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Abstract
The theory revision problem is the problem of how best to go about revising a deficient


domain theory using information contained in examples that expose inaccuracies. In this paper we
present our approach to the theory revision problem for propositional domain theories. The
approach described here, called PTR, uses probabilities associated with domain theory elements to
numerically track the ‘‘flow’’ of proof through the theory. This allows us to measure the precise
role of a clause or literal in allowing or preventing a (desired or undesired) derivation for a given
example. This information is used to efficiently locate and repair flawed elements of the theory.
PTR is proved to converge to a theory which correctly classifies all examples, and shown
experimentally to be fast and accurate even for deep theories.


1. Introduction


One of the main problems in building expert systems is that models elicited from experts tend to
be only approximately correct. Although such hand-coded models might make a good first
approximation to the real world, they typically contain inaccuracies that are exposed when a fact
is asserted that does not agree with empirical observation. Thetheory revision problemis the
problem of how best to go about revising a knowledge base on the basis of a collection of
examples, some of which expose inaccuracies in the original knowledge base. Of course, there
may be many possible revisions that sufficiently account for all of the observed examples; ideally,
one would find a revised knowledge base which is both consistent with the examples and as
faithful as possible to the original knowledge base.


Consider, for example, the following simple propositional domain theory,Τ. This theory,
although flawed and incomplete, is meant to recognize situations where an investor should buy
stock in a soft drink company.


buy-stock← increased-demand∧ ¬product-liability
product-liability ← popular-product∧ unsafe-packaging
increased-demand← popular-product∧ established-market
increased-demand← new-market∧ superior-flavor.


The theoryΤ essentially states that buying stock in this company is a good idea if demand for its
product is expected to increase and the company is not expected to face product liability lawsuits.
In this theory, product liability lawsuits may result if the product is popular (and therefore may
present an attractive target for sabotage) and if the packaging is not tamper-proof. Increased
product demand results if the product is popular and enjoys a large market share, or if there are
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new market opportunities and the product boasts a superior flavor. Using the closed world
assumption,buy-stockis derivable given that the set of true observable propositions is precisely,
say,


{ popular-product, established-market, celebrity-endorsement} , or
{ popular-product, established-market, colorful-label}


but not if they are, say,


{ unsafe-packaging, new-market} , or
{ popular-product, unsafe-packaging, established-market} .


Suppose now that we are told for various examples whetherbuy-stockshould be derivable.
For example, suppose we are told that if the set of true observable propositions is:


(1) { popular-product, unsafe-packaging, established-market} thenbuy-stockis false,


(2) { unsafe-packaging, new-market} thenbuy-stockis true,


(3) { popular-product, established-market, celebrity-endorsement} thenbuy-stockis true,


(4) { popular-product, established-market, superior-flavor} thenbuy-stockis false,


(5) { popular-product, established-market, ecologically-correct} thenbuy-stockis false, and


(6) { new-market, celebrity-endorsement} thenbuy-stockis true.


Observe that examples 2, 4, 5 and 6 are misclassified by the current theoryΤ. Assuming that the
explicitly given information regarding the examples is correct, the question is how to revise the
theory so that all of the examples will be correctly classified.


1.1. Two Paradigms


One approach to this problem consists of enumerating partial proofs of the various examples in
order to find a minimal set of domain theory elements (i.e., literals or clauses) the repair of which
will satisfy all the examples (EITHER, Ourston & Mooney, in press). One problem with this
approach is that proof enumeration even for asingleexample is potentially exponential in the size
of the theory. Another problem with this approach is that it is unable to handle negated internal
literals, and is restricted to situations where each example must belong to one and only one class.
These problems suggest that it would be worthwhile to circumvent proof enumeration by
employing incremental numerical schemes for focusing blame on specific elements.


A completely different approach to the revision problem is based on the use of neural
networks (KBANN, Towell & Shavlik, 1993). The idea is to transform the original domain theory
into network form, assigning weights in the graph according to some pre-established scheme.
The connection weights are then adjusted in accordance with the observed examples using
standard neural-network backpropagation techniques. The resulting network is then translated
back into clausal form. The main disadvantage of this method that it lacksrepresentational
transparency; the neural network representation does not preserve the structure of the original
knowledge base while revising it. As a result, a great deal of structural information may be lost
translating back and forth between representations. Moreover, such translation imposes the
limitations of both representations; for example, since neural networks are typically slow to
converge, the method is practical for only very shallow domain theories. Finally, revised domain
theories obtained via translation from neural networks tend to be significantly larger than their
corresponding original domain theories.
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Other approaches to theory revision which are much less closely related to the approach we
will espouse here are RTLS (Ginsberg, 1990), KR-FOCL (Pazzani & Brunk, 1991), and
ODYSSEUS (Wilkins, 1988).


1.2. Probabilistic Theory Revision


Probabilistic Theory Revision (PTR) is a new approach to theory revision which combines the
best features of the two approaches discussed above. The starting point for PTR is the
observation that any method for choosing among several possible revisions is based on some
implicit bias, namely the a priori probability that each element (clause or literal) of the domain
theory requires revision.


In PTR this bias is made explicit right from the start. That is, each element in the theory is
assigned some a priori probability that it is not flawed. These probabilities might be assigned by
an expert or simply chosen by default.


The mere existence of such probabilities solves two central problems at once. First, these
probabilities very naturally define the ‘‘best’’ (i.e., most probable) revision out of a given set of
possible revisions. Thus, our objective is well-defined; there is no need to impose artificial
syntactic or semantic criteria for identifying the optimal revision. Second, these probabilities can
be adjusted in response to newly-obtained information. Thus they provide a framework for
incremental revision of the flawed domain theory.


Briefly, then, PTR is an algorithm which uses a set of provided examples to incrementally
adjust probabilities associated with the elements of a possibly-flawed domain theory in order to
find the ‘‘most probable’’ set of revisions to the theory which will bring it into accord with the


examples.1 Like KBANN, PTR incrementally adjusts weights associated with domain theory
elements; like EITHER, all stages of PTR are carried out within the symbolic logic framework
and the obtained theories are not probabilistic.


As a result PTR has the following features:


(1) it can handle a broad range of theories including those with negated internal literals and
multiple roots.


(2) it is linear in the size of the theory times the number of given examples.


(3) it produces relatively small, accurate theories that retain much of the structure of the
original theory.


(4) it can exploit additional user-provided bias.


In the next section of this paper we formally define the theory revision problem and discuss
issues of data representation. We lay the foundations for any future approach to theory revision
by introducing very sharply defined terminology and notation. In Section 3 we propose an
efficient algorithm for finding flawed elements of a theory, and in Section 4 we show how to
revise these elements. Section 5 describes how these two components are combined to form the
PTR algorithm. In Section 5, we also discuss the termination and convergence properties of PTR
and walk through a simple example of PTR in action. In Section 6 we experimentally evaluate
PTR and compare it to other theory revision algorithms. In Section 7, we sum up our results and


1 In the following section we will make precise the notion of ‘‘most probable set of revisions.’’
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indicate directions for further research.


The formal presentation of the work described here is, unfortunately, necessarily dense. To
aid the more casual reader, we hav e moved all formal proofs to three separate appendices. In
particular, in the third appendix we prove that, under appropriate conditions, PTR converges.
Reading of these appendices can safely be postponed until after the rest of the paper has been
read. In addition, we provide in Appendix D, a ‘‘quick reference guide’’ to the notation used
throughout the paper. We would suggest that a more casual reader might prefer to focus on
Section 2, followed by a cursory reading of Sections 3 and 4, and a more thorough reading of
Section 5.


2. Representing the Problem


A propositional domain theory, denotedΓ, is a stratified set of clauses of the formCi : Hi ← Bi
whereCi is a clause label,Hi is a proposition (called theheadof Ci ) and Bi is a set of positive
and negative literals (called thebody of Ci ). As usual, the clauseCi : Hi ← Bi represents the
assertion that the propositionHi is implied by the conjunction of literals inBi . The domain theory
is simply the conjunction of its clauses. It may be convenient to think of this as a propositional
logic program without facts (but with negation allowed).


A proposition which does not appear in the head of any clause is said to beobservable.A
proposition which appears in the head of some clause but does not appear in the body of any
clause is called aroot. An example, E, is a truth assignment to all observable propositions. It is
convenient to think ofE as a set of true observable propositions.


Let Γ be a domain theory with rootsr1, . . . , r n. For an example,E, we define the vector
Γ(E) = 〈 Γ1(E), . . . , Γn(E) 〉 where Γi (E) = 1 if E |– Γr i (using resolution) andΓi (E) = 0 if
E |–/ Γr i . Intuitively, Γ(E) tells us which of the conclusionsr1, . . . , r n can be drawn by the expert
system when given the truth assignmentE.


Let thetargetdomain theory,Θ, be some domain theory which accurately models the domain
of interest. In other words,Θ represents the correct domain theory. An ordered pair,〈 E, Θ(E) 〉 ,
is called anexemplarof the domain: ifΘi (E) = 1 then the exemplar is said to be anIN exemplar
of r i , while if Θi (E) = 0 then the exemplar is said to be anOUT exemplarof r i . Typically, in
theory revision, we knowΘ(E) without knowingΘ.


Let Γ be some possibly incorrect theory for a domain which is in turn correctly modeled by
the target theoryΘ. Any inaccuracies inΓ will be reflected by exemplars for whichΓ(E) ≠ Θ(E).
Such exemplars are said to bemisclassifiedby Γ. Thus, amisclassified IN exemplar for ri , or false
negative for ri , will have Θi (E) = 1 butΓi (E) = 0, while amisclassified OUT exemplar for ri , or


false positive for ri , will have Θi (E) = 0 but Γi (E) = 1.2 Typically, in theory revision we know
Θ(E) without knowingΘ.


Consider, for example, the domain theory,T, and example set introduced in Section 1. The
theory T has only a single root,buy-stock. The observable propositions mentioned in the
examples arepopular-product, unsafe-packaging, established-market, new-market, celebrity-


2 We prefer the new terminology ‘‘IN/OUT’’ to the more standard ‘‘positive/negative’’ because the lat-
ter is often used to refer to the classification of the example by the given theory, while we use ‘‘IN/OUT’’ to
refer specifically to the actual classification of the example.
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endorsement, superior-flavor, and ecologically-correct. For the example
E = { unsafe-packaging, new-market} we haveΤ(E) = 〈 Τ1(E) 〉 = 〈 0 〉 . Nev ertheless, we are told
that Θ(E) = 〈 Θ1(E) 〉 = 〈 1 〉 . Thus, E = 〈 { unsafe-packaging, new-market} , 〈 1 〉 〉 is a
misclassified IN exemplar of the rootbuy-stock.


Now, giv en misclassified exemplars, there are fourre vision operatorsavailable for use with
propositional domain theories:


(1) add a literal to an existing clause,


(2) delete an existing clause,


(3) add a new clause, and


(4) delete a literal from an existing clause.


For neg ation-free domain theories, the first two operations result inspecializingΓ, since they may
allow some IN exemplars to become OUT exemplars. The latter two operations result in


generalizingΓ, since they may allow some OUT exemplars to become IN exemplars.3


We say that a set of revisions toΓ is adequatefor a set of exemplars if, after the revision
operators are applied, all the exemplars are correctly classified by the revised domain theoryΓ′.
Note that we are not implying thatΓ′ is identical toΘ, but rather that for every exemplar
〈 E, Θ(E) 〉 , Γ′(E) = Θ(E). Thus, there may be more than one adequate revision set. The goal of
any theory revision system, then, is to find the ‘‘best’’ revision set forΓ, which is adequate for a
given a set of exemplars.


2.1. Domain Theories as Graphs


In order to define the problem even more precisely and to set the stage for its solution, we will
show how to represent a domain theory in the form of a weighted digraph. We begin by defining a
more general version of the standard AND–OR proof tree, which collapses the distinction between
AND nodes and OR nodes.


For any set of propositions{ P1, . . . , Pn} , let NAND({ P1, . . . , Pn} ) be a Boolean formula
which is false if and only if{ P1, . . . , Pn} are all true. Any domain theoryΓ can be translated into
an equivalent domain theoryΓ̂ consisting of NAND equations as follows:


(1) For each clauseCi : Hi ← Bi ∈ Γ, the equation̂Ci = NAND(Bi ) is in Γ̂.


(2) For each non-observable propositionP appearing inΓ the equationP = NAND(CP) is in
Γ̂, whereCP = { Ĉi Hi = P}, i.e., the set consisting of the label of each clause inΓ whose
head isP.


(3) For each negative literal¬P appearing inΓ, the equation¬P = NAND({ P} ) is in Γ̂.


Γ̂ contains no equations other than these. Observe that the literals ofΓ̂ are the literals ofΓ
together with the new literals {Ĉi } which correspond to the clauses ofΓ. Most important,Γ̂ is
equivalent toΓ in the sense that for each literall in Γ and any assignmentE of truth values to the
observable propositions ofΓ, E |– Γ̂l if and only if E |– Γl .


3 In the event that negative literals appear in the domain theory, the consequences of applying these
operators are slightly less obvious. This will be made precise in the second part of this section.
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Consider, for example, the domain theoryΤ of Section 1. The set of NAND equationŝΤ is


buy-stock= NAND({C1} ),
C1 = NAND({ increased-demand, ¬product-liability} ),
¬product-liability = NAND({ product-liability} ),
increased-demand= NAND({C3,C4} ),
product-liability = NAND({C2} ),
C2 = NAND({ popular-product, unsafe-packaging} ),
C3 = NAND({ popular-product, established-market} ), and
C4 = NAND({ new-market, superior-flavor} ).


