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Abstract


Market price systems constitute a well-understood class of mechanisms that under


certain conditions provide e�ective decentralization of decision making with minimal com-


munication overhead. In a market-oriented programming approach to distributed problem


solving, we derive the activities and resource allocations for a set of computational agents


by computing the competitive equilibrium of an arti�cial economy. Walras provides basic


constructs for de�ning computational market structures, and protocols for deriving their


corresponding price equilibria. In a particular realization of this approach for a form of


multicommodity ow problem, we see that careful construction of the decision process ac-


cording to economic principles can lead to e�cient distributed resource allocation, and that


the behavior of the system can be meaningfully analyzed in economic terms.


1. Distributed Planning and Economics


In a distributed or multiagent planning system, the plan for the system as a whole is a com-
posite of plans produced by its constituent agents. These plans may interact signi�cantly in
both the resources required by each of the agents' activities (preconditions) and the prod-
ucts resulting from these activities (postconditions). Despite these interactions, it is often
advantageous or necessary to distribute the planning process because agents are separated
geographically, have di�erent information, possess distinct capabilities or authority, or have
been designed and implemented separately. In any case, because each agent has limited
competence and awareness of the decisions produced by others, some sort of coordination is
required to maximize the performance of the overall system. However, allocating resources
via central control or extensive communication is deemed infeasible, as it violates whatever
constraints dictated distribution of the planning task in the �rst place.


The task facing the designer of a distributed planning system is to de�ne a computa-
tionally e�cient coordination mechanism and its realization for a collection of agents. The
agent con�guration may be given, or may itself be a design parameter. By the term agent,
I refer to a module that acts within the mechanism according to its own knowledge and
interests. The capabilities of the agents and their organization in an overall decision-making
structure determine the behavior of the system as a whole. Because it concerns the collec-
tive behavior of self-interested decision makers, the design of this decentralized structure is
fundamentally an exercise in economics or incentive engineering. The problem of developing
architectures for distributed planning �ts within the framework of mechanism design (Hur-
wicz, 1977; Reiter, 1986), and many ideas and results from economics are directly applicable.
In particular, the class of mechanisms based on price systems and competition has been
deeply investigated by economists, who have characterized the conditions for its e�ciency
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and compatibility with other features of the economy. When applicable, the competitive
mechanism achieves coordination with minimal communication requirements (in a precise
sense related to the dimensionality of messages transmitted among agents (Reiter, 1986)).


The theory of general equilibrium (Hildenbrand & Kirman, 1976) provides the founda-
tion for a general approach to the construction of distributed planning systems based on
price mechanisms. In this approach, we regard the constituent planning agents as consumers
and producers in an arti�cial economy, and de�ne their individual activities in terms of pro-
duction and consumption of commodities. Interactions among agents are cast as exchanges,
the terms of which are mediated by the underlying economic mechanism, or protocol. By
specifying the universe of commodities, the con�guration of agents, and the interaction
protocol, we can achieve a variety of interesting and often e�ective decentralized behaviors.
Furthermore, we can apply economic theory to the analysis of alternative architectures, and
thus exploit a wealth of existing knowledge in the design of distributed planners.


I use the phrase market-oriented programming to refer to the general approach of de-
riving solutions to distributed resource allocation problems by computing the competitive
equilibrium of an arti�cial economy.1 In the following, I describe this general approach
and a primitive programming environment supporting the speci�cation of computational
markets and derivation of equilibrium prices. An example problem in distributed trans-
portation planning demonstrates the feasibility of decentralizing a problem with nontrivial
interactions, and the applicability of economic principles to distributed problem solving.


2. WALRAS: A Market-Oriented Programming Environment


To explore the use of market mechanisms for the coordination of distributed planning mod-
ules, I have developed a prototype environment for specifying and simulating computational
markets. The system is called walras, after the 19th-century French economist L�eon Wal-
ras, who was the �rst to envision a system of interconnected markets in price equilibrium.
Walras provides basic mechanisms implementing various sorts of agents, auctions, and
bidding protocols. To specify a computational economy, one de�nes a set of goods and
instantiates a collection of agents that produce or consume those goods. Depending on the
context, some of the goods or agents may be �xed exogenously, for example, they could cor-
respond to real-world goods or agents participating in the planning process. Others might
be completely arti�cial ones invented by the designer to decentralize the problem-solving
process in a particular way. Given a market con�guration, walras then runs these agents
to determine an equilibrium allocation of goods and activities. This distribution of goods
and activities constitutes the market solution to the planning problem.


1. The name was inspired by Shoham's use of agent-oriented programming to refer to a specialization of
object-oriented programming where the entities are described in terms of agent concepts and interact
via speech acts (Shoham, 1993). Market-oriented programming is an analogous specialization, where the
entities are economic agents that interact according to market concepts of production and exchange. The
phrase has also been invoked by Lavoie, Baetjer, and Tulloh (1991) to refer to real markets in software
components.
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2.1 General Equilibrium


The walras framework is patterned directly after general-equilibrium theory. A brief expo-
sition, glossing over many �ne points, follows; for elaboration see any text on microeconomic
theory (e.g., (Varian, 1984)).


We start with k goods and n agents. Agents fall in two general classes. Consumers can
buy, sell, and consume goods, and their preferences for consuming various combinations or
bundles of goods are speci�ed by their utility function. If agent i is a consumer, then its
utility function, ui : <


k
+ ! <, ranks the various bundles of goods according to preference.


