

Journal of Artificial Intelligence Research 12 (2000) 1–34 Submitted 7/99; published 2/00

Planning Graph as a (Dynamic) CSP:
Exploiting EBL, DDB and other CSP Search Techniques in Graphplan

Subbarao Kambhampati RAO@ASU.EDU

Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

Abstract
This paper reviews the connections between Graphplan’s planning-graph and the dynamic

constraint satisfaction problem and motivates the need for adapting CSP search techniques to the
Graphplan algorithm. It then describes how explanation based learning, dependency directed back-
tracking, dynamic variable ordering, forward checking, sticky values and random-restart search
strategies can be adapted to Graphplan. Empirical results are provided to demonstrate that these
augmentations improve Graphplan’s performance significantly (up to 1000x speedups)on several
benchmark problems. Special attention is paid to the explanation-based learning and dependency
directed backtracking techniques as they are empirically found to be most useful in improving the
performance of Graphplan.

1. Introduction

Graphplan (Blum & Furst, 1997) is currently one of the more efficient algorithms for solving clas-
sical planning problems. Four of the five competing systems in the recent AIPS-98 planning com-
petition were based on the Graphplan algorithm (McDermott, 1998). Extending the efficiency of
the Graphplan algorithm thus seems to be a worth-while activity. In (Kambhampati, Parker, &
Lambrecht, 1997), we provided a reconstruction of Graphplan algorithm to explicate its links to
previous work in classical planning and constraint satisfaction. One specific link that was discussed
is the connection between the process of searching Graphplan’s planning graph, and solving a “dy-
namic constraint satisfaction problem” (DCSP) (Mittal & Falkenhainer, 1990). Seen from the DCSP
perspective, the standard backward search proposed by Blum and Furst (1997) lacks a variety of in-
gredients that are thought to make up efficient CSP search mechanisms (Frost & Dechter, 1994;
Bayardo & Schrag, 1997). These include forward checking, dynamic variable ordering, depen-
dency directed backtracking and explanation-based learning (Tsang, 1993; Kambhampati, 1998).
In (Kambhampati et al., 1997), I have suggested that it would be beneficial to study the impact of
these extensions on the effectiveness of Graphplan’s backward search.

In this paper, I describe my experiences with adding a variety of CSP search techniques to im-
prove Graphplan backward search–including explanation-based learning (EBL) and dependency-
directed backtracking capabilities (DDB), Dynamic variable ordering, Forward checking, sticky
values, and random-restart search strategies. Of these, the addition of EBL and DDB capabilities
turned out to be empirically the most useful. Both EBL and DDB are based on explaining failures
at the leaf-nodes of a search tree, and propagating those explanations upwards through the search
tree (Kambhampati, 1998). DDB involves using the propagation of failure explanations to support
intelligent backtracking, while EBL involves storing interior-node failure explanations, for pruning
future search nodes. Graphplan does use a weak form of failure-driven learning that it calls “mem-

c2000 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

KAMBHAMPATI

oization.” As we shall see in this paper, Graphplan’s brand of learning is quite limited as there is
no explicit analysis of the reasons for failure. Instead the explanation of failure of a search node is
taken to beall the constraints in that search node. As explained in (Kambhampati, 1998), this not
only eliminates the opportunities for dependency directed backtracking, it also adversely effects the
utility of the stored memos.

Adding full-fledged EBL and DDB capabilities in effect gives Graphplan both the ability to
do intelligent backtracking, and the ability to learn generalized memos that are more likely to be
applicable in other situations. Technically, this involves generalizing conflict-directed backjumping
(Prosser, 1993), a specialized version of EBL/DDB strategy applicable for binary CSP problems1

to work in the context of dynamic constraint satisfaction problems (as discussed in (Kambham-
pati, 1998)). Empirically, the EBL/DDB capabilities improve Graphplan’s search efficiency quite
dramatically–giving rise to up to 1000x speedups, and allowing Graphplan to easily solve several
problems that have hither-to been hard or unsolvable. In particular, I will report on my experiments
with the bench-mark problems described by Kautz and Selman (1996), as well as 4 other domains,
some of which were used in the recent AIPS planning competition (McDermott, 1998).

I discuss the utility issues involved in storing and using memos, and point out that the Graphplan
memoization strategy can be seen as averyconservative form of CSP no-good learning. While this
conservative strategy keeps the storage and retrieval costs of no-goods –the usual bane of no-good
learning strategies–under control, it also loses some learning opportunities. I then present the use
of “sticky values” as a way of recouping some of these losses. Empirical studies show that sticky
values lead to a further 2-4x improvement over EBL.

In addition to EBL and DDB, I also investigated the utility of forward checking and dynamic
variable ordering, both in isolation and in concert with EBL and DDB. My empirical studies show
that these capabilities typically lead to an additional 2-4x speedup over EBL/DDB, but are not by
themselves competitive with EBL/DDB.

Finally, I consider the utility of the EBL/DDB strategies in the context of random-restart search
strategies (Gomes, Selman, & Kautz, 1998) that have recently been shown to be good at solv-
ing hard combinatorial problems, including planning problems. My results show that EBL/DDB
strategies retain their advantages even in the context of such random-restart strategies. Specifically,
EBL/DDB strategies enable Graphplan to use the backtrack limits more effectively–allowing it to
achieve higher solvability rates, and more optimal plans with significantly smaller backtrack and
restart limits.

This paper is organized as follows. In the next section, I provide some background on viewing
Graphplan’s backward search as a (dynamic) constraint satisfaction problem, and review some of
the opportunities this view presents. In Section 3, I discuss some inefficiencies of the backtracking
and learning methods used in normal Graphplan that motivate the need for EBL/DDB capabilities.
Section 4 describes how EBL and DDB are added to Graphplan. Section 5 presents empirical studies
demonstrating the usefulness of these augmentations. Section 7 investigates the utility of forward
checking and dynamic variable ordering strategies for Graphplan. Section 8 investigates the utility
of EBL/DDB strategies in the context of random-restart search. Section 9 discusses related work
and Section 10 presents conclusions and some directions for further work.

1. Binary CSP problems are those problems where all initial constraints are between pairs of variables.

2

PLANNING GRAPH AS A CSP

G1

G2

G3

G4

P1

P2

P3

P4

P5

P6

A1

A2

A3

A4

A5

A6

A7

A8

A9

X

X

A10

A11

X

Proposition List
Level k

Action list
Level k

Proposition list
Level k-1

Action list
Level k-1

(a) Planning Graph

Variables:G1; � � � ; G4; P1 � � �P6

Domains:G1: fA1g; G2: fA2gG3: fA3gG4: fA4g
P1: fA5gP2: fA6; A11gP3: fA7gP4: fA8; A9g
P5: fA10gP6: fA10g

Constraints (normal):P1 = A5) P4 6= A9

P2 = A6) P4 6= A8

P2 = A11) P3 6= A7

Constraints (Activity):G1 = A1) ActivefP1; P2; P3g
G2 = A2) ActivefP4g
G3 = A3) ActivefP5g
G4 = A4) ActivefP1; P6g

Init State:ActivefG1; G2; G3; G4g

(b) DCSP

Figure 1: A planning graph and the DCSP corresponding to it

2. Review of Graphplan Algorithm and its Connections to DCSP

2.1 Review of Graphplan Algorithm

Graphplan algorithm (Blum & Furst, 1997) can be seen as a “disjunctive” version of the forward
state space planners (Kambhampati et al., 1997; Kambhampati, 1997). It consists of two interleaved
phases – a forward phase, where a data structure called “planning-graph” is incrementally extended,
and a backward phase where the planning-graph is searched to extract a valid plan. The planning-
graph consists of two alternating structures, called proposition lists and action lists. Figure 1 shows
a partial planning-graph structure. We start with the initial state as the zeroth level proposition list.
Given ak level planning graph, the extension of structure to levelk + 1 involves introducing all
actions whose preconditions are present in thekth level proposition list. In addition to the actions
given in the domain model, we consider a set of dummy “persist” actions, one for each condition
in thekth level proposition list. A “persist-C” action hasC as its precondition andC as its effect.
Once the actions are introduced, the proposition list at levelk+1 is constructed as just the union of
the effects of all the introduced actions. Planning-graph maintains the dependency links between the
actions at levelk+1 and their preconditions in levelk proposition list and their effects in levelk+1
proposition list. The planning-graph construction also involves computation and propagation of
“mutex” constraints. The propagation starts at level 1, with the actions that are statically interfering
with each other (i.e., their preconditions and effects are inconsistent) labeled mutex. Mutexes are
then propagated from this level forward by using a two simple rules: two propositions at levelk are
marked mutex if all actions at levelk that support one proposition are mutex with all actions that
support the second proposition. Two actions at levelk+1 are mutex if they are statically interfering
or if one of the propositions (preconditions) supporting the first action is mutually exclusive with
one of the propositions supporting the second action.

The search phase on ak level planning-graph involves checking to see if there is a sub-graph
of the planning-graph that corresponds to a valid solution to the problem. This involves starting
with the propositions corresponding to goals at levelk (if all the goals are not present, or if they are
present but a pair of them are marked mutually exclusive, the search is abandoned right away, and
planning-grap is grown another level). For each of the goal propositions, we then select an action

3

KAMBHAMPATI

Variables:G1; � � � ; G4; P1 � � �P6

Domains:G1: fA1g; G2: fA2gG3: fA3gG4: fA4g
P1: fA5gP2: fA6; A11gP3: fA7gP4: fA8; A9g
P5: fA10gP6: fA10g

Constraints (normal):P1 = A5) P4 6= A9

P2 = A6) P4 6= A8

P2 = A11) P3 6= A7

Constraints (Activity):G1 = A1) ActivefP1; P2; P3g
G2 = A2) ActivefP4g
G3 = A3) ActivefP5g
G4 = A4) ActivefP1; P6g

Init State:ActivefG1; G2; G3; G4g

(a) DCSP

Variables:G1; � � � ; G4; P1 � � �P6

Domains:G1: fA1;?g;G2: fA2;?gG3: fA3;?gG4: fA4;?g
P1: fA5;?gP2: fA6; A11;?gP3: fA7;?gP4: fA8; A9;?g
P5: fA10;?gP6: fA10;?g

Constraints (normal):P1 = A5) P4 6= A9

P2 = A6) P4 6= A8

P2 = A11) P3 6= A7

Constraints (Activity):G1 = A1) P1 6=? ^P2 6=? ^P3 6=?
G2 = A2) P4 6=?
G3 = A3) P5 6=?
G4 = A4) P1 6=? ^P6 6=?

Init State:G1 6=? ^G2 6=? ^G3 6=? ^G4 6=?

(b) CSP

Figure 2: Compiling a DCSP to a standard CSP

from the levelk action list that supports it, such that no two actions selected for supporting two
different goals are mutually exclusive (if they are, we backtrack and try to change the selection of
actions). At this point, we recursively call the same search process on thek�1 level planning-graph,
with the preconditions of the actions selected at levelk as the goals for thek � 1 level search. The
search succeeds when we reach level0 (corresponding to the initial state).

