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Abstract


Causal models defined in terms of a collection of equations, as defined by Pearl, are
axiomatized here. Axiomatizations are provided for three successively more general classes
of causal models: (1) the class of recursive theories (those without feedback), (2) the class
of theories where the solutions to the equations are unique, (3) arbitrary theories (where
the equations may not have solutions and, if they do, they are not necessarily unique). It
is shown that to reason about causality in the most general third class, we must extend
the language used by Galles and Pearl (1997, 1998). In addition, the complexity of the
decision procedures is characterized for all the languages and classes of models considered.


1. Introduction


The important role of causal reasoning—in prediction, explanation, and counterfactual
reasoning—has been argued eloquently in a number of recent papers and books (Chajewska
& Halpern, 1997; Heckerman & Shachter, 1995; Henrion & Druzdzel, 1990; Druzdzel &
Simon, 1993; Pearl, 1995; Pearl & Verma, 1991; Spirtes, Glymour, & Scheines, 1993). If
we are to reason about causality, then it is certainly useful to find axioms that characterize
such reasoning. The way we go about axiomatizing causal reasoning depends on two critical
factors:


• how we model causality, and


• the language that we use to reason about it.


In this paper, I consider one approach to modeling causality, using structural equations.
The use of structural equations as a model for causality is standard in the social sciences,
and seems to go back to the work of Sewall Wright in the 1920s (see (Goldberger, 1972) for a
discussion); the particular framework that I use here is due to Pearl (1995). Galles and Pearl
(1997) introduce some axioms for causal reasoning in this framework; they also provide a
complete axiomatic characterization of reasoning about causality in this framework, under
the strong assumption that there is a fixed, given causal ordering ≺ of the equations (Galles
& Pearl, 1998). Roughly speaking, this means there is a way of ordering the variables that
appear in the equations and we have explicit axioms that say Xj has no influence of Xi if
Xi ≺ Xj in this causal ordering.


In this paper, I extend the results of Galles and Pearl by providing a complete axiomatic
characterization for three increasingly general classes of causal models (defined by structural
equations):
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1. the class of recursive theories (those without feedback—this generalizes the situation
considered by Galles and Pearl (1998), since every fixed causal ordering of the variables
gives rise to a recursive theory),


2. the class of theories where the solutions to the equations are unique,


3. arbitrary theories (where the equations may not have solutions and, if they do, they
are not necessarily unique).


In the process, I clarify some problems in the Galles-Pearl completeness proof that arise
from the lack of propositional connectives (particularly disjunction) in the language they
consider and, more generally, highlight the role of the language in reasoning about causality.
I also characterize the complexity of the decision problem for all these languages and classes
of models.


The rest of the paper is organized as follows. In Section 2, I give the syntax and semantics
of the languages I will be considering and review the definition of modifiable causal models.
In Section 3, I present the complete axiomatizations. In Section 4 I consider the complexity
of the decision procedure. I conclude in Section 5.


2. Syntax and Semantics


An axiomatization is given with respect to a particular language and a class of models, so
we need to make both precise. Both the language and models I use are based on those
considered by Galles and Pearl (1997, 1998). To make comparisons easier, I use their
notation as much as possible. I start with the semantic model, since it motivates some of
the choices in the syntax, then give the syntax, and finally define the semantics of formulas.


2.1 Causal Models


The basic picture here is that we are interested in the values of random variables, some of
which have a causal effect on others. This effect is modeled by a set of structural equations.


In practice, it seems useful to split the random variables into two sets, the exogenous
variables, whose values are determined by factors outside the model, and the endogenous
variables. It is these endogenous variables whose values are described by the structural
equations.


More formally, a signature S is a tuple (U ,V ,R}, where U is a finite set of exogenous
variables, V is a finite set of endogenous variables, and R associates with every variable
Y ∈ U ∪V a nonempty set R(Y ) of possible values for Y (the range of possible values of Y ).
Unless explicitly noted otherwise, I assume that R(Y ) is a finite set for each Y ∈ U ∪V and
|R(Y )| ≥ 2. The assumption that U and V are finite is relatively innocuous; as we shall see,
the assumption that R(Y ) is finite has more of an impact on the axioms. The assumption
that |R(Y )| ≥ 2 allows us to ignore the trivial situation where |R(Y )| = 1. If |R(Y )| = 1,
we can just remove the variable Y from the signature without loss of expressiveness.


A causal model over signature S is a tuple T = (S,F) where F associates with each
variable X ∈ V a function denoted FX such that FX : (×U∈UR(U))× (×Y ∈V−{X}R(Y ))→
R(X). FX tells us the value of X given the values of all the other variables in U ∪ V . We
think of the functions FX as defining a set of (modifiable) structural equations, relating the
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values of the variables. Because FX is a function, there is a unique value of X once we have
set all the other variables. Notice we have such functions only for the endogenous variables.
The exogenous variables are taken as given; it is their effect on the endogenous variables
(and the effect of the endogenous variables on each other) that we are modeling with the
structural equations.


Given a causal model T = (S,F) over signature S, a (possibly empty) vector ~X of
variables in V , and vectors ~x and ~u of values for the variables in ~X and U , respectively, we
can define a new causal model denoted T ~X←~x(~u) over the signature S ~X = (∅,V− ~X,R|V− ~X).1


Intuitively, this is the causal model that results when the variables in ~X are set to ~x and the
variables in U are set to ~u. Formally, T ~X←~x(~u) = (S ~X,F


~X←~x,~u}), where F
~X←~x,~u
Y is obtained


from FY by setting the values of the variables in ~X to ~x and the values of the variables in U
to ~u. The causal model T ~X←~x(~u) is called a submodel of T by Pearl (1999). It can describe a
possible counterfactual situation; that is, even though, under normal circumstances, setting
the exogenous variables to ~u may result in the variables ~X having values ~x′ 6= ~x, this
submodel describes what happens if they are set to ~x due to some “external action”, the
cause of which is not modeled explicitly. For example, to determine if the manufacturer
is at fault in an accident that involved a poorly maintained car, we may want to consider
what would have happened had the car been well maintained. If there is a random variable
in the signature that describes how well maintained the car is, then this means examining
the submodel where that random variable is set to 1 (the car is well maintained). It is this
ability to examine counterfactual situations that makes causal structures a useful tool for
reasoning about causality.


Notice that, in general, there may not be a unique vector of values that simultaneously
satisfies the equations in T ~X←~x(~u); indeed, there may not be a solution at all. One special
case where there is guaranteed to be such a unique solution is if there is some total ordering
≺ of the variables in V such that if X ≺ Y , then FX is independent of the value of Y ;
i.e., FX(. . . , y, . . .) = FX(. . . , y′, . . .) for all y, y′ ∈ R(Y ). In this case, the causal model is
said to be recursive or acyclic. Intuitively, if the theory is recursive, there is no feedback.
If X ≺ Y , then the value of X may affect the value of Y , but the value of Y has no effect
on the value of X .


It should be clear that if T is a recursive theory, then there is always a unique solution
to the equations in T ~X←~x(~u), for all ~X , ~x, and ~u. (We simply solve for the variables in the
order given by ≺.) On the other hand, as the following example shows, it is not hard to
construct nonrecursive theories for which there is always a unique solution to the equations
that arise.


Example 2.1: Let S = (∅, {X, Y },R}), where R(X) = R(Y ) = {−1, 0, 1}, and let T =
(S,F), where FX is characterized by the equation X = Y and FY is characterized by the
equation Y = −X (that is, FX(y) = y and FY (x) = −x). Clearly T is not recursive; the
value of X depends on the value of Y and the value of Y depends on that of X . Nevertheless,
it is easy to see that T has the unique solution X = 0, Y = 0, TX←x has the unique solution
Y = −x, and TY←y has the unique solution X = y.


1. I am implicitly identifying the vector ~X with the subset of V consisting of the variables in ~X. I do this
throughout the paper. R|V− ~X is the restriction of R to the variables in V − ~X.
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In this paper, I consider three successively more general classes of causal models for a
given signature S = (U ,V ,R).


1. Trec(S): the class of recursive causal models over signature S,


2. Tuniq(S): the class of causal models T over S where for all ~X ⊆ V , ~x, and ~u, the
equations in T ~X←~x(~u) have a unique solution,


3. T (S): the class of all causal models over S.


I often omit the signature S when it is clear from context or irrelevant, but the reader
should bear in mind its important role.


