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Abstract


A formalism is presented for computing and organizing actions for autonomous agents


in dynamic environments. We introduce the notion of teleo-reactive (T-R) programs whose
execution entails the construction of circuitry for the continuous computation of the param-


eters and conditions on which agent action is based. In addition to continuous feedback,


T-R programs support parameter binding and recursion. A primary di�erence between


T-R programs and many other circuit-based systems is that the circuitry of T-R programs


is more compact; it is constructed at run time and thus does not have to anticipate all
the contingencies that might arise over all possible runs. In addition, T-R programs are


intuitive and easy to write and are written in a form that is compatible with automatic


planning and learning methods. We briey describe some experimental applications of T-R


programs in the control of simulated and actual mobile robots.


1. Introduction


Autonomous agents, such as mobile robots, typically operate in dynamic and uncertain


environments. Such environments can be sensed only imperfectly, e�ects on them are not
always completely predictable, and they may be subject to changes not under the agent's


control. Designing agents to operate in these environments has presented challenges to the
standard methods of arti�cial intelligence, which are based on explicit declarative repre-


sentations and reasoning processes. Prominent among the alternative approaches are the
so-called behavior-based, situated, and animat methods (Brooks, 1986; Maes, 1989; Kael-
bling & Rosenschein, 1990; Wilson, 1991), which convert sensory inputs into actions in a
much more direct fashion than do AI systems based on representation and reasoning. Many


of these alternative approaches share with control theory the central notion that continuous
feedback from the environment is a necessary component of e�ective action.


Perhaps it is relatively easier for control theorists than it is for computer scientists
to deal with continuous feedback because control theorists are accustomed to thinking of
their controlling mechanisms as composed of analog electrical circuits or other physical
systems rather than as automata with discrete read-compute-write cycles. The notions of


goal-seeking servo-mechanisms, homeostasis, feedback, �ltering, and stability|so essential
to control in dynamic environments|were all developed with analog circuitry in mind.
Circuits, by their nature, are continously responsive to their inputs.


In contrast, some of the central ideas of computer science, namely sequences, events,
discrete actions, and subroutines, seem at odds with the notion of continuous feedback.
For example, in conventional programming when one program calls another, the calling


program is suspended until the called program returns control. This feature is awkward
in applications in which the called program might encounter unexpected environmental
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circumstances with which it was not designed to cope. In such cases, the calling program
can regain control only through interrupts explicitly provided by the programmer.


To be sure, there have been attempts to blend control theory and computer science. For
example, the work of Ramadge and Wonham (Ramadge & Wonham, 1989) on discrete-event


systems has used the computer science notions of events, grammars, and discrete states to
study the control of processes for which those ideas are appropriate. A book by Dean
and Wellman (Dean & Wellman, 1991) focusses on the overlap between control theory and
arti�cial intelligence. But there has been little e�ort to import fundamental control-theory


ideas into computer science. That is precisely what I set out to do in this paper.


I propose a computational system that works di�erently than do conventional ones. The


formalism has what I call circuit semantics (Nilsson, 1992); program execution produces
(at least conceptually) electrical circuits, and it is these circuits that are used for control.
While importing the control-theory concept of continuous feedback, I nevertheless want to


retain useful ideas of computer science. My control programs will have parameters that can
be bound at run time and passed to subordinate routines. They can have a hierarchical
organization, and they can be recursive. In contrast with some of the behavior-based
approaches, I want the programs to be responsive to stored models of the environment as


well as to their immediate sensory inputs.


The presentation of these ideas will be somewhat informal in line with my belief that


formalization is best done after a certain amount of experience has been obtained. Although


preliminary experiments indicate that the formalism works quite well, more work remains
to be done to establish its place in agent control.


2. Teleo-Reactive Sequences


2.1 Condition-Action Rules


A teleo-reactive (T-R) sequence is an agent control program that directs the agent toward a


goal (hence teleo) in a manner that takes into account changing environmental circumstances
(hence reactive). In its simplest form, it consists of an ordered set of production rules:


K1 ! a1


K2 ! a2


� � �


Ki ! ai


� � �


Km ! am


The Ki are conditions (on sensory inputs and on a model of the world), and the ai
are actions (on the world or which change the model). A T-R sequence is interpreted in a
manner roughly similar to the way in which some production systems are interpreted. The
list of rules is scanned from the top for the �rst rule whose condition part is satis�ed, and


the corresponding action is executed. T-R sequences di�er substantively from conventional
production systems, however. T-R actions can be durative rather than discrete. A durative
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action is one that continues inde�nitely. For example, a mobile robot is capable of executing
the durative actionmove, which propels the robot ahead (say at constant speed) inde�nitely.