Observe thatbuy-stockis true inΤ̂ for precisely those truth assignments to the observables for
whichbuy-stockis true inT.


We now usêΓ to obtain a useful graph representation ofΓ. For an equation̂Γi in Γ̂, let h(Γ̂i )
refer to the left side of̂Γi and letb(Γ̂i ) refer to the set of literals which appear on the right side of
Γ̂i . In other words,h(Γ̂i ) = NAND(b(Γ̂i )).


Definition: A dt-graph∆Γ for a domain theoryΓ consists of a set of nodes which
correspond to the literals ofΓ̂ and a set of directed edges corresponding to the set
of ordered pairs {〈 x, y 〉 x = h(Γ̂i ), y ∈ b(Γ̂i ), Γ̂i ∈ Γ̂}. In addition, for each root
r we add an edge,er , leading intor (from some artificial node).


In other words,∆Γ consists of edges from each literal inΓ̂ to each of its antecedents. The dt-
graph representation ofΤ is shown in Figure 1.


Let ne be the node to which the edgee leads and letne be the node from which it comes. If
ne is a clause, then we say thate is aclause edge; if ne is a root, then we say thate is aroot edge;
if ne is a literal andne is a clause, then we say thate is aliteral edge; if ne is a proposition andne


is its negation, then we say thate is anegation edge.


The dt-graph∆Γ is very much like an AND–OR graph forΓ. It has, however, a very significant
advantage over AND–OR graphs because it collapses the distinction between clause edges and
literal edges which is central to the AND–OR graph representation. In fact, even neg ation edges
(which do not appear at all in the AND–OR representation) are not distinguished from literal edges
and clause edges in the dt-graph representation.


In terms of the dt-graph∆Γ, there are two basic revision operators — deleting edges or adding
edges. What are the effects of adding or deleting edges from∆Γ? If the length of every path from
a rootr to a noden is even (odd) thenn is said to be an even (odd) node forr i . If ne is even (odd)
for r i , thene is said to be even (odd) forr i . (Of course it is possible that the depth of an edge is
neither even nor odd.) Deleting an even edge forr i specializesthe definitions ofr i in the sense
that if ∆Γ′ is the result of the deletion, thenΓ′i (E) ≤ Γi (E) for all exemplars〈 E, Θ(E) 〉 ; likewise,
adding an even edge forr i generalizes the definition ofr i in the sense that if∆Γ′ is the result of
adding the edge to∆Γ thenΓ′i (E) ≥ Γi (E). Analogously, deleting an odd edge forr i generalizes
the definition ofr i , while adding an odd edge forr i specializes the definition ofr i . (Deleting or
adding an edge which is neither odd nor even forr i might result in a new definition ofr i which is
neither strictly more general nor strictly more specific.)


To understand this intuitively, first consider the case in which there are no negation edges in
∆Γ. Then an even edge in∆Γ represents a clause inΓ, so that deleting is specialization and adding
is generalization. An odd edge in∆Γ represents a literal in the body of a clause inΓ so that
deleting is generalization and adding a specialization. Now, if an odd number of negation edges
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C4 C3


¬product-liability


product-liability


C2


buy-stock


C1


increased-demand


new-market


popular-product
unsafe-packaging


superior-flavor
established-market


Figure 1: The dt-graph,∆Τ, of the theoryΤ.


are present on the path fromr i to an edge then the role of the edge is reversed.


2.2. Weighted Graphs


A weighted dt-graphis an ordered pair〈 ∆Γ, w 〉 where∆Γ is a dt-graphw and is an assignment
of values in (0, 1] to each node and edge in∆Γ. For an edgee, w(e) is meant to represent the
user’s degree of confidence that the edgee need not be deleted to obtain the correct domain
theory. For a noden, w(n) is the user’s degree of confidence that no edge leading from the node
n need be added in order to obtain the correct domain theory. Thus, for example, the assignment
w(n) = 1 means that it is certain that no edge need be added to the noden and the assignment
w(e) means that it is certain thate should not be deleted. Observe that if the noden is labeled by
a neg ative literal or an observable proposition thenw(n) = 1 by definition, since graphs obtained
by adding edges to such nodes do not correspond to any domain theory. Likewise, ife is a root-
edge or a negation-edge, thenw(e) = 1.
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For practical reasons, we conflate the weightw(e) of an edgee and the weight,w(ne), of the
nodene, into a single value,p(e) = w(e) × w(ne), associated with the edgee. The valuep(e) is
the user’s confidence thate need not be repaired, either by deletion or by dilution via addition of
child edges.


There are many ways that these values can be assigned. Ideally, they can be provided by the
expert such that they actually reflect the expert’s degree of confidence in each element of the
theory. Howev er, even in the absence of such information, values can be assigned by default; for
example, all elements can be assigned equal value. A more sophisticated method of assigning
values is to assign higher values to elements which have greater ‘‘semantic impact’’ (e.g., those
closer to the roots). The details of one such method are given in Appendix A. It is also, of
course, possible for the expert to assign some weights and for the rest to be assigned according to
some default scheme. For example, in the weighted dt-graph,〈 ∆Τ, p 〉 , shown in Figure 2, some
edges have been assigned weight near 1 and others have been assigned weights according to a
simple default scheme.


The semantics of the values associated with the edges can be made clear by considering the
case in which it is known that the correct dt-graph is a subset of the given dt-graph,∆. Consider a
probability function on the space of all subgraphs of∆. The weight of an edge is simply the sum
of the probabilities of the subgraphs in which the edge appears. Thus the weight of an edge is the
probability that the edge does indeed appear in the target dt-graph. We easily extend this to the


case where the target dt-graph is not necessarily a subgraph of the given one.4


Conversely, giv en only the probabilities associated with edges and assuming that the deletion
of different edges are independent events, we can compute the probability of a subgraph,∆′.
Sincep(e) is the probability thate is not deleted and 1− p(e) is the probability thate is deleted, it
follows that


p(∆′) =
e ∈ ∆′
Π p(e) ×


e ∈ ∆−∆′
Π 1 − p(e).


Letting S = ∆ − ∆′, we rewrite this as


p(∆′) =
e ∈ ∆−S
Π p(e) ×


e ∈ S
Π 1 − p(e).


We use this formula as a basis for assigning a value to each dt-graph∆′ obtainable from∆ via
revision of the set of edgesS, even in the case where edge-independence does not hold and even
in the case in which∆′ is not a subset of∆. We simply define


w(∆′) =
e ∈ ∆−S
Π p(e) ×


e ∈ S
Π 1 − p(e).


(In the event that∆ and∆′ are such thatS is not uniquely defined, chooseS such thatw(∆′) is
maximized.) Note that where independence holds and∆′ is subgraph of∆, we hav e


4 In order to avoid confusion it should be emphasized that the meaning of the weights associated with
edges is completely different than that associated with edges of Pearl’s Bayesian networks (1988). For us,
these weights represent a meta-domain-theory concept: the probability that this edge appears in some un-
known target domain theory. For Pearl they represent conditional probabilities within a probabilistic do-
main theory. Thus, the updating method we are about to introduce is totally unrelated to that of Pearl.
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Figure 2: The weighted dt-graph,〈 ∆Τ, p 〉 .


w(∆′) = p(∆′).


2.3. Objectives of Theory Revision


Now we can formally define the proper objective of a theory revision algorithm:


Given a weighted dt-graph〈 ∆, p 〉 and a set of exemplarsΖ, find a dt-graph∆′ such that
∆′ correctly classifies every exemplar inΖ and w(∆′) is maximal over all such dt-graphs.


Restating this in the terminology of information theory, we define theradicality of a dt-graph∆′
relative to an initial weighted dt-graphΚ = 〈 ∆, p 〉 as


RadΚ(∆′) =
e ∈ ∆−S


Σ −log(p(e)) +
e ∈ S
Σ −log(1 − p(e))


whereS is the set of edges of∆ which need to be revised in order to obtain∆′. Thus given a
weighted dt-graphΚ and a set of exemplarsΖ, we wish to find the least radical dt-graph relative
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to Κ which correctly classifies the set of exemplarsΖ.


Note that radicality is a straightforward measure of the quality of a revision set which neatly
balances syntactic and semantic considerations. It has been often noted that minimizing syntactic
change alone can lead to counter-intuitive results by giving preference to changes near the root
which radically alter the semantics of the theory. On the other hand, regardless of the distribution
of examples, minimizing semantic change alone results in simply appending to the domain theory
the correct classifications of the given misclassified examples without affecting the classification
of any other examples.


Minimizing radicality automatically takes into account both these criteria. Thus, for example,
by assigning higher initial weights to edges with greater semantic impact (as in our default
scheme of Appendix A), the syntactic advantage of revising close to the root is offset by the
higher cost of such revisions. For example, suppose we are given the theoryΤ of the introduction
and the single misclassified exemplar


〈 { unsafe-packaging, new-market} , 〈 1 〉 〉 .


There are several possible revisions which would bringΤ into accord with the exemplar. We
could, for example, add a new clause


buy-stock← unsafe-packaging∧ new-market,


deletesuperior-flavorfrom clauseC4, deletepopular-productandestablished-marketfrom clause
C3, or deleteincreased-demandfrom clauseC1. Given the weights of Figure 2, the deletion of
superior-flavorfrom clauseC4 is clearly the least radical revision.


Observe that in the special case where all edges are assigned identical initial weights,
regardless of their semantic strength, minimization of radicality does indeed reduce to a form of
minimization of syntactic change. We wish to point out, however, that even in this case our
definition of ‘‘syntactic change’’ differs from some previous definitions (Wogulis &
Pazzani, 1993). Whereas those definitions count the number of deleted and added edges, we
count the number of edges deleted or addedto. To understand why this is preferable, consider the
case in which some internal literal, which happens to have a large definition, is omitted from one
of the clause in the target theory. Methods which count the number of added edges will be
strongly biased against restoring this literal, prefering instead to makeseveraldifferent repairs
which collectively involve fewer edges than to make asingle repair involving more edges.
Nevertheless, given the assumption that the probabilities of the various edges in the given theory
being mistaken are equal, it is far more intuitive to repair only at a single edge, as PTR does. (We
agree, though, that once an edge has been chosen for repair, the chosen repair should be minimal
over all equally effective repairs.)


3. Finding Flawed Elements


PTR is an algorithm which finds an adequate set of revisions of approximately minimum
radicality. It achieves this by locating flawed edges and then repairing them. In this section we
give the algorithm for locating flawed edges; in the next section we show how to repair them.


The underlying principle of locating flawed edges is to process exemplars one at a time, in
each case updating the weights associated with edges in accordance with the information
contained in the exemplars. We measure the ‘‘flow’’ of a proof (or refutation) through the edges
of the graph. The more an edge contributes to the correct classification of an example, the more
its weight is raised; the more it contributes to the misclassification of the example, the more its
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weight is lowered. If the weight of an edge drops below a prespecified revision thresholdσ , it is
revised.


The core of the algorithm is the method of updating the weights. Recall that the weight
represents the probability that an edge appears in the target domain theory. The most natural way
to update these weights, then, is to replace the probability that an edge need not be revised with
the conditional probability that it need not be revisedgiven the classification of an exemplar. As
we shall see later, the computation of conditional probabilities ensures many desirable properties
of updating which ad hoc methods are liable to miss.


3.1. Processing a Single Exemplar


One of the most important results of this paper is thatunder certain conditions the conditional
probabilities of all the edges in the graph can be computed in a single bottom-up-then-top-down
sweep through the dt-graph. We shall employ this method of computation even when those
conditions do not hold. In this way, updating is performed in highly efficient fashion while, at the
same time, retaining the relevant desirable properties of conditional probabilities.


More precisely, the algorithm proceeds as follows. We think of the nodes of∆Γ which
represent observable propositions as input nodes, and we think of the values assigned by an
exampleE to each observable proposition as inputs. Recall that the assignment of weights to the
edges is associated with an implicit assignment of probabilities to various dt-graphs obtainable
via revision of∆Γ. For some of these dt-graphs, the rootr i is provable from the exampleE, while
for others it is not. We wish to make a bottom-up pass throughΚ = 〈 ∆Γ, p 〉 in order to compute
(or at least approximate) for each rootr i , the probability that the target domain theory is such that
r i is true for the exampleE. The obtained probability can then be compared with the desired
result,Θi (E), and the resulting difference can be used as a basis for adjusting the weights,w(e),
for each edgee.


Let


E(P) =





1


0


if P is true in E


if P is false in E.


We say that a noden ∈ ∆Γ is true if the literal ofΓ̂ which labels it is true. Now, a node passes the
value ‘‘true’’ up the graph if it is either true or deleted, i.e., if it is not both undeleted and false.
Thus, for an edgee such that ne is the observable propositionP, the value
uE(e) = 1 − [ p(e) × (1 − E(P))] is the probability of the value ‘‘true’’ being passed up the graph


from e.5


Now, recalling that a node in∆Γ represents a NAND operation, if the truth of a node in∆Γ is
independent of the truth of any of its brothers, then for any edgee, the probability of ‘‘true’’ being
passed up the graph is


5 Note that, in principle, the updating can be performed exactly the same way even if 0 <E(P) < 1.
Thus, the algorithm extends naturally to the case in which there is uncertainty regarding the truth-value of
some of the observable propositions.
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uE(e) = 1 − p(e)
s ∈ children(e)


Π uE(s).


