
di�erences between instances of the same general class of structures. Consider the image
shown in Figure 9. The pencil and the cube would make ideal substructures in the picture,
but an exact match algorithm may not consider these as strong substructures, because they
rarely occur in the same form and level of detail throughout the picture.

Given an input graph and a set of de�ned substructures, we want to �nd those subgraphs
of the input graph that most closely resemble the given substructures. Furthermore, we want
to associate a distance measure between a pair of graphs consisting of a given substructure
and a subgraph of the input graph. We adopt the approach to inexact graph match given
by Bunke and Allermann (Bunke & Allermann, 1983).

238

Substructure Discovery

4

5

1 2
3

A B
B

B

A

a b

a

b

g1 g2

b

a

Figure 4: Two similar graphs g1 and g2.

In this inexact match approach, each distortion of a graph is assigned a cost. A distortion
is described in terms of basic transformations such as deletion, insertion, and substitution
of vertices and edges. The distortion costs can be determined by the user to bias the match
for or against particular types of distortions.

An inexact graph match between two graphs g1 and g2 maps g1 to g2 such that g2 is
interpreted as a distorted version of g1. Formally, an inexact graph match is a mapping
f : N1 ! N2 [f�g, where N1 and N2 are the sets of vertices of g1 and g2, respectively. A
vertex v 2 N1 that is mapped to � (i.e., f(v) = �) is deleted. That is, it has no corresponding
vertex in g2. Given a set of particular distortion costs as discussed above, we de�ne the cost
of an inexact graph match cost(f), as the sum of the cost of the individual transformations
resulting from f , and we de�ne matchcost(g1; g2) as the value of the least-cost function that
maps graph g1 onto graph g2.

Given g1, g2, and a set of distortion costs, the actual computation of matchcost(g1; g2)
can be determined using a tree search procedure. A state in the search tree corresponds to
a partial match that maps a subset of the vertices of g1 to a subset of the vertices in g2.
Initially, we start with an empty mapping at the root of the search tree. Expanding a state
corresponds to adding a pair of vertices, one from g1 and one from g2, to the partial mapping
constructed so far. A �nal state in the search tree is a match that maps all vertices of g1 to
g2 or to �. The complete search tree of the example in Figure 4 is shown in Figure 5. For
this example we assign a value of 1 to each distortion cost. The numbers in circles in this
�gure represent the cost of a state. As we are eventually interested in the mapping with
minimum cost, each state in the search tree gets assigned the cost of the partial mapping
that it represents. Thus the goal state to be found by our tree search procedure is the
�nal state with minimum cost among all �nal states. From Figure 5 we conclude that the
minimum cost inexact graph match of g1 and g2 is given by the mapping f(1) = 4, f(2) = 3.
The cost of this mapping is 4.

Given graphs g1 with n vertices and g2 with m vertices, m � n, the complexity of the
full inexact graph match is O(nm+1). Because this routine is used heavily throughout the

239

Cook & Holder

(1, 3) (1, 4) (1, 5) (1,)

(2,4) (2,5) (2,) (2,3) (2,5) (2,) (2,3) (2,4) (2,) (2,3) (2,4) (2,5) (2,)

1 0 1

7 6 10 3 6 9 7 7 10 9 10 9 11

1

Figure 5: Search tree for computing matchcost(g1,g2) from Figure 4.

discovery and evaluation process, the complexity of the algorithm can signi�cantly degrade
the performance of the system.

To improve the performance of the inexact graph match algorithm, we extend Bunke's
approach by applying a branch-and-bound search to the tree. The cost from the root of the
tree to a given node is computed as described above. Nodes are considered for pairings in
order from the most heavily connected vertex to the least connected, as this constrains the
remaining match. Because branch-and-bound search guarantees an optimal solution, the
search ends as soon as the �rst complete mapping is found.

In addition, the user can place a limit on the number of search nodes considered by
the branch-and-bound procedure (de�ned as a function of the size of the input graphs).
Once the number of nodes expanded in the search tree reaches the de�ned limit, the search
resorts to hill climbing using the cost of the mapping so far as the measure for choosing the
best node at a given level. By de�ning such a limit, signi�cant speedup can be realized at
the expense of accuracy for the computed match cost.