Such an action contrasts with a discrete one, such as move forward one meter. In a T-R
sequence, a durative action continues so long as its corresponding condition remains the �rst
true condition. When the �rst true condition changes, the action changes correspondingly.


Thus, unlike production systems in computer science, the conditions must be continuously
evaluated; the action associated with the currently �rst true condition is always the one
being executed. An action terminates only when its energizing condition ceases to be the
�rst true condition.


Indeed, rather than thinking of T-R sequences in terms of the computer science idea of
discrete events, it is more appropriate to think of them as being implemented by circuitry.
For example, the sequence above can be implemented by the circuit shown in �gure 1.


Furthermore, we imagine that the conditions, Ki, are also being continuously computed.


am


a3


a2K2


K3


Km


K1


¬


¬


¬
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^


^


^


sensors
and
model


condition-
computing
circuits


Figure 1: Implementing a T-R Sequence in Circuitry


The actions, ai, of a T-R sequence can either be primitive actions, or they can be T-R


sequences themselves. Thus, programs written in this formalism can be hierarchical (even
recursive, as we shall see later). In the case of hierarchical programs, it is important to
realize that all conditions at all levels of the hierarchy are continuously being evaluated; a


high level sequence can redirect control through a di�erent path of lower level sequences as
dictated by the values of the conditions at the various levels.


141







Nilsson


In writing a T-R sequence, a programmer ordinarily works backward from whatever goal
condition the sequence is being designed to achieve. The condition K1 is taken to be the


goal condition, and the corresponding action, a1, is the null action. The condition K2 is
the weakest condition such that when it is satis�ed (and K1 is not), the durative execution
of a2 will (all other things being equal) eventually achieve K1. And so on. Each non-null


action, ai, is supposed to achieve a condition, Kj , strictly higher in the list (j < i). The
conditions are therefore regressions (Nilsson, 1980) of higher conditions through the actions
that achieve those higher conditions.


Formally, we say that a T-R sequence satis�es the regression property if each condition,


Ki (m � i > 1), is the regression of some higher condition in the sequence, Kj (j < i),
through the action ai. We say that a T-R sequence is complete if and only if K1 _ � � �_Ki _


� � � _Km is a tautology. A T-R sequence is universal if it satis�es the regression property
and is complete. It is easy to see that a universal T-R sequence will always achieve its goal


condition, K1, if there are no sensing or execution errors.


Sometimes an action does not have the e�ect that was anticipated by the agent's designer
(the normal e�ect), and sometimes exogenous events (separate from the actions of the


agent) change the world in unexpected ways. These phenomena, of course, are the reason
continuous feedback is required. Universal T-R sequences, like universal plans (Schoppers,
1987), are robust in the face of occasional deviations from normal execution. They can
also exploit serendipitous e�ects; it may accidentally happen that an action achieves a


condition higher in the list of condition/action rules than normally expected. Even if an
action sometimes does not achieve its normal e�ect (due to occasional sensing or execution


errors), nevertheless some action will be executed. So long as the environment does not


too often frustrate the achievement of the normal e�ects of actions, the goal condition of a
universal T-R sequence will ultimately be achieved.


2.2 An Example


The following rather simple example should make these ideas more concrete. Consider the
simulated robots in �gure 2. Let's suppose that these robots can move bars around in
their two-dimensional world. The robot on the right is holding a bar, and we want the
other robot to go to and grab the bar marked A. We presume that this robot can sense its


environment and can evaluate conditions which tell it whether or not it is already grabbing
bar A (is-grabbing), facing toward bar A (facing-bar), positioned with respect to bar A
so that it can reach and grab it (at-bar-center), on the perpendicular bisector of bar A
(on-bar-midline), and facing a zone on the perpendicular bisector of bar A from which it


would be appropriate to move toward bar A (facing-midline-zone). Let's assume also that
these conditions have some appropriate amount of hysteresis so that hunting behavior is
dampened. Suppose the robot is capable of executing the primitive actions grab-bar, move,


and rotate with the obvious e�ects. Execution of the following T-R sequence will result in
the robot grabbing bar A:
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Figure 2: Robots and Bars


Notice how each properly executed action in this sequence achieves the condition in
the rule above it. In this way, the actions inexorably proceed toward the goal. Occasional


setbacks merely cause delays in achieving the goal so long as the actions usually1 achieve


their normal e�ects.