We calluE(e) theflowof E throughe.


We hav e defined the flowuE(e) such that, under appropriate independence conditions, for any
nodene, uE(e) is in fact the probability thatne is true given〈 ∆Γ, w 〉 andE. (For a formal proof
of this, see Appendix B.) In particular, for a rootr i , the flowuE(eri


) is, even in the absence of the
independence conditions, a good approximation of the probability that the target theory is such
thatr i is true given〈 ∆Γ, w 〉 andE.


In the second stage of the updating algorithm, we propagate the difference between each
computed valueuE(eri


) (which lies somewhere between 0 and 1) and its target valueΘi (E)
(which is either 0 or 1) top-down through∆Γ in a process similar to backpropagation in neural
networks. As we proceed, we compute a new valuevE(e) as well as an updated value forp(e),
for every edgee in ∆Γ. The new valuevE(e) represents an updating ofuE(e) where the correct
classification,Θ(E), of the exampleE has been taken into account.


Thus, we begin by setting each valuevE(r i ) to reflect the correct classification of the


example. Letε > 0 be some very small constant6 and let


vE(eri
) =







ε
1 − ε


if Θi (E) = 0


if Θi (E) = 1.


Now we proceed top down through∆Γ, computingvE(e) for each edge in∆Γ. In each case we
computevE(e) on the basis ofuE(e), that is, on the basis of how much of the proof (or refutation)
of E flows through the edgee. The precise formula is


vE(e) = 1 − (1 − uE(e)) ×
vE( f (e))


uE( f (e))


where f (e) is that parent ofe for which



1 −


max[vE( f (e)), uE( f (e))]


min[vE( f (e)), uE( f (e))]







is greatest. We show in


Appendix B why this formula works.


Finally, we computepnew(e), the new values ofp(e), using the current value ofp(e) and the
values ofvE(e) anduE(e) just computed:


pnew(e) = 1 − (1 − p(e)) ×
vE(e)


uE(e)
.


If the deletion of different edges are independent events andΘ is known to be a subgraph of
Γ, then pnew(e) is the conditional probability that the edgee appears inΘ, giv en the exemplar
〈 E, Θ(E) 〉 (see proof in Appendix B). Figure 3 gives the pseudo code for processing a single
exemplar.


6 Strictly speaking, for the computation of conditional probabilities, we need to useε = 0. However, in
order to ensure convergence of the algorithm in all cases, we chooseε > 0 (see Appendix C). In the experi-
ments reported in Section 6, we use the valueε = . 01.
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function BottomUp( 〈 ∆, p 〉 : weighted dt-graph, E: exemplar): array of real;
begin
S⇐ ∅ ; V ⇐ Leaves(∆);
for e ∈ Leaves(∆) do
begin
if e ∈ E then u(e) ⇐ 1;
elseu(e) ⇐ 1 − p(e);
S⇐ Merge(S, Parents(e, ∆));


end
while S ≠ ∅ do
begin
e⇐ PopSuitableParent(S,V); V ⇐ AddElement(e,V);
u(e) ⇐ 1 − (p(e)


d ∈ Children(e,∆)
Π u(d));


S⇐ Merge(S, Parents(e, ∆));
end


return u;
end


function TopDown( 〈 ∆, p 〉 : weighted dt-graph, u: array of real,
E: exemplar, ε : real): weighted dt-graph;


begin
S⇐ ∅ ; V ⇐ Roots(∆);
for r i ∈ Roots(∆) do
begin
if Γi (E) = 1 then v(r i ) ⇐ ε ;
elsev(r i ) ⇐ 1 − ε ;
S⇐ Merge(S, Children(r i , ∆));


end
while S ≠ ∅ do
begin
e⇐ PopSuitableChild(S,V); V ⇐ AddElement(e,V); f ⇐ MostChangedParent(e, ∆);


v(e) ⇐ 1 − (1 − u(e)) ×
v( f )


u( f )
;


p(e) ⇐ 1 − (1 − p(e)) ×
v(e)


u(e)
;


S⇐ Merge(S, Children(e, ∆));
end


return 〈 ∆, p 〉 ;
end


Figure 3: Pseudo code for processing a single exemplar. The functionsBottomUpandTopDown
sweep the dt-graph.BottomUpreturns an array on edges representing proof flow, whileTopDown
returns an updated weighted dt-graph. We are assuming the dt-graph datastructure has been de-
fined and initialized appropriately. FunctionsChildren, Parents, Roots, andLeavesreturn sets of
edges corresponding to the corresponding graph relation on the dt-graph. FunctionMergeandAd-
dElementoperate on sets, and functionsPopSuitableParentand PopSuitableChildreturn an ele-
ment of its first argument whose children or parents, respectively, are all already elements of its
second argument while simultaneously deleting the element from the first set, thus guaranteeing
the appropriate graph traversal strategy.
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Consider the application of this updating algorithm to the weighted dt-graph of Figure 2. We
are given the exemplar〈 { unsafe-packaging, new-market} , 〈 1 〉 〉 , i.e., the example in which
unsafe-packagingand new-marketare true (and all other observables are false) should yield a
derivation of the rootbuy-stock. The weighted dt-graph obtained by applying the algorithm is
shown in Figure 4.


This example illustrates some important general properties of the method.


(1) Given anIN exemplar, the weight of an odd edge cannot decrease and the weight of an
even edge cannot increase.(The analogous property holds for an OUT exemplar.) In the
case where no negation edge appears in∆Γ, this corresponds to the fact that a clause
cannot help prevent a proof, and literals in the body of a clause cannot help complete a
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Figure 4: The weighted dt-graph of Figure 2 after processing the exemplar
〈 { unsafe-packaging, new-market} , 〈 1 〉 〉 .
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proof. Note in particular that the weights of the edges corresponding to the literals
popular-productand established-marketin clauseC3 dropped by the same amount,
reflecting the identical roles played by them in this example. However, the weight of the
edge corresponding to the literalsuperior-flavorin clauseC4 drops a great deal more than
both those edges, reflecting the fact that the deletion ofsuperior-flavoralone would allow
a proof ofbuy-stock, while the deletion of eitherpopular-productalone orestablished-
marketalone would not allow a proof ofbuy-stock.


(2) An edge with initial weight 1 is immutable; its weight remains 1 forever.Thus although an
edge with weight 1, such as that corresponding to the literalincreased-demandin clause
C1, may contribute to the prevention of a desired proof, its weight is not diminished since
we are told that there is no possibility of that literal being flawed.


(3) If the processed exemplar can only be correctly classified if a particular edge e is revised,


then the updated probability of e will approach 0 and e will be immediately revised.7


Thus, for example, were the initial weights of the edge corresponding toestablished-
marketandpopular-productin C3 to approach 1, the weight of the edge corresponding to
superior-flavor in C4 would approach 0. Since we use weights only as a temporary
device for locating flawed elements, this property renders our updating method more
appropriate for our purposes then standard backpropagation techniques which adjust
weights gradually to ensure convergence.


(4) The computational complexity of processing a single exemplar is linear in the size of the
theory Γ. Thus, the updating algorithm is quite efficient when compared to revision
techniques which rely on enumerating all proofs for a root. Note further that the
computation required to update a weight is identical for every edge of∆Γ regardless of
edge type. Thus, PTR is well suited for mapping onto fine-grained SIMD machines.


3.2. Processing Multiple Exemplars


As stated above, the updating method is applied iteratively to one example at a time (in random
order) until some edge drops below the revision threshold,σ . If after a complete cycle no edge
has dropped below the revision threshold, the examples are reordered (randomly) and the


updating is continued.8


For example, consider the weighted dt-graph of Figure 2. After processing the exemplars


〈 { unsafe-packaging, new-market} , 〈 1 〉 〉 ,
〈 { popular-product, established-market, superior-flavor} , 〈 0 〉 〉 , and
〈 { popular-product, established-market, celebrity-endorsement} , 〈 0 〉 〉


we obtain the dt-graph shown in Figure 5. If our threshold is, say,σ = . 1, then we have to revise
the edge corresponding to the clauseC3. This reflects the fact that the clauseC3 has contributed


7 If we were to chooseε = 0 in the definition ofvE(er ), then the updated probability would equal 0.
8 Of course, by processing the examples one at a time we abandon any pretense that the algorithm is


Bayesian. In this respect, we are proceeding in the spirit of connectionist learning algorithms in which it is
assumed that the sequential processing of examples in random order, as if they were actually independent,
approximates the collective effect of the examples.
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Figure 5: The weighted dt-graph of Figure 2 after processing exemplars
〈 { unsafe-packaging, new-market} , 〈 1 〉 〉 ,
〈 { popular-product, established-market, superior-flavor} , 〈 0 〉 〉 , and
〈 { popular-product, established-market, celebrity-endorsement} , 〈 0 〉 〉 .


The clauseC3 has dropped below the threshold.


substantially to the misclassification of the second and third examples from the list above while
not contributing substantially to the correct classification of the first.


4. Revising a Flawed Edge


Once an edge has been selected for revision, we must decide how to revise it. Recall thatp(e)
represents the product ofw(e) andw(ne). Thus, the drop inp(e) indicates either thate needs to
be deleted or that, less dramatically, a subtree needs to be appended to the nodene. Thus, we need
to determine whether to delete an edge completely or to simply weaken it by adding children;
intuitively, adding edges to a clause node weakens the clause by adding conditions to its body,
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while adding edges to a proposition node weakens the proposition’s refutation power by adding
clauses to its definition. Further, if we decide to add children, then we need to determine which
children to add.


4.1. Finding Relevant Exemplars


The first stage in making such a determination consists of establishing, for each exemplar, the role
of the edge in enabling or preventing a derivation of a root. More specifically, for an IN
exemplar,〈 E, Θ(E) 〉 , of some root,r , an edgee might play a positive role by facilitating a proof
of r , or play a destructive role by preventing a proof ofr , or may simply be irrelevant to a proof
of r .


Once the sets of exemplars for whiche plays a positive role or a destructive role are
determined, it is possible to append toe an appropriate subtree which effectively redefines the


role of e such that it is used only for those exemplars for which it plays a positive role.9 How,
then, can we measure the role ofe in allowing or preventing a proof ofr from E?


At first glance, it would appear that it is sufficient to compare the graph∆ with the graph∆e
which results from deletinge from ∆. If E |– ∆r andE |–/ ∆e


r (or vice versa) then it is clear thate
is ‘‘responsible’’ for r being provable or not provable given the exemplar〈 E, Θ(E) 〉 . But, this
criterion is too rigid. In the case of an OUT exemplar, even if it is the case thatE |–/ ∆e


r , it is still
necessary to modifye in the event thate allowed anadditional proof of r from E. And, in the
case of an IN exemplar, even if it is the case thatE |– ∆r it is still necessarynot to modify e in
such a way as to further prevent a proof ofr from E, since ultimately some proof is needed.


Fortunately, the weights assigned to the edges allow us the flexibility to not merely determine
whether or not there is a proof ofr from E given∆ or ∆e but also to measure numerically the flow
of E throughr both with and withoute. This is just what is needed to design a simple heuristic
which captures the degree to whiche contributes to a proof ofr from E.


Let Κ = 〈 ∆, p 〉 be the weighted dt-graph which is being revised. LetΚe = 〈 ∆, p′ 〉 where p′
is identical withp, except thatp′(e) = 1. Let Κe = 〈 ∆, p′ 〉 where p′ is identical withp, except
that p′(e) = 0; that is,Κe is obtained fromΚ by deleting the edgee.


Then define for each rootr i


Ri ( 〈 E, Θ(E) 〉 , e, Κ) =


1 − Θi (E)



− uΚe


E (eri
)




1 − Θi (E)



− uΚe


E (eri
)


.


Then if Ri ( 〈 E, Θ(E) 〉 , e, Κ) > 2, we say that e is needed for E and r i and if
Ri ( 〈 E, Θ(E) 〉 , e, Κ) < 1/2 we say thate is destructivefor E andr i .


9 PTR is not strictly incremental in the sense that when an edge is revised its role in proving or refut-
ing eachexemplar is checked. If strict incrementality is a desideratum, PTR can be slightly modified so
that an edge is revised on the basis of only those exemplars which have already been processed. Moreover,
it is generally not necessary to check all exemplars for relevance. For example, ife is an odd edge andE is
a correctly classified IN exemplar, thene can be neither needed forE (since odd edges can only make
derivations more difficult) nor destructive forE (sinceE is correctly classified despitee).
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Intuitively, this means, for example, that the edgee is needed for an IN exemplar,E, of r i , if
most of the derivation ofr i from E passes through the edgee. We hav e simply given formal
definition to the notion that ‘‘most’’ of the derivation passes throughe, namely, that the flow,
uΚe


E (eri
), of E throughr i without eis less than half of the flow,uΚe


E (eri
), of E throughr i with e.


For neg ation-free theories, this corresponds to the case where the edgee represents a clause
which is critical for the derivation ofr i from E. The intuition for destructive edges and for OUT
exemplars is analogous. Figure 6 gives the pseudo code for computing the needed and destructive
sets for a given edgee and exemplar setΖ.