Consumers may also start with an initial allocation of some goods, termed their endow-


ment. Let ei;j denote agent i's endowment of good j, and xi;j the amount of good j that i
ultimately consumes. The objective of consumer i is to choose a feasible bundle of goods,
(xi;1; : : : ; xi;k) (rendered in vector notation as xi), so as to maximize its utility. A bundle
is feasible for consumer i if its total cost at the going prices does not exceed the value of
i's endowment at these prices. The consumer's choice can be expressed as the following
constrained optimization problem:


max
xi


ui(xi) s.t. p � xi � p � ei; (1)


where p = (p1; : : : ; pk) is the vector of prices for the k goods.
Agents of the second type, producers, can transform some sorts of goods into some


others, according to their technology. The technology speci�es the feasible combinations of
inputs and outputs for the producer. Let us consider the special case where there is one
output good, indexed j, and the remaining goods are potential inputs. In that case, the
technology for producer i can be described by a production function,


yi = �xi;j = fi(xi;1; : : : ; xi;j�1; xi;j+1; : : : ; xi;k);


specifying the maximum output producible from the given inputs. (When a good is an
input in its own production, the production function characterizes net output.) In this
case, the producer's objective is to choose a production plan that maximizes pro�ts subject
to its technology and the going price of its output and input goods. This involves choosing a
production level, yi, along with the levels of inputs that can produce yi at the minimum cost.
Let xi;�| and p�| denote the consumption and prices, respectively, of the input goods. Then
the corresponding constrained optimization problem is to maximize pro�ts, the di�erence
between revenues and costs:


max
yi


�
pjyi �


�
min
xi;�|


p�| � xi;�| s.t. yi � fi(xi;�|)


��
;


or equivalently,
min
xi


p � xi s.t. � xi;j � fi(xi;�|): (2)


An agent acts competitively when it takes prices as given, neglecting any impact of its
own behavior on prices. The above formulation implicitly assumes perfect competition, in
that the prices are parameters of the agents' constrained optimization problems. Perfect
competition realistically reects individual rationality when there are numerous agents, each
small with respect to the entire economy. Even when this is not the case, however, we can
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implement competitive behavior in individual agents if we so choose. The implications of
the restriction to perfect competition are discussed further below.


A pair (p;x) of a price vector and vector of demands for each agent constitutes a
competitive equilibrium for the economy if and only if:


1. For each agent i, xi is a solution to its constrained optimization problem|(1) or
(2)|at prices p, and


2. the net amount of each good produced and consumed equals the total endowment,


nX
i=1


xi;j =
nX


i=1


ei;j ; for j = 1; : : : ; k: (3)


In other words, the total amount consumed equals the total amount produced (counted
as negative quantities in the consumption bundles of producers), plus the total amount
the economy started out with (the endowments).


Under certain \classical" assumptions (essentially continuity, monotonicity, and concav-
ity of the utility and production functions; see, e.g., (Hildenbrand & Kirman, 1976; Varian,
1984)), competitive equilibria exist, and are unique given strictness of these conditions.
From the perspective of mechanism design, competitive equilibria possess several desirable
properties, in particular, the two fundamental welfare theorems of general equilibrium the-
ory: (1) all competitive equilibria are Pareto optimal (no agent can do better without some
other doing worse), and (2) any feasible Pareto optimum is a competitive equilibrium for
some initial allocation of the endowments. These properties seem to o�er exactly what
we need: a bound on the quality of the solution, plus the prospect that we can achieve
the most desired behavior by carefully engineering the con�guration of the computational
market. Moreover, in equilibrium, the prices reect exactly the information required for
distributed agents to optimally evaluate perturbations in their behavior without resorting
to communication or reconsideration of their full set of possibilities (Koopmans, 1970).


2.2 Computing Competitive Equilibria


Competitive equilibria are also computable, and algorithms based on �xed-point meth-
ods (Scarf, 1984) and optimization techniques (Nagurney, 1993) have been developed. Both
sorts of algorithms in e�ect operate by collecting and solving the simultaneous equilib-
rium equations (1), (2), and (3)). Without an expressly distributed formulation, however,
these techniques may violate the decentralization considerations underlying our distributed
problem-solving context. This is quite acceptable for the purposes these algorithms were
originally designed, namely to analyze existing decentralized structures, such as transporta-
tion industries or even entire economies (Shoven & Whalley, 1992). But because our purpose
is to implement a distributed system, we must obey computational distributivity constraints
not relevant to the usual purposes of applied general-equilibrium analysis. In general, ex-
plicitly examining the space of commodity bundle allocations in the search for equilibrium
undercuts our original motive for decomposing complex activities into consumption and
production of separate goods.
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Another important constraint is that internal details of the agents' state (such as utility
or production functions and bidding policy) should be considered private in order to maxi-
mize modularity and permit inclusion of agents not under the designers' direct control. A
consequence of this is that computationally exploiting global properties arising from spe-
cial features of agents would not generally be permissible for our purposes. For example,
the constraint that pro�ts be zero is a consequence of competitive behavior and constant-
returns production technology. Since information about the form of the technology and
bidding policy is private to producer agents, it could be considered cheating to embed the
zero-pro�t condition into the equilibrium derivation procedure.


Walras's procedure is a decentralized relaxation method, akin to the mechanism of
tatonnement originally sketched by L�eon Walras to explain how prices might be derived.
In the basic tatonnement method, we begin with an initial vector of prices, p0. The agents
determine their demands at those prices (by solving their corresponding constrained op-
timization problems), and report the quantities demanded to the \auctioneer". Based on
these reports, the auctioneer iteratively adjusts the prices up or down as there is an excess
of demand or supply, respectively. For instance, an adjustment proportional to the excess
could be modeled by the di�erence equation


pt+1 = pt + �(
nX


i=1


xi �


nX
i=1


ei):


If the sequence p0;p1; : : : converges, then the excess demand in each market approaches zero,
and the result is a competitive equilibrium. It is well known, however, that tatonnement
processes do not converge to equilibrium in general (Scarf, 1984). The class of economies in
which tatonnement works are those with so-called stable equilibria (Hicks, 1948). A su�cient
condition for stability is gross substitutability (Arrow & Hurwicz, 1977): that if the price
for one good rises, then the net demands for the other goods do not decrease. Intuitively,
gross substitutability will be violated when there are complementarities in preferences or
technologies such that reduced consumption for one good will cause reduced consumption
in others as well (Samuelson, 1974).