3. Teleo-Reactive Programs


3.1 Rules with Variables


We can generalize the notion of a T-R sequence by permitting the rules to contain free
variables that are bound when the sequence is \called." We will call such a sequence a T-R


program. Additional generality is obtained if we assume that the variables are not necessarily
bound to constants but to quantities whose values are continuously being computed (as if
by circuitry) as the environment changes.


A simple example involving having a robot go to a designated goal location in two


dimensions will serve to illustrate. Suppose the goal location is given by the value of the
variable loc. At run time, loc will be bound to a pair of X;Y coordinates, although we allow
the binding to change during run time. At any time during the process, the robot's X;Y
position is given by the value of the variable position. (We assume that the robot has some


kind of navigational aid that reliably and continuously computes the value of position.)
From the instantaneous values of loc and position, the robot can compute the direction that


1. We do not choose to de�ne usually more precisely here, although a probabilistic analysis could be given.
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it should face to proceed in a straight line toward loc. Let the value of this direction at any
time be given by the value of the function course(position, loc). At any time during the


process, the robot's angular heading is given by the value of the variable heading. Using
these variables, the T-R program to drive the robot to loc is:


goto(loc)


equal(position, loc) ! nil


equal(heading, course(position, loc)) ! move


T ! rotate


Implementing goto(loc) in circuitry is straightforward. The single parameter of the


program is loc whose (possibly changing) value is speci�ed at run time by a user, by a
higher level program, or by circuitry. The other (global) parameters, position and heading,


are provided by circuitry, and we assume that the function course is continuously being
computed by circuitry. Given the values of all of these parameters, computing which action


to energize is then computed by circuitry in the manner of �gure 1.


3.2 Hierarchical Programs


Our formalism allows writing hierarchical and recursive programs in which the actions in
the rules are themselves T-R programs. As an example, we can write a recursive navigation


program that calls goto. Our new navigation program requires some more complex sensory
functions. Imagine a function clear-path(place1, place2) that has value T if and only if
the direct path is clear between place1 and place2. (We assume the robot can compute


this function, continuously, for place1 = position, and place2 equal to any target location.)
Also imagine a function new-point(place1, place2) that computes an intermediate position
between place1 and place2 whenever clear-path does not have value T . The value of new-
point lies appropriately to the side of the obstacle determined to be between place1 and


place2 (so that if the robot heads toward new-point �rst and then toward place2, it can
navigate around the obstacle). Both clear-path and new-point are continuously computed
by perceptual systems with which we endow the robot. We'll name our new navigation
program amble(loc). Here is the code:


amble(loc)


equal(position, loc) ! nil


clear-path(position, loc) ! goto(loc)


T ! amble(new-point(position, loc))


We show in �gure 3 the path that a robot controlled by this program might take in


navigating around the obstacles shown. (The program doesn't necessarily compute shortest
paths; we present the program here simply as an illustration of recursion.) Note that if the
obstacle positions or goal location change during execution, these changes will be reected


in the values of the parameters used by the program, and program execution will proceed in
a manner appropriate to the changes. In particular, if a clear path ever becomes manifest
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goal location


Figure 3: Navigating using amble


The continuous computation of parameters involved in T-R programs and the ability of
high level programs to redirect control account for the great robustness of this formalism.


A formal syntax for T-R programs is given in (Nilsson, 1992).


3.3 Implementational Issues


The T-R formalism, with its implicit assumption of continuous computation of conditions
and parameters, should be thought of as a fully legitimate \level" in the hierarchy of program
structure controlling the agent, regardless of how this level is implemented by levels below|


just as computer scientists think of list processing as a level of actual operation even though


it is implemented by more primitive logical operations below. If we assume (as we do) that
the pace of events in the agent's environment is slow compared with the amount of time


taken to perform the \continuous" computations required in a T-R program, then the T-R
programmer is justi�ed in assuming \real" continuous sensing as s/he writes programs (even
though the underlying implentation may involve discrete sampling). We recommend the
T-R formalism only for those applications for which this assumption is justi�ed. For those


applications, the T-R level shields the programmer from having to worry about how that
level is implemented and greatly facilitates program construction.