Consider the (partial) planning graph shown in Figure 3 that Graphplan may have generated
and is about to search for a solution.G1 � � �G4 are the top level goals that we want to satisfy,
andA1 � � �A4 are the actions that support these goals in the planning graph. The specific action-
precondition dependencies are shown by the straight line connections. The actionsA5 � � �A11 at the
left-most level support the conditionsP1 � � �P6 in the planning-graph. Notice that the conditionsP2
andP4 at levelk � 1 are supported by two actions each. The x-marked connections between the
actionsA5; A9, A6; A8 andA7; A11 denote that those action pairs are mutually exclusive. (Notice
that given these mutually exclusive relations alone, Graphplan cannot derive any mutual exclusion
relations at the proposition levelP1 � � �P6.)

2.2 Connections Between Graphplan and CSP

The Graphplan algorithm as described above bears little resemblance to previous classical planning
algorithms. In (Kambhampati et al., 1997), we explicate a number of important links between
the Graphplan algorithm and previous work in planning and constraint satisfaction communities.
Specifically, I show that a planning-graph of lengthk can be thought of (to a first approximation) as a
disjunctive (unioned) version of ak-level search tree generated by a forward state-space refinement,
with the action lists corresponding to the union of all actions appearing atkth level, and proposition
lists corresponding to the union of all states appearing at thekth level. The mutex constraints
can be seen as providing (partial) information about which subsets of a proposition list actually
correspond to legal states in the corresponding forward state-space search. The process of searching
the planning graph to extract a valid plan from it can be seen as a dynamic constraint satisfaction
problem. Since this last link is most relevant to the work described in this paper, I will review it
further below.

The dynamic constraint satisfaction problem (DCSP) (Mittal & Falkenhainer, 1990) is a gener-
alization of the constraint satisfaction problem (Tsang, 1993), that is specified by a set of variables,

4

PLANNING GRAPH AS A CSP

activity flags for the variables, the domains of the variables, and the constraints on the legal variable-
value combinations. In a DCSP, initially only a subset of the variables is active, and the objective is
to find assignments for all active variables that is consistent with the constraints among those vari-
ables. In addition, the DCSP specification also contains a set of “activity constraints.” An activity
constraint is of the form: “if variablex takes on the valuevx, then the variablesy; z; w::: become
active.”

The correspondence between the planning-graph and the DCSP should now be clear. Specifi-
cally, the propositions at various levels correspond to the DCSP variables2, and the actions support-
ing them correspond to the variable domains. There are three types of constraints:action mutex
constraints, fact (proposition) mutex constraintsandsubgoal activation constraints.

Since actions are modeled as values rather than variables, action mutex constraints have to be
modeled indirectly as constraints between propositions. If two actionsa1 anda2 are marked mutex
with each other in the planning graph, then forevery pairof propositionsp11 andp12 wherea1 is
one of the possible supporting actions forp11 anda2 is one of the possible supporting actions for
p12, we have the constraint:

: (p11 = a1 ^ p12 = a2)

Fact mutex constraints are modeled as constraints that prohibit the simultaneous activation of
the two facts. Specifically, if two propositionsp11 andp12 are marked mutex in the planning graph,
we have the constraint:

: (Active(p11) ^Active(p12))

Subgoal activation constraints are implicitly specified by action preconditions: supporting an
active propositionp with an actiona makes all the propositions in the previous level corresponding
to the preconditions ofa active.

Finally, only the propositions corresponding to the goals of the problem are “active” in the be-
ginning. Figure 1 shows the dynamic constraint satisfaction problem corresponding to the example
planning-graph that we discussed.

2.2.1 SOLVING A DCSP

There are two ways of solving a DCSP problem. The first, direct, approach (Mittal & Falkenhainer,
1990) involves starting with the initially active variables, and finding a satisfying assignment for
them. This assignment may activate some new variables, and these newly activated variables are
assigned in the second epoch. This process continues until we reach an epoch where no more new
variables are activated (which implies success), or we are unable to give a satisfying assignment to
the activated variables at a given epoch. In this latter case, we backtrack to the previous epoch and
try to find an alternative satisfying assignment to those variables (backtracking further, if no other
assignment is possible). The backward search process used by the Graphplan algorithm (Blum &
Furst, 1997) can be seen as solving the DCSP corresponding to the planning graph in this direct
fashion.

The second approach for solving a DCSP is to first compile it into a standard CSP, and use
the standard CSP algorithms. This compilation process is quite straightforward and is illustrated in

2. Note that the same literal appearing in different levels corresponds to different DCSP variables. Thus, strictly speak-
ing, a literalp in the proposition list at leveli is converted into a DCSP variablepi. To keep matters simple, the
example in Figure 1 contains syntactically different literals in different levels of the graph.

5

KAMBHAMPATI

Figure 2. The main idea is to introduce a new “null” value (denoted by “?”) into the domains of
each of the DCSP variables. We then model an inactive DCSP variable as a CSP variable which
takes the value?. The constraint that a particular variableP be active is modeled asP 6=?. Thus,
activity constraint of the form

G1 = A1) ActivefP1; P2; P3g

is compiled to the standard CSP constraint

G1 = A1) P1 6=? ^P2 6=? ^P3 6=?

It is worth noting here that the activation constraints above are only concerned about ensuring
that propositions that are preconditions of a selected action do take non-? values. They thus allow
for the possibility that propositions can become active (take non-? values) even though they are
strictly not supporting preconditions of any selected action. Although this can lead to inoptimal
plans, the mutex constraints ensure that no unsound plans will be produced (Kautz & Selman,
1999). To avoid unnecessary activation of variables, we need to add constraints to the effect that
unless one of the actions needing that variable as a precondition has been selected as the value for
some variable in the earlier (higher) level, the variable must have? value. Such constraints are
typically going to have very high arity (as they wind up mentioning a large number of variables in
the previous level), and may thus be harder to handle during search.

Finally, a mutex constraint between two propositions

: (Active(p11) ^Active(p12))

is compiled into
: (p11 6=? ^p12 6=?) :

Since action mutex constraints are already in the standard CSP form, with this compilation, all
the activity constraints are converted into standard constraints and thus the entire CSP is now a
standard CSP. It can now be solved by any of the standard CSP search techniques (Tsang, 1993).3

The direct method has the advantage that it closely mirrors the Graphplan’s planning graph
structure and its backward search. Because of this, it is possible to implement the approach on the
plan graph structure without explicitly representing all the constraints. Furthermore, as I will dis-
cuss in Section 6, there are some distinct advantages for adopting the DCSP view in implementing
EBL/DDB on Graphplan. The compilation to CSP requires that plan graph be first converted into
an extensional CSP. It does however allow the use of standard algorithms, as well as supports non-
directional search (in that one does not have to follow the epoch-by-epoch approach in assigning
variables).4 Since my main aim is to illustrate the utility of CSP search techniques in the context of
the Graphplan algorithm, I will adopt the direct solution method for the DCSP. For a study of the
tradeoffs offered by the technique of compiling the planning graph into a CSP, the reader is referred
to (Do & Kambhampati, 2000).

3. It is also possible to compile any CSP problem to a propositional satisfiability problem (i.e., a CSP problem with
boolean variables). This is accomplished by compiling every CSP variableP that has the domainfv1; v2; � � � ; vng
inton boolean variables of the formP-is-v1 � � �P-is-vn. Every constraint of the formP = vj ^� � �) � � � is compiled
to P-is-vj^ � � �) � � �. This is essentially what is done by the BLACKBOX system (Kautz & Selman, 1999).

4. Compilation to CSP is not a strict requirement for doing non-directional search. In (Zimmerman & Kambhampati,
1999), we describe a technique that allows the backward search of Graphplan to be non-directional, see the discussion
in Section 10.

6

PLANNING GRAPH AS A CSP

2.3 Interpreting Mutex Propagation from the CSP View

Viewing the planning graph as a constraint satisfaction problem helps put the mutex propagation
in a clearer perspective (see (Kambhampati et al., 1997)). Specifically, the way Graphplan con-
structs its planning graph, it winds up enforcing partial directed 1-consistency and partial directed
2-consistency (Tsang, 1993). The partial 1-consistency is ensured by the graph building procedure
which introduces an action at levell only if the actions preconditions are present in the proposition
list at level l � 1 and are not mutually exclusive. Partial 2-consistency is ensured by the mutual
exclusion propagation procedure.

In particular, the Graphplan planning graph construction implicitly derives “no-good”5 con-
straints of the form:

:Active(P i
m) (or P i

m 6=?)

In which caseP i
m will be simply removed from (or will not be put into) the leveli, and the mutex

constraints of the form:

:
�
Active(P i

m) ^Active(P i
n)
�

(or P i
m 6=? ^P

i
n 6=?)

in which caseP i
m andP i

n are marked mutually exclusive.
Both procedures are “directed” in that they only use “reachability” analysis in enforcing the con-

sistency, and are “partial” in that they do not enforce either full 1-consistency or full 2-consistency.
Lack of full 1-consistency is verified by the fact that the appearance of a goal at levelk does not
necessarily mean that the goal is actually achievable by levelk (i.e., there is a solution for the CSP
that assigns a non-? value to that goal at that level). Similarly, lack of full 2-consistency is veri-
fied by the fact that appearance of a pair of goals at levelk does not imply that there is a plan for
achieving both goals by that level.

There is another, somewhat less obvious, way in which the consistency enforcement used in
Graphplan is partial (and very conservative)–it concentrates only on whether a single goal variable
or a pair of goal variables can simultaneously have non-? values (be active) in a solution. It may
be that a goal can have a non-? value, but not all non-? values are feasible. Similarly, it may be
that a pair of goals are achievable, but not necessarily achievable with every possible pair of actions
in their respective domains.

This interpretation of mutex propagation procedure in Graphplan brings to fore several possible
extensions worth considering for Graphplan:

1. Explore the utility of directional consistency enforcement procedures that are not based solely
on reachability analysis. Kambhampatiet. al. (1997) argue for extending this analysis using
relevance information, and Doet. al. (2000) provide an empirical analysis of the effectiveness
of consistency enforcement through relevance information.

2. Explore the utility of enforcing higher level consistency. As pointed out in (Kambhampati
et al., 1997; Kambhampati, 1998), the memoization strategies can be seen as failure-driven
procedures that incrementally enforce partial higher level consistency.

5. Normally, in the CSP literature, a no-good is seen as a compound assignment that can not be part of any feasible
solution. With this view, mutex constraints of the formP i

m 6=? ^P i
n 6=? correspond to a conjunction of nogoods of

the the formP i
m = au ^ P i

n = av whereau andav are values in the domains ofP i
m andP i

n.