In order to understand this better, let us now return to our example dt-graph in the state in
which we left it in Figure 5. The edge corresponding to the clauseC3 has dropped below the
threshold. Now let us check for which exemplars that edge is needed and for which it is
destructive. ComputingR( 〈 E, Θ(E) 〉 ,C3,Η) for each exampleE we obtain the following:


R( 〈 { popular-product, unsafe-packaging, established-market} , 〈 0 〉 〉 ,C3,Η) = 0. 8
R( 〈 { unsafe-packaging, new-market} , 〈 1 〉 〉 ,C3,Η) = 1. 0
R( 〈 { popular-product, established-market, celebrity-endorsement} , 〈 1 〉 〉 ,C3,Η) = 136. 1
R( 〈 { popular-product, established-market, superior-flavor} , 〈 0 〉 〉 ,C3,Η) = 0. 1
R( 〈 { popular-product, established-market, ecologically-correct} , 〈 0 〉 〉 ,C3,Η) = 0. 1
R( 〈 { new-market, celebrity-endorsement} , 〈 1 〉 〉 ,C3,Η) = 1. 0


function Relevance( 〈 ∆, p 〉 : weighted dt-graph, Ζ: exemplar set, e: edge): tuple of set;
begin


N ⇐ ∅ ;
D ⇐ ∅ ;
psaved⇐ Copy(p);
for E ∈ Ζ do
for r i ∈ Roots(∆) do


p(e) ⇐ 1; u ⇐ BottomUp(∆, p, E); uΚe
E ⇐ u(r i ); p ⇐ psaved;


p(e) ⇐ 0; u ⇐ BottomUp(∆, p, E); uΚe
E ⇐ u(r i ); p ⇐ psaved;


if Γi (E) = 1 then Ri ⇐
uΚe


E


uΚe
E


;


elseRi ⇐
1 − uΚe


E


1 − uΚe
E


;


if Ri > 2 then N ⇐ N ∪ { E};


if Ri <
1


2
then D ⇐ D ∪ { E};


end
end


return 〈 N, D 〉 ;
end


Figure 6: Pseudo code for computing the relevant sets (i.e., the needed and destructive sets) for a
given edgee and exemplar setΖ. The general idea is to compare proof ‘‘flow’’ (computed using
functionBottomUp) both with and without the edge in question for each exemplar in the exemplar
set. Note that the original weights are saved and later restored at the end of the computation.
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The high value of


R( 〈 { popular-product, established-market, celebrity-endorsement} , 〈 1 〉 〉 ,C3,Η)


reflects the fact that without the clauseC3, there is scant hope of a derivation ofbuy-stockfor this
example. (Of course, in principle, bothnew-marketandsuperior-flavormight still be deleted from
the body of clauseC4, thus obviating the need forC3, but the high weight associated with the
literal new-marketin C4 indicates that this is unlikely.) The low values of


R( 〈 { popular-product, established-market, superior-flavor} , 〈 0 〉 〉 ,C3,Η) and
R( 〈 { popular-product, established-market, ecologically-correct} , 〈 0 〉 〉 ,C3,Η)


reflect the fact that eliminating the clauseC3 would greatly diminish the currently undesirably
high flow throughbuy-stock(i.e., probability of a derivation ofbuy-stock) from each of these
examples.


An interesting case to examine is that of


〈 { popular-product, unsafe-packaging, established-market} , 〈 0 〉 〉 .


It is true that the elimination ofC3 is helpful in preventing an unwanted derivation ofbuy-stock
because it prevents a derivation ofincreased-demandwhich is necessary forbuy-stockin clause
C1. Nevertheless,R correctly reflects the fact that the clauseC3 is not destructive for this
exemplar since even in the presence ofC3, buy-stockis not derivable due to the failure of the
literal ¬product-liability.


4.2. Appending a Subtree


Let N be the set of examples for whiche is needed for some root and letD be the set of examples
for which e is destructive for some root (and not needed for any other root). Having found the
setsN andD, how do we repaire?


At this point, if the setD is non-empty and the setN is empty, we simply delete the edge
from ∆Γ. We justify this deletion by noting that no exemplars requiree, so deletion will not
compromise the performance of the theory. On the other hand, ifN is not empty, we apply some


inductive algorithm10 to produce a disjunctive normal form (DNF) logical expression constructed
from observable propositions which is true for each exemplar inD but no exemplar inN. We
reformulate this DNF expression as a conjunction of clauses by taking a single new literall as the
head of each clause, and using each conjunct in the DNF expression as the body of one of the
clauses. This set of clauses is converted into dt-graph∆n with l as its root. We then suture∆n to e
by adding to∆Γ a new nodet, an edge frome to t, and another edge fromt to the root,l , of Γn.


In order to understand why this works, first note the important fact that (like every other
subroutine of PTR), this method is essentially identical whether the edge,e, being repaired is a
clause edge, literal edge or negation edge. However, when translating back from dt-graph form to
domain theory form, the new nodet will be interpreted differently depending on whetherne is a
clause or a literal. Ifne is a literal, thent is interpreted as the clausene ← l . If ne is a clause,


10 Any standard algorithm for constructing decision trees from positive and negative examples can be
used. Our implementation of PTR uses ID3 (Quinlan, 1986). The use of an inductive component to add
new substructure is due to Ourston and Mooney (Ourston & Mooney, in press).
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thent is interpreted as the negative literal¬l .11


Now it is plain that those exemplars for whiche is destructive will use the graph rooted att to
overcome the effect ofe. If ne is a literal which undesirably excludesE, thenE will get by ne by
satisfying the clauset; if ne is a clause which undesirably allowsE, thenE will be stopped by the


function Revise( 〈 ∆, p 〉 : weighted dt-graph, Ζ: set of exemplars, e: edge, λ : real): weighted dt-graph;
begin


〈 N, D 〉 ⇐ Relevance( 〈 ∆, p 〉 , Ζ, e);
if D ≠ ∅ then
begin
if N = ∅ then p(e) ⇐ 0;
else
begin


p(e) ⇐ λ ;
l ⇐ NewLiteral();
∆ID3 = DTGraph(l , DNF-ID3(D, N));
t ⇐ NewNode(); ∆ ⇐ AddNode(∆, t);
if Clause?(ne) then Label(t) ⇐ ¬l ;
elseLabel(t) ⇐ NewClause();
∆ ⇐ AddEdge(∆, 〈 ne, t 〉 ); p( 〈 ne, t 〉 ) ⇐ λ ;
∆ ⇐ AddEdge(∆, 〈 t, Root(∆ID3) 〉 ); p( 〈 t, Root(∆ID3) 〉 ) ⇐ 1;
∆ ⇐ ∆ ∪ ∆ID3; for e ∈ ∆ID3 do p(e) ⇐ 1;


end
end


return 〈 ∆, p 〉 ;
end


Figure 7: Pseudo code for performing a revision. The functionRevisetakes a dt-graph, a set of ex-
emplarsΖ, an edge to be revisede, and a parameterλ as inputs and produces a revised dt-graph as
output. The functionDNF-ID3 is an inductive learning algorithm that produces a DNF formula
that accepts elements ofD but not ofN, while the functionDTGraphproduces a dt-graph with the
given root from the given DNF expression as described in the text. For the sake of expository sim-
plicity, we hav e not shown the special cases in whichne is a leaf ore is a negation edge, as dis-
cussed in Footnote 11.


11 Of course, if we were willing to sacrifice some elegance, we could allow separate sub-routines for
the clause case and the literal case. This would allow us to make the dt-graphs to be sutured considerably
more compact. In particular, ifne is a literal we could suture the children ofl in ∆n directly tone. If ne is a
clause, we could use the inductive algorithm to find a DNF expression which excludes examples inD and
includes those inN (rather than the other way around as we now do it). Translating this expression to a dt-
graph∆ with root l , we could suture∆n to ∆Γ by simply adding an edge from the clausene to the rootl .
Moreover, if∆n represents a single clausel ← l1, . . . , l m then we can simply suture each of the leaf-nodes
l1, . . . , l m directly to ne. Note that ifne is a leaf or a negative literal, it is inappropriate to append child
edges tone. In such cases, we simply replacene with a new literall ′ and append tol ′ both∆n and the graph
of the clausel ′ ← ne.
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new literalt = ¬l .


Whenever a graph∆n is sutured into∆Γ, we must assign weights to the edges of∆n. Unlike
the original domain theory, howev er, the new substructure is really just an artifact of the inductive
algorithm used and the current relevant exemplar set. For this reason, it is almost certainly
inadvisable to try to revise it as new exemplars are encountered. Instead, we would prefer that
this new structure be removed and replaced with a more appropriate new construct should the
need arise. To ensure replacement instead of revision, we assign unit certainty factors to all edges
of the substructure. Since the internal edges of the new structure have weights equal to 1, they
will never be revised. Finally, we assign a default weightλ to the substructure root edge〈 ne, t 〉 ,
that connects the new component to the existing∆Γ and we reset the weight of the revised edge,
e, to the same valueλ . Figure 7 gives the pseudo code for performing the revision step just
described.


Consider our example from above. We are repairing the clauseC3. We hav e already found
that the setD consists of the examples


{ popular-product, established-market, superior-flavor} and
{ popular-product, established-market, ecologically-correct}


while the setN consists of the single example


{ popular-product, established-market, celebrity-endorsement} .


Using ID3 to find a formula which excludesN and includesD, we obtain { ¬celebrity-
endorsement} which translates into the single clause,{ l ← ¬celebrity-endorsement} . Translating
into dt-graph form and suturing (and simplifying using the technique of Footnote 11), we obtain
the dt-graph shown in Figure 8.


Observe now that the domain theoryΤ′ represented by this dt-graph correctly classifies the
examples


{ popular-product, established-market, superior-flavor} and
{ popular-product, established-market, ecologically-correct}


which were misclassified by the original domain theoryΤ.


5. The PTR Algorithm


In this section we give the details of the control algorithm which puts the pieces of the previous
two sections together and determines termination.


5.1. Control


The PTR algorithm is shown in Figure 9. We can briefly summarize its operation as follows:


(1) PTR process exemplars in random order, updating weights and performing revisions
when necessary.


(2) Whenever a revision is made, the domain theory which corresponds to the newly revised
graph is checked against all exemplars.


(3) PTR terminates if:
(i) All exemplars are correctly classified, or
(ii) Every edge in the newly revised graph has weight 1.
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Figure 8: The weighted dt-graph of Figure 2 after revising the clauseC3 (the graph has been
slightly simplified in accordance with the remark in Footnote 11).


(4) If, after a revision is made, PTR does not terminate, then it continues processing
exemplars in random order.


(5) if, after a complete cycle of exemplars has been processed, there remain misclassified
exemplars, then we
(i) Increment the revision thresholdσ so thatσ = min[σ + δσ , 1], and
(ii) Increment the valueλ assigned to a revised edge and to the root edge of an added


component, so thatλ = min[λ + δ λ , 1].


(6) Now we begin anew, processing the exemplars in (new) random order.


It is easy to see that PTR is guaranteed to terminate. The argument is as follows. Within


max





1


δσ
,


1


δ λ







cycles, bothσ andλ will reach 1. At this point, every edge with weight less than
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1 will be revised and will either be deleted or have its weight reset toλ = 1. Moreover, any edges
added during revision will also be assigned certainty factorλ = 1. Thus all edges will have weight
1 and the algorithm terminates by the termination criterion (ii).


Now, we wish to show that PTR not only terminates, but that it terminates with every
exemplar correctly classified. That is, we wish to show that, in fact, termination criterion (ii) can
never be satisfied unless termination criterion (i) is satisfied as well. We call this property
convergence. In Appendix C we prove that, under certain very general conditions, PTR is
guaranteed to converge.


5.2. A Complete Example


Let us now review the example which we have been considering throughout this paper.


We begin with the flawed domain theory and set of exemplars introduced in Section 1.


C1:buy-stock← increased-demand∧ ¬product-liability
C2:product-liability ← popular-product∧ unsafe-packaging
C3: increased-demand← popular-product∧ established-market
C4: increased-demand← new-market∧ superior-flavor.


We translate the domain theory into the weighted dt-graph〈 ∆Τ, p 〉 of Figure 2, assigning
weights via a combination of user-provided information and default values. For example, the user
has indicated that their confidence in the first literal (increased-demand) in the body of clauseC1
is greater than their confidence in the second literal (¬product-liability).


function PTR( 〈 ∆, p 〉 : weighted dt-graph, Ζ: set of exemplars,
〈 λ0,σ0,δ λ ,δσ , ε 〉 : five tuple of real): weighted dt-graph;


begin
λ ⇐ λ0;


σ ⇐ σ0;


while ∃ E ∈ Ζ such that Γ(E) ≠ Θ(E) do
begin


for E ∈ RandomlyPermute(Ζ) do
begin


u ⇐ BottomUp( 〈 ∆, p 〉 , E);
〈 ∆, p 〉 ⇐ TopDown( 〈 ∆, p 〉 , u, E, ε );
if ∃ e ∈ ∆ such that p(e) ≤ σ then 〈 ∆, p 〉 ⇐ Revise( 〈 ∆, p 〉 , Ζ, ε , λ);
if ∀ e ∈ ∆, p(e) = 1 or ∀ E ∈ Ζ, Γ(E) = Θ(E) then return 〈 ∆, p 〉 ;


end
λ ⇐ max[λ + δ λ , 1];
σ ⇐ max[σ + δσ , 1];


end
end


Figure 9: The PTR control algorithm. Input to the algorithm consists of a weighted dt-graph
〈 ∆, p 〉 , a set of exemplarsΖ, and five real-valued parametersλ0,σ0,δ λ ,δσ , andε . The algorithm
produces a revised weighted dt-graph whose implicit theory correctly classifies all exemplars inΖ.
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We set the revision thresholdσ to .1, the reset valueλ initially to .7 and their respective
incrementsδσ andδ λ to . 03. We now start updating the weights of the edges by processing the
exemplars in some random order.