Another approach to inexact graph match would be to encode the di�erence between
two graphs using the MDL principle. Smaller encodings would indicate a lower match cost
between the two graphs. We leave this as a future research direction.

6. Guiding the Discovery Process with Background Knowledge

Although the principle of minimum description length is useful for discovering substruc-
tures that maximize compression of the data, scientists may realize more bene�t from the
discovery of substructures that exhibit other domain-speci�c and domain-independent char-
acteristics.

To make Subdue more powerful across a wide variety of domains, we have added the
ability to guide the discovery process with background knowledge. Although the minimum
description length principle still drives the discovery process, the background knowledge can
be used to input a bias toward certain types of substructures. This background knowledge
is encoded in the form of rules for evaluating substructures, and can represent domain-
independent or domain-dependent rules. Each time a substructure is evaluated, these input

240

Substructure Discovery

rules are used to determine the value of the substructure under consideration. Because
only the most-favored substructures are kept and expanded, these rules bias the discovery
process of the system.

Each background rule can be assigned a positive, zero, or negative weight, that biases
the procedure toward a type of substructure, eliminates the use of the rule, or biases the
procedure away from a type of substructure, respectively. The value of a substructure is
de�ned as the description length (DL) of the input graph using the substructure multi-
plied by the weighted value of each background rule from a set of rules R applied to the
substructure.

value(s) = DL(G; s)�
jRjY
r=1

ruler(s)
er (1)

Three domain-independent heuristics that have been incorporated as rules into the Sub-
due system are compactness, connectivity, and coverage. For the de�nitions of these rules,
we will let G represent the input graph, s represent a substructure in the graph, and I

represent the set of instances of the substructure s in G. The instance weight w of an
instance i 2 I of a substructure s is de�ned to be

w(i; s) = 1�
matchcost(i; s)

size(i)
; (2)

where size(i) = #vertices(i) + #edges(i). If the match cost is greater than the size of the
larger graph, then w(i; s) = 0. The instance weights are used in these rules to compute a
weighted average over instances of a substructure. A value of 1 is added to each formula so
that the exponential weights can be used to control the rule's signi�cance.

The �rst rule, compactness, is a generalization of Wertheimer's Factor of Closure, which
states that human attention is drawn to closed structures (Wertheimer, 1939). A closed
substructure has at least as many edges as vertices, whereas a non-closed substructure
has fewer edges than vertices (Prather, 1976). Thus, closed substructures have a higher
compactness value. Compactness is de�ned as the weighted average of the ratio of the
number of edges in the substructure to the number of vertices in the substructure.

compactness(s) = 1 +
1

jI j

X
i2I

w(i; s)�
#edges(i)

#vertices(i)
(3)

The second rule, connectivity, measures the amount of external connection in the in-
stances of the substructure. The connectivity rule is a variant of Wertheimer's Factor
of Proximity (Wertheimer, 1939), and is related to earlier numerical clustering techniques
(Zahn, 1971). These works demonstrate the human preference for \isolated" substructures,
that is, substructures that are minimally related to adjoining structure. Connectivity mea-
sures the \isolation" of a substructure by computing the inverse of the average number of
external connections over all the weighted instances of the substructure in the input graph.
An external connection is de�ned here as an edge that connects a vertex in the substructure
to a vertex outside the substructure. The formula for determining the connectivity of a
substructure s with instances I in the input graph G is given below.