2.3 WALRAS Bidding Protocol


The method employed by walras successively computes an equilibrium price in each sep-
arate market, in a manner detailed below. Like tatonnement, it involves an iterative ad-
justment of prices based on reactions of the agents in the market. However, it di�ers from
traditional tatonnement procedures in that (1) agents submit supply and demand curves


rather than single point quantities for a particular price, and (2) the auction adjusts in-
dividual prices to clear, rather than adjusting the entire price vector by some increment
(usually a function of summary statistics such as excess demand).2


Walras associates an auction with each distinct good. Agents act in the market by
submitting bids to auctions. In walras, bids specify a correspondence between prices and


2. This general approach is called progressive equilibration by Dafermos and Nagurney (1989), who applied
it to a particular transportation network equilibrium problem. Although this model of market dynamics
does not appear to have been investigated very extensively in general-equilibrium theory, it does seem
to match the kind of price adjustment process envisioned by Hicks in his pioneering study of dynamics
and stability (Hicks, 1948).
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quantities of the good that the agent o�ers to demand or supply. The bid for a particular
good corresponds to one dimension of the agent's optimal demand, which is parametrized
by the prices for all relevant goods. Let xi(p) be the solution to equation (1) or (2), as
appropriate, for prices p. A walras agent bids for good j under the assumption that prices
for the remaining goods are �xed at their current values, p�|. Formally, agent i's bid for
good j is a function xi;j : <+ ! <, from prices to quantities satisfying


xi;j(pj) = xi(pj ;p�|)j ;


where the subscript j on the right-hand side selects the quantity demanded of good j from
the overall demand vector. The agent computes and sends this function (encoded in any of
a variety of formats) to the auction for good j.


Given bids from all interested agents, the auction derives a market-clearing price, at
which the quantity demanded balances that supplied, within some prespeci�ed tolerance.
This clearing price is simply the zero crossing of the aggregate demand function, which is the
sum of the demands from all agents. Such a zero crossing will exist as long as the aggregate
demand is su�ciently well-behaved, in particular, if it is continuous and decreasing in price.
Gross substitutability, along with the classical conditions for existence of equilibrium, is
su�cient to ensure the existence of a clearing price at any stage of the bidding protocol.
Walras calculates the zero crossing of the aggregate demand function via binary search.
If aggregate demand is not well-behaved, the result of the auction may be a non-clearing
price.


When the current price is clearing with respect to the current bids, we say the market
for that commodity is in equilibrium. We say that an agent is in equilibrium if its set of
outstanding bids corresponds to the solution of its optimization problem at the going prices.
If all the agents and commodity markets are in equilibrium, the allocation of goods dictated
by the auction results is a competitive equilibrium.


Figure 1 presents a schematic view of the walras bidding process. There is an auction
for each distinct good, and for each agent, a link to all auctions in which it has an interest.
There is also a \tote board" of current prices, kept up-to-date by the various auctions. In
the current implementation the tote board is a global data structure, however, since price
change noti�cations are explicitly transmitted to interested agents, this central information
could be easily dispensed with.


Each agent maintains an agenda of bid tasks, specifying the markets in which it must
update its bid or compute a new one. In Figure 1, agent Ai has pending tasks to submit
bids to auctions G1, G7, and G4. The bidding process is highly distributed, in that each
agent need communicate directly only with the auctions for the goods of interest (those in
the domain of its utility or production function, or for which it has nonzero endowments).
Each of these interactions concerns only a single good; auctions never coordinate with each
other. Agents need not negotiate directly with other agents, nor even know of each other's
existence.


As new bids are received at auction, the previously computed clearing price becomes
obsolete. Periodically, each auction computes a new clearing price (if any new or updated
bids have been received) and posts it on the tote board. When a price is updated, this
may invalidate some of an agent's outstanding bids, since these were computed under the
assumption that prices for remaining goods were �xed at previous values. On �nding out
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G1 G2 Gk


A1 A2 Ai An


Task Agenda


[1], [7], [4]


p1
p2


pk


tote board


}


}


Figure 1: Walras's bidding process. Gj denotes the auction for the jth good, and Ai the
ith trading agent. An item [j] on the task agenda denotes a pending task to
compute and submit a bid for good j.


about a price change, an agent augments its task agenda to include the potentially a�ected
bids.


At all times, walras maintains a vector of going prices and quantities that would be
exchanged at those prices. While the agents have nonempty bid agendas or the auctions new
bids, some or all goods may be in disequilibrium. When all auctions clear and all agendas
are exhausted, however, the economy is in competitive equilibrium (up to some numeric
tolerance). Using a recent result of Milgrom and Roberts (1991, Theorem 12), it can be
shown that the condition su�cient for convergence of tatonnement|gross substitutability|
is also su�cient for convergence of walras's price-adjustment process. The key observation
is that in progressive equilibration (synchronous or not) the price at each time is based on
some set of previous supply and demand bids.


Although I have no precise results to this e�ect, the computational e�ort required for
convergence to a �xed tolerance seems highly sensitive to the number of goods, and much
less so to the number of agents. Eydeland and Nagurney (1989) have analyzed in detail
the convergence pattern of progressive equilibration algorithms related to walras for par-
ticular special cases, and found roughly linear growth in the number of agents. However,
general conclusions are di�cult to draw as the cost of computing the equilibrium for a par-
ticular computational economy may well depend on the interconnectedness and strength of
interactions among agents and goods.


2.4 Market-Oriented Programming


As described above, walras provides facilities for specifying market con�gurations and
computing their competitive equilibrium. We can also view walras as a programming
environment for decentralized resource allocation procedures. The environment provides
constructs for specifying various sorts of agents and de�ning their interactions via their
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relations to common commodities. After setting up the initial con�guration, the market
can be run to determine the equilibrium level of activities and distribution of resources
throughout the economy.


To cast a distributed planning problem as a market, one needs to identify (1) the goods
traded, (2) the agents trading, and (3) the agents' bidding behavior. These design steps
are serially dependent, as the de�nition of what constitutes an exchangeable or producible
commodity severely restricts the type of agents that it makes sense to include. And as
mentioned above, sometimes we have to take as �xed some real-world agents and goods
presented as part of the problem speci�cation. Once the con�guration is determined, it
might be advantageous to adjust some general parameters of the bidding protocol. Below, I
illustrate the design task with a walras formulation of the multicommodity ow problem.


2.5 Implementation


Walras is implemented in Common Lisp and the Common Lisp Object System (CLOS).
The current version provides basic infrastructure for running computational economies,
including the underlying bidding protocol and a library of CLOS classes implementing a
variety of agent types. The object-oriented implementation supports incremental develop-
ment of market con�gurations. In particular, new types of agents can often be de�ned as
slight variations on existing types, for example by modifying isolated features of the demand
behavior, bidding strategies (e.g., management of task agenda), or bid format. Wang and
Slagle (1993) present a detailed case for the use of object-oriented languages to represent
general-equilibrium models. Their proposed system is similar to walras with respect to
formulation, although it is designed as an interface to conventional model-solving packages,
rather than to support a decentralized computation of equilibrium directly.