7

KAMBHAMPATI

3. Consider relaxing the focus on non-? values alone, and allow derivation of no-goods of the
form

P i
m = au ^ P

i
n = av

This is not guaranteed to be a winning idea as the number of derived no-goods can increase
quite dramatically. In particular, assuming that there arel levels in the planning graph, and an
average ofm goals per level, and an average ofd actions supporting each goal, the maximum
number of Graphplan style pair-wise mutexes will beO(l �m2) while the 2-size no-goods of
type discussed here will beO(l � (m � (d+ 1))2). We consider a similar issue in the context
of Graphplan memoization strategy in Section 6.

3. Some Inefficiencies of Graphplan’s Backward Search

To motivate the need for EBL and DDB, we shall first review the details of Graphplan’s backward
search, and pinpoint some of its inefficiencies. We shall base our discussion on the example planning
graph from Figure 3 (which is reproduced for convenience from Figure 1). Assuming thatG1 � � �G4

are the top level goals of the problem we are interested in solving, we start at levelk, and select
actions to support the goalsG1 � � �G4. To keep matters simple, we shall assume that the search
assigns the conditions (variables) at each level from top to bottom (i.e.,G1 first, thenG2 and so
on). Further, when there is a choice in the actions (values) that can support a condition, we will
consider the top actions first. Since there is only one choice for each of the conditions at this level,
and none of the actions are mutually exclusive with each other, we select the actionsA1; A2; A3

andA4 for supporting the conditions at levelk. We now have to make sure that the preconditions
of A1; A2; A3; A4 are satisfied at levelk � 1. We thus subgoal on the conditionsP1 � � �P6 at level
k � 1, and recursively start the action selection for them. We select the actionA5 for P1. ForP2,
we have two supporting actions, and using our convention, we selectA6 first. ForP3, A7 is the
only choice. When we get down to selecting a support forP4, we again have a choice. Suppose
we selectA8 first. We find that this choice is infeasible asA8 is mutually exclusive withA6 that is
already chosen. So, we backtrack and chooseA9, and find that it too is mutually exclusive with a
previously selected action,A5. We now are stymied as there are no other choices forP4. So, we
have to backtrack and undo choices for the previous conditions. Graphplan uses a chronological
backtracking approach, whereby, it first tries to see ifP3 can be re-assigned, and thenP2 and so on.
Notice thefirst indication of inefficiency here – the failure to assignP4 had nothing to do with the
assignment forP3, and yet, chronological backtracking will try to re-assignP3 in the vain hope of
averting the failure. This can lead to a large amount of wasted effort had it been the case thatP3 did
indeed have other choices.

As it turns out, we find thatP3 has no other choices and backtrack over it.P2 does have another
choice –A11. We try to continue the search forward with this value forP2, but hit an impasse atP3–
since the only value ofP3,A7 is mutex withA11. At this point, we backtrack overP3, and continue
backtracking overP2 andP1, as they too have no other remaining choices. When we backtrack over
P1, we need to go back to levelk and try to re-assign the goals at that level. Before this is done, the
Graphplan search algorithm makes a “memo” signifying the fact that it failed to satisfy the goals
P1 � � �P6 at this level, with the hope that if the search ever subgoals on these same set of goals in
future, we can scuttle it right away with the help of the remembered memo. Here is thesecond
indication of inefficiency – we are remembering all the subgoalsP1 � � �P6 even though we can see
that the problem lies in trying to assignP1; P2; P3 andP4 simultaneously, and has nothing to do

8

PLANNING GRAPH AS A CSP

G1

G2

G3

G4

P1

P2

P3

P4

P5

P6

A1

A2

A3

A4

A5

A6

A7

A8

A9

X

X

A10

A11

X

Proposition List
Level k

Action list
Level k

Proposition list
Level k-1

Action list
Level k-1

Figure 3: The running example used to illustrate EBL/DDB in Graphplan

with the other subgoals. If we rememberfP1; P2; P3; P4g as the memo as againstfP1 � � �P6g, the
remembered memo would be more general, and would have a much better chance of being useful
in the future.

After the memo is stored, the backtracking continues into levelk – once again in a chronological
fashion, trying to reassignG4; G3; G2 andG1 in that order. Here we see thethird indication of inef-
ficiency caused by chronological backtracking –G3 really has no role in the failure we encountered
in assigningP3 andP4 – since it only spawns the conditionP5 at levelk � 1. Yet, the backtracking
scheme of Graphplan considers reassigningG3. A somewhat more subtle point is that reassigning
G4 is not going to avert the failure either. AlthoughG4 requiresP1 one of the conditions taking
part in the failure,P1 is also required byG1 and unlessG1 gets reassigned, considering further
assignments toG4 is not going to avert the failure.

For this example, we continue backtracking overG2 andG1 too, since they too have no alterna-
tive supports, and finally memoizefG1; G2; G3; G4g at this level. At this point the backward search
fails, and Graphplan extends the planning graph by another level before re-initiating the backward
search on the extended graph.

4. Improving Backward Search with EBL and DDB

I will now describe how Graphplan’s backward search can be augmented with full fledged EBL
and DDB capabilities to eliminate the inefficiencies pointed out in the previous section. Informally,
EBL/DDB strategies involve explanation of failures at leaf nodes, and regression and propagation
of leaf node failure explanations to compute interior node failure explanations, along the lines de-
scribed in (Kambhampati, 1998). The specific extensions I propose to the backward search can

9

KAMBHAMPATI

essentially be seen as adapting conflict-directed backjumping strategy (Prosser, 1993), and general-
izing it to work with dynamic constraint satisfaction problems.

The algorithm is shown in pseudo-code form in Figure 4. It contains two mutually recursive
proceduresfind-plan andassign-goals . The former is called once for each level of the
planning-graph. It then callsassign-goals to assign values to all the required conditions at that
level. assign-goals picks a condition, selects a value for it, and recursively calls itself with
the remaining conditions. When it is invoked with empty set of conditions to be assigned, it calls
find-plan to initiate the search at the next (previous) level.

In order to illustrate how EBL/DDB capabilities are added, let’s retrace the previous example,
and pick up at the point where we are about to assignP4 at levelk � 1, having assignedP1; P2 and
P3. When we try to assign the valueA8 to P4, we violate the mutex constraint betweenA6 andA8.
An explanation of failure for a search node is a set of constraints from whichFalse can be derived.
The complete explanation for this failure can thus be stated as:

P2 = A6 ^ P4 = A8 ^ (P2 = A6) P4 6= A8)

Of this, the partP2 = A6) P4 6= A8 can be stripped from the explanation since the mutual
exclusion relation will hold as long as we are solving this particular problem with these particular
actions. Further, we can take a cue from the conflict directed backjumping algorithm (Prosser,
1993), and represent the remaining explanation compactly in terms of “conflict sets.” Specifically,
whenever the search reaches a conditionc (and is about to find an assignment for it), its conflict
set is initialized asfcg. Whenever one of the possible assignments toc is inconsistent (mutually
exclusive) with the current assignment of a previous variablec0, we addc0 to the conflict set ofc. In
the current example, we start withfP4g as the conflict set ofP4, and expand it by addingP2 after
we find thatA8 cannot be assigned toP4 because of the choice ofA6 to supportP2. Informally,
the conflict set representation can be seen as an incrementally maintained (partial) explanation of
failure, indicating that there is a conflict between the current value ofP2 and one of the possible
values ofP4 (Kambhampati, 1998).

We now consider the second possible value ofP4, viz.,A9, and find that it is mutually exclusive
with A5 which is currently supportingP1. Following our practice, we addP1 to the conflict set of
P4. At this point, there are no further choices forP4, and so we backtrack fromP4, passing the
conflict set ofP4, viz., fP1; P2; P4g as the reason for its failure. In essence, the conflict set is a
shorthand notation for the following complete failure explanation (Kambhampati, 1998):6

[(P4 = A8)_(P4 = A9)]^(P1 = A5) P4 6= A9)^(P2 = A6) P4 6= A8)^P1 = A5^P2 = A6

It is worth noting at this point that whenP4 is revisited in the future with different assignments
to the preceding variables, its conflict set will be re-initialized tofP4g before considering any as-
signments to it.

The first advantage of the conflict set is that it allows a transparent way of supporting depen-
dency directed backtracking (Kambhampati, 1998). In the current example, having failed to assign
P4, we have to start backtracking. We do not need to do this in a chronological fashion however.

6. We strip the first (disjunctive) clause since it is present in the graph structure, and the next two implicative clauses
since they are part of the mutual exclusion relations that will not change for this problem. The conflict set represen-
tation just keeps the condition (variable) names of the last two clauses – denoting, in essence, that it is the current
assignments of the variablesP1 andP2 that are causing the failure to assignP4.

10

PLANNING GRAPH AS A CSP

Find-Plan(G:goals,pg: plan graph, k: level)
If k = 0, Return an empty subplanP with success.
If there is a memoM such thatM � G,

Fail, and returnM as the conflict set
Call Assign-goals(G; pg; k; ;).

If Assign-goals fails and returns a conflict setM ,
StoreM as a memo
RegressM over actions selected at levelk + 1 to getR
Fail and returnR as the conflict set

If Assign-goals succeeds, and returns ak-level subplanP ,
ReturnP with success

Assign-goals(G:goals,pg: plan graph, k: level,A: actions)
If G = ;

LetU be the union of preconditions of the actions inA
Call Find-plan(U; pg; k � 1)

If Find-plan fails and returns a conflict setR,
Fail and returnR

If Find-plan succeeds and returns a subplanP of lengthk � 1
Succeed and return ak length subplanP � A

Else ;;(G 6= ;)
Select a goalg 2 G

Let cs fgg, andAg be the set of actions from levelk in pg that supportg
L1: If Ag = ;, Fail and returncs as the conflict set

Else, pick an actiona 2 Ag, and setAg Ag � a

If a is mutually exclusive with some actionb 2 A

Let l be the goal thatb was selected to support
Setcs cs [flg
GotoL1

Else (a is not mutually exclusive with any action inA)
Call Assign-goals(G � fgg; pg; k;A [fag)

If the call fails and returns a conflict setC
If g 2 C

Setcs = cs [C ;conflict set absorption
GotoL1

Else ;(g 62 C)
Fail and returnC as the conflict set

;dependency directed backjumping

Figure 4: A pseudo-code description of Graphplan backward search enhanced with EBL/DDB ca-
pabilities. The backward search at levelk in a planning-graphpg is initiated with the call
Find-P lan(G; pg; k), whereG is the set of top level goals of the problem.

11

KAMBHAMPATI

Instead, we jump back to the most recent variable (condition) taking part in the conflict set ofP4 –
in this caseP2. By doing so, we are avoiding considering other alternatives atP3, and thus avoiding
one of the inefficiencies of the standard backward search. It is easy to see that such backjumping is
sound sinceP3 is not causing the failure atP4 and thus re-assigning it won’t avert the failure.