There are several di�erent ways in which T-R programs can be interpreted into lower
level implementations. It is beyond the scope of this paper to do more than point out some


obvious methods, and we leave important questions about the properties of these methods
to subsequent research. One method of implementation involves the construction of actual
or simulated circuits according to the basic scheme of �gure 1. First, the top level condition-


computing circuits (including circuits for computing parameters used in the conditions) are
constructed and allowed to function. A speci�c action, say ai, is energized as a result. If ai
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is primitive, it is turned on, keeping the circuitry in place and functioning until some other
top-level action is energized, and so on. If ai is a T-R sequence, the circuitry needed to


implement it is constructed (just as was done at the top level), an action is selected, and
so on|and all the while levels of circuitry above are left functioning. As new lower level
circuitry is constructed, any circuitry no longer functioning (that is, circuitry no longer


\called" by functioning higher level circuitry) can be garbage collected.


There are important questions of parameter passing and of timing in this process which
I do not deal with here|relying on the assumption that the times needed to create cir-
cuitry and for the circuitry to function are negligible compared to the pace of events in the


world. This assumption is similar to the synchrony hypothesis in the ESTEREL program-
ming language (Berry & Gonthier, 1992) where it is assumed that a program's reaction \. . .
takes no time with respect to the external environment, which remains invariant during [the


reaction]."


Although there is no reason in principle that circuitry could not be simulated or actually
constructed (using some sort of programmable network of logic gates), it is also straight-


forward to implement a T-R program using more standard computational techniques. T-R
programs can be written as LISP cond statements, and durative actions can be simulated
by iterating very short action increments. For example, the increment for the move action
for a simulated robot might move the robot ahead by a small amount. After each action


increment, the top level LISP cond is executed anew, and of course all of the functions and
parameters that it contains are evaluated anew. In our simulations of robots moving in
two-dimensional worlds (to be discussed below), the computations involved are su�ciently
fast to e�ect a reasonable pace with apparent smooth motion.


This implementation method essentially involves sampling the environment at irregular
intervals. Of course, there are questions concerning how the computation times (and thus
the sampling rate) a�ect the real-time aspects of agent behavior which we do not address


here|again assuming the sampling rate to be very short.


Whatever method is used to interpret T-R programs, care must be taken not to conate
the T-R level with the levels below. The programmer ought not to have to think about


circuit simulators or sampling intervals but should imagine that sensing is done continuously
and immediately.


3.4 Graphical Representations


The goto program can be represented by a graph as well as by the list of rules used earlier.
The graphical representation of this program is shown in �gure 4. The nodes are labeled
by conditions, and the arcs by actions. To execute the graphical version of the program, we


look for the shallowest true node (taking the goal condition as the root) and execute the
action labeling the arc leading out from that node.


In the graph of �gure 4, each action normally achieves the condition at the head of its arc


(when the condition at the tail of the arc is the shallowest true condition). If there is more
than one action that can achieve a condition, we would have a tree instead of a single-path
graph. A more general graph, then, is a teleo-reactive tree such as that depicted in �gure 5.


T-R trees are executed by searching for the shallowest true node and executing the action
labeling the arc leaving that node. Alternatively, we could search for that true node judged
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T
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equal(position, loc)


equal(heading, course(position, loc))


Figure 4: Graphical Representation of goto


to be on a path of least cost to the goal, where some appropriate heuristic measure of cost
is used. [For simplicity, the phrase \shallowest true node" will be taken to mean either the
shallowest true node (literally) or the true node on a path of least cost to the goal.] Ties
among several equally shallow true nodes are broken according to a �xed tie-breaking rule.


In �gure 5 we see that, in particular, there are at least two ways to achieve condition K1.
One way uses action a2 (when K2 is the shallowest true node), and one way uses action a3
(when K3 is the shallowest true node).


In analogy with the de�nitions given for T-R sequences, a T-R tree satis�es the regression
property if every non-root node is the regression of its parent node through the action linking
it with its parent. A T-R tree is complete if the disjunction of all of its conditions is a


tautology. A T-R tree is universal if and only if it satis�es the regression property and is


also complete. With a �xed tie-breaking rule, a T-R tree becomes a T-R sequence. If a
T-R tree is universal, then so will be the corresponding T-R sequence.


One might at �rst object to this method for executing a T-R tree on the grounds that
the sequence of actions that emerge will hop erratically from one path to another. But
if the tree satis�es the regression property, and if the heuristic for measuring cost to the


goal is reasonable, then (however erratic the actions may appear to be), each successfully
executed action brings the agent closer to the goal.