Although it models a distributed system, walras runs serially on a single processor.
Distribution constraints on information and communication are enforced by programming
and speci�cation conventions rather than by fundamental mechanisms of the software en-
vironment. Asynchrony is simulated by randomizing the bidding sequences so that agents
are called on unpredictably. Indeed, arti�cial synchronization can lead to an undesirable
oscillation in the clearing prices, as agents collectively overcompensate for imbalances in
the preceding iteration.3


The current experimental system runs transportation models of the sort described be-
low, as well as some abstract exchange and production economies with parametrized utility
and production functions (including the expository examples of Scarf (1984) and Shoven
and Whalley (1984)). Customized tuning of the basic bidding protocol has not been nec-
essary. In the process of getting walras to run on these examples, I have added some
generically useful building blocks to the class libraries, but much more is required to �ll out
a comprehensive taxonomy of agents, bidding strategies, and auction policies.


3. In some formal dynamic models (Huberman, 1988; Kephart, Hogg, & Huberman, 1989), homogeneous
agents choose instantaneously optimal policies without accounting for others that are simultaneously
making the same choice. Since the value of a particular choice varies inversely with the number of agents
choosing it, this delayed feedback about the others' decisions leads to systematic errors, and hence
oscillation. I have also observed this phenomenon empirically in a synchronized version of WALRAS.
By eliminating the synchronization, agents tend to work on di�erent markets at any one time, and hence
do not su�er as much from delayed feedback about prices.
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3. Example: Multicommodity Flow


In a simple version of the multicommodity ow problem, the task is to allocate a given
set of cargo movements over a given transportation network. The transportation network
is a collection of locations, with links (directed edges) identifying feasible transportation
operations. Associated with each link is a speci�cation of the cost of moving cargo along it.
We suppose further that the cargo is homogeneous, and that amounts of cargo are arbitrarily
divisible. A movement requirement associates an amount of cargo with an origin-destination
pair. The planning problem is to determine the amount to transport on each link in order to
move all the cargo at the minimum cost. This simpli�cation ignores salient aspects of real
transportation planning. For instance, this model is completely atemporal, and is hence
more suitable for planning steady-state ows than for planning dynamic movements.


A distributed version of the problem would decentralize the responsibility for trans-
porting separate cargo elements. For example, planning modules corresponding to geo-
graphically or organizationally disparate units might arrange the transportation for cargo
within their respective spheres of authority. Or decision-making activity might be decom-
posed along hierarchical levels of abstraction, gross functional characteristics, or according
to any other relevant distinction. This decentralization might result from real distribution
of authority within a human organization, from inherent informational asymmetries and
communication barriers, or from modularity imposed to facilitate software engineering.


Consider, for example, the abstract transportation network of Figure 2, taken from
Harker (1988). There are four locations, with directed links as shown. Consider two move-
ment requirements. The �rst is to transport cargo from location 1 to location 4, and the
second in the reverse direction. Suppose we wish to decentralize authority so that separate
agents (called shippers) decide how to allocate the cargo for each movement. The �rst ship-
per decides how to split its cargo units between the paths 1! 2! 4 and 1! 2! 3! 4,
while the second �gures the split between paths 4! 2! 1 and 4! 2! 3! 1. Note that
the latter paths for each shipper share a common resource: the link 2! 3.


1


2


4


3


Figure 2: A simple network (from Harker (1988)).


Because of their overlapping resource demands, the shippers' decisions appear to be
necessarily intertwined. In a congested network, for example, the cost for transporting a
unit of cargo over a link is increasing in the overall usage of the link. A shipper planning
its cargo movements as if it were the only user on a network would thus underestimate its
costs and potentially misallocate transportation resources.
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For the analysis of networks such as this, transportation researchers have developed
equilibrium concepts describing the collective behavior of the shippers. In a system equi-


librium, the overall transportation of cargo proceeds as if there were an omniscient central
planner directing the movement of each shipment so as to minimize the total aggregate
cost of meeting the requirements. In a user equilibrium, the overall allocation of cargo
movements is such that each shipper minimizes its own total cost, sharing proportionately
the cost of shared resources. The system equilibrium is thus a global optimum, while the
user equilibrium corresponds to a composition of locally optimal solutions to subproblems.
There are also some intermediate possibilities, corresponding to game-theoretic equilibrium
concepts such as the Nash equilibrium, where each shipper behaves optimally given the
transportation policies of the remaining shippers (Harker, 1986).4


From our perspective as designer of the distributed planner, we seek a decentralization
mechanism that will reach the system equilibrium, or come as close as possible given the
distributed decision-making structure. In general, however, we cannot expect to derive a
system equilibrium or globally optimal solution without central control. Limits on coordi-
nation and communication may prevent the distributed resource allocation from exploiting
all opportunities and inhibiting agents from acting at cross purposes. But under certain
conditions decision making can indeed be decentralized e�ectively via market mechanisms.
General-equilibrium analysis can help us to recognize and take advantage of these opportu-
nities.


Note that for the multicommodity ow problem, there is an e�ective distributed solution
due to Gallager (1977). One of the market structures described below e�ectively mimics this
solution, even though Gallager's algorithm was not formulated expressly in market terms.
The point here is not to crack a hitherto unsolved distributed optimization problem (though
that would be nice), but rather to illustrate a general approach on a simply described yet
nontrivial task.


4. WALRAS Transportation Market


In this section, I present a series of three transportation market structures implemented in
walras. The �rst and simplest model comprises the basic transportation goods and shipper
agents, which are augmented in the succeeding models to include other agent types. Com-
parative analysis of the three market structures reveals the qualitatively distinct economic
and computational behaviors realized by alternate walras con�gurations.


4.1 Basic Shipper Model


The resource of primary interest in the multicommodity ow problem is movement of cargo.
Because the value and cost of a cargo movement depends on location, we designate as a
distinct good the capacity on each origin-destination pair in the network (see Figure 2). To
capture the cost or input required to move cargo, we de�ne another good denoting generic
transportation resources. In a more concrete model, these might consist of vehicles, fuel,
labor, or other factors contributing to transportation.