Why should we be interested in causal models that do not possess unique solutions?
Are there real causal systems that do not possess unique solutions? The issue of whether
nonrecursive system can be given a causal interpretation is discussed at some length by
Strotz and Wold (1960). They argue that there are reasonable ways of interpreting causal
interpretations where the answer is yes. Under these interpretations, there may well be
more than one solution to the equations. Perhaps the best way to view such equations is to
think of the variables in V as being mutually interdependent; changing any one of them may
cause a change in the others. (Think of demand and supply in economics or populations of
rabbits and wolves.) The solutions to the equations then represent equilibrium situations.
If there is more than one equilibrium, there will be more than one solution to the equations.
Of course, if there are no equilibria, then there will be no solutions to the equations.


A related way of thinking about these equations is that they represent atemporal versions
of temporal causal equations. That is, suppose that we replace every variable Y ∈ U ∪V by
a family of variables Y0, Y1, Y2, . . ., where, intuitively, Yt represents the value of Y at time t.
Each equation fX ∈ F is then replaced by a family of equations fXt , where fXt depends only
on exogenous variables Ut′ with t′ ≤ t and endogenous variables Yt′ with t′ < t. This gives
us a recursive system. The values of Xt under some setting of the variables with subscript 0
represents the evolution of X under that setting of the variables. If Xt eventually stabilizes,
then we might expect the equilibrium value to be the value of X in some solution to the
original set of equations. If Xt stabilizes, then there would not be a solution to the original
set of equations.


2.2 Syntax


I focus here on two languages. Both languages are parameterized by a signature S. The
first language, L+(S), borrows ideas from dynamic logic (Harel, 1979). Again, I often write
L+ rather than L+(S) (and similarly for the other languages defined below) to simplify the
notation. A basic causal formula is one of the form [Y1 ← y1, . . . , Yk ← yk]ϕ, where ϕ is
a Boolean combination of formulas of the form X(~u) = x, Y1, . . . , Yk, X are variables in V ,
Y1, . . . , Yk are distinct, x ∈ R(X), and ~u is a vector of values for all the variables in U . I
typically abbreviate such a formula as [~Y ← ~y]ϕ. The special case where k = 0 (which is
allowed) is abbreviated as [true]ϕ. [~Y ← ~y]X(~u) = x can be interpreted as “in all possible
solutions to the structural equations obtained after setting Yi to yi, i = 1, . . . , k, and the
exogenous variables to ~u, random variable X has value x”. As we shall see, this formula
is true in a causal model T if in all solutions to the equations in T~Y←~y(~u), the random
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variable X has value x. Note that this formula is trivially true if there are no solutions
to the structural equations. A causal formula is a Boolean combination of basic causal
formulas.


Just as with dynamic logic, we can also define the formula 〈~Y ← ~y〉(X(~u) = x) to be an
abbreviation of ¬[~Y ← ~y]¬(X(~u) = x). 〈~Y ← ~y〉(X(~u) = x) is the dual of [~Y ← ~y](X(~u) =
x); it is true if, in some solution to the structural equations obtained after setting Yi to
yi, i = 1, . . . , k, and the exogenous variables to ~u, random variable X has value x. Taking
true(~u) to be an abbreviation for X(~u) = x∨X(~u) 6= x for some variable X and x ∈ R(X),
and taking false(~u) to be an abbreviation for ¬true(~u), we have that 〈~Y ← ~y〉true(~u) is true
if there is some solution to the equations obtained by setting Yi to yi, i = 1, . . . , k, and
the variables in U to ~u (since [~Y ← ~y]false(~u) says that in every solution to the equations
obtained by setting Yi to yi and U to ~u, the formula false(~u) is true, and thus holds exactly
if the equations have no solution).


Let Luniq(S) be the sublanguage of L+(S) which consists of Boolean combinations of
formulas of the form [~Y ← ~y]X(~u) = x. Thus, the difference between Luniq and L+ is
that in Luniq, only X(~u) = x is allowed after [~Y ← ~y], while in L+, arbitrary Boolean
combinations of formulas of the form X(~u) = x are allowed. As we shall see, for reasoning
about causality in Tuniq, the language Luniq is adequate, since it is equivalent in expressive
power to L+. However, this is no longer the case when reasoning about causality in T .


Following Galles and Pearl’s notation, I often write [~Y ← ~y]X(~u) = x as X~Y←~y(~u) = x.


If ~Y is clear from context or irrelevant, I further abbreviate this as X~y(~u) = x. (This is
actually the notation used by Galles and Pearl.) Let LGP(S) be the sublanguage of Luniq(S)
consisting of just conjunctions of formulas of the form X~y(~u) = x. In particular, it does not
contain disjunctions or negations of such formulas. Although Galles and Pearl (1998) are
not explicit about the language they are using, it seems to be LGP.2


2.3 Semantics


A formula in L+(S) is true or false in a causal model in T (S). As usual, we write T |= ϕ
if the causal formula ϕ is true in causal model T . For a basic causal formula, we have
T |= [~Y ← ~y](X(~u) = x) if in all solutions to T~Y←~y(~u) (i.e., in all vectors of values for the


variables in V − ~Y that simultaneously satisfy all the equations F
~Y←~y
Z , for Z ∈ V − ~Y ), the


variable X has value x. We define the truth value of arbitrary causal formulas, which are
just Boolean combinations of basic causal formulas, in the obvious way:


• T |= ϕ1 ∧ ϕ2 if T |= ϕ1 and T |= ϕ2


• T |= ¬ϕ if T 6|= ϕ.


As usual, we say that a formula ϕ is valid with respect to a class T ′ of causal models if
T |= ϕ for all T ∈ T ′.


I can now make precise the earlier claim that in Tuniq (and hence Trec), the language
Luniq is just as expressive as the full language L+.


Lemma 2.2: The following formulas are valid in Tuniq:


2. This was confirmed by Judea Pearl [private communication, 1997].
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(a) Tuniq |= [~Y ← ~y](ϕ ∨ ψ)⇔ [~Y ← ~y]ϕ ∨ [~Y ← ~y]ψ,


(b) Tuniq |= [~Y ← ~y](ϕ ∧ ψ)⇔ [~Y ← ~y]ϕ ∧ [~Y ← ~y]ψ,


(c) Tuniq |= [~Y ← ~y]¬ϕ⇔ ¬[~Y ← ~y]ϕ.


Hence, in Tuniq, every formula in L+ is equivalent to a formula in Luniq.


Proof: Straightforward; left to the reader.


Note that it follows from these equivalences that in Tuniq, [~Y ← ~y]ϕ is equivalent to
〈~Y ← ~y〉ϕ. It is also worth noting that Lemma 2.2(b) holds in arbitrary causal models in
T , not just in Tuniq. However, parts (a) and (c) do not, as the following example shows.


Example 2.3: Let S = (∅, {X, Y },R), where R(X) = R(Y ) = {0, 1}; let T = (S,F),
where FX is characterized by the equation X = Y and FY is characterized by the equation
Y = X . Clearly T /∈ Tuniq; both (0, 0) and (1, 1) are solutions to T . It is easy to see that
T |= [true](X = 0 ∨ X = 1) ∧ ¬[true](X = 0) ∧ ¬[true](X = 1), showing that part (a) of
Lemma 2.2 does not hold in T , and that T |= ¬[true](X = 1) ∧ ¬[true]¬(X = 1), showing
that part (c) does not hold either.


3. Complete Axiomatizations


I briefly recall some standard definitions from logic. An axiom system AX consists of a
collection of axioms and inference rules. An axiom is a formula (in some predetermined lan-
guage L), and an inference rule has the form “from ϕ1, . . . , ϕk infer ψ,” where ϕ1, . . . , ϕk, ψ
are formulas in L. A proof in AX consists of a sequence of formulas in L, each of which is
either an axiom in AX or follows by an application of an inference rule. A proof is said to
be a proof of the formula ϕ if the last formula in the proof is ϕ. We say ϕ is provable in AX,
and write AX ` ϕ, if there is a proof of ϕ in AX; similarly, we say that ϕ is consistent with
AX if ¬ϕ is not provable in AX.


An axiom system AX is said to be sound for a language L with respect to a class T ′
of causal models if every formula in L provable in AX is valid with respect to T ′. AX is
complete for L with respect to T ′ if every formula in L that is valid with respect to T ′ is
provable in AX.


We now want to find axioms that characterize the classes of causal models in which we
are interested, namely Trec, Tuniq, and T . To deal with Trec, it is helpful to define Y ; Z,
read “Y affects Z”, as an abbreviation for the formula


∨ ~X⊆V ,~x∈×X∈VR(X),y∈R(y),~u∈×U∈UR(U),z 6=z′∈R(Z)
(Z~xy(~u) = z′ ∧ Z~x(~u) = z).