4. Experiments


We have carried out several preliminary experiments with agents programmed in this lan-


guage (using LISP cond statements and short action increments). One set of experiments
uses simulated robots acting in a two-dimensional space, called Botworld 2, of construction


2. The original Botworld interface, including the primitive perceptual functions and actions for its robots,
was designed and implemented by Jonas Karlsson for the NeXT computer system (Karlsson, 1990). Sub-
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Figure 5: A T-R Tree


materials, structures made from these materials, and other robots. The construction mate-


rials are bars, and the robots are to build structures by connecting the bars in various ways.
A robot can turn and move, can grab and release a suitably adjacent bar, can turn and move
a grabbed bar, and can connect a bar to other bars or structures. The robots continuously


sense whether or not they are holding a bar, and they \see" in front of them (giving them
information about the location of bars and structures). Because of the existence of other
robots which may change the world in sometimes unexpected ways, it is important for each
robot to sense certain critical aspects of its environment continuously.


A typical Botworld graphical display is shown in �gure 6.


We have written various T-R programs that cause the robots to build structures of
various kinds (like the triangle being constructed in �gure 6). A robot controlled by one
of these programs exhibits homeostatic behavior. So long as the main goal (whatever it is)


is satis�ed, the robot is inactive. Whenever the goal (for whatever reason) is not satis�ed,
the robot becomes active and persists until it achieves the goal. If another agent achieves
part or all of the goal, the robot carries on appropriately from the situation it �nds itself


in to complete the process.


In our experiments, the conditions used in the T-R rules are conditions on a model of
the environment that the robot constructs from its sensory system and maintains separately
from the T-R mechanism. The use of a model permits a robot to perform its actions in


response to all the sensory stimuli (past and present) that have been used to help construct
the model. But, if the T-R actions include direct changes to the model (in addition to those


sequently, Patrick Teo implemented a version that runs under X-windows on any of several di�erent work-
stations (Teo, 1991, 1992). The latter version allows the simulation of several robots simultaneously|
each under the control of its own independently running process.


148







Teleo-Reactive Programs


Figure 6: Botworld Display


changes resulting from perceived changes to the environment), then there is a potential for
undesirable instabilities (as with any system with positive feedback). (The problem of how


to model the environment and how this model should be updated in response to sensory
data is a separate major research problem outside the scope of the work reported here.)


In other experiments, we have used the Nomadic Technologies 100 series mobile robot.
The robot is equipped with a ring of 16 infrared sensors and a ring of 16 sonar sensors.
It is controlled via a radio modem by a Macintosh II running Allegro Common Lisp. We
have implemented robust T-R programs for some simple o�ce-environment tasks, such as


wall-following and corridor-following (Galles, 1993). The programs were initially developed
and debugged using the Nomadics simulator of the actual robot; very few changes had to be
made in porting the programs from the simulator to the robot. In performing these tasks,


the robot is highly reactive and persistent even in the face of occasional extreme sonar or
infrared range errors and deliberate attempts to confuse it. The robot quickly adapts to
sudden changes in the environment, such as those caused by people sharing the hallways.


In writing T-R programs, one need only be concerned with inventing the appropriate
predicates using the available perceptual functions and model database. One does not need
to worry about providing interrupts of lower level programs so higher level ones can regain


control. We have found that debugging T-R programs presents some challenges, though.
Since they are designed to be quite robust in the face of environmental uncertainty, they
also sometimes work rather well even though they are not completely debugged. These


residual errors might not have undesirable e�ects until the programs are used in higher
level programs|making the higher ones more di�cult to debug.
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5. Other Approaches for Specifying Behavior


There have been several formalisms proposed for prescribing sensory-directed, real-time
activity in dynamic environments. Some of these are closely related to the T-R formalism


proposed here. In this section I point out the major similarities and di�erences between T-R
programs and a representative, though not complete, sample of their closest relatives. The
other reactive formalisms are of two types, namely, those that sample their environments
at discrete intervals (perhaps rapidly enough to be su�ciently reactive), and those that


create circuitry (like T-R programs). The discrete-sampling systems do not abstract this


activity into a higher level in which the environment is monitored continuously, and most
of the circuitry-creating systems do so prior to run time (unlike T-R programs which create


circuitry at run time).


5.1 Discrete-Sampling Systems


5.1.1 Production Systems


As has already been mentioned, T-R programs are similar to production systems (Water-
man & Hayes-Roth, 1978). The intermediate-level actions (ILAs) used in the SRI robot
Shakey (Nilsson, 1984) were programmed using production rules and were very much like
T-R programs. A T-R program also resembles a plan represented in triangle-table form


constructed by STRIPS (Fikes, Hart & Nilsson, 1972). Each of the conditions of a T-R
sequence corresponds to a triangle table kernel. In the PLANEX execution system for tri-
angle tables, the action corresponding to the highest-numbered satis�ed kernel is executed.
A major di�erence between all of these previous production-system style programs and T-


R programs is that T-R programs are continuously responsive to the environment while
ordinary production systems are not.