4. In the Nash solution, shippers correctly anticipate the e�ect of their own cargo movements on the average
cost on each link. The resulting equilibrium converges to the user equilibrium as the number of shippers
increases and the e�ect of any individual's behavior on prices diminishes (Haurie & Marcotte, 1985).
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To decentralize the decision making, we identify each movement requirement with a
distinct shipper agent. These shippers, or consumers, have an interest in moving various
units of cargo between speci�ed origins and destinations.


The interconnectedness of agents and goods de�nes the market con�guration. Figure 3
depicts the walras con�guration for the basic shipper model corresponding to the example
network of Figure 2. In this model there are two shippers, S1;4 and S4;1, where Si;j denotes
a shipper with a requirement to move goods from origin i to destination j. Shippers connect
to goods that might serve their objectives: in this case, movement along links that belong to
some simple path from the shipper's origin to its destination. In the diagram, Gi;j denotes
the good representing an amount of cargo moved over the link i! j. G0 denotes the special
transportation resource good. Notice that the only goods of interest to both shippers are
G0, for which they both have endowments, and G2;3, transportation on the link serving
both origin-destination pairs.


G 0 G
4,2


G
2,1


G 3,1


S4,1G 2,4


G 1,2


S1,4


G2,3G
3,4


Figure 3: Walras basic shipper market con�guration for the example transportation net-
work.


The model we employ for transportation costs is based on a network with congestion,
thus exhibiting diseconomies of scale. In other words, the marginal and average costs (in
terms of transportation resources required) are both increasing in the level of service on a
link. Using Harker's data, we take costs to be quadratic. The quadratic cost model is posed
simply for concreteness, and does not represent any substantive claim about transportation
networks. The important qualitative feature of this model (and the only one necessary
for the example to work) is that it exhibits decreasing returns, a de�ning characteristic of
congested networks. Note also that Harker's model is in terms of monetary costs, whereas
we introduce an abstract input good.


Let ci;j(x) denote the cost in transportation resources (good G0) required to transport
x units of cargo on the link from i to j. The complete cost functions are:


c1;2(x) = c2;1(x) = c2;4(x) = c4;2(x) = x2 + 20x;


c3;1(x) = c2;3(x) = c3;4(x) = 2x2 + 5x:


Finally, each shipper's objective is to transport 10 units of cargo from its origin to its
destination.
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In the basic shipper model, we assume that the shippers pay proportionately (in units
of G0) for the total cost on each link. This amounts to a policy of average cost pricing.
We take the shipper's objective to be to ship as much as possible (up to its movement
requirement) in the least costly manner. Notice that this objective is not expressible in
terms of the consumer's optimization problem, equation (1), and hence this model is not
technically an instance of the general-equilibrium framework.


Given a network with prices on each link, the cheapest cargo movement corresponds to
the shortest path in the graph, where distances are equated with prices. Thus, for a given
link, a shipper would prefer to ship its entire quota on the link if it is on the shortest path,
and zero otherwise. In the case of ties, it is indi�erent among the possible allocations. To
bid on link i; j, the shipper can derive the threshold price that determines whether the link
is on a shortest path by taking the di�erence in shortest-path distance between the networks
where link i; j's distance is set to zero and in�nity, respectively.


In incrementally changing its bids, the shipper should also consider its outstanding bids
and the current prices. The value of reserving capacity on a particular link is zero if it
cannot get service on the other links on the path. Similarly, if it is already committed to
shipping cargo on a parallel path, it does not gain by obtaining more capacity (even at a
lower price) until it withdraws these other bids.5 Therefore, the actual demand policy of
a shipper is to spend its uncommitted income on the potential ow increase (derived from
maximum-ow calculations) it could obtain by purchasing capacity on the given link. It is
willing to spend up to the threshold value of the link, as described above. This determines
one point on its demand curve. If it has some unsatis�ed requirement and uncommitted
income it also indicates a willingness to pay a lower price for a greater amount of capacity.
Boundary points such as this serve to bootstrap the economy; from the initial conditions it
is typically the case that no individual link contributes to overall ow between the shipper's
origin and destination. Finally, the demand curve is completed by a smoothing operation
on these points.


Details of the boundary points and smoothing operation are rather arbitrary, and I
make no claim that this particular bidding policy is ideal or guaranteed to work for a broad
class of problems. This crude approach appears su�cient for the present example and some
similar ones, as long as the shippers' policies become more accurate as the prices approach
equilibrium.


Walras successfully computes the competitive equilibrium for this example, which
in the case of the basic shipper model corresponds to a user equilibrium (UE) for the
transportation network. In the UE for the example network, each shipper sends 2.86 units
of cargo over the shared link 2 ! 3, and the remaining cargo over the direct link from
location 2 to the destination. This allocation is ine�cient, as its total cost is 1143 resource


5. Even if a shipper could simultaneously update its bids in all markets, it would not be a good idea to do
so here. A competitive shipper would send all its cargo on the least costly path, neglecting the possibility
that this demand may increase the prices so that it is no longer cheapest. The outstanding bids provide
some sensitivity to this e�ect, as they are functions of price. But they cannot respond to changes in
many prices at once, and thus the policy of updating all bids simultaneously can lead to perpetual
oscillation. For example, in the network considered here, the unique competitive equilibrium has each
shipper splitting its cargo between two di�erent paths. Policies allocating all cargo to one path can never
lead to this result, and hence convergence to competitive equilibrium depends on the incrementality of
bidding behavior.
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units, which is somewhat greater than the global minimum-cost solution of 1136 units. In
economic terms, the cause of the ine�ciency is an externality with respect to usage of the
shared link. Because the shippers are e�ectively charged average cost|which in the case
of decreasing returns is below marginal cost|the price they face does not reect the full
incremental social cost of additional usage of the resource. In e�ect, incremental usage of
the resource by one agent is subsidized by the other. The steeper the decreasing returns,
the more the agents have an incentive to overutilize the resource.6 This is a simple example
of the classic tragedy of the commons.


The classical remedy to such problems is to internalize the externality by allocating
ownership of the shared resource to some decision maker who has the proper incentives to
use it e�ciently. We can implement such a solution in walras by augmenting the market
structure with another type of agent.