Thus, Y affects Z if there is some setting of the exogenous variables and some other endoge-
nous variables for which changing the value of Y changes the value of Z. This definition is
used in axiom C6 below, which characterizes recursiveness.


Consider the following axioms:


C0. All instances of propositional tautologies.


C1. X~y(~u) = x⇒ X~y(~u) 6= x′ if x, x′ ∈ R(X), x 6= x′ (equality)
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C2. ∨x∈R(X)X~y(~u) = x (definiteness)


C3. (W~x(~u) = w ∧ Y~x(~u) = y)⇒ Y~xw(~u) = y (composition)


C4. Xx~w(~u) = x (effectiveness)


C5. (Y~xw(~u) = y ∧W~xy(~u) = w)⇒ Y~x(~u) = y (reversibility)


C6. (X0; X1 ∧ . . .∧Xk−1 ; Xk)⇒ ¬(Xk ; X0) (recursiveness)


We have one rule of inference:


MP. From ϕ and ϕ⇒ ψ, infer ψ (modus ponens)


C1 just states an obvious property of equality: if X = x for every solution of the
equations in T~x(~u), then we cannot have X = x′, if x′ 6= x.3 In a richer language, this could
have been expressed as (X~y(~u) = x∧X~y(~u) = x′)⇒ (x = x′), but this formula is not in L+


(since L+ does not include expressions such as x′ = x). C2 states that there is some value
x ∈ R(X) which is the value of X in all solutions to the equations in T~x(~u). C2 is not valid
in T , but it is valid in Tuniq. Note that in stating C2, I am making use of the fact that
R(X) is finite (otherwise C2 would involve an infinite disjunction, and would no longer be a
formula in Luniq). In fact, it can be shown that if we allow signatures where the sets R(X)
are infinite, we include C2 only for those random variables X such that R(X) is finite.4


C3–C5 were introduced by Galles and Pearl (1997, 1998), as were their names. Roughly
speaking, C3 says that if the value of W is w in all solutions to the equations T~x(~u), then
all solutions to the equations in T~xw(~u) are the same as the solutions to the equations in
T~x(~u). C3 is valid in T as well as Tuniq. As we shall see, a variant of C3 (obtained by
replacing “all” by “some”) is also valid in T . C4 simply says that in all solutions obtained
after setting X to x, the value of X is x. C5 is perhaps the least obvious of these axioms;
the proof of its soundness is not at all straightforward. It says that if setting ~X to ~x and W
to w results in Y having value y and setting ~X to ~x and Y to y results in W having value
w, then Y must already have value when we set ~X to x (and W must already have value
w).


Finally, it is easy to see that C6 holds in recursive models. For if Y ; Z, then Y must
precede Z in the causal ordering. Thus, if X0 ; X1 ∧ . . . ∧ Xk−1 ; Xk, then X0 must
precede Xk in the causal ordering, so Xk cannot affect X0. Thus, ¬(Xk ; X0) holds. As
we shall see, in a precise sense, C6 characterizes recursive models.


C6 can be viewed as a collection of axioms (actually, axiom schemes), one for each k.
The case k = 1 already gives us ¬(Y ; Z) ∨ ¬(Z ; Y ) for all variables Y and Z. That


3. In an earlier draft of this paper, where C1 and C2 were introduced, C1 was called “uniqueness”. Galles
and Pearl (1998) then adopted this name as well. In retrospect, this axiom really does not say anything
about uniqueness. The axiom which does is D10, which will be discussed later.


4. The assumption that R(X) and V are finite is also necessary for the abbreviation X ; Y used in C6 to
be in Luniq; however, we can replace C6 by the axiom scheme


¬(∧k−1
i=0 (Xi+1)~yixi(~ui) = zi ∧ (Xi+1)~yi = z′i) ∧ (X0)~ykxk (~uk) = zk ∧ (X0)~yk = z′k),


where xi ∈ R(Xi) for i = 1, . . . , k. That is, we essentially replace C6 by all its instances. This axiom is
equivalent to C6 (although not as transparent) and can be expressed even if |V| is infinite or |R(X)| is
infinite for some X ∈ V .
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is, it tells us that, for any pair of variables, at most one affects the other. However, just
restricting C6 to the case of k = 1 does not suffice to characterize Trec, as the following
example shows.


Example 3.1: Let S = (∅, {X0, X1, X2},R), where R(X0) = R(X1) = R(X2) = {0, 1, 2},
and let T = (S,F), where FXi is characterized by the equation


Xi =


{
2 if Xi⊕1 = 1
0 otherwise


and ⊕ is addition mod 3. It is easy to see that T ∈ Tuniq: If any of the variables are set, the
equations completely determine the values of all the other variables. On the other hand, if
none of the variables are set, it is easy to see that (0, 0, 0) is the only solution that satisfies all
the equations. Moreover, in T ~X←~x, the variable Xi is 0 unless it is set to a value other than
0 or Xi⊕1 is set to 1. It easily follows that Xi is affected only by Xi⊕1. A straightforward
verification (or an appeal to Theorem 3.2 below) shows that T satisfies all the axioms other
than C6. C6 does not hold in T , since T |= X0 ; X1 ∧ X1 ; X2 ∧ X2 ; X0. This also
shows that T is not recursive. However, the restricted version of C6 (where k = 1) does
hold in T . A generalization of this example (with k random variables rather than just 2)
can be used to show that we cannot bound k at all in C6; we need C6 to hold for all finite
values of k.


Let AXuniq(S) consist of C0–C5 and MP; let AXrec(S) consist of C0–C4, C6, and MP.
We could include C5 in AXrec(S); I did not do so because, as Galles and Pearl (1998) point
out, it follows from C3 and C6. Note that the signature S is a parameter of the axiom
system, just as it is for the language and the set of models. This is because, for example,
the set R(X) (which is determined by S) appears explicitly in C1 and C2.


Theorem 3.2: AXuniq(S) (resp., AXrec(S)) is a sound and complete axiomatization for
Luniq(S) with respect to Tuniq(S) (resp., Trec(S)).


Proof: See the appendix.


As I said in the introduction, Galles and Pearl (1998) prove a similar completeness result
for causal models whose variables satisfy a fixed causal ordering. Given a total ordering ≺
on the variables in V , consider the following axiom:


Ord. Y~xw(~u) = Y~x(~u) if Y ≺W


Since ~x, w, and ~u are implicitly universally quantified in Ord, this axiom says that ¬(W ;
Y ) holds if Y ≺W . It follows that if W ; Y , then W ≺ Y . From this and the fact that ≺
is a total order, it is easy to see that Ord implies C6.


Galles and Pearl show that C1–C4 and Ord is a sound and complete axiomatization
with respect to the class of causal models satisfying Ord for LGP. More precisely, Galles
and Pearl take AC to consist of the axioms C1–C4 and Ord (but not C0 or MP), and show,
in their notation, that S |= σ implies S `AC σ, where S ∪ {σ} is a set of formulas in LGP.
There is an important subtle point worth stressing about their result: C1 and C2, which
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are axioms in AC , are not expressible in LGP (since their statement involves disjunction
and negation).


So what exactly is Galles and Pearl’s result saying? They interpret S |= σ, as usual,
as meaning that in all causal models satisfying S, σ is true.5 They interpret S `AC σ as
meaning that σ is provable from S and the axioms in the axioms of AC “together with the
rules of logic”, which presumably means C0 and MP. It follows easily from Theorem 3.2
that their result is correct (see below), but it is unlike typical soundness and completeness
proofs, since the proof of σ from S will in general involve formulas in Luniq that are not in
LGP. (In particular, this will happen whenever C1–C3 are used in the proof.)


To see that Galles and Pearl’s result follows from Theorem 3.2, define S∗ to be the
formula in Luniq(S) which is the conjunction of the formulas in S (there can only be finitely
many, since LGP(S) itself has only finitely many distinct formulas), together with the con-
junction of all the instances of the axiom Ord (again, there are only finitely many). Note
that S |= σ holds iff Tuniq(S) |= S∗ ⇒ σ (since the formulas in Ord guarantee that the only
causal models that satisfy S∗ are recursive, and hence are in Tuniq(S)). Thus, by Theo-
rem 3.2, S |= σ iff AXuniq(S) ` S∗ ⇒ σ. The latter statement is equivalent to S `AC σ,
as defined by Galles and Pearl. In fact, Theorem 3.2 shows that AXuniq(S) + Ord gives
a sound and complete axiomatization with respect to causal models satisfying Ord for the
language Luniq(S), which allows Boolean connectives. (Of course, Theorem 3.2 shows more,
since it extends Galles and Pearl’s result to Trec(S) and Tuniq(S).) This suggests that Luniq


is a more appropriate language for reasoning about causality than LGP, at least for causal
models in Tuniq. LGP cannot express a number of properties of causal reasoning of interest
(for example, the ones captured by axioms C1–C3). When we use Luniq, not only is every
formula in Luniq valid in Tuniq provable from the axioms in AXuniq, but the proof involves
only formulas in Luniq.