5.1.2 Reactive Plans


Several researchers have adopted the approach of using the current situation to index into
a set of pre-arranged action sequences (George� & Lansky, 1987; Schoppers, 1987; Firby,


1987). This set can either be large enough to cover a substantial number of the situations
in which an agent is likely to �nd itself or it can cover all possible situations. In the latter
case, the plan set is said to be universal. Unlike T-R programs, these systems explicitly
sample their environments at discrete time steps rather than continuously. As with T-R


programs, time-space trade-o�s must be taken into account when considering how many
di�erent conditions must be anticipated in providing reactive plans. Ginsberg has noted
that in several domains, the number of situations likely to be encountered by the agent is
so intractably large that the agent is forced to postpone most of its planning until run time


when situations are actually encountered (Ginsberg, 1989). (For further discussion of this
point, see (Selman, 1993).) T-R programs have the advantage that at least a rudimentary
form of planning, namely parameter binding, is done at run time. The PRS system (George�


& Lansky, 1987) is capable of more extensive planning at run time as well as reacting
appropriately to its current situation.
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5.1.3 Situated Control Rules


Drummond (Drummond, 1989) introduces the notion of a plan net which is a kind of Petri
net (Reisig, 1985) for representing the e�ects of actions (which can be executed in parallel).


Taking into account the possible interactions of actions, he then projects the e�ects of all
possible actions from a present state up to some horizon. These e�ects are represented in
a structure called a plan projection. The plan projection is analyzed to see, for each state
in it, which states possibly have a path to the goal state. This analysis is a forward version


of the backward analysis used by a programmer in producing a T-R tree. Situated control


rules are the result of this analysis; they constrain the actions that might be taken at any


state to those which will result in a state that still possibly has a path to the goal. Plan
nets and Petri nets are based on discrete events and thus are not continuously responsive


to their environments in the way that T-R programs are.


5.2 Circuit-Based Systems


Kaelbling has proposed a formalism called GAPPS (Kaelbling, 1988; Kaelbling & Rosen-
schein, 1990), involving goal reduction rules, for implicitly describing how to achieve goals.
The GAPPS programmer de�nes the activity of an agent by providing su�cient goal re-
duction rules to connect the agent's goals with the situations in which it might �nd itself.


These rules are then compiled into circuitry for real-time control of the agent. Rosenschein
and Kaelbling (Rosenschein & Kaelbling, 1986) call such circuitry situated automata.


A collection of GAPPS rules for achieving a goal can be thought of as an implicit
speci�cation of a T-R program in which the computations needed to construct the program
are performed when the rules are compiled. The GAPPS programmer typically exerts less


speci�c control over the agent's activity|leaving some of the work to the search process
performed by the GAPPS compiler. For example, a T-R program to achieve a goal, p , can
be implicitly speci�ed by the following GAPPS rule:


(defgoalr (ach ?p)


(if ((holds ?p) (do nil))


((holds (regress ?a ?p)) (do ?a))


(T ach (regress ?a ?p)) ))


The recursion de�ned by this rule bottoms out in rules of the form:


(defgoalr (ach �)


((holds  ) (do �)) )


where � and  are conditions and � is a speci�c action.


GAPPS compiles its rules into circuitry before run time, whereas the circuit implemen-
tation of a T-R program depends on parameters that are bound at run time. Both systems


result in control that is continuously responsive to the environment.


In implementing a system to play a video game, Chapman (Chapman, 1990) compiles
production-like rules into digital circuitry for real-time control using an approach that he
calls \arbitration macrology." As in situated automata, the compilation process occurs
prior to run time.


Brooks has developed a behavior language, BL, (Brooks, 1989), for writing reactive


robot control programs based on his \subsumption architecture" (Brooks, 1986). A similar
language, ALFA, has been implemented by Gat (Gat, 1991). Programs written in these
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languages compile into structures very much like circuits. Again, compilation occurs prior
to run time. It has been relatively straightforward to translate examples of subsumption-


architecture programs into T-R programs.


In all of these circuit-based systems, pre-run-time compiling means that more circuitry
must be built than might be needed in any given run because all possible contingencies


must be anticipated at compile time.3 But in T-R programs, parameters are bound at run
time, and only that circuitry required for these speci�c bindings is constructed.


6. Future Work


The T-R formalism might easily be augmented to embody some features that have not been
discussed in this paper. Explicit reference to time in specifying actions might be necessary.
For example, we might want to make sure that some action a is not initiated until after some


time t1 and ceases after some time t2. Time predicates, whose time terms are evaluated


using an internal clock, may su�ce for this purpose.