4.2 Carrier Agents


We extend the basic shipper model by introducing carriers, agents of type producer who
have the capability to transport cargo units over speci�ed links, given varying amounts
of transportation resources. In the model described here, we associate one carrier with
each available link. The production function for each carrier is simply the inverse of the
cost function described above. To achieve a global movement of cargo, shippers obtain
transportation services from carriers in exchange for the necessary transportation resources.


Let Ci;j denote the carrier that transports cargo from location i to location j. Each
carrier Ci;j is connected to the auction for Gi;j , its output good, along with G0|its input
in the production process. Shipper agents are also connected to G0, as they are endowed
with transportation resources to exchange for transportation services. Figure 4 depicts the
walras market structure when carriers are included in the economy.


C 1,2


G 0 C G4,2 4,2


G
2,1


G 3,1


S4,1


C3,1


C2,3G 2,4


G 1,2


S1,4


C 3,4
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C 2,1


G
3,4


C 2,4


Figure 4: Walrasmarket con�guration for the example transportation network in an econ-
omy with shippers and carriers.


6. Average-cost pricing is perhaps the most common mechanism for allocating costs of a shared resource.
Shenker (1991) points out problems with this scheme|with respect to both e�ciency and strategic
behavior|in the context of allocating access to congested computer networks, a problem analogous to
our transportation task.
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In the case of a decreasing returns technology, the producer's (carrier's) optimization
problem has a unique solution. The optimal level of activity maximizes revenues minus costs,
which occurs at the point where the output price equals marginal cost. Using this result,
carriers submit supply bids specifying transportation services as a function of link prices
(with resource price �xed), and demand bids specifying required resources as a function of
input prices (for activity level computed with output price �xed).


For example, consider carrier C1;2. At output price p1;2 and input price p0, the carrier's
pro�t is


p1;2y � p0c1;2(y);


where y is the level of service it chooses to supply. Given the cost function above, this
expression is maximized at y = (p1;2� 20p0)=2p0. Taking p0 as �xed, the carrier submits a
supply bid with y a function of p1;2. On the demand side, the carrier takes p1;2 as �xed and
submits a demand bid for enough good G0 to produce y, where y is treated as a function
of p0.


With the revised con�guration and agent behaviors described, walras derives the sys-
tem equilibrium (SE), that is, the cargo allocation minimizing overall transportation costs.
The derived cargo movements are correct to within 10% in 36 bidding cycles, and to 1%
in 72, where in each cycle every agent submits an average of one bid to one auction. The
total cost (in units of G0), its division between shippers' expenditures and carriers' pro�ts,
and the equilibrium prices are presented in Table 1. Data for the UE solution of the ba-
sic shipper model are included for comparison. That the decentralized process produces a
global optimum is perfectly consistent with competitive behavior|the carriers price their
outputs at marginal cost, and the technologies are convex.


pricing TC expense pro�t p1;2 p2;1 p2;3 p2;4 p3;1 p3;4 p4;2
MC (SE) 1136 1514 378 40.0 35.7 22.1 35.7 13.6 13.6 40.0
AC (UE) 1143 1143 0 30.0 27.1 16.3 27.1 10.7 10.7 30.0


Table 1: Equilibria derived by walras for the transportation example. TC, MC, and AC
stand for total, marginal, and average cost, respectively. TC = shipper expense�
carrier pro�t.


As a simple check on the prices of Table 1, we can verify that p2;3 + p3;4 = p2;4 and
p2;3+p3;1 = p2;1. Both these relationships must hold in equilibrium (assuming all links have
nonzero movements), else a shipper could reduce its cost by rerouting some cargo. Indeed,
for a simple (small and symmetric) example such as this, it is easy to derive the equilibrium
analytically using global equations such as these. But as argued above, it would be improper
to exploit these relationships in the implementation of a truly distributed decision process.


The lesson from this exercise is that we can achieve qualitatively distinct results by sim-
ple variations in the market con�guration or agent policies. From our designers' perspective,
we prefer the con�guration that leads to the more transportation-e�cient SE. Examination
of Table 1 reveals that we can achieve this result by allowing the carriers to earn nonzero
pro�ts (economically speaking, these are really rents on the �xed factor represented by the
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congested channel) and redistributing these pro�ts to the shippers to cover their increased
expenditures. (In the model of general equilibrium with production, consumers own shares
in the producers' pro�ts. This closes the loop so that all value is ultimately realized in
consumption. We can specify these shares as part of the initial con�guration, just like the
endowment.) In this example, we distribute the pro�ts evenly between the two shippers.


4.3 Arbitrageur Agents


The preceding results demonstrate that walras can indeed implement a decentralized
solution to the multicommodity ow problem. But the market structure in Figure 4 is not
as distributed as it might be, in that (1) all agents are connected to G0, and (2) shippers
need to know about all links potentially serving their origin-destination pair. The �rst of
these concerns is easily remedied, as the choice of a single transportation resource good was
completely arbitrary. For example, it would be straightforward to consider some collection
of resources (e.g., fuel, labor, vehicles), and endow each shipper with only subsets of these.


The second concern can also be addressed within walras. To do so, we introduce yet
another sort of producer agent. These new agents, called arbitrageurs, act as specialized
middlemen, monitoring isolated pieces of the network for ine�ciencies. An arbitrageur
Ai;j;k produces transportation from i to k by buying capacity from i to j and j to k. Its
production function simply speci�es that the amount of its output good, Gi;k, is equal to
the minimum of its two inputs, Gi;j and Gj;k. If pi;j + pj;k < pi;k, then its production
is pro�table. Its bidding policy in walras is to increment its level of activity at each
iteration by an amount proportional to its current pro�tability (or decrement proportional
to the loss). Such incremental behavior is necessary for all constant-returns producers in
walras, as the pro�t maximization problem has no interior solution in the linear case.7


To incorporate arbitrageurs into the transportation market structure, we �rst create new
goods corresponding to the transitive closure of the transportation network. In the example
network, this leads to goods for every location pair. Next, we add an arbitrageur Ai;j;k for
every triple of locations such that (1) i! j is in the original network, and (2) there exists a
path from j to k that does not traverse location i. These two conditions ensure that there
is an arbitrageur Ai;j;k for every pair i; k connected by a path with more than one link, and
eliminate some combinations that are either redundant or clearly unpro�table.