What about T ? I have not been able to find a complete axiomatization for the language
Luniq with respect to T . However, I do not think that finding a complete axiomatization
for Luniq with respect to T is of great interest, because Luniq is simply not a language
appropriate for reasoning about causality in T . Because there is not necessarily a unique
solution to the equations that arise in a causal model T ∈ T , it is useful to be able to say
both that there exists a solution with certain properties and that all solutions have certain
properties. This is precisely what the language L+ lets us do.6 As I now show, there is in
fact an elegant sound and complete axiomatization for L+ with respect to T .


Consider the following axioms:


D0. All instances of propositional tautologies.


D1. [~Y ← ~y](X(~u) = x⇒ X(~u) 6= x′) if x, x′ ∈ R(X), x 6= x′ (functionality)


D2. [~Y ← ~y](∨x∈R(X)X(~u) = x) (definiteness)


D3. 〈 ~X ← ~x〉(W (~u) = w ∧ ~Y (~u) = ~y)⇒ 〈 ~X ← ~x;W ← w〉(~Y (~u) = ~y) (composition)


5. Although they do not say this explicitly, it is clear that they intend to further restrict to casual models
satisfying S and Ord, for the fixed order ≺. Without this restriction, their result is not true.


6. Note that L+ allows us to say that there is a unique solution for a random variable X after setting some
other variables. For example, 〈~Y ← ~y〉true(~u) ∧ [~Y ← ~y](X(~u) = x) says that there are solutions to the
equations when ~Y is set to ~y and U is set to ~u and, in all of them, X is uniquely determined to be x.
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D4. [ ~W ← ~w;X ← x](X(~u) = x) (effectiveness)


D5. (〈 ~X ← ~x; Y ← y〉(W (~u) = w ∧ ~Z(~u) = ~z) ∧ 〈 ~X ← ~x;W ← w〉(Y (~u) = y ∧ ~Z(~u) = ~z))
⇒ 〈 ~X ← ~x〉W (~u) = w ∧ Y (~u) = y ∧ ~Z(~u) = ~z)), where ~Z = V − ( ~X ∪ {W, Y })


(reversibility)


D6. (X0; X1 ∧ . . .∧Xk−1 ; Xk)⇒ ¬(Xk ; X0) (recursiveness)


D7. ([ ~X ← ~x]ϕ ∧ [ ~X ← ~x](ϕ⇒ ψ))⇒ [ ~X ← ~x]ψ (distribution)


D8. [ ~X ← ~x]ϕ if ϕ is a propositional tautology (generalization)


D9. 〈~Y ← ~y〉true(~u) ∧ ∨x∈R(X)[~Y ← ~y](X(~u) = x) if Y = V − {X}
(unique solutions for V − {X})


D10. 〈~Y ← ~y〉true(~u) ∧ ∨x∈R(X)[~Y ← ~y](X(~u) = x) (unique solutions)


D11. 〈~Y ← ~y〉(ϕ1(~u1) ∧ . . . ∧ ϕk(~uk)) ⇔ (〈~Y ← ~y〉ϕ1(~u1) ∧ . . . ∧ 〈~Y ← ~y〉ϕk(~uk), if ϕi(~ui)
is a Boolean combination of formulas of the form X(~ui) = x and ~ui 6= ~uj for i 6= j
(separability)


D1–D6 are the analogues of C1–C6 in L+. D4 and D6 are just C4 and C6, with no
changes at all. The other axioms are not quite the same though. For example, C1 is
actually [~Y ← ~y](X(~u) = x) ⇒ ¬[~Y ← ~y](X(~u) = x′) if x 6= x′. By Lemma 2.2, this is
equivalent to D1 in Tuniq; however, the two formulas are not equivalent in general. Similarly,
C2 is ∨x∈R(X)[~Y ← ~y](X(~u) = x), which is closer to D10 than D2 (since the disjunction
is outside the scope of the [~Y ← ~y]). Again, D10 and D2 are equivalent in Tuniq (both are
equivalent to C2 in this case) but, in general, D10 is stronger than D2. Only D2 and D9,
both weaker than D10, hold in T . The exact analogue of C3 would use [ ] instead of 〈 〉 and
say Y (~u) = y instead of ~Y (~u) = ~y. For completeness, it is necessary to have a vector of
variables here. Using [ ] instead of 〈 〉 also results in a valid formula (and would not require a
vector ~Y ). While the two variants are equivalent in Tuniq, they are different in general, and
the one given here is the more useful. (More precisely, with it we get completeness, while
the version with [ ] does not suffice for completeness.) Similarly, in D5, we use 〈 〉 instead of
[ ], and add the extra clause ~Z(~u) = ~z. Both turn out to be necessary for soundness. In some
sense, we can think of D1–D6 as capturing the “true content” of C1–C6, once we drop the
assumption that the structural equations have a unique solution. D7 and D8 are standard
properties of modal operators. D10 is what we need to capture the fact that the structural
equations have unique solutions. D11 essentially says that the solutions to the equations
that arise when the exogenous variables are set to ~u are independent of the solutions that
arise when the exogenous variables are set to ~u′ 6= ~u.


Let AX+ consist of D0–D5, D7–D9, D11, and MP (modus ponens); let AX+
uniq be the


result of adding D10 to AX+; let AX+
rec be the result of adding D6 to AX+


uniq.


Theorem 3.3: AX+(S) (resp., AX+
uniq(S), AX+


rec(S)) is a sound and complete axiomati-
zation for L+(S) with respect to T (S) (resp., Tuniq(S), Trec(S)).


Proof: See the appendix.
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4. Decision Procedures


In this section I consider the complexity of deciding if a formula is satisfiable (or valid).
This, of course, depends on the language (L+, Luniq, or LGP) and the class of models (Trec,
Tuniq, T ) we consider. It also depends on how we formulate the problem.


One version of the problem is to consider a fixed signature S = (U ,V ,R), and ask how
hard it is to decide if a formula ϕ ∈ L+(S) (resp., Luniq(S), LGP(S)) is satisfiable in Trec(S)
(resp., Tuniq(S), T (S)). If S is finite (that is, if V and U are finite and R(Y ) is finite for
each Y ∈ U ∈ V), this turns out to be quite easy, for trivial reasons.


Theorem 4.1: If S is a fixed finite signature, the problem of deciding if a formula ϕ ∈
L+(S) (resp., Luniq(S), LGP(S)) is satisfiable in Trec(S) (resp., Tuniq(S), T (S)) can be
solved in time linear in |ϕ| (the length of ϕ viewed as a string of symbols).


Proof: If S is finite, there are only finitely many causal models in T (S), independent of
ϕ. Given ϕ, we can explicitly check if ϕ is satisfied in any (or all) of them. This can be
done in time linear in |ϕ|. Since S is not a parameter to the problem, the huge number of
possible causal models that we have to check affects only the constant.


We can do even better than Theorem 4.1 suggests if S is a fixed finite signature. Suppose
that V consists of 100 variables and ϕ mentions only 3 of them. A causal model must specify
the equations for all 100 variables. Is it really necessary to consider what happens to the
97 variables not mentioned in ϕ to decide if ϕ is satisfiable or valid? As the following result
shows, if we restrict to models in Tuniq, then we need to check only the variables that appear
in S. Given a signature S = (U ,V ,R), let Sϕ = ({U∗},Vϕ,Rϕ), where Vϕ consists of the
variables in V that appear in ϕ, U∗ is a fresh exogenous variable, not mentioned in V or U ,
Rϕ(X) = R(X) for X ∈ Vϕ, and Rϕ(U∗) consists of all those tuples in ×U∈UR(U) that are
mentioned in ϕ.


Theorem 4.2: A formula ϕ ∈ L+(S) is satisfiable in Trec(S) (resp., Tuniq(S)) iff it is
satisfiable in Trec(Sϕ) (resp., Tuniq(Sϕ)).


Proof: See the appendix.