Continuing along, whenever the search backtracks to a conditionc, the backtrack conflict is
absorbed into the current conflict set ofc. In our example, we absorbfP1; P2; P4g into the conflict
set ofP2, which is currentlyfP2g (makingfP1; P2; P4g the new conflict set ofP2). We now assign
A11, the only remaining value, toP2. Next we try to assignP3 and find that its only valueA7 is
mutex withA11. Thus, we set conflict set ofP3 to befP3; P2g and backtrack with this conflict
set. When the backtracking reachesP2, this conflict set is absorbed into the current conflict set of
P2 (as described earlier), giving rise tofP1; P2; P3; P4g as the current combined failure reason for
P2. This step illustrates how the conflict set of a condition is incrementally expanded to collect the
reasons for failure of the various possible values of the condition.

At this point,P2 has no further choices, so we backtrack overP2 with its current conflict set,
fP1; P2; P3; P4g. At P1, we first absorb the conflict setfP1; P2; P3; P4g into P1’s current conflict
set, and then re-initiate backtracking sinceP1 has no further choices.

Now, we have reached the end of the current level (k � 1). Any backtracking overP1 must
involve undoing assignments of the conditions at thekth level. Before we do that however, we do
two steps: memoization and regression.

4.1 Memoization

Before we backtrack over the first assigned variable at a given level, we store the conflict set of that
variable as a memo at that level. We store the conflict setfP1; P2; P3; P4g of P1 as a memo at this
level. Notice that the memo we store is shorter (and thus more general) than the one stored by the
normal Graphplan, as we do not includeP5 andP6, which did not have anything to do with the
failure7

4.2 Regression

Before we backtrack out of levelk � 1 to levelk, we need to convert the conflict set of (the first
assigned variable in) levelk � 1 so that it refers to the conditions in levelk. This conversion
process involves regressing the conflict set over the actions selected at thekth level (Kambhampati,
1998). In essence, the regression step computes the (smallest) set of conditions (variables) at the
kth level whose supporting actions spawned (activated, in DCSP terms) the conditions (variables)
in the conflict set at levelk � 1. In the current case, our conflict set isfP1; P2; P3; P4g. We can
see thatP2, P3 are required because of the conditionG1 at levelk, and the conditionP4 is required
because of the conditionG2.

In the case of conditionP1, bothG1 andG4 are responsible for it, as both their supporting
actions neededP1. In such cases we have two heuristics for computing the regression: (1) Prefer
choices that help the conflict set to regress to a smaller set of conditions (2) If we still have a choice
between multiple conditions at levelk, we pick the one that has been assigned earlier. The motiva-
tion for the first rule is to keep the failure explanations as compact (and thus as general) as possible,

7. While in the current example, the memo includes all the conditions up toP4 (which is the farthest we have gone in
this level), even this is not always necessary. We can verify thatP3 would not have been in the memo set ifA11 were
not one of the supporters ofP2.

12

PLANNING GRAPH AS A CSP

and the motivation for the second rule is to support deeper dependency directed backtracking. It
is important to note that these heuristics are aimed at improving the performance of the EBL/DDB
and do not affect the soundness and completeness of the approach.

In the current example, the first of these rules applies, sinceP1 is already required byG1, which
is also requiringP2 andP3. Even if this was not the case (i.e.,G1 only requiredP1), we still would
have selectedG1 overG4 as the regression ofP1, sinceG1 was assigned earlier in the search.

The result of regressingfP1; P2; P3; P4g over the actions atkth level is thusfG1; G2g. We start
backtracking at levelk with this as the conflict set. We jump back toG2 right away, since it is the
most recent variable named in the conflict set. This avoids the inefficiency of re-considering the
choices atG3 andG4, as done by the normal backward search. AtG2, the backtrack conflict set
is absorbed, and the backtracking continues since there are no other choices. Same procedure is
repeated atG1. At this point, we are once again at the end of a level–and we memoizefG1; G2g
as the memo at levelk. Since there are no other levels to backtrack to, Graphplan is called on to
extend the planning-graph by one more level.

Notice that the memos based on EBL analysis capture failures that may require a significant
amount of search to rediscover. In our example, we are able to discover thatfG1; G2g is a failing
goal set despite the fact that there are no mutex relations between the choices of the goalsG1 and
G2.

4.3 Using the Memos

Before we end this section, there are a couple of observations regarding the use of the stored memos.
In the standard Graphplan, memos at each level are stored in a level-specific hash table. Whenever
backward search reaches a levelk with a set of conditions to be satisfied, it consults the hash table
to see if this exact set of conditions is stored as a memo. Search is terminated only if an exact hit
occurs. Since EBL analysis allows us to store compact memos, it is not likely that a complete goal
set at some levelk is going to exactly match a stored memo. What is more likely is that a stored
memo is a subset of the goal set at levelk (which is sufficient to declare that goal set a failure).
In other words, the memo checking routine in Graphplan needs to be modified so that it checks to
see if some subset of the current goal set is stored as a memo. The naive way of doing it – which
involves enumerating all the subsets of the current goal set and checking if any of them are in the
hash table, turns out to be very costly. One needs more efficient data structures, such as the set-
enumeration trees (Rymon, 1992). Indeed, Koehler and her co-workers (Koehler, Nebel, Hoffman,
& Dimopoulos, 1997) have developed a data structure called UB-Trees for storing the memos. The
UB-Tree structures can be seen as a specialized version of the “set-enumeration trees,” and they can
efficiently check if any subset of the current goal set has been stored as a memo.

The second observation regarding memos is that they can often serve as a failure explanation
in themselves. Suppose we are at some levelk, and find that the goal set at this level subsumes
some stored memoM . We can then useM as the failure explanation for this level, and regress it
back to the previous level. Such a process can provide us with valuable opportunities for further
back jumping at levels abovek. It also allows us to learn new compact memos at those levels. Note
that none of this would have been possible with normal memos stored by Graphplan, as the only
way a memo can declare a goal set at levelk as failing is if the memo is exactly equal to the goal
set. In such a case regression will just get us all the goals at levelk + 1, and does not buy us any
backjumping or learning power (Kambhampati, 1998).

13

KAMBHAMPATI

5. Empirical Evaluation of the Effectiveness of EBL/DDB

We have now seen the way EBL and DDB capabilities are added to the backward search by main-
taining and updating conflict-sets. We also noted that EBL and DDB capabilities avoid a variety
of inefficiencies in the standard Graphplan backward search. That these augmentations are sound-
ness and completeness preserving follows from the corresponding properties of conflict-directed
backjumping (Kambhampati, 1998). The remaining (million-dollar) question is whether these ca-
pabilities make a difference in practice. I now present a set of empirical results to answer this
question.

I implemented the EBL/DDB approach described in the previous section on top of a Graphplan
implementation in Lisp.8 The changes needed to the code to add EBL/DDB capability were rel-
atively minor – only two functions needed non-trivial changes9. I also added the UB-Tree subset
memo checking code described in (Koehler et al., 1997). I then ran several comparative experiments
on the “benchmark” problems from (Kautz & Selman, 1996), as well as from four other domains.
The specific domains included blocks world, rocket world, logistics domain, gripper domain, ferry
domain, traveling salesperson domain, and towers of hanoi. Some of these domains, including the
blocks world, the logistics domain and the gripper domain were used in the recent AI Planning
Systems competition. The specifications of the problems as well as domains are publicly available.

Table 1 shows the statistics on the times taken and number of backtracks made by normal Graph-
plan, and Graphplan with EBL/DDB capabilities.10

5.1 Run-Time Improvement

The first thing we note is that EBL/DDB techniques can offer quite dramatic speedups – from 1.6x
in blocks world all the way to 120x in the logistics domain (the Att-log-a problem is unsolvable by
normal Graphplan after over 40 hours of cpu time!). We also note that the number of backtracks
reduces significantly and consistently with EBL/DDB. Given the lengh of some of the runs, the time
Lisp spends doing garbage collection becomes an important issue. I thus report the cumulative time
(including cpu time and garbage collection time) for Graphplan with EBL/DDB, while I separate
the cpu time from cumulative time for the plain Graphplan (in cases where the total time spent
was large enough that garbage collection time is a significant fraction). Specifically, there are two
entrys in the column corresponding to total time for the normal Graphplan. The first entry is the
cpu time spent, while the second entry in parenthesis is the cumulative time (cpu time and garbage
collection time) spent. The speedup is computed with respect to the cumulative time of Graphplan
with EBL/DDB and cpu time of plain Graphplan.11 The reported speedups should thus be seen as
conservativeestimates.

8. The original lisp implementation of Graphplan was done by Mark Peot. The implementation was subsequently
improved by David Smith.

9. Assign-goals andfind-plan
10. In the earlier versions of this paper, including the paper presented at IJCAI (Kambhampati, 1999) I have reported

experiments on a Sun SPARC Ultra 1 running Allegro Common Lisp 4.3. The Linux machine run-time statistics
seem to be approximately 2.7x faster than those from the Sparc machine.

11. It is interesting to note that the percentage of time spent doing garbage collection is highly problem dependent. For
example, in the case of Att-log-a, only 30 minutes out of 41 hours (or about 1% of the cumulative time) was spent
doing garbage collection, while in the case of Tower-6, 3.1 hours out of 4.8 hours (or about 65% of the cumulative
time) was spent on garbage collection!

14

P
L

A
N

N
IN

G
G

R
A

P
H

A
S

A
C

S
P

Problem Graphplan with EBL/DDB Normal Graphplan Speedup
Tt Mt # Btks AvLn AvFM Tt. Mt. # Btks AvLn AvFM

Huge-Fact (18/18) 3.08 0.28 2004K 9.52 2.52 5.3 0.22 5181K 11.3 1.26 1.7x
BW-Large-B (18/18) 2.27 0.11 798K 10.15 3.32 4.15 0.05 2823K 11.83 1.13 1.8x
Rocket-ext-a (7/36) .8 .34 764K 8.5 82 19.43 11.7 8128K 23.9 3.2 24x
Rocket-ext-b (7/36) .8 .43 569K 7.5 101 14.1 7.7 10434K 23.8 3.22 17x
Att-log-a(11/79) 1.97 .89 2186K 8.21 46.18 >40.5hr (>41hr) - - 32 - >1215x
Gripper-6 (11/17) 0.1 0.03 201K 6.9 6.2 1.1 .39 2802K 14.9 4.9 11x
Gripper-8 (15/23) 2.4 .93 4426K 9 7.64 215(272) - - 17.8 - 90x
Gripper-10(19/29) 47.9 18.2 61373K 11.05 8.3 >8.2hr(>16hr) - - - - >10x
Tower-5 (31/31) .17 0.02 277K 6.7 2.7 7.23 1.27 19070K 20.9 2.2 42x
Tower-6 (63/63) 2.53 0.22 4098K 7.9 2.8 >1.7hr (>4.8hr) - - 22.3 - >40x
Ferry-41 (27/27) .44 0.13 723K 7.9 2.54 22(29) 11 33357K 24.5 2.3 50x
Ferry-5 (31/31) 1.13 .41 1993K 8.8 2.53 42(144) 24 53233K 25 2.4 37x
Ferry-6(39/39) 11.62 5.3 18318K 10.9 2.6 >5hr(>18.4hr) - - - - >25x
Tsp-10 (10/10) .99 0.23 2232K 6.9 12 89(93) 56.7 68648K 13 5 90x
Tsp-12(12/12) 12.4 2.65 21482K 7.9 15.2 >12hr (>14.5hr) - - - - >58x

Table 1: Empirical performance of EBL/DDB. Unless otherwise noted, times are in cpu minutes on a Pentium-III 500 MHZ machine with
256meg RA running Linux and allegro common lisp 5, compiled for speed. “Tt” is total time, “Mt” is the time used in checking
memos and “Btks” is the number of backtracks done during search. The times for Graphplan with EBL/DDB include both the cpu
and garbage collection time, while the cpu time is separated from the total time in the case of normal Graphplan. The numbers in
parentheses next to the problem names list the number of time steps and number of actions respectively in the solution. AvLn and
AvFM denote the average memo length and average number of failures detected per stored memo respectively.