Also, in some applications we may want to control which conditions in a T-R program


are actually tested. It may be, for example, that some conditions won't have to be checked


because their truth or falsity can be guessed with compelling accuracy.


Simultaneous and asynchronous execution of multiple actions can be achieved by al-
lowing the right-hand side of rules to contain sets of actions. Each member of the set is


then duratively executed asynchronously and independently (so long as the condition in the
rule that sustains this set remains the highest true condition). Of course, the programmer
must decide under what conditions it is appropriate to call for parallel actions. Future
work on related formalisms might reveal ways in which parallel actions might emerge from


the interaction of the program and its environment rather than having to be explicitly
programmed.


Although we intend that T-R programs for agent control be written by human pro-


grammers, we are also interested in methods for modifying them by automatic planning
and machine learning. We will briey discuss some of our preliminary ideas on planning
and learning here.


T-R trees resemble the search trees constructed by those planning systems that work


backwards from a goal condition. The overall goal is the root of the tree; any non-root
node gi is the regression of its parent node, gj through the action, ak, connecting them.
This similarity suggests that T-R trees can be constructed (and modi�ed) by an automatic


planning system capable of regressing conditions through durative actions. Indeed triangle
tables (Fikes, Hart & Nilsson, 1972), a degenerate form of T-R tree consisting of only a
single path, were constructed by an automatic planning system and an EBL-style generalizer


(Mitchell, Keller & Kedar-Cabelli, 1986).


The reader might object that there is no reason to suppose that the search trees pro-
duced by an automatic planning process will contain nodes whose conditions are those that
the agent is likely to encounter in its behavior. A process of incremental modi�cation, how-


ever, should gradually make these constructed trees more and more matched to the agent's
environment. If a tree for achieving a desired goal has no true nodes in a certain situation,


3. Agre's \running arguments" construct (Agre, 1989) is one example of a circuit-based system that can
add circuitry at run time as needed.
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it is as if the search process employed by an automatic planner had not yet terminated
because no subgoal in the search tree was satis�ed in the current state. In this case, the


planning system can be called upon to continue to search; that is, the existing T-R tree will
be expanded until a true node is produced. Pruning of T-R trees can be accomplished by
keeping statistics on how often their nodes are satis�ed. Portions of the trees that are never


or seldom used can be erased. Early unpublished work by Scott Benson indicates that T-R
programs can be e�ectively generated by automatic planning methods (Benson, 1993).


In considering learning mechanisms, we note �rst that T-R sequences are related to a
class of Boolean functions that Rivest has termed k-decision lists (Rivest, 1987; Kohavi &


Benson, 1993). A k-decision list is an ordered list of condition-value pairs in which each
condition is a conjunction of Boolean variables of length at most k, and each value is a truth
value (T or F ). The value of the Boolean function represented by a k-decision list is that
value associated with the highest true condition. Rivest has shown that such functions are


polynomially PAC learnable and has presented a supervised learning procedure for them.


We can see that a T-R sequence whose conditions are limited to k-length conjunctions of
Boolean features is a slight generalization of k-decision lists. The only di�erence is that


such a T-R sequence can have more than two di�erent \values" (that is, actions). We
observe that such a T-R sequence (with, say, n di�erent actions) is also PAC learnable


since its actions can be encoded with log2 n decision lists. George John (John, 1993) has
investigated a supervised learning mechanism for learning T-R sequences.


Typically, the conditions used in T-R programs are conjunctions of propositional fea-
tures of the robot's world and/or model. Because a linear threshold function can implement
conjunctions, one is led to propose a neural net implementation of a T-R sequence. The neu-
ral net implementation, in turn, evokes ideas about possible learning mechanisms. Consider


the T-R sequence:


K1 ! a1


K2 ! a2


� � �


Ki ! ai


� � �


Km ! am


Suppose we stipulate that the Ki are linear threshold functions of a set of propositional
features. The ai are not all necessarily distinct; in fact we will assume that there are only


k � m distinct actions. Let these be denoted by b1; � � � ; bk. The network structure in �gure
7 implements such a T-R sequence.