The analogue to Theorem 4.2 does not hold for T . For example, suppose that S =
(∅, {X, Y,Z},R), where R(X) = R(Y ) = R(Z) = {0, 1}, and ϕ is the formula 〈X ←
0〉(Y = 0) ∧ 〈X ← 0〉(Y = 1). It is easy to see that there is a causal model in T (S)
satisfying ϕ. For example, if T = (S,F), where FX(y, z) = y ⊕ z, FY (x, z) = x ⊕ z and
FZ(x, y) = x ⊕ y, and ⊕ represents addition mod 2, then it is easy to check that T |= ϕ.
On the other hand, there is no causal model T ′ ∈ T (Sϕ) such that T ′ |= ϕ. For suppose
T ′ |= ϕ and T ′ = (Sϕ,F ′). Since T ′ |= 〈X ← 0〉(Y = 0), we must have F ′Y (0) = 0; since
T ′ |= 〈X ← 0〉(Y = 1), we must have F ′Y (0) = 1. But we cannot have both F ′Y (0) = 0 and
F ′Y (1) = 1, since F ′Y is a function.


There is a variant of Theorem 4.2 that does hold for T that does give us a bound
on the number of variables we need to consider. Given a signature S = (U ,V ,R), define
||S|| = ×X∈V |R(X)| (where we take ||S|| = ∞ if either V is infinite or |R(X)| = ∞
for some X ∈ V). If ||S|| > ||Sϕ||2 + ||Sϕ||, let S+


ϕ = ({U∗},V+
ϕ ,R+


ϕ), where V+
ϕ is Vϕ as
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defined above together with one fresh endogenous variableX∗, R+
ϕ (X∗) = ×X∈VϕR(X), and


R+
ϕ (U∗) = Rϕ(U∗). If ||S|| ≤ ||Sϕ||2 + ||Sϕ||, let S+


ϕ = ({U∗},V ,R′), where R′(X) = R(X)
for X ∈ V and R′(U∗) = Rϕ(U∗).


Theorem 4.3: A formula ϕ ∈ L+(S) is satisfiable in T (S) iff ϕ is satisfiable in T (S+
ϕ ).


Proof: See the appendix.


Note that if ||S|| ≤ ||Sϕ||2 + ||Sϕ||, then, since we have assumed (without loss of gen-
erality) that |R(X)| ≥ 2 for each variable X , it must be the case that there are at most
2 log2(||Sϕ||) + 1 variables in signature S.


Since Theorems 4.2 and 4.3 apply to all formulas in L+(S), they apply a fortiori to
formulas in Luniq(S) and LGP(S). Although stated only in terms of satisfiability, it is
immediate that they also hold for validity. Thus, they tell us that, without loss of generality,
when considering satisfiability or validity, we need to consider only finitely many variables
(essentially, the ones that appear in ϕ, and perhaps a few more). In this sense, we can
restrict to signatures with only finitely many variables without loss of generality. Note that
these results do not tell us that we can restrict to finite sets of values for these variables
without loss of generality.


Returning to the complexity of the decision problem, note that Theorem 4.1 is the ana-
logue of the observation that for propositional logic, the satisfiability problem is in linear
time if we restrict to a fixed set of primitive propositions. The proof that the satisfia-
bility problem for propositional logic is NP-complete implicitly assumes that we have an
unbounded number of primitive propositions at our disposal.


There are two ways to get an analogous result here. The first is to allow the signature
S to be infinite and the second is to make the signature part of the input to the problem.
The results in both cases are similar, so I just consider the case where the signature is part
of the input here.


Theorem 4.4: Given as input a pair (ϕ, S), where ϕ ∈ L+(S) (resp., Luniq(S)) and S is a
finite signature, the problem of deciding if ϕ is satisfiable in Trec(S) (resp., Tuniq(S), T (S))
is NP-complete (resp., NP-hard) in |ϕ|; if ϕ ∈ LGP(S), then the problem of deciding if ϕ is
satisfiable in Trec(S) (resp., Tuniq(S)) is NP-complete (resp., NP-hard).


Proof: See the appendix.


I believe that the problem of deciding if a formula ϕ in Luniq(S) or L+(S) is satisfiable in
Tuniq(S) and T (S) is NP-complete, as is the case of deciding if ϕ ∈ LGP(S) is satisfiable in
Tuniq(S). However, I have not been able to show this. What about the satisfiability problem
for formulas in LGP in T (S)? This may well be in constant time! Indeed, if S is an infinite
signature (that is, if S = (U ,V ,R) and |V| =∞), then it is provably in constant time. The
point is that a formula in LGP(S) is trivially satisfiable in a structure T ∈ LGP(S) where
for all settings ~X ← ~x, the equations in T ~X←~x have no solutions, and there always is such
model structure if S has infinitely many variables. If S has only finitely many variables, we
do not have such trivial models, but it may still be possible to show that a “trivial enough”
model exists that satisfies the formula. This just emphasizes that LGP(S) is simply too
weak a language to reason about models in T (S).
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5. Conclusion


I have provided complete axiomatizations and decision procedures for propositional lan-
guages for reasoning about causality. I have tried to stress the important role of the choice
of language (and the signature) in both the axiomatizations and, more generally, in the
reasoning process.


Both the models and the languages considered here are somewhat limited. For example,
a more general approach to modeling causality would allow there to be more than one value
of X once we have set all the other variables. This would be appropriate if we model things
at a somewhat coarser level of granularity, where the values of all the variables other than
X do not suffice to completely determine the value of X . I believe the results of this paper
can be extended in a straightforward way to deal with this generalization, although I have
not checked the details. For general causal reasoning, I believe we need a richer language,
which includes some first-order features. I hope to return to the issue of finding appropriate
richer languages for causal reasoning in future work.
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Appendix A. Proofs


Theorem 3.2: AXuniq (resp., AXrec) is a sound and complete axiomatization for Luniq(S)
with respect to Tuniq(S) (resp., Trec(S)).


Proof: Soundness is proved by Galles and Pearl. To make the paper self-contained, I
reprove the only non-obvious case—the validity of C5 in Tuniq.


Let T ∈ Tuniq and suppose that T |= Y~xw(~u) = y ∧W~xy(~u) = w. We want to show
that T |= Y~x(~u) = y. Since we are in Tuniq, there is a unique vector ~v1 that satisfies the
equations in T~xw(~u) and a unique vector ~v2 that satisfies the equations in T~xy(~u). I claim
that ~v1 = ~v2. By assumption, the ~X, Y , and W components of these vectors are the same
(~x, y, and w, respectively). Now consider the T~xyw(~u). I claim that ~v1 and ~v2 are both
solutions to the equations in that causal theory. Note that for any variable Z other than
those in ~X ∪{W, Y }, the equation F ~xw,~uZ for Z in T~xw(~u) is the same as the equations F ~xy,~uZ


and F ~xyw,~uZ for Z in T~xy(~u) and T~xyw(~u), respectively, except that in the first case, w has
been plugged in as the value of W , in the second case y has been plugged in as the value of
Y , and in the third case, both w and y have been plugged in. However, since w and y are
the values of W and Y , respectively, in both ~v1 and ~v2, and since these vectors satisfy both
equation F ~xwZ and F ~xyZ , they must also satisfy F ~xwyZ . Since the equations for T~xyw(~u) have
a unique solution, we have that ~v1 = ~v2, as desired.
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Next, I claim that ~v1 satisfies the equations in T~x(~u). Again, as above, it is clear that
it satisfies the equation for Z /∈ ~X ∪ {W, Y }. A similar argument shows that it satisfies the
equation for Y in T~x(~u), since ~v1 satisfies the equation for Y in T~xw(~u). Finally, a similar
argument shows that it satisfies the equation for W in T~x(~u), since ~v2 = ~v1 satisfies the
equation for W in T~xy(~u). Since the Y component of ~v1 is y, it follows that Y~x(~u) = y.


So much for soundness. For completeness, as usual, it suffices to prove that if a formula
in Luniq is consistent with AXuniq (resp., AXrec), then it is satisfied in a causal model in
Tuniq (resp., Trec). (Here’s the argument: We want to show that every valid formula is
provable. Suppose that we have shown that every consistent formula is satisfiable and that
ϕ is valid. If ϕ is not provable, then ¬ϕ is consistent. By assumption, this means that ¬ϕ
is satisfiable, contradicting the assumption that ϕ is valid.)


I now give the argument in the case of AXuniq.
Suppose that a formula ϕ ∈ Luniq(S), with S = (U ,V , V ), is consistent with AXuniq.


Consider a maximal consistent set C of formulas that includes ϕ. (A maximal consistent set
is a set of formulas whose conjunction is consistent such that any larger set of formulas would
be inconsistent.) It follows easily from standard propositional reasoning (i.e., using C0 and
MP only) that such a maximal consistent set exists. Moreover, from C1 and C2, it follows
that for each random variableX ∈ V and vector ~y of values, there exists exactly one element
x ∈ R(X) such that X~y = x ∈ C. I now construct a causal model T = (S, F ) ∈ Tuniq(S)
that satisfies every formula in C (and, in particular, satisfies ϕ).