1
5

KAMBHAMPATI

5.2 Reduction in Memo Length

The results also highlight the fact that the speedups offered by EBL/DDB are problem/domain
dependent – they are quite meager in blocks world problems, and are quite dramatic in many other
domains including the rocket world, logistics, ferry, gripper, TSP and Hanoi domains. The statistics
on the memos, shown in Table 1 shed light on the reasons for this variation. Of particular interest
is the average length of the stored memos (given in the columns labeled “AvLn”). In general, we
expect that the EBL analysis reduces the length of stored memos, as conditions that are not part of
the failure explanation are not stored in the memo. However, the advantage of this depends on the
likelihood that only a small subset of the goals at a given level are actually taking part in the failure.
This likelihood in turn depends on the amount of inter-dependencies between the goals at a given
level. From the table, we note that the average length reduces quite dramatically in the rocket world
and logistics12, while the reduction is much less pronounced in the blocks world. This variation can
be traced back to a larger degree of inter-dependency between goals at a given level in the blocks
world problems.

The reduction in average memo length is correlated perfectly with the speedups offered by EBL
on the corresponding problems. Let me put this in perspective. The fact that the average length
of memos for Rocket-ext-a problem is 8.5 with EBL and 24 without EBL, shows in essence that
normal Graphplan is re-discovering an 8-sized failure embedded in

�
24

8

�
possible ways in the worst

case in a 24 sized goal set – storing a new memo each time (incurring both increased backtracking
and matching costs)! It is thus no wonder that normal Graphplan performs badly compared to
Graphplan with EBL/DDB.

5.3 Utility of Stored Memos

The statistics in Table 1 also show the increased utility of the memos stored by Graphplan with
EBL/DDB. Since EBL/DDB store more general (smaller) memos than normal Graphplan, they
should, in theory, generate fewer memos and use them more often. The columns labeled “AvFM”
give the ratio of the number of failures discovered through the use of memos to the number of memos
generated in the first place. This can be seen as a measure of the average “utility” of the stored
memos. We note that the utility is consistently higher with EBL/DDB. As an example, in Rocket-
ext-b, we see that on the average an EBL/DDB generated memo was used to discover failures 101
times, while the number was only 3.2 for the memos generated by the normal Graphplan.13

5.4 Relative Utility of EBL vs. DDB

From the statistics in Table 1, we see that even though EBL can make significant improvements in
run-time, a significant fraction of the run time with EBL (as well as normal Graphplan) is spent in
memo checking. This raises the possibility that the overall savings are mostly from the DDB part
and that the EBL part (i.e, the part involving storing and checking memos) is in fact a net drain
(Kambhampati, Katukam, & Qu, 1997). To see if this is true, I ran some problems with EBL (i.e.,
memo-checking) disabled. The DDB capability as well as the standard Graphplan memoization

12. For the case of Att-log-a, I took the memo statistics by interrupting the search after about 6 hours
13. The statistics for Att-log-aseem to suggest that memo usage was not as bad for normal Graphplan. However, it should

be noted that Att-log-a was not solved by normal Graphplan to begin with. The improved usage factor may be due
mostly to the fact that the search went for a considerably longer time, giving Graphplan more opportunity to use its
memos.

16

PLANNING GRAPH AS A CSP

Problem EBL+DDB DDB Speedup
Btks Time Btks Time

Att-log-a 2186K 1.95 115421K 235 120x
Tower-6 4098K 2.37 97395K 121 51x

Rocket-ext-a 764K .83 3764K 17.18 21x
Gripper-8 4426K 2.43 5426K 4.71 1.94x
TSP-10 2238K 1.1 4308K 2.3 2.09x

Huge-Fct 2004K 3.21 2465K 3.83 1.19x

Table 2: Utility of storing and using EBL memos over just doing DDB

strategies were left in.14 The results are shown in Table 2, and demonstrate that the ability to store
smaller memos (as afforded by EBL) is quite helpful–giving rise to 120x speedup over DDB alone
in the Att-log-a problem, and 50x speedup in Tower-6 problem. Of course, the results also show that
DDB is an important capability in itself. Indeed, Att-log-aand tower-6 could not even be solved by
the standard Graphplan, while with DDB, these problems become solvable. In summary, the results
show that both EBL and DDB can have a net positive utility.

5.5 Utility of Memoization

Another minor, but not well-recognized, point brought out by the statistics in Table 1 is that the
memo checking can sometimes be a significant fraction of the run-time of standard Graphplan. For
example, in the case of Rocket-ext-a, standard Graphplan takes 19.4 minutes of which 11.7 minutes,
or over half the time, is spent in memo checking (in hash tables)! This raises the possibility that if
we just disable the memoization, perhaps we can do just as well as the version with EBL/DDB. To
see if this is the case, I ran some of the problems with memoization disabled. The results show that
in general disabling memo-checking leads to worsened performance. While I came across some
cases where the disablement reduces the overall run-time, the run-time is still much higher than
what you get with EBL/DDB. As an example, in the case of Rocket-ext-a, if we disable the memo
checking completely, Graphplan takes 16.5 minutes, which while lower than the 19.4 minutes taken
by standard Graphplan, is still much higher than the .8 minutes taken by the version of Graphplan
with EBL/DDB capabilities added. If we add DDB capability, while still disabling the memo-
checking, the run time becomes 2.4 minutes, which is still 3 times higher than that afforded with
EBL capability.

5.6 The C vs. Lisp Question

Given that most existing implementations of Graphplan are done in C with many optimizations,
one nagging doubt is whether the dramatic speedups due to EBL/DDB are somehow dependent
on the moderately optimized Lisp implementation I have used in my experiments. Thankfully, the
EBL/DDB techniques described in this paper have also been (re)implemented by Maria Fox and
Derek Long on their STAN system. STAN is a highly optimized implementation of Graphplan
that fared well in the recent AIPS planning competition. They have found that EBL/DDB resulted
in similar dramatic speedups on their system too (Fox, 1998; Fox & Long, 1999). For example,

14. I also considered removing the memoization completely, but the results were even poorer.

17

KAMBHAMPATI

they were unable to solve Att-log-a with plain Graphplan, but could solve it easily with EBL/DDB
added.

Finally, it is worth pointing out that even with EBL/DDB capabilities, I was unable to solve
some larger problems in the AT&T benchmarks, such as bw-large-c and Att-log-b. This is however
not an indictment against EBL/DDB since to my knowledge the only planners that solved these
problems have all used either local search strategies such as GSAT, randomized re-start strategies,
or have used additional domain-specific knowledge and pre-processing. At the very least, I am not
aware of any existing implementations of Graphplan that solve these problems.

6. On the Utility of Graphplan Memos

One important issue in using EBL is managing the costs of storage and matching. Indeed, as dis-
cussed in (Kambhampati, 1998), naive implementations of EBL/DDB are known to lose the gains
made in pruning power in the matching and storage costs. Consequently, several techniques have
been invented to reduce these costs through selective learning as well as selective forgetting. It is
interesting to see why these costs have not been as prominent an issue for EBL/DDB on Graphplan.
I think this is mostly because of two characteristics of Graphplan memoization strategy:

1. Graphplan’s memoization strategy provides a very compact representation for no-goods, as
well as a very selective strategy for remembering no-goods. Seen as DCSP, it only remembers
subsets of activated variables that do not have a satisfying assignment. Seen as a CSP (c.f.
Figure 2), Graphplan only remembers no-goods of the form

P i
1 6=? ^P

i
2 6=? � � �P

i
m 6=?

(where the superscripts correspond to the level of the planning graph to which the proposition
belongs), while normal EBL implementations learn no-goods of the form

P i
1 = a1 ^ P

j
2 = a2 � � �P

k
m = am

Suppose a planning graph containsn propositions divided intol levels, and each proposition
P at levelj has at mostd actions supporting it. A CSP compilation of the planning graph will
haven variables, each withd+1 values (the extra one for?). A normal EBL implementation
for such a CSP can learn, in the worst case,(d + 2)n no-goods.15 In contrast, Graphplan
remembers onlyl � 2

n
l memos16–a very dramatic reduction. This reduction is a result of two

factors:

(a) Each individual memo stored by Graphplan corresponds to an exponentially large set of
normal no-goods (the memo

P i
1 6=? ^P

i
2 6=? � � �P

i
m 6=?

is a shorthand notation for the conjunction ofdm no-goods corresponding to all possible
non-? assignments toP i

1 � � �P
i
m)

15. Each variablev may either not be present in a no-good, or be present with one ofd+ 1 possible assignments–giving
d+ 1 possibilities for each ofn variables.

16. At each level, each ofn
l

propositions either occurs in a memo or does not occur

18

PLANNING GRAPH AS A CSP

(b) Memos only subsume no-goods made up of proposition variables from the same plan-
ning graph level.

2. The matching cost is reduced by both the fact that considerably fewer no-goods are ever
learned, and the fact that Graphplan stores no-goods (memos) separately for each level, and
only consults the memos stored at levelj, while doing backwards search at a levelj,

The above discussion throws some light on why the so-called “EBL utility” problem is not as
critical for Graphplan as it is for EBL done on normal CSPs.

6.1 Scenarios Where Memoization is too Conservative to Avoid Rediscovery of the Same
Failures

The discussion above also raises the possibility that Graphplan (even with EBL/DDB) memoization
is too conservative and may be losing some useful learning opportunities only because they are not
in the required syntactic form. Specifically, before Graphplan can learn a memo of the form

P i
1 6=? ^P

i
2 6=? � � �P

i
m 6=?;

it must be the case thateachof thedm possible assignments to them propositional variables must
be a no-good. Even ifoneof them is not a no-good, Graphplan avoids learning the memo, thus
potentially repeating the failing searches at a later time (although the loss is made up to some extent
by learning several memos at a lower level).