The revised market structure for the running example is depicted in Figure 5, with new
goods and agents shaded. Some goods and agents that are inactive in the market solution
have been omitted from the diagram to avoid clutter.


Notice that in Figure 5 the connectivity of the shippers has been signi�cantly decreased,
as the shippers now need be aware of only the good directly serving their origin-destination
pair. This dramatically simpli�es their bidding problem, as they can avoid all analysis of the
price network. The structure as a whole seems more distributed, as no agent is concerned
with more than three goods.


7. Without such a restriction on its bidding behavior, the competitive constant-returns producer would
choose to operate at a level of in�nity or zero, depending on whether its activity were pro�table or
unpro�table at the going prices (at break-even, the producer is indi�erent among all levels). This
would lead to perpetual oscillation, a problem noticed (and solved) by Paul Samuelson in 1949 when he
considered the use of market mechanisms to solve linear programming problems (Samuelson, 1966).
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Figure 5: The revised walras market con�guration with arbitrageurs.


Despite the simpli�ed shipper behavior, walras still converges to the SE, or optimal
solution, in this con�guration. Although the resulting allocation of resources is identical,
a qualitative change in market structure here corresponds to a qualitative change in the
degree of decentralization.


In fact, the behavior of walras on the market con�guration with arbitrageurs is vir-
tually identical to a standard distributed algorithm (Gallager, 1977) for multicommodity
ow (minimum delay on communication networks). In Gallager's algorithm, distributed
modules expressly di�erentiate the cost function to derive the marginal cost of increasing
ow on a communication link. Flows are adjusted up or down so to equate the marginal
costs along competing subpaths. This procedure provably converges to the optimal solution
as long as the iterative adjustment parameter is su�ciently small. Similarly, convergence
in walras for this model requires that the arbitrageurs do not adjust their activity levels
too quickly in response to pro�t opportunities or loss situations.


4.4 Summary


The preceding sections have developed three progressively elaborate market con�gurations
for the multicommodity ow problem. Table 2 summarizes the size and shape of the con-
�guration for a transportation network with V locations and E links, and M movement
requirements. The basic shipper model results in the user equilibrium, while both of the
augmented models produce the globally optimal system equilibrium. The carrier model re-
quires E new producer agents to produce the superior result. The arbitrageur model adds
O(VE) more producers and potentially some new goods as well, but reduces the number of
goods of interest to any individual agent from O(E) to a small constant.


These market models represent three qualitatively distinct points on the spectrum of
potential con�gurations. Hybrid models are also conceivable, for example, where a partial
set of arbitrageurs are included, perhaps arranged in a hierarchy or some other regular
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model goods shippers carriers arbitrageurs


Basic shipper E + 1 M [O(E)] | |
: : :plus carriers E + 1 M [O(E)] E [2] |
: : :plus arbitrageurs O(V 2) M [2] E [2] O(VE) [3]


Table 2: Numbers of goods and agents for the three market con�gurations. For each type of
agent, the �gure in brackets indicates the number of goods on which each individual
bids.


structure. I would expect such con�gurations to exhibit behaviors intermediate to the
speci�c models studied here, with respect to both equilibrium produced and degree of
decentralization.


5. Limitations


One serious limitation of walras is the assumption that agents act competitively. As
mentioned above, this behavior is rational when there are many agents, each small with
respect to the overall economy. However, when an individual agent is large enough to a�ect
prices signi�cantly (i.e., possesses market power), it forfeits utility or pro�ts by failing to
take this into account. There are two approaches toward alleviating the restriction of perfect
competition in a computational economy. First, we could simply adopt models of imperfect
competition, perhaps based on speci�c forms of imperfection (e.g., spatial monopolistic
competition) or on general game-theoretic models. Second, as architects we can con�gure
the markets to promote competitive behavior. For example, decreasing the agent's grain size
and enabling free entry of agents should enhance the degree of competition. Perhaps most
interestingly, by controlling the agents' knowledge of the market structure (via standard
information-encapsulation techniques), we can degrade their ability to exploit whatever
market power they possess. Uncertainty has been shown to increase competitiveness among
risk-averse agents in some formal bidding models (McAfee & McMillan, 1987), and in a
computational environment we have substantial control over this uncertainty.


The existence of competitive equilibria and e�cient market allocations also depends
critically on the assumption of nonincreasing returns to scale. Although congestion is a
real factor in transportation networks, for example, for many modes of transport there
are often other economies of scale and density that may lead to returns that are increasing
overall (Harker, 1987). Note that strategic interactions, increasing returns, and other factors
degrading the e�ectiveness of market mechanisms also inhibit decentralization in general,
and so would need to be addressed directly in any approach.


Having cast walras as a general environment for distributed planning, it is natural to
ask how universal \market-oriented programming" is as a computational paradigm. We can
characterize the computational power of this model easily enough, by correspondence to the
class of convex programming problems represented by economies satisfying the classical con-
ditions. However, the more interesting issue is how well the conceptual framework of market
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equilibrium corresponds to the salient features of distributed planning problems. Although
it is too early to make a de�nitive assertion about this, it seems clear that many planning
tasks are fundamentally problems in resource allocation, and that the units of distribution
often correspond well with units of agency. Economics has been the most prominent (and
arguably the most successful) approach to modeling resource allocation with decentralized
decision making, and it is reasonable to suppose that the concepts economists �nd useful
in the social context will prove similarly useful in our analogous computational context.
Of course, just as economics is not ideal for analyzing all aspects of social interaction, we
should expect that many issues in the organization of distributed planning will not be well
accounted-for in this framework.


Finally, the transportation network model presented here is a highly simpli�ed ver-
sion of the actual planning problem for this domain. A more realistic treatment would
cover multiple commodity types, discrete movements, temporal extent, hierarchical net-
work structure, and other critical features of the problem. Some of these may be captured
by incremental extensions to the simple model, perhaps applying elaborations developed
by the transportation science community. For example, many transportation models (in-
cluding Harker's more elaborate formulation (Harker, 1987)) allow for variable supply and
demand of the commodities and more complex shipper-carrier relationships. Concepts of
spatial price equilibrium, based on markets for commodities in each location, seem to o�er
the most direct approach toward extending the transportation model within walras.