A term X~Y←~y(~u) is complete (for X) if ~Y consists of all the variables in V −{X}. Thus,
X~Y←~y(~u) is a complete term if every random variable other than X is determined. We use
the complete terms to define the structural equations. For each variable in X ∈ V , define
FX(~u, ~y) = x if X~y(~u) = x, where X~y(~u) is a complete term. This gives us a causal model
T . Now we have to show that this model is in Tuniq and that all the formulas in C are
satisfied by T .


I show that X~Y←~y(~u) = x is in C iff T |= X~Y←~y(~u) = x by induction on |V| − |~Y |. The


case where |V|−|~Y | = 0 follows immediately from C4, since then X is in ~Y . If |V|−|~Y | 6= 0,
we can assume without loss of generality that X is not in ~Y , for otherwise the result again
follows from C4. Given this assumption, if |V| − |~Y | = 1, the result follows by definition of
the equations FX .


For the general case, suppose that |V| − |~Y | = k > 1. We want to show that there is a
unique solution to the equations in T~Y←~y(~u) and that, in this solution, X has value x. To
see that there is a solution, we define a vector ~v and show that it is in fact a solution. If
W ∈ ~Y and W ← w is the assignment to W in ~Y ← ~y, then we set the W component of ~v
to w. If W is not in ~Y , then set the W component of ~v to the unique value w∗ such that
W~Y←~y(~u) = w∗ is in C. (By C1 and C2 there is such a unique value w.) I claim that ~v is a
solution to the equations in T~Y←~y(~u).


To see this, let W be a variable in V not in ~Y . Let ~Y ′ = ~YW . By C3 and C4, for every
variable Z ∈ V − ~Y ′, we have Z~yw∗(~u) = z∗. Since |V| − |~Y ′| = k − 1, by the inductive
hypothesis, ~v is in fact the unique solution for T~yw∗(~u). For every variable Z in V − ~Y ′, the
equation F ~yw


∗,~u
Z for Z in T~yw∗(~u) is the same as the equation F ~y,~uZ for Z in T~y(~u), except


that W is set to w∗. Thus, every equation in T~y(~u) except possibly the equation F ~y,~uW is
satisfied by ~v. To see that F ~y,~uW is also satisfied by ~v, simply repeat this argument above
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starting with another variable W ′ in V − ~Y . (Such a variable must exist since |V|− |~Y | was
assumed to be at least 2.)


It remains to show that ~v is the unique solution to the equations in T~y(~u). Suppose
there were another solution, say ~v′, to the equations. Suppose that for each variable W
in V − ~Y , the W component of ~v′ is w∗∗. For some variable Z, we must have z∗∗ 6= z∗.
Since Z~y(~u) = z∗, by assumption, it follows from C1 that Z~y(~u) 6= z∗∗ is in C (since C is
a maximal consistent set). It is also easy to see that for each W in V − ~Y , the vector ~v′ is
also a solution to the equations in T~yw∗∗(~u). Let W be a variable other than Z in V − ~Y .
By the induction hypothesis, it follows that W~yz∗∗(~u) = w∗∗ and Z~yw∗∗(~u) = z∗∗ are both
in C. By C5 (reversibility), Z~y(~u) = z∗∗ is in C. But this contradicts the consistency of C.


This completes the proof in the case of Tuniq(S). Essentially the same proof works for
Trec. We just need to observe that C6 guarantees that the theory we construct can be taken
to be recursive. To see this, given a formula ϕ consistent with Trec, consider a maximal set
C of formulas consistent with Trec that contains ϕ. Let TC be the causal model determined
by C, as above. The set C also determines a relation ≺ on the exogenous variables: define
Y ≺ Z if Y ; Z ∈ C. It easily follows from C6 that the transitive closure ≺∗ of ≺ is
a partial order: if X ≺∗ Y and Y ≺∗ X , then X = Y . Any total order on the variables
consistent ≺∗ gives an ordering for which TC is recursive.


Theorem 3.3: AX+ (resp., AX+
uniq, AX+


rec) is a sound and complete axiomatization for
L+(S) with respect to T (S) (resp., Tuniq(S), Trec(S)).


Proof: Soundness proceeds much as that of Theorem 3.2; I leave details to the reader. For
completeness, we again proceed much as in the proof of Theorem 3.2. Because the proofs
are so similar in spirit, I just sketch the proof for AX+; the modifications for AX+


uniq and
AX+


rec are left to the reader.
Again, given a formula ϕ consist with AX+, we consider a maximal consistent set of


formulas containing ϕ that is consistent with AX+, and use it to construct a causal model
T . Note that D9 suffices for this, because in defining FX(~u, ~y), we needed to know only the
unique x such that [~Y ← ~y](X(~u) = x) for ~Y = V −X , and D9 (together with D1) assures
us that there is a unique such x. Again, we want to show that all the formulas in C are
satisfied by T .


To do this, it clearly suffices to show that for every formula ψ of the form 〈~Y ← ~yϕ,
we have ψ in C iff T |= ψ. We can reduce to considering even simpler formulas, namely,
ones where ϕ has the form ~X(~u) = ~x, by applying some of the axioms. To see this, first
observe that standard arguments of modal logic (using D0, D7, D8, and MP) show that
〈~Y ← ~y〉(ϕ1 ∨ ϕ2) is provably equivalent to 〈~Y ← ~y〉ϕ1 ∨ 〈~Y ← ~y〉ϕ2. That means we can
assume without loss of generality that ϕ is a conjunction of formulas of the form X(~u)← x
and their negations. From D2 it follows that 〈~Y ← ~y〉(ϕ ∧ X(~u) 6= x) is equivalent to
〈~Y ← ~y〉(ϕ∧ (∨x′∈R(X)−{x}X(~u) = x′). Thus, we can assume without loss of generality that
ϕ has no negations. By applying D11, we can assume without loss of generality that the
same setting ~u of the exogenous variables is used in all the conjuncts. Thus, it suffices to
show that 〈~Y ← ~y〉( ~X(~u) = ~x) ∈ C iff T |= 〈~Y ← ~y〉( ~X(~u) = ~x) for ~X = V − ~Y .


To do this, we proceed by induction on |V|−|~Y | again. The base case is dealt with using
D4, as before. So assume that k ≥ 1 and |V| − |~Y | = k + 1. Suppose that 〈~Y ← ~y〉( ~X(~u) =
~x) ∈ C. Let X1, X2 ∈ ~X. Suppose that X1 ← x1 and X2 ← x2 are the assignments to
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X1 and X2 in ~X ← ~x. Let ~X ′ ← ~x′ and ~X ′′ ← ~x′′ be the result of removing X1 ← x1


and X2 ← x2, respectively, from ~X ← ~x. By D3, both 〈~Y ← ~y;X1 ← x1〉( ~X ′′(~u) = ~x′′)
and 〈~Y ← ~y;X2 ← x2〉( ~X ′(~u) = ~x′) are in C. By the induction hypothesis, both of these
formulas are true in T . By the soundness of D5, it follows that T |= 〈~Y ← ~y〉( ~X(~u) = ~x′),
as desired.


Conversely, suppose that T |= 〈~Y ← ~y〉( ~X(~u) = ~x′). Then, since D3 is sound, we have
that T |= 〈~Y ← ~y;X1 ← x1〉( ~X ′′(~u) = ~x′′) and T |= 〈~Y ← ~y;X2 ← x2〉( ~X ′(~u) = ~x′).
By the induction hypothesis, we have that both 〈~Y ← ~y;X1 ← x1〉( ~X ′′(~u) = ~x′′) and
〈~Y ← ~y;X2← x2〉( ~X ′(~u) = ~x′) are in C. We now apply D5 to complete the proof.


Theorem 4.2: A formula ϕ ∈ L+(S) is satisfiable in Trec(S) (resp., Tuniq(S)) iff it is
satisfiable in Trec(Sϕ) (resp., Tuniq(Sϕ)).


Proof: Clearly, if a formula is satisfiable in Trec(Sϕ) (resp., Tuniq(Sϕ)), then it is satisfiable
in Trec(S) (resp., Tuniq(S)). We can easily convert a causal model T = (Sϕ,F) ∈ Trec(Sϕ)
satisfying ϕ to a causal model T ′ = (S,F ′) ∈ Trec(S) satisfying ϕ by simply defining
F ′X to be a constant, independent of its arguments, for X ∈ V − Vϕ; if X ∈ Vϕ, define
F ′X(~u, ~x, ~y) = FX(~u, ~x), where ~u ∈ R(U∗), ~x ∈ ×Y ∈Vϕ−{X}R(Y ) and ~y ∈ ×Y ∈V−VϕR(Y );
if ~u /∈ R(U∗), define F ′X(~u, ~x, ~y) to be an arbitrary constant. An identical transformation
works for T ∈ Tuniq(Sϕ).