241

Cook & Holder

connectivity(s) = 1 +

"
1

jI j

X
i2I

w(i; s)� num external conns(i)

#�1
(4)

The third rule, coverage, measures the fraction of structure in the input graph described
by the substructure. The coverage rule is motivated from research in inductive learning and
provides that concept descriptions describing more input examples are considered better
(Michalski & Stepp, 1983). Although MDL measures the amount of structure, the coverage
rule includes the relevance of this savings with respect to the size of the entire input graph.
Coverage is de�ned as the number of unique vertices and edges in the instances of the
substructure divided by the total number of vertices and edges in the input graph. In this
formula, the unique structure(i) of an instance i is the number of vertices and edges in i

that have not already appeared in previous instances in the summation.

coverage(s) = 1 +

P
i2I w(i; s)� unique structure(i)

size(G)
(5)

Domain-dependent rules can also be used to guide the discovery process in a domain
where scientists can contribute their expertise. For example, CAD circuits generally consist
of two types of components, active and passive components. The active components are
the main driving components. Identifying the active components is the �rst step in under-
standing the main function of the circuit. To add this knowledge to Subdue we include
a rule that assigns higher values to substructures (circuit components) representing active
components and lower values to substructures representing passive components. Since the
active components have higher scores, they are expected to be selected. The system can
then focus the attention on the active components which will be expanded to the functional
substructures.

Another method of biasing the discovery process with background knowledge is to let
background rules a�ect the prior probabilities of possible substructures. However, choosing
the appropriate prior probabilities to express desired properties of substructures is di�-
cult, but indicates a future direction for the inclusion of background knowledge into the
substructure discovery process.

7. Experiments

The experiments in this section evaluate Subdue's substructure discovery capability in
several domains, including chemical compound analysis, scene analysis, CAD circuit design
analysis, and analysis of an arti�cially-generated structural database.

Two goals of our substructure discovery system are to �nd substructures that can reduce
the amount of information needed to describe the data, and to �nd substructures that are
considered interesting for the given database. As a result, we evaluate the Subdue system
in this section along these two criteria. First, we measure the amount of compression that
Subdue provides across a variety of databases. Second, we use the Subdue system with the
additional background knowledge rules to re-discover substructures that have been identi�ed
as interesting by experts in each speci�c domain. Section 7.1 describes the domains used
in these experiments, and Section 7.2 presents the experimental results.

242

Substructure Discovery

CH3

O

O

CH3 C O

CH OH2

OH

Figure 6: Cortisone.

C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3
H

CH
2

C C

CH
2

CH3 H

CH
2

Figure 7: Natural rubber (all-cis polyisoprene).

7.1 Domains

7.1.1 Chemical Compound Analysis

Chemical compounds are rich in structure. Identi�cation of the common and interesting
substructures can bene�t scientists by identifying recurring components, simplying the data
description, and focusing on substructures that stand out and merit additional attention.

Chemical compounds are represented graphically by mapping individual atoms, such as
carbon and oxygen, to labeled vertices in the graph, and by mapping bonds between the
atoms onto labeled edges in the graph. Figures 6, 7, and 8 show the graphs representing
the chemical compound databases for cortisone, rubber, and a portion of a DNA molecule.

7.1.2 Scene Analysis

Images and scene descriptions provide a rich source of structure. Images that humans
encounter, both natural and synthesized, have many structured subcomponents that draw
our attention and that help us to interpret the data or the scene.

Discovering common structures in scenes can be useful to a computer vision system.
First, automatic substructure discovery can help a system interpret an image. Instead of
working from low-level vertices and edges, Subdue can provide more abstract structured
components, resulting in a hierarchical view of the image that the machine can analyze at
many levels of detail and focus, depending on the goal of the analysis. Second, substructure
discovery that makes use of an inexact graph match can help identify objects in a 2D image
of a 3D scene where noise and orientation di�erences are likely to exist. If an object ap-
pears often in the scene, the inexact graph match driving the Subdue system may capture
slightly di�erent views of the same object. Although an object may be di�cult to identify

243

Cook & Holder

OCH2

O

N

N

N
N

N

H

H

H

O

N

O CH3

O

O
OCH2

O

N
O

PO OH

O

O

PO OH

OCH2

O

O

PO OH

CH2

O

P OHO

H

H

O

CH3

O

CH2

O
NO

N
N

NN

N

P OHO

O

O

CH2

O

N H

N
N O

H

P OHO

O

O

N
N

OCH3

H

H N

N
N

N

H

N

adenine

guanine

thymine adenine

cytosine

thymine

Figure 8: Portion of a DNA molecule.

Figure 9: Scene analysis example.