We first process the exemplar


〈 { unsafe-packaging, new-market} , 〈 1 〉 〉 .


First, the leaves of the dt-graph are labeled according to their presence or absence in the exemplar.
Second,uE(e) values (proof flow) are computed for all edges of the dt-graph in bottom up
fashion. Next,vE(eri


) values are set to reflect the vector of correct classifications for the example
Θ(E). New values forvE(e) are computed in top down fashion for each edge in the dt-graph. As
these values are computed, new values forp(e) are also computed. Processing of this first
exemplar produces the updated dt-graph shown in Figure 3.


Processing of exemplars continues until either an edge weight falls belowσ (indicating a
flawed domain theory element has been located), a cycle (processing of all known exemplars) is
completed, or the PTR termination conditions are met. For our example, after processing the
additional exemplars


〈 { popular-product, established-market, superior-flavor} , 〈 0 〉 〉 and
〈 { popular-product, established-market, ecologically-correct} , 〈 0 〉 〉


the weight of the edge corresponding to clauseC3 drops belowσ (see Figure 5), indicating that
this edge needs to be revised.


We proceed with the revision by using the heuristic in Section 4.2 in order to determine for
which set of exemplars the edge in question is needed and for which it is destructive. The edge
corresponding to the clauseC3 is needed for


{ 〈 { popular-product, established-market, celebrity-endorsement} , 〈 1 〉 〉 }


and is destructive for


{ 〈 { popular-product, established-market, ecologically-correct} , 〈 0 〉 〉 ,
〈 { popular-product, established-market, superior-flavor} , 〈 0 〉 〉 }.


Since the set for which the edge is needed is not empty, PTR chooses to append a subtree
weakening clauseC3 rather than simply deleting the clause outright. Using these sets as input to
ID3, we determine that the factcelebrity-endorsementsuitably discriminates between the needed
and destructive sets. We then repair the graph to obtain the weighted dt-graph shown in Figure 8.
This graph corresponds to the theory in which the literalcelebrity-endorsementhas been added to
the body ofC3.


We now check the newly-obtained theory embodied in the dt-graph of Figure 8 (i.e., ignoring
weights) against all the exemplars and determine that there are still misclassified exemplars,
namely


〈 { unsafe-packaging, new-market} , 〈 1 〉 〉 and
〈 { new-market, celebrity-endorsement} , 〈 1 〉 〉 .


Thus, we continue processing the remaining exemplars in the original (random) order.


After processing the exemplars


〈 { popular-product, unsafe-packaging, established-market} , 〈 0 〉 〉 ,
〈 { popular-product, established-market, celebrity-endorsement} , 〈 1 〉 〉 , and
〈 { new-market, celebrity-endorsement} , 〈 1 〉 〉 ,
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the weight of the edge corresponding to the literalsuperior-flavorin clauseC4 drops below the
revision thresholdσ . We then determine that this edge is not needed for any exemplar and thus
the edge is simply deleted.


At this point, no misclassified exemplars remain. The final domain theory is:


C1:buy-stock← increased-demand∧ ¬product-liability
C2:product-liability ← popular-product∧ unsafe-packaging
C3: increased-demand← popular-product∧ established-market∧ celebrity-endorsement
C4: increased-demand← new-market.


This theory correctly classifies all known exemplars and PTR terminates.


6. Experimental Evaluation


In this section we will examine experimental evidence that illustrates several fundamental
hypotheses concerning PTR. We wish to show that:


(1) theories produced by PTR are of high quality in three respects: they are of low radicality,
they are of reasonable size, and they provide accurate information regarding exemplars
other than those used in the training.


(2) PTR converges rapidly — that is, it requires few cycles to find an adequate set of
revisions.


(3) well-chosen initial weights provided by a domain expert can significantly improve the
performance of PTR.


More precisely, giv en a theoryΓ′ obtained by using PTR to revise a theoryΓ on the basis of a
set of training examplars, we will test these hypotheses as follows.


Radicality. Our claim is thatRadΚ(Γ′) is typically close to minimal over all theories which
correctly classify all the examples. For cases where the target theory,Θ, is known, we measure
RadΚ(Γ′)
RadΚ(Θ)


. If this value is less than 1, then PTR can be said to have done even ‘‘better’’ than


finding the target theory in the sense that it was able to correctly classify all training examples
using less radical revisions than those required to restore the target theory. If the value is greater
than 1, then PTR can be said to have ‘‘over-revised’’ the theory.


Cross-validation. We perform one hundred repetitions of cross-validation using nested sets
of training examples. It should be noted that our actual objective is to minimize radicality, and
that often there are theories that are less radical than the target theory which also satisfy all
training examples. Thus, while cross-validation gives some indication that theory revision is
being successfully performed, it is not a primary objective of theory revision.


Theory size. We count the number of clauses and literals in the revised theory merely to
demonstrate that theories obtained using PTR are comprehensible. Of course, the precise size of
the theory obtained by PTR is largely an artifact of the choice of inductive component.


Complexity. Processing a complete cycle of exemplars isO(n × d) wheren is the number of
edges in the graph andd is the number of exemplars. Likewise repairing an edge isO(n × d). We
will measure the number of cycles and the number of repairs made until convergence. (Recall


that the number of cycles until convergence is in any event bounded by max





1


δσ
,


1


δ λ





. We will


show that, in practice, the number of cycles is small even ifδσ = δ λ = 0.


183







KOPPEL, FELDMAN, & SEGRE


Utility of Bias. We wish to show that user-provided guidance in choosing initial weights
leads to faster and more accurate results. For cases in which the target theory,Θ, is known, letS
be the set of edges of∆Γ which need to be revised in order to restore the target theoryΘ. Define


pβ (e) such that for eache ∈ S, 1 − pβ (e) = (1 − p(e))
1


β and for eache ∈/ S, pβ (e) = (p(e))
1


β .
That is, each edge which needs to be revised to obtain the intended theory has its initial weight
diminished and each edge which need not be revised to obtain the intended theory has its weight
increased. LetΚβ = 〈 ∆Γ, pβ 〉 . Then, for eachβ ,


RadΚβ
(Θ) = − log(


e ∈ S
Π (1 − p(e))


1


β ×
e ∈/ S
Π (p(e))


1


β ) =
1


β
RadΚ(Θ).


Here, we compare the results of cross-validation and number-of-cycles experiments forβ = 2
with their unbiased counterparts (i.e.,β = 1).


6.1. Comparison with other Methods


In order to put our results in perspective we compare them with results obtained by other


methods.12


(1) ID3 (Quinlan, 1986) is the inductive component we use in PTR. Thus using ID3 is
equivalent to learning directly from the examples without using the initial flawed domain
theory. By comparing results obtained using ID3 with those obtained using PTR we can
gauge the usefulness of the given theory.


(2) EITHER (Ourston & Mooney, in press) uses enumeration of partial proofs in order to find
a minimal set of literals, the repair of which will satisfy all the exemplars. Repairs are
then made using an inductive component. EITHER is exponential in the size of the
theory. It cannot handle theories with negated internal literals. It also cannot handle
theories with multiple roots unless those roots are mutually exclusive.


(3) KBANN (Towell & Shavlik, 1993) translates a symbolic domain theory into a neural net,
uses backpropagation to adjust the weights of the net’s edges, and then translates back
from net form to partially symbolic form. Some of the rules in the theory output by
KBANN might be numerical, i.e., not strictly symbolic.


(4) RAPTURE (Mahoney &  Mooney, 1993) uses a variant of backpropagation to adjust
certainty factors in a probabilistic domain theory. If necessary, it can also add a clause to
a root. All the rules produced by RAPTURE are numerical. Like EITHER, RAPTURE
cannot handle negated internal literals or multiple roots which are not mutually exclusive.


Observe that, relative to the other methods considered here, PTR is liberal in terms of the
theories it can handle, in that (like KBANN, but unlike EITHER and RAPTURE) it can handle
negated literals and non-mutually exclusive multiple roots; it is also strict in terms of the theories
it yields in that (like EITHER, but unlike KBANN and RAPTURE) it produces strictly symbolic
theories.


12 There are other interesting theory revision algorithms, such as RTLS (Ginsberg, 1990), for which no
comparable data is available.
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We hav e noted that both KBANN and RAPTURE output ‘‘numerical’’ rules. In the case of
KBANN, a numerical rule is one which fires if the sum of weights associated with satisfied
antecedents exceeds a threshold. In the case of RAPTURE, the rules are probabilistic rules using
certainty factors along the lines of MYCIN (Buchanan & Shortliffe, 1984). One might ask, then,
to what extent are results obtained by theory revision algorithms which output numerical rules
merely artifacts of the use of such numerical rules? In other words, can we separate the effects of
using numerical rules from the effects of learning?


To make this more concrete, consider the following simple method for transforming a
symbolic domain theory into a probabilistic domain theory and then reclassifying examples using
the obtained probabilistic theory. Suppose we are given some possibly-flawed domain theoryΓ.
Suppose further that we are not given the classification of even a single example. Assign a weight
p(e) to each edge of∆Γ according to the default scheme of Appendix A. Now, using the bottom-
up subroutine of the updating algorithm, computeuE(er ) for each test exampleE. (Recall that
uE(er ) is a measure of how close to a derivation ofr from E there is, given the weighted dt-graph
〈 ∆Γ, p 〉 .) Now, for some chosen ‘‘cutoff’’ value 0≤ n ≤ 100, if E0 is such thatuE0


(er ) lies in
the uppern% of the set of values{ uE(er )} then conclude thatΓ is true forE0; otherwise conclude
thatΓ is false forE0.


This method, which for the purpose of discussion we call PTR*, does not use any training
examples at all. Thus if the results of theory revision systems that employ numerical rules can be
matched by PTR* —which performs no learning— then it is clear that the results are merely
artifacts of the use of numerical rules.


6.2. Results on the PROMOTER Theory


We first consider the PROMOTER theory from molecular biology (Murphy & Aha, 1992), which
is of interest solely because it has been extensively studied in the theory revision literature
(Towell & Shavlik, 1993), thus enabling explicit performance comparison with other algorithms.
The PROMOTER theory is a flawed theory intended to recognize promoters in DNA nucleotides.
The theory recognized none of a set of 106 examples as promoters despite the fact that precisely


half of them are indeed promoters.13


Unfortunately, the PROMOTER theory (like many others used in the theory revision
literature) is trivial in that it is very shallow. Moreover, it is atypical of flawed domains in that it
is overly specific but not overly general. Given the shortcomings of the PROMOTER theory, we
will also test PTR on a synthetically-generated theory in which errors have been artificially
introduced. These synthetic theories are significantly deeper than those used to test previous
methods. Moreover, the fact that the intended theory is known will enable us to perform
experiments involving radicality and bias.


13 In our experiments, we use the default initial weights assigned by the scheme of Appendix A. In ad-
dition, the clause whose head is the propositioncontact is treated as a definition not subject to revision but
only deletion as a whole.
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6.2.1. Cross-validation


In Figure 10 we compare the results of cross-validation for PROMOTER. We distinguish
between methods which use numerical rules (top plot) and those which are purely symbolic
(bottom plot).


The lower plot in Figure 10 highlights the fact that, using the valuen = 50, PTR* achieves
better accuracy,using no training examples, than any of the methods considered here achieve
using 90 training examples. In particular, computinguE(er ) for each example, we obtain that of
the 53 highest-ranking examples 50 are indeed promoters (and, therefore, of the 53 lowest-
ranking examples 50 are indeed non-promoters). Thus, PTR* achieves 94. 3% accuracy. (In fact,
all of the 47 highest-ranking examples are promoters and all of the 47 lowest-ranking are not
promoters. Thus, a more conservative version of PTR* which classifies the, say, 40% highest-
ranking examples as IN and the 40% lowest-ranking as OUT, would indeed achieve 100%
accuracy over the examples for which it ventured a prediction.)


This merely shows that the original PROMOTER theory is very accurate provided that it is
given a numerical interpretation. Thus we conclude that the success of RAPTURE and KBANN
for this domain is not a consequence of learning from examples but rather an artifact of the use of
numerical rules.


As for the three methods — EITHER, PTR and ID3 — which yield symbolic rules, we see in
the top plot of Figure 10 that, as reported in (Ourston & Mooney, in press; Towell &
Shavlik, 1993), the methods which exploit the given flawed theory do indeed achieve better
results on PROMOTER than ID3, which does not exploit the theory. Moreover, as the size of the


training set grows, the performance of PTR is increasingly better than that of EITHER.14


Finally, we wish to point out an interesting fact about the example set. There is a set of 13
out of the 106 examples which each contain information substantially different than that in the
rest of the examples. Experiments show that using ten-fold cross-validation on the 93 ‘‘good’’
examples yields 99. 2% accuracy, while training on all 93 of these examples and testing on the 13
‘‘bad’’ examples yields below 40% accuracy.