For the converse, suppose that ϕ is satisfiable in a causal model T = (S,F) ∈ Trec(S).
Thus, there is an ordering ≺ on the variables in V such that if X ≺ Y , then FX is indepen-
dent of the value of Y . This means we can view FX as a function of the exogenous variables
in U and the variables Y ∈ V such that Y ≺ X . Let Pre(X) = {Y ∈ V : Y ≺ X}. For
convenience, I allow FX to take as arguments the values of only the variables in U ∪Pre(X),
rather than requiring its arguments to include the values of all the variables in U ∪V −{X}.
Now define functions F ′X : (×U∈UR(U)) × (×Y ∈Vϕ−{X}R(Y )) → R(X) for all X ∈ V by
induction on ≺ (that is, start with the ≺-minimal element, whose value is independent of
that of all the other variables, and work up the ≺ chains). Suppose X ∈ Vϕ and ~x is a vector
of values for the variables in Vϕ − {X}. If X is ≺-minimal, then define F ′X(~u, ~x) = FX(~u).
In general, define F ′X(~u, ~x) = FX(~u, ~z), where ~z is a vector of values for the variables in
Pre(X) defined as follows. If Y ∈ Pre(X) ∩ Vϕ, then the value of the Y component in ~z is
the value of the Y component in ~y; if Y ∈ Pre(X)−Vϕ, then the value of the Y component
in ~z is F ′Y (~u, ~x). (By the induction hypothesis, F ′Y (~u, ~x) has already been defined.) Now
define a causal model T ′ = (Sϕ,F ′). It is easy to check that T ′ ∈ Trec(Sϕ) (the ordering
of the variables is just ≺ restricted to Vϕ). Moreover, the construction guarantees that if
~X ⊆ Vϕ, then the solutions to the equations T ′~X←~x(~u) and T ~X←~x(~u) are the same, when
restricted to the variables in Vϕ. It follows that T ′ satisfies ϕ.


The argument in the case that T ∈ Tuniq(S) is similar in spirit. For X ∈ Vϕ, ~u ∈
(×U∈UR(U)), and ~x ∈ (×Y ∈Vϕ−{X}R(Y )), define F ′X(~u, ~x) to be the value of X in the
unique solution to the equations in TVϕ−{X}←~x(~u).7 It is again straightforward to check
that now T ′ = (Sϕ,F ′) ∈ Tuniq(Sϕ) and satisfies ϕ.


7. This definition is easily seen to agree with the earlier definition of F ′X if T ∈ Trec.
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Theorem 4.3: A formula ϕ ∈ L+(S) is satisfiable in T (S) iff ϕ is satisfiable in T (S+
ϕ ).


Proof: If ||S|| ≤ ||Sϕ||2+||Sϕ|| then the proof is immediate, so suppose that ||S|| > ||Sϕ||2+
||Sϕ|| and ϕ is satisfied in a causal model T = (S,F) ∈ T (S). Before going on with the
proof, it is useful to define some notation. Let V = {X1, . . . , Xm}, where Vϕ = {X1, . . . , Xk}
and V − Vϕ = {Xk+1, . . . , Xm}. Given a vector ~x ∈ R(X∗) = ×X∈VϕR(X) and Xi ∈ Vϕ,
let ~x−i denote the vector excluding the value for Xi. For each Xi ∈ Vϕ, choose two values
xi0 and xi1 in R(Xi). Define T ′ = (Sϕ,F ′) by defining F ′X(~u, ~x−i, ~y−i, yi) = x, where


• x = yi if ~x−i = ~y−i and X = yi in some solution to the equations in TVϕ−{Xi}←~x−i(~u);


• x = xi0 if yi 6= xi0 and either ~x−i 6= ~y−i or there is no solution to the equations in
TVϕ−{X}←~x−i(~u) in which X = yi;


• x = xi1 otherwise.


Finally, define FX∗(~u, ~x) = ~x.
I now show that the construction again guarantees that if ~X ⊆ Vϕ, then the solutions


to the equations T ′~X←~x(~u) and T ~X←~x(~u) are the same, when restricted to the variables in
Vϕ. First suppose that (~y, ~z) is a solution to the equations in T ~X←~x(~u), where ~y ∈ R(X∗)
and ~z ∈ ×Y ∈V−VϕR(Y ). It must be the case that ~x and ~y agree on the variables in ~X,
so (~y, ~z) is also a solution of the equations in TVϕ−{Xi}←~y−i(~u) if Xi ∈ Vϕ − ~X . Thus,
F ′Xi(~u, ~y−i, ~y) = yi. It follows that (~y, ~y) is a solution to the equations in T ′~X←~x(~u).


Conversely, suppose that (~y, ~y′) is a solution to the equations in T ′~X←~x(~u). Then the


definition of FX∗ guarantees that ~y = ~y′. Moreover, since ~x and ~y agree on the variables in ~X,
(~y, ~y) must also be a solution to the equations in T ′Vϕ−{X1}←~y−1


(~u). Thus, F ′X1
(~u, ~y−1, ~y) =


y1, which means that there must be some vector ~z of values for the variables in V −Vϕ such
that (~y, ~z) is a solution to the equations in TVϕ−{X1}←~y−1


(~u). But then it is easy to check
that (~y, ~z) must in fact be a solution to the equations in TVϕ−{Xi}←~y−i(~u) for all i = 1, . . . , k.
It follows that (~y, ~z) is a solution to the equations in T ~X←~x(~u), as desired. This suffices to
prove this direction of the theorem.


Now suppose that ϕ is satisfied in a causal model T = (S+
ϕ ,F) ∈ T (S+


ϕ ). Since ||S|| >
||Sϕ||2 + ||Sϕ||, there must be an injective function f : R(X∗) → ×Y ∈V−VϕR(Y ) and two
distinct vectors ~y0 = (y01, . . . , y0k), ~y1 = (y11, . . . , y1k) that are not in the range of f .
Choose two distinct vectors ~x0 = (x10, . . . , xk0), ~x1 = (x11, . . . , xk1) ∈ R(X∗). Define
T ′ = (S,F ′) ∈ T (S) as follows. If Xi ∈ Vϕ, ~x−i ∈ ×Y ∈Vϕ−{Xi}R(Y ), ~z ∈ R(X∗), and
~y ×Y ∈V−Vϕ R(Y ), let


F ′Xi(~x−i, ~y) =



FXi(~x−i, ~z) if f(~z) = ~y,
x0i if ~y is not in the range of f , ~y 6= ~y1,
x1i otherwise.


If Xj ∈ V − Vϕ, ~x ∈ R(X∗) and ~y−j ∈ ×Y ∈V−Vϕ−{Xj}R(Y ), then let


F ′Xj(~x, ~y−j) =



y if f(FX∗(~x)) = (~y−j , y),
y0j if f(FX∗(~x)) 6= (~y−j , y′) for all y′ ∈ R(Xj), ~x 6= ~x0,
y1j otherwise.
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Again, I show that the construction guarantees that if ~X ⊆ Vϕ, then the solutions to the
equations T ′~X←~x(~u) and T ~X←~x(~u) are the same, when restricted to the variables in Vϕ. First
suppose that (~y, ~z) is a solution to the equations in T ~X←~x(~u), where ~y, ~z ∈ R(X∗). It is easy
to check that (~y, f(~z)) is a solution to the equations in T ′~X←~x(~u). Conversely, suppose that
(~y, ~z) is a solution to the equations in T ′~X←~x(~u), where ~y ∈ R(X∗) and ~z ∈ ×Y ∈V−VϕR(Y ).
I claim that we must have ~z = f(FX∗(~y)). If, in fact, this is the case, then it is easy to
check that (~y, FX∗(~y) is a solution to the equations in T ~X←~x(~u). On the other hand, if
~z 6= f(FX∗(~y)), then the definition of F ′Xj for Xj ∈ V − Vϕ guarantees that ~z = ~y0 unless
~y = ~x0; if ~y = ~x0, then ~z = ~y1. But the definition of FXi for Xi ∈ Vϕ guarantees that if
~z = ~y0, then ~y = ~x0: otherwise, ~y = ~x1. Thus, (~y, ~z) is a solution iff ~z = f(FX∗(~y)). This
suffices to prove the result.