The propositional features tested by the conditions are grouped into an n-dimensional
binary (0,1) vector, X called the input vector. The m conditions are implemented by m


threshold elements having weighted connections to the components of the input vector. The
process of �nding the �rst true condition is implemented by a layer containing appropriate
inhibitory weights and AND units such that only one AND unit can ever have an output


value of 1, and that unit corresponds to the �rst true condition. A unique action is associated
with each condition through a layer of binary-valued weights and OR-unit associators. Each
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Figure 7: A Neural Net that Implements a T-R Sequence


AND unit is connected to one and only one associator by a non-zero weight. Since only


one AND unit can have a non-zero output, only that unit's associator can have a non-zero
output. (But each associator could be connected to multiple AND units.) For example, if


action bi is to be associated with conditionsKj and Kl, then there will be unit weights from
the j-th and l-th AND units to the associator representing action bi and zero-valued weights


from all other AND units to that associator. The action selected for execution is the action
corresponding to the single associator having the non-zero output. We are investigating
various learning methods suggested by this neural net implementation.


Work must also be done on the question of what constitutes a goal. I have assumed
goals of achievement. Can mechanisms be found that continously avoid making certain


conditions true (or false) while attempting to achieve others? Or suppose priorities on a
number of possibly mutually contradictory conditions are speci�ed; what are reasonable
methods for attending to those achievable goals having the highest priorities?


Also, it will be interesting to ask in what sense T-R programs can be proved to be correct.
It would seem that veri�cation would have to make assumptions about the dynamics of the


environment; some environments might be so malevolent that agents in them could never
achieve their goals. Even so, a veri�er equipped with a model of the e�ects of actions could
at least check to see that the regression property was satis�ed and note any lapses.


More work remains on methods of implementing or interpreting T-R programs and
the real-time properties of implementations. These properties will, of course, depend on


the depth of the T-R program hierarchy and on the conditions and features that must be
evaluated.
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Finally, it might be worthwhile to investigate \fuzzy" versions of T-R trees. One could
imagine fuzzy predicates that would energize actions with a \strength" that depends on


the degree to which the predicates are true. The SRI robot, Flakey, uses a fuzzy controller
(Sa�otti, Ruspini & Konolige, 1993).


7. Conclusions


I have presented a formalism for specifying actions in dynamic and uncertain domains. Since
this work rests on ideas somewhat di�erent than those of conventional computer science, I
expect that considerably more analysis and experimentation will be required before the T-R


formalism can be fully evaluated. The need in robotics for control-theoretic ideas such as
homeostasis, continuous feedback, and stability appears to be su�ciently strong, however,
that it seems appropriate for candidate formalisms embodying these ideas to be put forward
for consideration.


Experiments with the language will produce a stock of advice about how to write T-R
programs e�ectively. Already, for example, it is apparent that a sustaining condition in a


T-R sequence must be carefully speci�ed so that it is no more restrictive than it really needs
to be; an overly restrictive condition is likely to be rendered false by the very action that
it is supposed to sustain before that action succeeds in making a higher condition in the
sequence true. But, of course, overly restrictive conditions won't occur in T-R programs


that satisfy the regression property.


To be usefully employed, T-R programs (or any programs controlling agent action)
need to be embodied in an overall agent architecture that integrates perceptual processing,
goal selection, action computation, environmental modeling, and planning and learning
mechanisms. Several architectural schemes have been suggested, and we will not summarize


them here except to say that three layers of control are often delineated. A typical example
is the SSS architecture of Connell (Connell, 1993). His top (Symbolic) layer does overall
goal setting and sequencing, the middle (Subsumption) level selects speci�c actions, and
the lower (Servo) level exerts standard feedback control over the e�ectors. We believe T-R


programs would most appropriately be used in the middle level of such architectures.


The major limitation of T-R programs is that they involve much more computation


than do programs that check only relevant conditions. Most of the conditions computed by
a T-R program in selecting an action are either irrelevant to the situation at hand or have
values that might be accurately predicted (if the programmer wanted to take the trouble


to do so). We are essentially trading computing time for ease of programming, and our
particular trade will only be advantageous in certain applications. Among these, I think, is
the mid-level control of robots and (possibly) software agents.


In conclusion, there are three main features embodied in the T-R formalism. One is
continuous computation of the parameters and conditions on which action is based. T-
R programs allow for continuous feedback while still supporting parameter binding and


recursion. The second feature is the regression relationship between conditions in a T-R
program. Each condition is the regression of some condition closer to the goal through an
action that normally achieves that closer-to-the-goal condition. The regression property


assures robust goal-seeking behavior. Third, the conceptual circuitry controlling action is
constructed at run time, and this feature permits programs to be universal while still being
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compact. In addition, T-R programs are intuitive and easy to write and are written in a
formalism that is compatible with automatic planning and learning methods.
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