6. Related Work


6.1 Distributed Optimization


The techniques and models described here obviously build on much work in economics,
transportation science, and operations research. The intended research contribution here is
not to these �elds, but rather in their application to the construction of a computational
framework for decentralized decision making in general. Nevertheless, a few words are in
order regarding the relation of the approach described here to extant methods for distributed
optimization.


Although the most elaborate walras model is essentially equivalent to existing algo-
rithms for distributed multicommodity ow (Bertsekas & Tsitsiklis, 1989; Gallager, 1977),
the market framework o�ers an approach toward extensions beyond the strict scope of this
particular optimization problem. For example, we could reduce the number of arbitrageurs,
and while this would eliminate the guarantees of optimality, we might still have a reasonable
expectation for graceful degradation. Similarly, we could realize conceptual extensions to
the structure of the problem, such as distributed production of goods in addition to trans-
portation, by adding new types of agents. For any given extension, there may very well be
a customized distributed optimization algorithm that would outperform the computational
market, but coming up with this algorithm would likely involve a completely new analysis.
Nevertheless, it must be stated that speculations regarding the methodological advantages
of the market-oriented framework are indeed just speculations at this point, and the relative
exibility of applications programming in this paradigm must ultimately be demonstrated
empirically.


18







Market-Oriented Programming


Finally, there is a large literature on decomposition methods for mathematical program-
ming problems, which is perhaps the most common approach to distributed optimization.
Many of these techniques can themselves be interpreted in economic terms, using the close
relationship between prices and Lagrange multipliers. Again, the main distinction of the
approach advocated here is conceptual. Rather than taking a global optimization prob-
lem and decentralizing it, our aim is to provide a framework for formulating a task in a
distributed manner in the �rst place.


6.2 Market-Based Computation


The basic idea of applying economic mechanisms to coordinate distributed problem solving
is not new to the AI community. Starting with the contract net (Davis & Smith, 1983),
many have found the metaphor of markets appealing, and have built systems organized
around markets or market-like mechanisms (Malone, Fikes, Grant, & Howard, 1988). The
original contract net actually did not include any economic notions at all in its bidding
mechanism, however, recent work by Sandholm (1993) has shown how cost and price can
be incorporated in the contract net protocol to make it more like a true market mecha-
nism. Miller and Drexler (Drexler & Miller, 1988; Miller & Drexler, 1988) have examined
the market-based approach in depth, presenting some underlying rationale and addressing
speci�c issues salient in a computational environment. Waldspurger, Hogg, Huberman,
Kephart, and Stornetta (1992) investigated the concepts further by actually implementing
market mechanisms to allocate computational resources in a distributed operating system.
Researchers in distributed computing (Kurose & Simha, 1989) have also applied specialized
algorithms based on economic analyses to speci�c resource-allocation problems arising in
distributed systems. For further remarks on this line of work, see (Wellman, 1991).


Recently, Kuwabara and Ishida (1992) have experimented with demand adjustment
methods for a task very similar to the multicommodity ow problem considered here. One
signi�cant di�erence is that their method would consider each path in the network as a
separate resource, whereas the market structures here manipulate only links or location
pairs. Although they do not cast their system in a competitive-equilibrium framework, the
results are congruent with those obtained by walras.


Walras is distinct from these prior e�orts in two primary respects. First, it is con-
structed expressly in terms of concepts from general equilibrium theory, to promote math-
ematical analysis of the system and facilitate the application of economic principles to
architectural design. Second, walras is designed to serve as a general programming envi-
ronment for implementing computational economies. Although not developed speci�cally
to allocate computational resources, there is no reason these could not be included in mar-
ket structures con�gured for particular application domains. Indeed, the idea of grounding
measures of the value of computation in real-world values (e.g., cargo movements) follows
naturally from the general-equilibrium view of interconnected markets, and is one of the
more exciting prospects for future applications of walras to distributed problem-solving.


Organizational theorists have studied markets as mechanisms for coordinating activities
and allocating resources within �rms. For example, Malone (1987) models information
requirements, exibility and other performance characteristics of a variety of market and
non-market structures. In his terminology, walras implements a centralized market, where
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the allocation of each good is mediated by an auction. Using such models, we can determine
whether this gross form of organization is advantageous, given information about the cost
of communication, the exibility of individual modules, and other related features. In this
paper, we examine in greater detail the coordination process in computational markets,
elaborating on the criteria for designing decentralized allocation mechanisms. We take the
distributivity constraint as exogenously imposed; when the constraint is relaxable, both
organizational and economic analysis illuminate the tradeo�s underlying the mechanism
design problem.


Finally, market-oriented programming shares with Shoham's agent-oriented program-


ming (Shoham, 1993) the view that distributed problem-solving modules are best designed
and understood as rational agents. The two approaches support di�erent agent operations
(transactions versus speech acts), adopt di�erent rationality criteria, and emphasize dif-
ferent agent descriptors, but are ultimately aimed at achieving the same goal of specifying
complex behavior in terms of agent concepts (e.g., belief, desire, capability) and social orga-
nizations. Combining individual rationality with laws of social interaction provides perhaps
the most natural approach to generalizing Newell's \knowledge level analysis" idea (Newell,
1982) to distributed computation.


7. Conclusion


In summary, walras represents a general approach to the construction and analysis of
distributed planning systems, based on general equilibrium theory and competitive mech-
anisms. The approach works by deriving the competitive equilibrium corresponding to a
particular con�guration of agents and commodities, speci�ed using walras's basic con-
structs for de�ning computational market structures. In a particular realization of this
approach for a simpli�ed form of distributed transportation planning, we see that qualita-
tive di�erences in economic structure (e.g., cost-sharing among shippers versus ownership
of shared resources by pro�t-maximizing carriers) correspond to qualitatively distinct be-
haviors (user versus system equilibrium). This exercise demonstrates that careful design of
the distributed decision structure according to economic principles can sometimes lead to
e�ective decentralization, and that the behaviors of alternative systems can be meaningfully
analyzed in economic terms.


The contribution of the work reported here lies in the idea of market-oriented program-
ming, an algorithm for distributed computation of competitive equilibria of computational
economies, and an initial illustration of the approach on a simple problem in distributed
resource allocation. A great deal of additional work will be required to understand the pre-
cise capabilities and limitations of the approach, and to establish a broader methodology
for con�guration of computational economies.
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