Consider for example the following scenario: we have a set of variablesP i
1 � � �P

i
m � � �P

i
n at some

level i that are being assigned by backward search. Suppose the search has found a legal partial as-
signment for the variablesP i

1 � � �P
i
m�1, and the domain ofP i

m contains thek valuesfv1 � � � vkg. In
trying to assign the variablesP i

m � � �P
i
n, suppose we repeatedly fail and backtrack up to the variable

P i
m, re-assigning it and eventually settling at the valuev7. At this point once again backtracking

occurs, but this time we backtrackoverP i
m to higher level variables(P i

1 � � �P
i
m) and re-assigning

them. At this point, it would have been useful to remember some no-goods to the effect that none
of the first 6 values ofP i

m are going to work so all that backtracking does not have to be repeated.
Such no-goods will take the form:

P i
m = vj ^ P

i
m+1 6=? ^P

i
m+2 6=? � � �P

i
n 6=?

wherej ranges over1 � � � 6, for all the values ofP i
m that were tried and found to lead to failure while

assigning the later variables. Unfortunately, such no-goods are not in the syntactic form of memos
and so the memoization procedure cannot remember them. The search is thus forced to rediscover
the same failures.

6.2 Sticky Values as a Partial Antidote

One way of staying with the standard memoization, but avoiding rediscovery of the failing search
paths, such as those in the case of the example above, is to use the “sticky values” heuristic (Frost
& Dechter, 1994; Kambhampati, 1998). This involves remembering the current value of a variable
while skipping over it during DDB, and trying that value first when the search comes back to that
variable. The heuristic is motivated by the fact that when we skip over a variable during DDB, it
means that the variable and its current assignment have not contributed to the failure that caused

19

KAMBHAMPATI

the backtracking–so it makes sense to restore this value upon re-visit. In the example above, this
heuristic will remember thatv7 was the current value ofP i

m when we backtracked over it, and tries
that as the first value when it is re-visited. A variation on this technique is to re-arrange orfold the
domain of the variable such that all the values that precede the current value are sent to the back
of the domain, so that these values will be tried only if other previously untried values are found to
fail. This makes the assumption that the values that led to failure once are likely to do so again. In
the example above, this heuristic folds the domain ofP i

m so it becomesfv7; v8 � � � vk; v1; v2 � � � v6g.
Notice that both these heuristics make sense only if we employ DDB, as otherwise we will never
skip over any variable during backtracking.

I implemented both sticky value heuristics on top of EBL/DDB for Graphplan. The statistics
in Table 3 show the results of experiments with this extension. As can be seen, the sticky values
approach is able to give up to 4.6x additional speedup over EBL/DDB depending on the problem.
Further, while the folding heuristic dominates the simple version in terms of number of backtracks,
the difference is quite small in terms of run-time.

7. Forward Checking & Dynamic Variable Ordering

DDB and EBL are considered “look-back” techniques in that they analyze the failures by looking
back at the past variables that may have played a part in those failures. There is a different class
of techniques known as “look-forward” techniques for improving search. Prominent among these
latter are forward checking and dynamic variable ordering. Supporting forward checking involves
filtering out the conflicting actions from the domains of the remaining goals, as soon as a particular
goal is assigned. In the example in Figure 1, forward checking will filterA9 from the domain ofP4
as soon asP1 is assignedA5. Dynamic variable ordering (DVO) involves selecting for assignment
the goal that has the least number of remaining establishers.17 When DVO is combined with for-
ward checking, the variables are ordered according to their “live” domain sizes (where live domain
is comprised of values from the domain that are not yet pruned by forward checking). Our experi-
ments18 show that these techniques can bring about reasonable, albeit non-dramatic, improvements
in Graphplan’s performance. Table 4 shows the statistics for some benchmark problems, with dy-
namic variable ordering alone, and with forward checking and dynamic variable ordering. We note
that while the backtracks reduce by up to 3.6x in the case of dynamic variable ordering, and 5x in the
case of dynamic variable ordering and forward checking, the speedups in time are somewhat smaller,
ranging only from 1.1x to 4.8x. Times can perhaps be improved further with a more efficient imple-
mentation of forward checking.19 The results also seem to suggest that no amount of optimization
is going to make dynamic variable ordering and forward checking competitive with EBL/DDB on
other problems. For one thing, there are several problems, including Att-log-a, Tsp-12, Ferry-6 etc.
which just could not be solved even with forward checking and dynamic variable ordering. Second,
even on the problems that could be solved, the reduction in backtracks provided by EBL/DDB is far
greater than that provided by FC/DVO strategies. For example, on Tsp-10, the FC/DVO strategies

17. I have also experimented with a variation of this heuristic, known as the Brelaz heuristic (Gomes et al., 1998), where
the ties among variables with the same sized live-domains are broken by picking variables that take part in most
number of constraints. This variation did not however lead to any appreciable improvement in performance.

18. The study of forward checking and dynamic variable ordering was initiated with Dan Weld.
19. My current implementation physically removes the pruned values of a variable during forward checking phase, and

restores values on backtracks. There are better implementations, including use of in/out flags on the values as well as
use of indexed arrays (c.f. (Bacchus & van Run, 1995))

20

P
L

A
N

N
IN

G
G

R
A

P
H

A
S

A
C

S
P

Problem Plain EBL/DDB EBL/DDB+Sticky EBL/DDB+Sticky+Fold
Time Btks Time Btks Speedup Time Btks Speedup

Rocket-ext-a(7/36) .8 764K .37 372K 2.2x(2.05x) .33 347K 2.4x (2.2x)
Rocket-ext-b(7/36) .8 569K .18 172K 4.6x(3.3x) .177 169K 4.5x(3.36x)
Gripper-10(39/39) 47.95 61373K 36.9 56212K 1.29x(1.09x) 40.8 54975K 1.17x(1.12x)

Ferry-6 11.62 18318K 11.75 18151K .99x(1.01x) 11.87 18151K .97x(1.01x)
TSP-12(12/12) 12.44 21482K 9.86 20948K 1.26x(1.02x) 10.18 20948K 1.22x(1.02x)

Att-log-a(11/79) 1.95 2186K .95 1144K 2x(1.91x) .67 781K 2.9x(2.8x)

Table 3: Utility of using sticky values along with EBL/DDB.

2
1

KAMBHAMPATI

Problem GP GP+DVO Speedup GP+DVO+FC Speedup

Huge-fact (18/18) 5.3(5181K) 2.26 (1411K) 2.3x(3.6x) 3.59 (1024K) 1.47x(5x)
BW-Large-B (18/18) 4.15(2823K) 3.14(1416K) 1.3x(2x) 4.78(949K) .86(3x)
Rocket-ext-a (7/36) 19.43(8128K) 14.9(5252K) 1.3x(1.5x) 14.5(1877K) 1.3x(4.3x)
Rocket-ext-b (7/36) 14.1(10434K) 7.91(4382K) 1.8x(2.4x) 6(1490K) 2.4x(7x)
Att-log-a(11/79) >10hr >10hr - >10hr.
Gripper-6(11/17) 1.1(2802K) .65(1107K) 1.7x(2.5x) .73 (740K) 1.5x(3.7x)
Tsp-10(10/10) 89(69974K) 78(37654K) 1.14x(1.9x) 81(14697K) 1.09x(4.8x)
Tower-6(63/63) >10hr >10hr - >10hr.

Table 4: Impact of forward checking and dynamic variable ordering routines on Graphplan. Times
are in cpu minutes as measured on a 500 MHZ Pentium-III running Linux and Franz
Allegro Common Lisp 5. The numbers in parentheses next to times are the number of
backtracks. The speedup columns report two factors–the first is the speedup in time, and
the second is the speedup in terms of number of backtracks. While FC and DVO tend to
reduce the number of backtracks, the reduction does not always seem to show up in the
time savings.

reduce number of backtracks from 69974K to 14697K, a 4.8x improvement. However, this pales
in comparison to 2232K backtracks (or 31x improvement) given by by EBL/DDB (see the entry in
Table 1). Notice that these results only say that variable ordering strategies do not make a dramatic
difference for Graphplan’s backward search (or a DCSP compilation of the planning graph); they do
not make any claims about the utility of FC and DVO for a CSP compilation of the planning graph.

7.1 Complementing EBL/DDB with Forward Checking and Dynamic Variable Ordering

Although forward checking and dynamic variable ordering approaches were not found to be partic-
ularly effective in isolation for Graphplan’s backward search, I thought that it would be interesting
to revisit them in the context of a Graphplan enhanced with EBL/DDB strategies. Part of the orig-
inal reasoning underlying the expectation that goal (variable) ordering will not have a significant
effect on Graphplan performance is based on the fact that all the failing goal sets are stored in-toto
as memos (Blum & Furst, 1997, pp. 290). This reason no longer holds when we use EBL/DDB.
Further more, there exists some difference of opinion as to whether or not forward checking and
DDB can fruitfully co-exist. The results of (Prosser, 1993) suggest that domain-filtering–such as
the one afforded by forward checking, degrades intelligent backtracking. The more recent work
(Frost & Dechter, 1994; Bayardo & Schrag, 1997) however seems to suggest however that best CSP
algorithms should have both capabilities.

While adding plain DVO capability on top of EBL/DDB presents no difficulties, adding forward
checking does require some changes to the algorithm in Figure 4. The difficulty arises because a
failure may have occurred as a combined effect of the forward checking and backtracking. For
example, suppose we have four variablesv1 � � � v4 that are being considered for assignment in that
order. Supposev3 has the domainf1; 2; 3g, andv3 cannot be1 if v1 is a, and cannot be2 if v2 is
b. Suppose further thatv4’s domain only containsd, and there is a constraint saying thatv4 can’t

22

PLANNING GRAPH AS A CSP

Problem EBL EBL+DVO EBL+FC+DVO
Time(btks) Time(btks) Speedup Time(Btks) Speedup

Huge-fct 3.08(2004K) 1.51(745K) 2x(2.68x) 2.57(404K) 1.2x(5x)
BW-Large-B 2.27(798K) 1.81(514K) 1.25x(1.6x) 2.98(333K) .76x(2.39x)
Rocket-ext-a .8(764K) .4(242K) 2x(3.2x) .73(273K) 1.09x(2.8x)
Rocket-ext-b .8(569K) .29(151K) 2.75x(3.76x) .72(195K) 1.1x(2.9x)

Att-log-a 1.97(2186K) 2.59(1109K) .76x(1.97x) 3.98(1134K) .5x(1.92x)
Tower-6 2.53(4098K) 3.78(3396K) .67x(1.2x) 2.09(636K) 1.2x(6.4x)
TSP-10 .99(2232K) 1.27(1793K) .77x(1.24x) 1.34(828K) .73x(2.7x)

Table 5: Effect of complementing EBL/DDB with dynamic variable ordering and forward checking
strategies. The speedup columns report two factors–the first is the speedup in time, and
the second is the speedup in terms of number of backtracks. While FC and DVO tend to
reduce the number of backtracks, the reduction does not always seem to show up in the
time savings.