244

Substructure Discovery

f a l

k x p

t

m

Figure 10: Possible vertices and labels.

l

l l l l

l l l l l l

l l

l

l

l

t

t

t
t

t

l

t

l

t

lt

t

m

a

l

l

l

a

a

f

a

Figure 11: Portion of graph representing scene in Figure 4.

from just one 2D picture, Subdue will match instances of similar objects, and the di�er-
ences between these instances can provide additional information for identi�cation. Third,
substructure discovery can be used to compress the image. Replacing common interesting
substructures by a single vertex simpli�es the image description and reduces the amount of
storage necessary to represent the image.

To apply Subdue to image data, we extract edge information from the image and
construct a graph representing the scene. The graph representation consists of eight types
of vertices and two types of arcs (edge and space). The vertex labels (f , a, l, t, k, x, p, and
m) follow the Waltz labelings (Waltz, 1975) of junctions of edges in the image and represent
the types of vertices shown in Figure 10. An edge arc represents the edge of an object in the
image, and a space arc links non-connecting objects together. The edge arcs represent an
edge in the scene that connects two vertices, and the space arcs connect the closest vertices
from two disjoint neighboring objects. Distance, curve, and angle information has not been
included in the graph representation, but can be added to give additional information about
the scene. Figure 11 shows the graph representation of a portion of the scene depicted in
Figure 9. In this �gure, the edge arcs are solid and the space arcs are dashed.

245

Cook & Holder

drain

drain

GND

gate

gate

source

VCC

ext_pin

n_mosfet

connect

ext_pin

n_mosfet

drain

gate

source

drain

gate

source

connect

Figure 12: Ampli�er circuit and graph representation.

7.1.3 CAD Circuit Analysis

In this domain, we employ Subdue to �nd circuit components in CAD circuit data. Discov-
ery of substructures in circuit data can be a valuable tool to an engineer who is attempting to
identify common reusable parts in a circuit layout. Replacing individual components in the
circuit description by larger substructure descriptions will also simplify the representation
of the circuit.

The data for the circuit domain was obtained from National Semiconductor, and con-
sists of a set of components making up a circuit as output by the Cadence Design System.
The particular circuit used for this experiment is a portion of an analog-to-digital con-
verter. Figure 12 presents a circuit for an ampli�er and gives the corresponding graph
representation.

7.1.4 Artificial Domain

In the �nal domain, we arti�cially generate graphs to evaluate Subdue's ability to discover
substructures capable of compressing the graph. Four substructures are created of varying
sizes with randomly-selected vertices and edges (see Figure 13). The name of a substructure
reects the number of vertices and edges in its graph representation. Next, these substruc-
tures are embedded in larger graphs whose size is 15 times the size of the substructure.
The graphs vary across four parameters: number of possible vertex and edge labels (one
times and two times the number of labels used in the substructure), connectivity of the
substructure (1 or 2 external connections), coverage of the instances (60% and 80%), and

246

Substructure Discovery

n1 n4 n3 n2
e1e2e3

n4 n3 n2 n1

e1

e3

e3 e3

e2

e2

n7 n5 n2 n5 n3 n1 n6
e6 e3 e1 e4 e2 e6

n3 n1 n7 n4 n2 n3 n1

e7

e8

e3

e5 e3 e8

e6

e9

e1

Figure 13: Four arti�cial substructures used to evaluate Subdue.

the amount of distortion in the instances (0, 1 or 2 distortions). This yields a total of 96
graphs (24 for each di�erent substructure).

7.2 Experimental Results

7.2.1 Experiment 1: Data compression

In the �rst experiment, we test Subdue's ability to compress a structural database. Using
a beam width of 4 and Subdue's pruning mechanism, we applied the discovery algorithm to
each of the databases mentioned above. We repeat the experiment with match thresholds
ranging from 0.0 to 1.0 in increments of 0.1. Table 1 shows the description length (DL) of the
original graph, the description length of the best substructure discovered by Subdue, and
the value of compression. Compression here is de�ned as DL of compressed graph

DL of original graph . Figure 14,
shows the actual discovered substructures for the �rst four datasets.