6.2.2. Theory size


The size of the output theory is an important measure of the comprehensibility of the output
theory. Ideally, the size of the theory should not grow too rapidly as the number of training
examples is increased, as larger theories are necessarily harder to interpret. This observation
holds both for the number of clauses in the theory as well as for the average number of
antecedents in each of those clauses.


Theory sizes for the theories produced by PTR are shown in Figure 11. The most striking
aspect of these numbers is that all measures of theory size are relatively stable with respect to
training set size. Naturally, the exact values are to a large degree an artifact of the inductive
learning component used. In contrast, for EITHER, theory size increases with training set size


14 Those readers familiar with the PROMOTER theory should note that the improvement over EI-
THER is a consequence of PTR repairing one flaw at a time and using a sharper relevance criterion. This
results in PTR always deleting the extraneousconformationliteral, while EITHER occasionallly fails to do
so, particularly as the number of training exmaple increases.
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Figure 10: PROMOTER: Error rates using nested training sets for purely symbolic theories (top
plot) and numeric theories (bottom plot). Results for EITHER, RAPTURE, and KBANN are taken
from (Mahoney & Mooney, 1993), while results for ID3 and PTR were generated using similar ex-
perimental procedures. Recall that PTR* is a non-learning numerical rule system; the PTR* line is
extended horizontally for clarity.
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Training Mean Mean Mean Mean
Set Size Clauses in Literals in Revisions to Exemplars to


Output Output Convergence Convergence


Original
Theory 14 83


20 11 39 10.7 88
40 11 36 15.2 140
60 11 35 18.2 186
80 11 32 22.1 232


100 12 36 22.0 236


Figure 11: PROMOTER: Results. Numbers reported for each training set size are average values
over one hundred trials (ten trials for each of ten example partitions).


(Ourston, 1991). For example, for 20 training examples the output theory size (clauses plus
literals) is 78, while for 80 training examples, the output theory size is 106.


Unfortunately, making direct comparisons with KBANN or RAPTURE is difficult. In the
case of KBANN and RAPTURE, which allow numerical rules, comparison is impossible given
the differences in the underlying representation languages. Nevertheless, it is clear that, as
expected, KBANN produces significantly larger theories than PTR. For example, using 90
training examples from the PROMOTER theory, KBANN produces numerical theories with, on
av erage, 10 clauses and 102 literals (Towell & Shavlik, 1993). These numbers would grow
substantially if the theory were converted into strictly symbolic terms. RAPTURE, on the other
hand, does not change the theory size, but, like KBANN, yields numerical rules (Mahoney &
Mooney, 1993).


6.2.3. Complexity


EITHER is exponential in the size of the theory and the number of training examples. For
KBANN, each cycle of the training-by-backpropagation subroutine isO(d × n) (whered is the
size of the network andn is the number of exemplars), and the number of such cycles typically
numbers in the hundreds even for shallow nets.


Like backpropagation, the cost of processing an example with PTR is linear in the size of the
theory. In contrast, however, PTR typically converges after processing only a tiny fraction of the
number of examples required by standard backpropagation techniques. Figure 11 shows the
av erage number of exemplars (not cycles!) processed by PTR until convergence as a function of
training set size. The only other cost incurred by PTR is that of revising the theory. Each such
revision inO(d × n). The average number of revisions to convergence is also shown in Figure 11.


6.3. Results on Synthetic Theories


The character of the PROMOTER theory make it less than ideal for testing theory revision
algorithms. We wish to consider theories which (i) are deeper, which (ii) make substantial use of
negated internal literals and which (iii) are overly general as well as overly specific. As opposed
to shallow theories which can generally be easily repaired at the leaf level, deeper theories often
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require repairs at internal levels of the theory. Therefore, a theory revision algorithm which may
perform well on shallow theories will not necessarily scale up well to larger theories. Moreover,
as theory size increases, the computational complexity of an algorithm might preclude its
application altogether. We wish to show that PTR scales well to larger, deeper theories.


Since deeper, propositional, real-world theories are scarce, we have generated them
synthetically. As an added bonus, we now know the target theory so we can perform controlled
experiments on bias and radicality. In (Feldman, 1993) the aggregate results of experiments
performed on a collection of synthetic theories are reported. In order to avoid the dubious
practice of averaging results over different theories and in order to highlight significant features of
a particular application of PTR, we consider here one synthetic theory typical of those studied in
(Feldman, 1993).


r ← A, B L ← T, p1
r ← C, ¬D L ← p2, p12, p16
A ← E, F M ← Z, ¬p17
A ← p0, ¬G , p1, p2, p3 M ← p18, ¬p19
B ← ¬p0 N ← ¬p0, p1
B ← p1, ¬H N ← p3, p4, p6
B ← p4, ¬p11 N ← p10, ¬p12
C ← I , J Z ← p2, p3
C ← p2, ¬K Z ← ¬p2, p3, p17, p18, p20
C ← ¬p8, ¬p9 O ← ¬p3, p4, p5, p11, ¬p12
D ← p10, ¬p12, L O ← ¬p13, p18
D ← p3, ¬p9, ¬M Y ← p4, p5 p6
E ← N, p5, p6 P ← ¬p6, p7, p8
E ← ¬O, ¬p7, ¬p8 X ← p7, p9
F ← p4 Q ← p0, p4
F ← Q, ¬R Q ← p3, ¬p13, p14, p15
G ← S, ¬p3, p8 W ← p10, p11
G ← ¬p10, p12 W ← p3, p9
H ← U ,V R ← p12, ¬p13, p14
H ← p1, p2; p3, p4 V ← ¬p14, p15
I ← W S← p3, p6, ¬p14, p15, p16
I ← p6 U ← p11, p12
J ← X, p5 U ← p13, p14, ¬p15, ¬p16, ¬p17
J ← Y T ← p7
K ← P, ¬p5, p9 T ← ¬p7, p8, p9, ¬p16, ¬p17, ¬p18
K ← ¬p6, p9


Figure 12: The synthetic domain theoryΘ used for the experiments of Section 6.
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The theoryΘ is shown is Figure 12. Observe thatΘ includes four levels of clauses and has
many neg ated internal nodes. It is thus substantially deeper than theories considered before in
testing theory revision algorithms. We artificially introduce, in succession, 15 errors into the
theoryΘ. The errors are shown in Figure 13. For each of these theories, we use the default initial
weights assigned by the scheme of Appendix A.


Let Γi be the theory obtained after introducing the firsti of these errors. In Figure 14 we
show the radicality,RadΓi


(Θ), of Θ relative to each of the flawed theories,Γi for i = 3, 6, 9, 12, 15,
as well as the number of examples misclassified by each of those theories. Note that, in general,
the number of misclassified examples cannot necessarily be assumed to increase monotonically
with the number of errors introduced since introducing an error may either generalize or
specialize the theory. For example, the fourth error introduced is ‘‘undone’’ by the fifth error.
Nevertheless, it is the case that for this particular set of errors, each successive theory is more
radical and misclassifies a larger number of examples with respect toΘ.


To measure radicality and accuracy, we choose 200 exemplars which are classified according
to Θ. Now for eachΓi (i = 3, 6, 9, 12, 15), we withhold 100 test examples and train on nested sets
of 20, 40, 60, 80 and 100 training examples. We choose ten such partitions and run ten trials for
each partition.


In Figure 15, we graph the average value of
RadΓi


(Γ′)
RadΓi


(Θ)
, whereΓ′ is the theory produced by


PTR. As can be seen, this value is consistently below 1. This indicates that the revisions found


1 Added clauseA ← ¬p6
2 Added clauseS ← ¬p5
3 Added clauseA ← p8, ¬p15
4 Added literal¬p6 to clauseB ← p4, ¬p11
5 Deleted clauseB ← p4, ¬p6, ¬p11
6 Added clauseD ← ¬p14
7 Added clauseG ← ¬p12, p8
8 Added literalp2 to clauseA ← E, F
9 Added clauseL ← p16


10 Added clauseM ← ¬p13, ¬p7
11 Deleted clauseQ ← p3, ¬p13, p14, p15
12 Deleted clauseL ← p2, p12, p16
13 Added clauseJ ← p11
14 Deleted literalp4 from clauseF ← p4
15 Deleted literalp1 from clauseB ← p1, ¬H


Figure 13: The errors introduced into the synthetic theoryΘ in order to produce the flawed syn-
thetic theoriesΓi . Note that the fifth randomly-generated error obviates the fourth.
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Γ3 Γ6 Γ9 Γ12 Γ15


Number of Errors 3 6  9 12 15


Rad(Θ) 7.32 17.53 22.66 27.15 33.60


Misclassified IN 0 26 34 34 27
Misclassified OUT 50 45 45 46 64


Initial Accuracy 75% 64.5% 60.5% 60% 54.5%


Figure 14: Descriptive statistics for the flawed synthetic theoriesΓi (i = 3, 6, 9, 12, 15).
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Figure 15: The normalized radicality,
RadΓi


(Γ′)
RadΓi


(Θ)
, for the output theoriesΓ′ produced by PTR from


Γi (i = 3, 6, 9, 12, 15). Error bars reflect 1 standard error.


by PTR are less radical than what is needed to restore the originalΘ. Thus by the criterion of
success that PTR set for itself, minimizing radicality, PTR does better than restoringΘ. As is to
be expected, the larger the training set the closer this value is to 1. Also note that as the number
of errors introduced increases, the saving in radicality achieved by PTR increases as well, since a
larger number of opportunities are created for more parsimonious revision. More precisely, the
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av erage number of revisions made by PTR toΓ3, Γ6, Γ9, Γ12, andΓ15 with a 100 element training
set are 1.4, 4.1, 7.6, 8.3, and 10.4, respectively.


An example will show how PTR achieves this. Note from Figure 13 that the errors introduced
in Γ3 are the additions of the rules:


A ← ¬p6
S ← ¬p5
S ← p8, ¬p15.


In most cases, PTR quickly locates the extraneous clauseA ← ¬p6, and discovers that deleting it
results in the correct classification of all exemplars in the training set. In fact, this change also
results in the correct classification of all test examples as well. The other two added rules do not
affect the classification of any training examples, and therefore are not deleted or repaired by
PTR. Thus the radicality of the changes made by PTR is lower than that required for restoring the
original theory. In a minority of cases, PTR first deletes the clauseB ← ¬p0 and only then deletes
the clauseA ← p6. Since the literalB is higher in the tree than the literalS, the radicality of these
changes is marginally higher that that required to restore the original theory.


In Figure 16, we graph the accuracy ofΓ′ on the test set. As expected, accuracy degenerates
somewhat as the number of errors is increased. Nevertheless, even forΓ15, PTR yields theories
which generalize accurately.


Figure 17 shows the average number of exemplars required for convergence. As expected,
the fewer errors in the theory, the fewer exemplars PTR requires for convergence. Moreover, the
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Figure 16: Error rates for the output theories produced by PTR fromΓi (i = 3, 6, 9, 12, 15).
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Figure 17: Number of exemplars processed until convergence forΓi (i = 3, 6, 9, 12, 15).


number of exemplars processed grows less than linearly with the training set size. In fact, in no
case was the average number of examples processed greater than 4 times the training set size. In
comparison, backpropagation typically requires hundreds of cycles when it converges.


Next we wish show the effects of positive bias, i.e., to show that user-provided guidance in
the choice of initial weights can improve speed of convergence and accuracy in cross-validation.
For each of the flawed theoriesΓ3 andΓ15, we compare the performance of PTR using default
initial weights and biased initial weights (β = 2). In Figure 18, we show how cross-validation
accuracy increases when bias is introduced. In Figure 19, we show how the number of examples
which need to be processed until convergence decreases when bias is introduced.


Returning to the example above, we see that the introduction of bias allows PTR to
immediately find the flawed clauseA ← p6 and to delete it straight away. In fact, PTR never
requires the processing of more than 8 exemplars to do so. Thus, in this case, the introduction of
bias both speeds up the revision process and results in the consistent choice of the optimal
revision.


Moreover, it has also been shown in (Feldman, 1993) that PTR is robust with respect to
random perturbations in the initial weights. In particular, in tests on thirty different synthetically-
generated theories, introducing small random perturbations to each edge of a dt-graph before
training resulted in less than 2% of test examples being classified differently than when training
was performed using the original initial weights.
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Figure 18: Error rates for the output theories produced by PTR fromΓi (i = 3, 6, 9, 12, 15), using
favorably-biased initial weights.


6.4. Summary


Repairing internal literals and clauses is as natural for PTR as repairing leaves. Moreover, PTR
converges rapidly. As a result, PTR scales up to deep theories without difficulty. Even for very
badly flawed theories, PTR quickly finds repairs which correctly classify all known exemplars.
These repairs are typicallylessradical than restoring the original theory and are close enough to
the original theory to generalize accurately to test examples.


Moreover, although PTR is robust with respect to initial weights, user guidance in choosing
these weights can significantly improve both speed of convergence and cross-validation accuracy.


7. Conclusions


In this paper, we hav e presented our approach, called PTR, to the theory revision problem for
propositional theories. Our approach uses probabilities associated with domain theory elements
to numerically track the ‘‘flow’’ of proof through the theory, allowing us to efficiently locate and
repair flawed elements of the theory. We prove that PTR converges to a theory which correctly
classifies all examples, and show experimentally that PTR is fast and accurate even for deep
theories.


There are several ways in which PTR can be extended.