bed if v1 is a andv3 is 3. Suppose we are using forward checking, and have assignedv1; v2 the
valuesa andb. Forward checking prunes1 and2 from v3’s domain, leaving only the value3. At
this point, we try to assignv4 and fail. If we use the algorithm in Figure 4, the conflict set forv4
would befv4; v3; v1g, as the constraint that is violated isv1 = a ^ v3 = 3 ^ v4 = d. However this
is not sufficient since the failure atv4 may not have occurred if forward checking had not stripped
the value 2 from the domain ofv3. This problem can be handled by pushingv1 andv2, the variables
whose assignment stripped some values fromv3, into v3’s conflict set.20 Specifically, the conflict
set of every variablev is initialized to fvg to begin with, and wheneverv loses a value during
forward checking with respect to the assignment ofv0, v0 is added to the conflict set ofv. Whenever
a future variable (such asv4) conflicts withv3, we add the conflict set ofv3 (rather than justv3) to
the conflict set ofv4. Specifically the line

“Set cs = cs[f l g”

in the procedure in Figure 4 is replaced with the line

“Set cs = cs[Conflict-set(l)”

I have incorporated the above changes into my implementation, so it can support support for-
ward checking, dynamic variable ordering as well as EBL on Graphplan. Table 5 shows the perfor-
mance of this version on the experimental test suite. As can be seen from the numbers, the number
of backtracks are reduced by up to 3.7x in the case of EBL+DVO, and up to 5x in the case of
EBL+FC+DVO. The cpu time improvements are somewhat lower. While we got up to 2.7x speedup

20. Notice that it is possible that the values that were stripped off fromv3 ’s domain may not have had any impact on the
failure to assignv4. For example, perhaps there is another constraint that says thatv4 can’t bed if v3 is b, and in
that case, strictly speaking, the assignment ofv2 cannot really be blamed for the failure atv4. While this leads to
non-minimal explanations, there is no reason to expect that strict minimization of explanations is a pre-requisite for
the effectiveness of EBL/DDB; see (Kambhampati, 1998)

23

KAMBHAMPATI

with EBL+DVO, and up to 1.2x speedup with EBL+FC+DVO, in several cases, the cpu timesin-
creasewith FC and DVO. Once again, I attribute this to the overheads of forward checking (and to
a lesser extent, of dynamic variable ordering). Most importantly, by comparing the results in the
Tables 4 and 5, we can see that EBL/DDB capabilities are able to bring about significant speedups
even over a Graphplan implementation using FC and DVO.

8. EBL/DDB & Randomized Search

Recent years have seen increased use of randomized search strategies in planning. These include
both purely local search strategies (Gerevini, 1999; Selman, Levesque, & Mitchell, 1992) as well
as hybrid strategies that introduce a random restart scheme on top of a systematic search strategy
(Gomes et al., 1998). The BLACKBOX planning system (Kautz & Selman, 1999) supports a variety
of random restart strategies on top of a SAT compilation of the planning graph, and empirical
studies show that these strategies can, probabilistically speaking, scale up much better than purely
systematic search strategies.

I wanted to investigate if (and by how much) EBL & DDB techniques will help Graphplan
even in the presence of these newer search strategies. While EBL and DDB techniques have little
applicability to purely local search strategies, they could in theory help random restart systematic
search strategies. Random restart strategies are motivated by an attempt to exploit the “heavy-
tail” distribution (Gomes et al., 1998) of the solution nodes in the search trees of many problems.
Intuitively, in problems where there are a non-trivial percentage of very easy to find solutions as
well as very hard to find solutions, it makes sense to restart the search when we find that we are
spending too much effort for a solution. By restarting this way, we hope to (probabilistically) hit on
the easier-to-find solutions.

I implemented a random-restart strategy on top of Graphplan by making the following simple
modifications to the backward search:

1. We keep track of the number of times the backward search backtracks from one level of the
plan graph to a previous level (a level closer to the goal state), and whenever this number
exceeds a given limit (calledbacktrack limit), the search is restarted (by going back to the last
level of the plan graph), assuming that the number of restarts has not also exceeded the given
limit. The search process between any two restarts is referred to as anepoch.

2. The supporting actions (values) for a proposition variable are considered in a randomized
order. It is this randomization that ensures that when the search is restarted, we will look at
the values of each variable in a different order.21

Notice that random-restart strategy still allows the application of EBL and DDB strategies, since
during any given epoch, the behavior of the search is identical to that of the standard backward
search algorithm. Indeed, as the backtrack limit and the number of restarts are made larger and
larger, the whole search becomes identical to standard backward search.

21. Reordering values of a variable doesn’t make a whole lot of sense in BLACKBOX which is based on SAT encodings
and thus has only boolean variables. Thus, the randomization in BLACKBOX is done on the order in which the goals
are considered for assignment. This typically tends to clash with the built-in goal ordering strategies (such as DVO
and SAT-Z (Li & Anbulagan, 1997)), and they get around this conflict by breaking ties among variables randomly.
To avoid such clashes, I decided to randomize Graphplan by reordering values of a variable. I also picked inter-level
backtracks as a more natural parameter characterizing the difficulty of a problem for Graphplan’s backward search.

24

P
L

A
N

N
IN

G
G

R
A

P
H

A
S

A
C

S
P

Problem Parameters Graphplan with EBL/DDB Normal Graphplan
R/B/L %sol Length Time Av. MFSL %sol Length Time Av. MFSL

Att-log-a(11/54) 5/50/20 99% 14(82) .41 4.6K(28K) 2% 19(103) .21 .3K(3.7K)
Att-log-a(11/54) 10/100/20 100% 11.3(69.5) .72 17.8K(59K) 11% 17.6(100.5) 1.29 3.7K(41K)
Att-log-a(11/54) 10/100/30 100% 11.3(69.5) .72 17.8K(59K) 54% 25.6(136) 3 4K(78K)
Att-log-a(11/54) 20/200/20 100% 11(68.5) 2.38 73K(220K) 13% 18(97.5) 3 31K(361K)
Att-log-a(11/54) 20/200/30 100% 11(68.5) 2.38 73K(220K) 94% 22.1(119.3) 31 33K(489K)

Att-log-b(13/47) 5/50/20 17% 18.1(101) 1.62 8K(93K) 0% - - .2K(4K)
Att-log-b(13/47) 10/100/20 60% 17.3(98) 11.4 69K(717K) 0% - - 2.6K(53K)

Att-log-b(13/47) 10/100/30 100% 20.1(109) 15.3 74K(896K) 3% 28(156) 4 5K(111K)

Att-log-c(13/65) 5/50/30 55% 22.85(124) 2.77 8K(145K) 2% 26.5(135) .75 .4K(8K)
Att-log-c(13/65) 10/100/30 100% 19.9(110) 14 71K(848K) 2% 29(152) 4 3.7K(111K)

Rocket-ext-a(7/34) 10/100/30 100% 7.76(35.8) 1.3 29K(109K) 58% 21.24(87.3) 2 .2K(4K)
Rocket-ext-a(7/34) 20/200/30 100% 7(34.1) 1.32 38K(115K) 90% 21.3(85) 8.1 2.3K(43K)
Rocket-ext-a(7/34) 40/400/30 100% 7(34.2) 1.21 35K(105K) 100% 15.3(62.5) 45 35K(403K)

Table 6: Effect of EBL/DDB on random-restart Graphplan. Time is measured in cpu minutes on Allegro Common Lisp 5.0 running on a
Linux 500MHZ Pentium machine. The numbers next to the problem names are the number of steps and actions in the shortest
plans reported for those problems in the literature. The R/B/L parameters in the second column refer to the limits on the number
of restarts, number of backtracks and the number levels to which the plan graph is expanded. All the statistics are averaged over
multiple runs (typically 100 or 50). The “MFSL” column gives the average number of memo-based failures per searched level of
the plan graph. The numbers in parentheses are the total number of memo-based failures averaged over all runs. Plan lengths were
averaged only over the successful runs.

2
5

KAMBHAMPATI

To check if my intuitions about the effectiveness of EBL/DDB in randomized search were in-
deed correct, I conducted an empirical investigation comparing the performance of random search
on standard Graphplan as well as Graphplan with EBL/DDB capabilities. Since the search is ran-
domized, each problem is solved multiple number of times (100 times in most cases), and the run-
time, plan length and other statistics were averaged over all the runs. The experiments are conducted
with a given backtrack limit, a given restart limit, as well as a limit on the number of levels to which
the planning graph is extended. This last one is needed as in randomized search, a solution may be
missed at the first level it appears, leading to a prolonged extension of the planning graph until a
(inoptimal) solution is found at a later level. When the limit on the number of levels is expanded,
the probability of finding solution increases, but at the same time, the cpu time spent searching the
graph also increases.

Having implemented this random restart search, the first thing I noticed is an improvement in
the solvability horizon (as expected, given the results in (Gomes et al., 1998)). Table 6 shows these
results. One important point to note is that the results in the table above talk aboutaverageplan
lengths and cpu times. This is needed as due to randomization potentially each run can produce
a different outcome (plan). Secondly, while Graphplan with systematic search guarantees shortest
plans (measured in the number of steps), the randomized search will not have such a guarantee.
In particular, the randomized version might consider a particular planning graph to be barren of
solutions, based simply on the fact that no solution could be found within the confines of the given
backtrack limit and number of restarts.

Graphplan, with or without EBL/DDB, is more likely to solve larger problems with randomized
search strategies. For example, in the logistics domain, only the Att-log-a problem was solvable
(within 24 hours real time) with EBL and systematic search. With the randomization added, my
implementation was able to solve both Att-log-b and Att-log-c quite frequently. As the limits on the
number of restarts, backtracks and levels is increased, the likelihood of finding a solution as well as
the average length of the solution found improves. For example, Graphplan with EBL/DDB is able
to solve Att-log-b in every trial for 10 restarts, 100 backtracks and 30 levels as the limits (although
the plans are quite inoptimal).

The next, and perhaps more interesting, question I wanted to investigate is whether EBL and
DDB will continue to be useful for Graphplan when it uses randomized search. At first blush,
it seems as if they will not be as important–after all even Graphplan with standard search may
luck out and be able to find solutions quickly in the presence of randomization. Further thought
however suggests that EBL and DDB may still be able to help Graphplan. Specifically, they can
help Graphplan in using the given backtrack limit in a more judicious fashion. To elaborate, suppose
the random restart search is being conducted with 100 backtracks and 10 restarts. With EBL and
DDB, Graphplan is able to pinpoint the cause of the failure more accurately than without EBL and
DDB. This means that when the search backtracks, the chance that it will have to backtrack again
for the same (or similar) reasons is reduced. This in turn gives the search more of a chance on
catching a success during one of the number of epochs allowed. All this is in addition to the more
direct benefit of being able to use the stored memos across epochs to cut down search.