As can be seen from Table 1, Subdue was able to reduce the database to slightly
larger than 1

4 of its original size in the best case. The average compression value over
all of these domains (treating the arti�cial graphs as one value) is 0.62. The results of
this experiment demonstrate that the substructure discovered by Subdue can signi�cantly
reduce the amount of data needed to represent an input graph. We expect that compressing
the graph using combinations of substructures and hierarchies of substructures will realize
even greater compression in some databases.

247

Cook & Holder

Database DLoriginal Thresholdoptimal DLcompressed Compression

Rubber 371.78 0.1 95.20 0.26
Cortisone 355.03 0.3 173.25 0.49
DNA 2427.93 1.0 2211.87 0.91
Pencils 1592.33 1.0 769.18 0.48

CAD { M1 4095.73 0.7 2148.8 0.52
CAD { S1SegDec 1860.14 0.7 1149.29 0.62
CAD { S1DrvBlk 12715.12 0.7 9070.21 0.71
CAD { BlankSub 8606.69 0.7 6204.74 0.72
CAD { And2 427.73 0.1 324.52 0.76

Arti�cial (avg. over 96 graphs) 1636.25 0.0: : :1.0 1164.02 0.71

Table 1: Graph compression results.

l

a

a

C

C

OCH2

O

C
C

O

C

C

C C

CH
2

CH3 H

CH
2

(a) (b) (c) (d)

Figure 14: Best substructure for (a) rubber database, (b) cortisone database, (c) DNA
database, and (d) image database.

248

Substructure Discovery

Figure 15: Benzene ring discovered by Subdue.

7.2.2 Experiment 2: Re-discovery of known substructures using background
knowledge

Another way of evaluating the discovery process is to evaluate the interestingness of the
discovered substructures. The determination of this value will change from domain to
domain. As a result, in this second set of experiments we test Subdue's ability to discover
substructures that have already been labeled as important by experts in the domains under
consideration.

In the chemical compound domain, chemists frequently describe compounds in terms of
the building-block components that are heavily used. For example, in the rubber compound
database shown in Figure 7, the compound is made up of a chain of structures that are
labeled by chemists as isoprene units. Subdue's ability to re-discover this structure is
exempli�ed in Figure 14a. This substructure, which was discovered using the MDL principle
with no extra background knowledge, represents an isoprene unit.

Although Subdue was able to re-discover isoprene units without extra background
knowledge, the substructure a�ording the most compression will not always be the most in-
teresting or important substructure in the database. For example, in the cortisone database
the benzene ring which consists of a ring of carbons is not discovered using only the MDL
principle. However, the additional background rules can be used to increase the chance of
�nding interesting substructures in these domains. In the case of the cortisone compound,
we know that the interesting structures exhibit a characteristic of closure. Therefore, we
give a strong weight (8.0) to the compactness background rule and use a match threshold of
0.2 to allow for deviations in the benzene ring instances. In the resulting output, Subdue
�nds the benzene ring shown in Figure 15.

In the same way, we can use the background rules to �nd the pencil substructure in
the image data. When the image in Figure 9 is viewed, the substructure of interest is the
pencil in its various forms. However, the substructure that a�orded the most compression
does not make up an entire pencil. We know that the pencils have a high degree of closure
and of coverage, so the weights for these rules are set to 1.0. With these weights, Subdue
is able to �nd the pencil substructure shown in Figure 16 for all tested match thresholds
between 0.0 and 1.0.

8. Hierarchical Concept Discovery

After a substructure is discovered, each instance of the substructure in the input graph can
be replaced by a single vertex representing the entire substructure. The discovery procedure
can then be repeated on the compressed data set, resulting in new interesting substructures.
If the newly-discovered substructures are de�ned in terms of existing substructure concepts,
the substructure de�nitions form a hierarchy of substructure concepts.

249

Cook & Holder

l

l l

a a

Figure 16: Pencil substructure discovered by Subdue.

Hierarchical concept discovery also adds the capability to improve Subdue's perfor-
mance. When Subdue is applied to a large input graph, the complexity of the algorithm
prevents consideration of larger substructures. Using hierarchical concept discovery, Sub-
due can �rst discover those smaller substructures which best compress the data. Applying
the compression reduces the graph to a more manageable size, increasing the chance that
Subdue will �nd the larger substructures on the subsequent passes through the database.