First-order theories. The updating method at the core of PTR assumes that provided
exemplars unambiguously assign truth values to each observable proposition. In first-order
theory revision the truth of an observable predicate typically depends on variable assignments.
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Figure 19: Number of exemplars processed until convergence using favorably-biased initial
weights.


Thus, in order to apply PTR to first-order theory revision it is necessary to determine ‘‘optimal’’
variable assignments on the basis of which probabilities can be updated. One method for doing so
is discussed in (Feldman, 1993).


Inductive bias. PTR uses bias to locate flawed elements of a theory. Another type of bias can
be used to determine which revision to make. For example, it might be known that a particular
clause might be missing a literal in its body but should under no circumstances be deleted, or that
only certain types of literals can be added to the clause but not others. Likewise, it might be
known that a particular literal is replaceable but not deletable, etc. It has been shown (Feldmanet
al., 1993) that by modifying the inductive component of PTR to account for such bias, both
convergence speed and cross-validation accuracy are substantially improved.


Noisy exemplars. We hav e assumed that it is only the domain theory which is in need of
revision, but that the exemplars are all correctly classified. Often this is not the case. Thus, it is
necessary to modify PTR to take into account the possibility of reclassifying exemplars on the
basis of the theory rather than vice-versa. The PTR* algorithm (Section 6) suggests that
misclassed exemplars can sometimes be detected before processing. Briefly, the idea is that an
example which allows multiple proofs of some root is almost certainly IN for that root regardless
of the classification we have been told. Thus, ifuE(er ) is high, thenE is probably IN regardless
of what we are told; analogously, ifuE(er ) is low. A modified version of PTR based on this
observation has already been successfully implemented (Koppelet al., 1993).


In conclusion, we believe the PTR system marks an important contribution to the domain
theory revision problem. More specifically, the primary innovations reported here are:
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(1) By assigning bias in the form of the probability that an element of a domain theory is
flawed, we can clearly define the objective of a theory revision algorithm.


(2) By reformulating a domain theory as a weighted dt-graph, we can numerically trace the
flow of a proof or refutation through the various elements of a domain theory.


(3) Proof flow can be used to efficiently update the probability that an element is flawed on
the basis of an exemplar.


(4) By updating probabilities on the basis of exemplars, we can efficiently locate flawed
elements of a theory.


(5) By using proof flow, we can determine precisely on the basis of which exemplars to revise
a flawed element of the theory.
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Appendix A: Assigning Initial Weights


In this appendix we give one method for assigning initial weights to the elements of a domain
theory. The method is based on the topology of the domain theory and assumes that no user-
provided information regarding the likelihood of errors is available. If such information is
available, then it can be used to override the values determined by this method.


The method works as follows. First, for each edgee in ∆Γ we define the ‘‘semantic impact’’
of e, Μ(e). Μ(e) is meant to signify the proportion of examples whose classification is directly
affected by the presence ofe in ∆Γ.


One straightforward way of formally definingΜ(e) is the following. LetΚI be the pair
〈 ∆Γ, I 〉 such thatI assigns all root and negation edges the weight 1 and all other edges the


weight
1


2
. Let I (e) be identical toI except thate and all its ancestor edges have been assigned


the weight 1. LetE be the example such that for each observable propositionP in Γ, E(P) is the


a priori probability thatP is true in a randomly selected example.15 In particular, for the typical


case in which observable propositions are Boolean and all example are equiprobable,E(P) =
1


2
.


E can be thought of as the ‘‘average’’ example. Then, if no edge of∆Γ has more than one parent-
edge, we formally define the semantic significance,Μ(e), of an edgee in ∆Γ as follows:


Μ(e) = uΚI (e)


E (er ) − uΚe
I (e)


E (er ).


That is,Μ(e) is the difference of the flow ofE through the rootr , with and without the edgee.


Note thatΜ(e) can be efficiently computed by first computinguΚI


E (e) for every edgee in a
single bottom-up traversal of∆Γ, and then computingΜ(e) for every edgee in a single top-down
traversal of∆Γ, as follows:


(1) For a root edger , Μ(r ) = 1 − uΚI


E (r ).


(2) For all other edges,Μ(e) = Μ( f (e)) ×
2(1− uΚI


E (e))


uΚI


E (e)
, where f (e) is the parent edge ofe.


If some edge in∆Γ has more than one parent-edge then we defineΜ(e) for an edge by


using this method of computation, where in place ofΜ( f (e)) we use
f


max

Μ( f (e))



.


Finally, for a set,R, of edges inG, we defineΜ(R) =
e ∈ R
Σ Μ(e).16


Now, having computedΜ(e) we compute the initial weight assignment toe, p(e), in the


following way. Choose some largeC.17 For eache in ∆Γ define:


15 Although we have defined an example as a{ 0, 1} truth assignment to each observable proposition,
we have already noted in Footnote 4 that we can just as easily process examples which assign to observ-
ables any value in the interval [0, 1].


16 Observe that the number of examples reclassified as a result of edge-deletion is, in fact, superaddi-
tive, a fact not reflected by this last definition.


17 We hav e not tested how to chooseC ‘‘optimally.’’ In the experiments reported in Section 6, the val-
ueC = 106 was used.
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p(e) =
CΜ(e)


CΜ(e) + 1
.


Now, reg ardless of howΜ(e) is defined, the virtue of this method of computingp(e) from Μ(e) is
the following: for such an initial assignment,p, if two sets of edges〈 ∆Γ, p 〉 are of equal total
strength then as revision sets they are of equal radicality.This means that all revision sets of
equal strength are a priori equally probable.


For a set of edges of∆Γ, define


S(e) =





1 if e ∈ S


0 if e ∈/ S


Then the above can be formalized as follows:


Theorem A1: If R andS are sets of elements ofΓ such thatΜ(R) = Μ(S) then it
follows thatRad(R) = Rad(S).


Proof of Theorem A1: Let R and S be sets of edges such thatΜ(R) = Μ(S).
Recall that


Rad(S) = − log
e ∈ ∆
Π [1 − p(e)]S(e) × [ p(e)]1−S(e)



.


Then


exp(−Rad(S))


exp(−Rad(R))
=


e ∈ ∆
Π [1 − p(e)]S(e) × p(e)1−S(e)


[1 − p(e)]R(e) × p(e)1−R(e)


=
e ∈ ∆
Π 



p(e)1 − p(e)





R(e)−S(e)


=
e ∈ ∆
Π 



CΜ(e)





R(e)−S(e)


= CΜ(R)−Μ(S) = 1.


It follows immediately thatRad(R) = Rad(S).


A simple consequence which illustrates the intuitiveness of this theorem is the following:
suppose we have two possible revisions of∆, each of which entails deleting a simple literal.
Suppose further that one literal,l1, is deep in the tree and the other,l2, is higher in the tree so that
Μ(l2) = 4 × Μ(l1). Then, using default initial weights as assigned above, the radicality of
deletingl2 is 4 times as great as the radicality of deletingl1.
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Appendix B: Updated Weights as Conditional Probabilities


In this appendix we prove that under certain limiting conditions, the algorithm computes the
conditional probabilities of the edges given the classification of the example.


Our first assumption for the purpose of this appendix is that the correct dt-graph∆Θ is known
to be a subgraph of the given dt-graph∆Γ. This means that for every noden in ∆Γ, w(n) = 1 (and,
consequently, for every edgee in ∆Γ, p(e) = w(e)). A pair 〈 ∆Γ, w 〉 with this property is said to
bedeletion-only.


Although we informally defined probabilities directly on edges, for the purposes of this
appendix we formally define our probability function on the space of all subgraphs of∆Γ. That is,
the elementary events are of the form∆Θ = ∆Γ′ where∆Γ′ ⊆ ∆Γ. Then the probability thate ∈ ∆Θ
is simply


Γ′ ⊆ Γ
Σ { p(∆Θ = ∆Γ′)|e ∈ ∆Γ′} .


We say that a deletion-only, weighted dt-graph〈 ∆Γ, p 〉 is edge-independentif for any
Γ′ ⊆ Γ,


p(∆Θ = ∆Γ′) =
e ∈ ∆Γ′
Π p(e) ×


e ∈/ ∆Γ′
Π 1 − p(e).


Finally, we say that∆Γ is tree-likeif no edgee ∈ ∆Γ has more than one parent-edge. Observe that
any dt-graph which is connected and tree-like has only one root.


We will prove results for deletion-only, edge-independent, tree-like weighted dt-graphs.18


First we introduce some more terminology. Recall that every node in∆Γ is labeled by one of
the literals inΓ̂ and that by definition, this literal is true if not all of its children in∆Γ̂ are true.
Recall also that the dt-graph∆Γ′ ⊆ ∆Γ represents the sets of NAND equations,̂Γ′ ⊆ Γ̂. A literal l in
Γ̂ forces its parent in̂Γ to be true, given the set of equationsΓ̂′ and the exampleE, if l appears in
Γ̂′ and is false given̂Γ′ andE. (This follows from the definition of NAND.) Thus we say that an
edgee in ∆Γ is usedby E in ∆Γ′ if e ∈ ∆Γ′ andΓ̂′ |– E ¬ne.


If e is not used byE in ∆Γ′ we writeNΓ′
E (e). Note thatNΓ′


E (er ) if and only if Γ′(E) = 1.


Note that, given the probabilities of the elementary events∆Γ′ = ∆Θ, the probabilityp(NΘ
E (e))


that the edge e is not used by E in the target domain theoryΘ is simply


Γ′ ⊆ Γ
Σ







p(∆Γ′ = ∆Θ)|NΓ′
E (e)





. Where there is no ambiguity we will useNE(e) to refer toNΘ


E (e).


Theorem B1: If 〈 ∆Γ, w 〉 is a deletion-only, edge-independent, tree-like weighted
dt-graph, then for every edgee in ∆Γ, uE(e) = p(NE(e)).


Proof of Theorem B1: We use induction on the distance ofne from its deepest
descendant. Ifne is an observable propositionP then e is used byE in Θ
precisely ife ∈ Θ andP is false inE. Thus the probability thate is not used byE
in Θ is [1 − p(e)] × [1 − E(P)] = uE(e).


18 Empirical results show that our algorithm yields reasonable approximations of the conditional prob-
abilities even when these conditions do not hold.
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If ne is not a observable proposition then̂Θ |– E ¬ne precisely if all its
children inΘ̂ are true inΘ̂, that is, if all its children are unused inΘ̂. But then


(edge independence)p(NE(e)) = p(e) × p(Θ |– E ¬ne)


(induction hypothesis)= p(e) ×
s ∈ children(e)


Π p(NE(s))


= p(e) ×
s ∈ children(e)


Π uE(s)


= uE(e).


This justifies the bottom-up part of the algorithm. In order to justify the top-down part we need
one more definition.


Let p(e| 〈 E, Θ(E) 〉 ) be the probability thate ∈ ∆Θ given 〈 ∆Γ, p 〉 and the exemplar
〈 E, Θ(E) 〉 . Then


p(e| 〈 E, Θ(E) 〉 ) = Γ′ ⊆ Γ
Σ { p(∆Θ = ∆Γ′)|e ∈ ∆Γ′, Θ(E) = Γ′(E)}


Γ′ ⊆ Γ
Σ { p(∆Θ = ∆Γ′)|Θ(E) = Γ′(E)}


.


Now we hav e


Theorem B2: If 〈 ∆Γ, w 〉 is deletion-only, edge-independent and tree-like, then for
ev ery edgee in ∆Γ, pnew(e) = p(e| 〈 E, Θ(E) 〉 ).


In order to prove the theorem we need several lemmas:


Lemma B1: For every exampleE and every edgee in ∆Γ


p( ¬NE(e)) = p( ¬NE(e), NE( f (e))) = p( ¬NE(e)|NE( f (e))) × p(NE( f (e))).


This follows immediately from the fact that if an edge,e, is used, then its parent-edge,f (e), is not
used.


Lemma B2: For every exampleE and every edgee in ∆Γ,


p(NE(E)|NE( f (e)), 〈 E, Θ(E) 〉 ) = p(NE(e)|NE( f (e))).


This lemma states thatNE(e) and 〈 E, Θ(E) 〉 are conditionally independent givenNE( f (e))
(Pearl, 1988). That is, onceNE( f (e)) is known, 〈 E, Θ(E) 〉 adds no information regarding
NE(e). This is immediate from the fact thatp( 〈 E, Θ(E) 〉 |NE( f (e))) can be expressed in terms of
the probabilities associated with non-descendants off (e), while p(NE(e)) can be expressed in
terms of the probabilities associated with descendants ofr (e).


Lemma B3: For every exampleE and every edgee in ∆Γ,


vE(e) = p(NE(e)| 〈 E, Θ(E) 〉 ).


Proof of Lemma B3: The proof is by induction on the depth of the edge,e. For
the root edge,er , we hav e
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vE(er ) = Θ(E) = p(Θ(E) = 1|〈 E, Θ(E) 〉 ) = p(NE(er )| 〈 E, Θ(E) 〉 ).