Theorem 4.4: Given as input a pair (ϕ, S), where ϕ ∈ L+(S) (resp., Luniq(S)) and S is
a finite signature, the problem of deciding if ϕ is satisfiable with respect to Trec(S) (resp.,
Tuniq(S), T (S)) is NP-complete (resp., NP-hard) in |ϕ|; if ϕ ∈ LGP(S), then the problem
of deciding if ϕ is satisfiable in Trec(S) (resp., Tuniq(S)) is NP-complete (resp., NP-hard).


Proof: The NP-lower bound is easy for L+(S) and Luniq(S), since there is an obvious way
to encode the satisfiability problem for propositional logic into the satisfiability problem for
L+ and Luniq. Given a propositional formula ϕ with primitive propositions p1, . . . , pk, let
S = (∅, {X1, . . . , Xk},R), where R(Xi) = {0, 1} for i = 1, . . . , k. Replace each occurrence
of the primitive proposition pi in ϕ with the formula Xi = 1. This gives us a formula ϕ′ in
Luniq(S). It is easy to see that if ϕ′ is satisfiable in a causal model T ∈ T (S) (and, a fortiori
if ϕ′ is satisfiable in a causal model T in either Trec(S) or Tuniq(S)) then the solution to the
equations in T defines a satisfying assignment for ϕ. Conversely, if ϕ is satisfiable, say by
some truth assignment v, then we can trivially construct a causal model T ∈ Trec(S) such
that FXi = v(pi). (For simplicity, I assume that valuations assign values 0 and 1 rather
than false and true.)


This trivial construction of ϕ′ will not work for LGP(S), since we do not have disjunctions
or negations available. The lack of negations does not cause a problem. We can assume
without loss of generality that the negations occur only in front of primitive propositions,
and we can capture ¬pi by the formulaXi = 0. The idea for dealing with disjunctions is that
a formula such as p1 ∨¬p2 ∨ p3 is translated to [X1 ← 0;X2← 1;X3← 1](Y = 0), where Y
is a fresh variable. Essentially, we are viewing p1∨¬p2∨p3 as (¬p1∧p2∧¬p3)⇒ false, which
is why we write, for example, X1 ← 0 even though p1 appears positively in the disjunction.


To make matters simpler, assume that ϕ is a formula in 3-CNF. This suffices for NP-
hardness, since the satisfiability problem for 3-CNF formulas is also NP-hard (Garey &
Johnson, 1979). Suppose ϕ is of the form c1∧. . .∧cm, where each cl is a clause consisting of a
disjunction of three primitive propositions and their negations. Suppose that the primitive
propositions that appear in ϕ are p1, . . . , pk. Let S = (∅, {X1, . . . , Xk, Y1, . . . , Ym},R),
where R(Xi) = R(Yj) = {0, 1} for all i, j. Suppose that cj, the jth clause of ϕ, is of the
form qj1 ∨ qj2 ∨ qj3, where qji is either pji or ¬pji for some ji. Let ctj be the LGP formula


[Xj1 ← xj1;Xj2 ← xj2;Xj3 ← xj3](Yj = 0),
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where xjh is 0 if qjh is pjh and xjh is 1 if qjh is ¬pjh for h = 1, 2, 3. Let ϕ′ be


[true](Y1 = 1 ∧ . . .∧ Ym = 1) ∧ ct1 ∧ . . .∧ ctm.


I claim that ϕ is a satisfiable propositional formula iff the LGP formula ϕ′ is satisfiable in
Trec(S) (resp. Tuniq(S)). First suppose that ϕ′ is satisfiable, say in some model T ∈ Tuniq(S).
(If this direction holds for T ∈ Tuniq(S), it clearly holds a fortiori for T ∈ Trec(S).) Let ~z be
the unique solution to the equations in T . By construction, the Yj component of ~z is 1 for
j = 1, . . . , m. Let x∗i be the value of the Xi component in ~z. Consider the valuation v such
that v(pi) = x∗i . I claim that v(ϕ) = 1. To see this, suppose that clause cj is qj1 ∨ qj2 ∨ qj3.
If v makes qj1, qj2, and qj3 false, then we must have xjh = x∗jh for h = 1, 2, 3. Since
T |= [Xj1 ← xj1;Xj2 ← xj2;Xj3 = xj3)](Yj = 0) and the value of the Xjh component of ~z is
xjh for h = 1, 2, 3, it follows that ~z is a solution to the equations in TXj1←xj1;Xj2←xj2;Xj3←xj3.
But this contradicts the fact that T |= [Xj1 ← xj1;Xj2 ← xj2;Xj3 ← xj3](Yj = 0) (since
the Yj component of ~z is 1). It follows that v(cj) = v(qj1 ∨ qj2 ∨ qj3) = 1. Since this is true
for all clauses cj, we must have that v(ϕ) = 1.


For the converse, suppose that ϕ is satisfiable, say by valuation v. I show that ϕ′ is
satisfiable in T ∈ Trec(S). Order the variables so that Xj1 , Xj2, Xj3 ≺ Yj . (There are many
orderings of the variables that satisfy these constraints; any one will do.) Define FXi = v(pi)
(so that FXi is a constant, independent of its arguments); define FYj (xj1, xj2, xj3) = 1 if
(xj1, xj2, xj3) = (v(pj1), v(pj2), v(pj3)) and 0 otherwise. It is easy to check that T |= ϕ′, as
desired.


For the NP upper bound in the case of Trec(S), it clearly suffices to deal with ϕ ∈ L+.
Suppose we are given (ϕ, S) with ϕ ∈ L+. We want to check if ϕ is satisfiable in Trec(S).
The basic idea in to guess a causal model T and verify that it indeed satisfies ϕ. There
is a problem with this though. To completely describe a model T , we need to describe
the functions FX . However, there may be many variables X in S and they can have many
possible inputs. Just describing these functions may take time much longer than polynomial
in ϕ. Part of the solution to this problem is provided by Theorem 4.2, which tells us that
it suffices to check whether ϕ is satisfiable in Trec(Sϕ). In light of this, for the remainder
of this part of the proof, I assume without loss of generality that S = Sϕ. This limits the
number of variables that we must consider to O(|ϕ|). But even this does not solve our
problem completely. Since we are not given any bounds on |R(Y )| for variables Y in Sϕ,
even describing the functions FY for the variables Y that appear in ϕ on all their possible
input vectors could take time much more than polynomial in ϕ. The solution is to give only
a short partial description of a model T and show that this suffices.


Consider all pairs (~Y ← ~y, ~u) such that there is a subformula of ϕ of the form [~Y ← ~y]ψ
and ~u appears in ψ. Let R be the set of all such pairs. Note that |R| < |ϕ|2. We say that
two causal models T and T ′ in Trec(S) agree on R if, for all pairs (~Y ← ~y, ~u) ∈ R, the
(unique) solutions to the equations in T~Y←~y(~u) and T ′~Y←~y(~u) are the same. It is easy to see
that if T and T ′ agree on R, then either both T and T ′ satisfy ϕ or neither do. That is, all
we need to know about a causal model is how it deals with the relevant equations—those
corresponding to pairs in R.


For each pair (~Y ← ~y, ~u) ∈ R, guess a vector ~v(~Y ← ~y, ~u) of values for the endogenous
variables; intuitively, these are the unique solutions to the relevant equations in a model
satisfying T . Given these guesses, it is easy to check if ϕ is satisfied in a model where these
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guesses do indeed represent the solutions to the relevant equations. It remains to show that
there exists a causal model in Trec(S) where the relevant equations have these solutions.


To do this, first guess an ordering ≺ on the variables. We can then verify, for each
fixed ~u that appears in ϕ, whether the solution vectors ~v(~Y ← ~y, ~u) guessed for the relevant
equations are compatible with ≺, in the sense that it is not the case that there are two
solutions (~u, ~x) and (~u, ~x′) such that some variable X takes on different values in ~x and ~x′,
but all variables Y such that Y ≺ X take on the same values in ~x and ~x′. It is easy to
see that if the solutions are compatible with ≺, we can define the functions FX for X ∈ V
such that all the equations hold and FX is independent of the values of Y if X ≺ Y for all
X, Y ∈ V . (Note we never actually have to write out the functions FX , which may take
too long; we just have to know they exist.) To summarize, as long as we can guess some
solutions to the relevant equations such that a causal model that has these solutions satisfies
ϕ, and an ordering ≺ such that these solutions are compatible with ≺, then ϕ is satisfiable
in Trec(S). Conversely, if ϕ is satisfiable in T ∈ Trec(S), then there clearly are solutions
to the relevant equations that satisfy ϕ and an ordering ≺ such that these solutions are
compatible with ≺. (We just take the solutions and the ordering ≺ from T .) This shows
that the satisfiability problem for Trec is in NP, as desired.
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