Once Subdue selects a substructure, all vertices that comprise the exact instances of
the substructure are replaced in the graph by a single vertex representing the discovered
substructure. Edges connecting vertices outside the instance to vertices inside the instance
now connect to the new vertex. Edges internal to the instance are removed. The discovery
process is then applied to the compressed data. If a hierarchical description of concepts is
particularly desired, heavier weight can be given to substructures which utilize previously
discovered substructures. The increased weight reects increased attention to this substruc-
ture. Figure 17 illustrates the compressed rubber compound graph using the substructure
shown in Figure 14a.

To demonstrate the ability of Subdue to �nd a hierarchy of substructures, we let the sys-
tem make multiple passes through a database that represents a portion of a DNA molecule.
Figure 8 shows a portion of two chains of a double helix, using three pairs of bases which
are held together by hydrogen bonds. Figure 18 shows the substructures found by Subdue
after each of three passes through the data. Note that, on the third pass, Subdue linked
together the instances of the substructure in the second pass to �nd the chains of the double
helix.

Although replacing portions of the input graph with the discovered substructures com-
presses the data and provides a basis for discovering hierarchical concepts in the data, the
substructure replacement procedure becomes more complicated when concepts with inexact
instances are discovered. When inexact instances of a discovered concept are replaced by
a single vertex in the data, all distortions of the graph (di�erences between the instance
graph and the substructure de�nition) must be attached as annotations to the vertex label.

250

Substructure Discovery

S = C C

CH
2

CH3 H

CH
2

1

Highest-valued substructure

S
S

S
S

S

C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3 H

CH
2

C C

CH
2

CH3
H

CH
2

C C

CH
2

CH3 H

CH
2

=

G = 1
1

1
1

1

Compressed graph using discovered substructure

Figure 17: Compressed graph for rubber compound data.

251

Cook & Holder

CH2

O

S =1

OCH2

O

O

P

O

P

S1 C

S =2S =2 =

OCH2

O

OCH2

O

O

PO OH

O

O

PO OH

OCH2

O

O

PO OH

O OH

O

S2

O OHS2

O OHS2

S =3 =

Highest-valued substructure
after First Pass

Highest-valued substructure
after Second Pass

Highest-valued substructure
after Third Pass

O

Figure 18: Hierarchical discovery in DNA data.

252

Substructure Discovery

9. Conclusions

Extracting knowledge from structural databases requires the identi�cation of repetitive sub-
structures in the data. Substructure discovery identi�es interesting and repetitive structure
in structural data. The substructures represent concepts found in the data and a means of
reducing the complexity of the representation by abstracting over instances of the substruc-
ture. We have shown how the minimum description length (MDL) principle can be used to
perform substructure discovery in a variety of domains. The substructure discovery process
can also be guided by background knowledge. The use of an inexact graph match allows
deviation in the instances of a substructure. Once a substructure is discovered, instances
of the substructure can be replaced by the concept de�nition, a�ording compression of the
data description and providing a basis for discovering hierarchically-de�ned structures.

Future work will combine structural discovery with discovery of concepts using a linear-
based representation such as AutoClass (Cheeseman, Kelly, Self, Stutz, Taylor, & Freeman,
1988). In particular, we will use Subdue to compress the data fed to AutoClass, and
let Subdue evaluate the interesting structures in the classes generated by AutoClass. In
addition, we will be developing a parallel implementation of the AutoClass / Subdue
system that will enable application of substructure discovery to larger structural databases.

Acknowledgements

This project is supported by NASA grant NAS5-32337. The authors would like to thank
Mike Shay at National Semiconductor for providing the circuit data. We would also like
to thank Surnjani Djoko and Tom Lai for their help with this project. Thanks also to the
reviewers for their numerous insightful comments.

References

Bunke, H., & Allermann, G. (1983). Inexact graph matching for structural pattern recog-
nition. Pattern Recognition Letters, 1 (4), 245{253.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). Autoclass:
A bayesian classi�cation system. In Proceedings of the Fifth International Workshop
on Machine Learning, pp. 54{64.