Assuming that the theorem is known forf (e), we show that it holds fore as
follows:


(definition ofv)1 − vE(e) = 

1 − uE(e)



vE( f (e))


uE( f (e))


(Theorem B1)= p( ¬NE(e)) ×
vE( f (e))


p(NE( f (e))


(induction hypothesis)= p(NE(e)| 〈 E, Θ(E) 〉 ) ×
p( ¬NE(e))


p(NE( f (e))


(Lemma B1)= p(NE(e)| 〈 E, Θ(E) 〉 ) × p( ¬NE(e)|NE( f (e))


(Lemma B2)= p(NE(e)| 〈 E, Θ(E) 〉 )
× p( ¬NE(e)|NE( f (e)), 〈 E, Θ(E) 〉 )


(Bayes rule)= p( ¬NE(e), NE( f (e))| 〈 E, Θ(E) 〉 )


(Lemma B1)= p( ¬NE(e)| 〈 E, Θ(E) 〉 )


= 1 − p(NE(e)| 〈 E, Θ(E) 〉 ).


Let ¬e be short for the evente ∈/ ∆Θ. Then we have


Lemma B4: For every exampleE and every edgee in ∆Γ,


p( ¬e) = p( ¬e, ¬NE(e)) = p( ¬e|NE(e)) × p(NE(e)).


This lemma, which is analogous to Lemma B1, follows from the fact that ife is deleted, thene is
unused.


Lemma B5: For every exampleE and every edgee in ∆Γ,


p( ¬e|¬NE(e), 〈 E, Θ(E) 〉 ) = p( ¬e|¬NE(e)).


This lemma, which is analogous to Lemma B2, states that¬e and 〈 E, Θ(E) 〉 are conditionally
independent given¬NE(e). That is, once¬NE(e) is known, 〈 E, Θ(E) 〉 adds no information
regarding the probability of¬e. This is immediate from the fact thatp( 〈 E, Θ(E) 〉 |¬NE(e)) can
be expressed in terms of the probabilities of edges other thane.


We now hav e all the pieces to prove Theorem B2.


Proof of Theorem B2:


(definition ofp
new


)1 − pnew(e) = 

1 − p(e)



vE(e)


uE(e)


(Theorem B1)= p( ¬e) ×
vE(e)


p(NE(e))
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(Lemma B3)= p(NE(e)| 〈 E, Θ(E) 〉 ) ×
p( ¬e)


p(NE(e))


(Lemma B4)= p(NE(e)| 〈 E, Θ(E) 〉 ) × p( ¬e|NE(e))


(Lemma B5)= p(NE(e)| 〈 E, Θ(E) 〉 ) × p( ¬e|NE(e), 〈 E, Θ(E) 〉


(Bayes rule)= p( ¬e, NE(e)| 〈 E, Θ(E) 〉 )


(Lemma B4)= p( ¬e| 〈 E, Θ(E) 〉 )


= 1 − p(e| 〈 E, Θ(E) 〉 ).
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Appendix C: Proof of Convergence


We hav e seen in Section 5 that PTR always terminates. We wish to show that when it does, all
exemplars are classified correctly. We will prove this for domain theories which satisfy certain
conditions which will be made precise below. The general idea of the proof is the following: by
definition, the algorithm terminates either when all exemplars are correctly classified or when all
edges have weight 1. Thus, it is only necessary to show that it is not possible to reach a state in
which all edges have weight 1 and some exemplar is misclassified. We will prove that such a
state fails to possess the property of ‘‘consistency’’ which is assumed to hold for the initial
weighted dt-graphΚ, and which is preserved at all times by the algorithm.


Definition (Consistency): The weighted dt-graphΚ = 〈 ∆, p 〉 is consistentwith
exemplar〈 E, Θ(E) 〉 if, for every rootr i in ∆, either:


(i) Θi (E) = 1 anduΚ
E(r i ) > 0, or


(ii) Θi (E) = 0 anduΚ
E(r i ) < 1.


Recall that an edgee is defined to be even if it is of even depth along every path from a root and
odd if is of odd depth along every path from a root. A domain theory is said to beunambiguousif
ev ery edge is either odd or even. Note that negation-free domain theories are unambiguous. We
will prove our main theorem for unambiguous, single-root domain theories.


Recall that the only operations performed by PTR are:


(1) updating weights,


(2) deleting ev en edges,


(3) deleting odd edges,


(4) adding a subtree beneath an even edge, and


(5) adding a subtree beneath an odd edge.


We shall show that each of these operations is performed in such a way as to preserve
consistency.


Theorem C1 (Consistency): If Κ = 〈 ∆, p 〉 is a single-rooted, unambiguous
weighted dt-graph which is consistent with the exemplar〈 E, Θ(E) 〉 and
Κ′ = 〈 ∆′, p′ 〉 is obtained fromΚ via a single operation performed by PTR, thenΚ′
is also a single-rooted, unambiguous dt-graph which is consistent withE.


Before we prove this theorem we show that it easily implies convergence of the algorithm.


Theorem C2 (Convergence): Giv en a single-rooted, unambiguous weighted dt-
graphΚ and a set of exemplarsΖ such thatΚ is consistent with every exemplar in
Ζ, PTR terminates and produces a dt-graph∆′ which classifies every exemplar inΖ
correctly.


Proof of Theorem C2: If PTR terminates prior to each edge being assigned the
weight 1, then by definition, all exemplars are correctly classified. Suppose then
that PTR produces a weighted dt-graphΚ′ = 〈 ∆′, p′ 〉 such thatp′(e) = 1 for every
e ∈ ∆′. Assume, contrary to the theorem, that some exemplar〈 E, Θ(E) 〉 is
misclassified byΚ′ for the root r . Without loss of generality, assume that
〈 E, Θ(E) 〉 is an IN exemplar ofr . Sincep′(e) = 1 for every edge, this means that
uΚ′


E (er ) = 0. But this is impossible since the consistency ofΚ implies that
uK


E (er ) > 0  and thus it follows from Theorem C1 that for anyΚ′ obtainable form
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Κ, uΚ′
E (er ) > 0. This contradicts the assumption thatE is misclassified byΚ′.


Let us now turn to the proof of Theorem C1. We will use the following four lemmas, slight
variants of which are proved in (Feldman, 1993).


Lemma C1: If Κ′ = 〈 ∆, p′ 〉 is obtained fromΚ = 〈 ∆, p 〉 via updating of weights,


then for every edgee ∈ ∆ such that 0 <p(e) < 1, we hav e 0 <p′(e) < 1.19


Lemma C2: Let Κ = 〈 ∆, p 〉 be a weighted dt-graph such that 0 <uΚ
E(er ) < 1  and


let Κ′ = 〈 ∆, p′ 〉 . Then if for every edgee in ∆ such that 0 <p(e) < 1, we hav e
0 < p′(e) < 1, it follows that 0 <uΚ′


E (er ) < 1.


Lemma C3: Let Κ = 〈 ∆, p 〉 be a weighted dt-graph such thatuΚ
E(er ) > 0  and let


Κ′ = 〈 ∆′, p′ 〉 . The, if for every edgee in ∆, it holds that either:


(i) p′(e) = p(e), or
(ii) depth(e) is odd anduΚ′


E (e) > 0, or
(iii) depth(e) is even anduΚ′


E (e) < 1


thenuΚ′
E (e) > 0.


An analogous lemma holds where the roles of ‘‘> 0’’ and ‘‘< 1’’ are reversed.


Lemma C4: If e is even edge inΚ, thenuΚe
E (er ) ≥ uΚ


E(er ) ≥ uΚe
E (r ). In addition, if


e is an odd edge inΚ, thenuΚe
E (er ) ≤ uΚ


E(er ) ≤ uΚe
E (r ).


We can now prove consistency (Theorem C1). We assume, without loss of generality, that
〈 E, Θ(E) 〉 is an IN exemplar of the rootr and prove that for each one of the five operations
(updating and four revision operators) of PTR, that ifΚ′ is obtained by that operation fromΚ and
uΚ


E(er ) > 0, thenuΚ′
E (er ) > 0.


Proof of Theorem C1: The proof consists of five separate cases, each
corresponding to one of the operations performed by PTR.


Case 1: Κ′ is obtained fromΚ via updating of weights.


By Lemma C1, for every edgee in ∆, if 0 < p(e) < 1  then 0 <p′(e) < 1. But then
by Lemma C2, ifuΚ


E(er ) > 0 thenuΚ′
E (er ) > 0.


Case 2: Κ′ is obtained fromΚ via deletion of an even edge,e.


From Lemma C4(i), we haveuΚe
E (er ) ≥ uΚ


E(er ) > 0.


Case 3: Κ′ is obtained fromΚ via deletion of an odd edge,e.


The edgee is deleted only if it is not needed for any exemplar. Suppose that,
contrary to the theorem, there is an IN exemplar〈 E, Θ(E) 〉 such thatuΚ


E(er ) > 0
but uΚ′


E (er ) = 0. Then


19 Recall that in the updating algorithm we defined


vE(eri
) =







ε
1 − ε


if Θi (E) = 0


if Θi (E) = 1
.


The somewhat annoying presence ofε > 0 is necessary for the proof of Lemma C1.


204







BIAS DRIVEN REVISION


R( 〈 E, Θ(E) 〉 , e, Κ) =
uΚe


E (er )


uΚe
E (er )


=
uΚe


E (er )


uΚ′
E (er )


=
uΚe


E (er )


0
> 2.


But thene is needed forE, contradicting the fact thate is not needed for any
exemplar.


Case 4: Κ′ is obtained fromΚ via appending a subtree beneath an even edge,e.


If p′(e) < 1, then the result is immediate from Lemma C2. Otherwise, letf be the
root edge of the subtree∆a which is appended to∆, beneathe. ThenΚ′| f = Κe.
Suppose that, contrary to the theorem, there is some IN exemplar〈 E, Θ(E) 〉 such
that uΚ


E(er ) > 0  but uΚ′
E (er ) = 0. Then by Lemma C4(ii),


uΚe
E (er ) = uΚ′|e


E (er ) ≤ uΚ′
E (er ) = 0. But then,


R( 〈 E, Θ(E) 〉 , e, Κ) =
uΚe


E (er )


uΚe
E (er )


≤
0


uΚe
E (er )


= 0.


Thuse is destructive forE in Κ. But then, by the construction of∆a, uΚ′
E ( f ) = 1.


Thus,uΚ′
E (e) = 0 < 1. The result follows immediately from Lemma C3.


Case 5: Κ′ is obtained fromΚ via appending a subtree toΚ beneath the odd edge,
e.


Suppose that, contrary to the theorem, some IN exemplar〈 E, Θ(E) 〉 , uΚ
E(er ) > 0


but uΚ′
E (er ) = 0. SinceΚ′e = Κe, it follows that


R( 〈 E, Θ(E) 〉 , e, Κ) =
uΚe


E (er )


uΚe
E (er )


=
uΚe


E (er )


uΚ′e
E (er )


.


Now, using Lemma C4(ii) on both numerator and denominator, we hav e


uΚe
E (er )


uΚ′e
E (er )


≥ uΚ
E(er )u


Κ′
E (er ) = ∞ > 2.


Thus,e is needed forE in Κ. Now, let f be the root edge of the appended subtree,
∆a. Then, by the construction of∆a, it follows that uΚ′


E ( f ) < 1  and, therefore
uΚ′


E (e) > 0. The result is immediate from Lemma C3.
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This completes the proof of the theorem.


It is instructive to note why the proof of Theorem C1 fails if∆ is not restricted to
unambiguous single-rooted dt-graphs. In case 4 of the proof of Theorem C1, we use the fact that
if an edgee is destructive for an exemplar〈 E, Θ(E) 〉 then the revision algorithm used to
construct the subgraph,∆a, appended toe will be such thatuΚ′


E ( f ) = 1. However, this fact does
not hold in the case wheree is simultaneously needed and destructive. This can occur ife is a
descendant of two roots whereE is IN for one root and OUT for another root. It can also occur
when one path frome to the rootr is of even length and another path is of odd length.
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Appendix D: Guide to Notation


Γ A domain theory consisting of a set of clauses of the formCi : Hi ← Bi .


Ci A clause label.


Hi A clause head; it consists of a single positive literal.


Bi A clause body; it consists of a conjunction of positive or neg ative literals.


E An example; it is a set of observable propositions.


Γi (E) The classification of the exampleE for the i th root according to domain
theoryΓ.


Θi (E) The correct classification of the exampleE for thei th root.


〈 E, Θ(E) 〉 An exemplar, a classified example.


Γ̂ The set of NAND clauses equivalent toΓ.


∆Γ The dt-graph representation ofΓ.


ne The node to which the edgee leads.


ne The node from which the edgee comes.


p(e) The weight of the edgee; it represents the probability that the edgee
needs to be deleted or that edges need to be appended to the nodene.


Κ = 〈 ∆, p 〉 A weighted dt-graph.


Κe Same asΚ but with the weight of the edgee equal to 1.


Κe Same asΚ but with the edgee deleted.


uE(e) The ‘‘flow’’ of proof from the exampleE through the edgee.


vE(e) The adjusted flow of proof throughe taking into account the correct
classification of the exampleE.


Ri ( 〈 E, Θ(E) 〉 , e, Κ) The extent (ranging from 0 to∞) to which the edgee in the weighted dt-
graphΚ contributes to the correct classification of the exampleE for the
i th root. If Ri is less/more than 1, thene is harmful/helpful; ifRi = 1 then
e is irrelevant.


σ The revision threshold; ifp(e) < σ thene is revised.


λ The weight assigned to a revised edge and to the root of an appended
component.


δσ The revision threshold increment.


δ λ The revised edge weight increment.


RadΚ(Γ′) The radicality of the changes required toΚ in order to obtain a revised
theoryΓ′.
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