Conklin, D., & Glasgow, J. (1992). Spatial analogy and subsumption. In Proceedings of the
Ninth International Machine Learning Workshop, pp. 111{116.

Derthick, M. (1991). A minimal encoding approach to feature discovery. In Proceedings of
the Ninth National Conference on Arti�cial Intelligence, pp. 565{571.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2 (2), 139{172.

Fu, K. S. (1982). Syntactic Pattern Recognition and Applications. Prentice-Hall.

Holder, L. B., Cook, D. J., & Bunke, H. (1992). Fuzzy substructure discovery. In Proceedings
of the Ninth International Machine Learning Conference, pp. 218{223.

253

Cook & Holder

Holder, L. B., & Cook, D. J. (1993). Discovery of inexact concepts from structural data.
IEEE Transactions on Knowledge and Data Engineering, 5 (6), 992{994.

Jeltsch, E., & Kreowski, H. J. (1991). Grammatical inference based on hyperedge replace-
ment. In Fourth International Workshop on Graph Grammars and Their Application
to Computer Science, pp. 461{474.

Leclerc, Y. G. (1989). Constructing simple stable descriptions for image partitioning. In-
ternational journal of Computer Vision, 3 (1), 73{102.

Levinson, R. (1984). A self-organizing retrieval system for graphs. In Proceedings of the
Second National Conference on Arti�cial Intelligence, pp. 203{206.

Michalski, R. S., & Stepp, R. E. (1983). Learning from observation: Conceptual clustering.
In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning:
An Arti�cial Intelligence Approach, Vol. I, pp. 331{363. Tioga Publishing Company.

Miclet, L. (1986). Structural Methods in Pattern Recognition. Chapman and Hall.

Pednault, E. P. D. (1989). Some experiments in applying inductive inference principles
to surfa ce reconstruction. In Proceedings of the International Joint Conference on
Arti�cial Intelligence, pp. 1603{1609.

Pentland, A. (1989). Part segmentation for object recognition. Neural Computation, 1,
82{91.

Prather, R. (1976). Discrete Mathemetical Structures for Computer Science. Houghton
Mi�n Company.

Quinlan, J. R., & Rivest, R. L. (1989). Inferring decision trees using the minimum descrip-
tion length principle. Information and Computation, 80, 227{248.

Rao, R. B., & Lu, S. C. (1992). Learning engineering models with the minimum descrip-
tion length principle. In Proceedings of the Tenth National Conference on Arti�cial
Intelligence, pp. 717{722.

Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry. World Scienti�c Publishing
Company.

Schalko�, R. J. (1992). Pattern Recognition: Statistical, Structural and Neural Approaches.
John Wiley & Sons.

Segen, J. (1990). Graph clustering and model learning by data compression. In Proceedings
of the Seventh International Machine Learning Workshop, pp. 93{101.

Thompson, K., & Langley, P. (1991). Concept formation in structured domains. In Fisher,
D. H., & Pazzani, M. (Eds.), Concept Formation: Knowledge and Experience in Un-
supervised Learning, chap. 5. Morgan Kaufmann Publishers, Inc.

Waltz, D. (1975). Understanding line drawings of scenes with shadows. In Winston, P. H.
(Ed.), The Psychology of Computer Vision. McGraw-Hill.

254

Substructure Discovery

Wertheimer, M. (1939). Laws of organization in perceptual forms. In Ellis, W. D. (Ed.), A
Sourcebook of Gestalt Psychology, pp. 331{363. Harcourt, Brace and Company.

Winston, P. H. (1975). Learning structural descriptions from examples. In Winston, P. H.
(Ed.), The Psychology of Computer Vision, pp. 157{210. McGraw-Hill.

Yoshida, K., Motoda, H., & Indurkhya, N. (1993). Unifying learning methods by colored
digraphs. In Proceedings of the Learning and Knowledge Acquisition Workshop at
IJCAI-93.

Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters.
IEEE Transactions on Computers, 20 (1), 68{86.

255