As can be seen from the data in Table 6, for a given set of limits on number of restarts, number
of backtracks, and number of levels expanded, Graphplan with EBL/DDB is able to get a higher
percentage of solvability as well as significantly shorter length solutions (both in terms of levels and
in terms of actions). To get comparable results on the standard Graphplan, I had to significantly
increase the input parameters (restarts, backtracks and levels expanded), which in turn led to dra-

26

PLANNING GRAPH AS A CSP

matic increases in the average run time. For example, for the Att-log-a problem, with 5 restarts and
50 backtracks, and 20 levels limit, Graphplan was able to solve the problem 99% of the time, with
an average plan length of 14 steps and 82 actions. In contrast, without EBL/DDB, Graphplan was
able to solve the problem in only 2% of the cases, with an average plan length of 19 steps and 103
actions. If we double the restarts and backtracks, the EBL/DDB version goes to 100% solvability
with an average plan length of 11.33 steps and 69.53 actions. The standard Graphplan goes to 11%
solvability and a plan length of 17.6 steps and 100 actions. If we increase the number of levels to 30,
then the standard Graphplan solves 54% of the problems with an average plan length of 25.6 steps
and 136 actions. It takes 20 restarts and 200 backtracks, as well as a 30-level limit before standard
Graphplan is able to cross 90% solvability. By this time, the average run time is 31 minutes, and
the average plan length is 22 steps and 119 actions. The contrast between this and the 99% solv-
ability in 0.4 minutes with 14 step 82 action plans provided by Graphplan with EBL and 5 restarts
and 50 backtracks is significant! Similar results were observed in other problems, both in logistics
(Att-log-b, Att-log-c) and other domains (Rocket-ext-a, Rocket-ext-b).

The results also show that Graphplan with EBL/DDB is able to generate and reuse memos ef-
fectively across different restart epochs. Specifically, the numbers in the columns titled “Av. MFSL”
give the average number ofmemo-basedfailures persearchlevel.22 We note that in all cases, the
average number of memo-based failures are significantly higher for Graphplan with EBL than for
normal Graphplan. This shows that EBL/DDB analysis is helping Graphplan reduce wasted effort
significantly, and thus reap better benefits out of the given backtrack and restart limits.

9. Related Work

In their original implementation of Graphplan, Blum and Furst experimented with a variation of the
memoization strategy called “subset memoization”. In this strategy, they keep the memo generation
techniques the same, but change the way memos are used, declaring a failure when a stored memo
is found to be a subset of the current goal set. Since complete subset checking is costly, they
experimented with a “partial” subset memoization where only subsets of lengthn andn � 1 are
considered for ann sized goal set.

As we mentioned earlier, Koehler and her co-workers (Koehler et al., 1997) have re-visited the
subset memoization strategy, and developed a more effective solution to complete subset checking
that involves storing the memos in a data structure called UB-Tree, instead of in hash tables. The
results from their experiments with subset memoization are mixed, indicating that subset memoiza-
tion does not seem to improve the cpu time performance significantly. The reason for this is quite
easy to understand – while they improved the memo checking time with the UB-Tree data structure,
they are still generating and storing the same old long memos. In contrast, the EBL/DDB extension
described here supports dependency directed backtracking, and by reducing the average length of
stored memos, increases their utility significantly, thus offering dramatic speedups.

To verify that the main source of power in the EBL/DDB-Graphplan is in the EBL/DDB part
and not in the UB-Tree based memo checking, I re-ran my experiments with EBL/DDB turned off,

22. Notice that the number of search levels may be different from (and smaller than) the number of planning graph levels,
because Graphplan initiates a search only when none of the goals are pair-wise mutex with each other. In Att-log-a,
Att-log-b and Att-log-c, this happens starting at level 9. For Rocket-ext-a it happens starting at level 5. The numbers
in parentheses are the total number of memo based failures. We divide this number by the average number of levels
in which search was conducted to get the “Av. MFSL” statistic.

27

KAMBHAMPATI

Problem Tt Mt #Btks EBL x" #Gen #Fail AvFM AvLn

Huge-Fact 3.20 1 2497K 1.04x 24243 33628 1.38 11.07
BW-Large-b 2.74 0.18 1309K 1.21x 11708 15011 1.28 11.48
Rocket-ext-a 19.2 16.7 6188K 24x 62419 269499 4.3 24.32
Rocket-ext-b 7.36 4.77 7546K 9.2x 61666 265579 4.3 24.28
Att-log-a > 12hrs - - >120x - - - -

Table 7: Performance of subset memoization with UB-Tree data structure (without EBL/DDB). The
“Tt” is the total cpu time and “Mt” is the time taken for checking memos. “#Btks” is the
number of backtracks. “EBLx” is the amount of speedup offered by EBL/DDB over subset
memoization “#Gen” lists the number of memos generated (and stored), “#Fail” lists the
number of memo-based failures, “AvFM” is the average number of failures identified per
generated memo and “AvLn” is the average length of stored memos.

but with subset memo checking with UB-Tree data structure still enabled. The results are shown in
in Table 7. The columns labeled “AvFM” show that as expected subset memoization does improve
the utility of stored memos over normal Graphplan (since it uses a memo in more scenarios than
normal Graphplan can). However, we also note that subset memoization by itself does not have any
dramatic impact on the performance of Graphplan, and that EBL/DDB capability can significantly
enhance the savings offered by subset memoization.

In (Kambhampati, 1998), I describe the general principles underlying the EBL/DDB techniques
and sketch how they can be extended to dynamic constraint satisfaction problems. The development
in this paper can be seen as an application of the ideas there. Readers needing more background
on EBL/DDB are thus encouraged to review that paper. Other related work includes previous at-
tempts at applying EBL/DDB to planning algorithms, such as the work on UCPOP+EBL system
(Kambhampati et al., 1997). One interesting contrast is the ease with which EBL/DDB can be added
to Graphplan as compared to UCPOP system. Part of the difference comes from the fact that the
search in Graphplan is ultimately on a propositional dynamic CSP, while in UCPOP’s search is a
variablized problem-solving search.

As I mentioned in Section 2, Graphplan planning graph can also be compiled into a normal CSP
representation, rather than the dynamic CSP representation. I used the dynamic CSP representa-
tion as it corresponds quite directly to the backward search used by Graphplan. We saw that the
model provides a clearer picture of the mutex propagation and memoization strategies, and helps us
unearth some of the sources of strength in the Graphplan memoization strategy–including the fact
that memos are a very conservative form of no-good learning that obviate the need for the no-good
management strategies to a large extent.

The dynamic CSP model may also account for some of the peculiarities of the results of my
empirical studies. For example, it is widely believed in the CSP literature that forward checking and
dynamic variable ordering are either as critical as, or perhaps even more critical than, the EBL/DDB
strategies (Bacchus & van Run, 1995; Frost & Dechter, 1994). Our results however show that for
Graphplan, which uses the dynamic CSP model of search, DVO and FC are largely ineffective
compared to EBL/DDB on the standard Graphplan. To some extent, this may be due to the fact that

28

PLANNING GRAPH AS A CSP

Graphplan already has a primitive form of EBL built into its memoization strategy. In fact, Blum
& Furst (1997) argue that with memoization and a minimal action set selection (an action set is
considered minimal if it is not possible to remove an action from the set and still support all the
goals for which the actions were selected), the ordering of goals will have little effect (especially in
the earlier levels that do not contain a solution).

Another reason for the ineffectiveness of the dynamic variable ordering heuristic may have to
do with the differences between the CSP and DCSP problems. In DCSP, the main aim is not just to
quickly find an assignment for the the current level variables, but rather to find an assignment for
the current level which is likely to activate fewer and easier to assign variables, whose assignment
in turn leads to fewer and easier to assign variables and so on. The general heuristic of picking the
variable with the smallest (live) domain does not necessarily make sense in DCSP, since a variable
with two actions supporting it may actually be much harder to handle than another with many
actions supporting it, if each of the actions supporting the first one eventually lead to activation of
many more and harder to assign new variables. It may thus be worth considering ordering strategies
that are more customized to the dynamic CSP models–e.g. orderings that are based on the number
(and difficulty) of variables that get activated by a given variable (or value) choice.

We have recently experimented with a value-ordering heuristic that picks the value to be as-
signed to a variable using the distance estimates of the variables that will be activated by that choice
(Kambhampati & Nigenda, 2000). The planning graph provides a variety of ways of obtaining these
distance estimates. The simplest idea would be to say that the distance of a propositionp is the level
at whichp enters the planning graph for the first time. This distance estimate can then be used
to rank variables and their values. Variables can be ranked simply in terms of their distances–the
variables that have the highest distance are chosen first (akin to fail-first principle). Value ordering
is a bit trickier–for a given variable, we need to pick an action whose precondition set has the lowest
distance. The distance of the precondition set can be computed from the distance of the individual
preconditions in several ways:

� Maximum of the distances of the individual propositions making up the preconditions.

� Sum of the distances of the individual propositions making up the preconditions.

� The first level at which the set of propositions making up the preconditions are present and
are non-mutex.

In (Kambhampati & Nigenda, 2000), we evaluate goal and value ordering strategies based on
these ideas, and show that they can lead to quite impressive (upto 4 orders of magnitude in our
tests) speedups in solution-bearing planning graphs. We also relate the distances computed through
planning graph to the distance transforms computed by planners like HSP (Bonet, Loerincs, &
Geffner, 1999) and UNPOP (McDermott, 1999). This idea of using the planning graph as a basis
for computing heuristic distance metrics is further investigated in the context of state-space search
in (Nguyen & Kambhampati, 2000). An interesting finding in that paper is that even when one is
using state-space instead of CSP-style solution extraction, EBL can still be useful as a lazy demand-
driven approach for discovering n-ary mutexes that can improve the informedness of the heuristic.
Specifically, Long & Kambhampati describe a method where a limited run of Graphplan’s back-
ward search, armed with EBL/DDB is used as a pre-processing stage to explicate memos (“n-ary
mutexes”) which are then used to significantly improve the effectiveness of the heuristic on the
state-search.

29

KAMBHAMPATI

The general importance of EBL & DDB for CSP and SAT problems is well recognized. Indeed,
one of the best systematic solvers for propositional satisfiability problems is RELSAT (Bayardo &
Schrag, 1997), which uses EBL, DDB, and forward checking. A randomized version of RELSAT is
one of the solvers supported by the BLACKBOX system (Kautz & Selman, 1999), which compiles
the planning graph into a SAT encoding, and ships it to various solvers. BLACKBOX thus offers
a way of indirectly comparing the Dynamic CSP and static CSP models for solving the planning
graph. As discussed in Section 2.2, the main differences are that BLACKBOX needs to compile
the planning graph into an extensional SAT representation. This makes it harder for BLACKBOX
to exploit the results of searches in previous levels (as Graphplan does with its stored memos),
and also leads to memory blowups. The latter is particularly problematic as the techniques for
condensing planning graphs, such as the bi-level representation discussed in (Fox & Long, 1999;
Smith & Weld, 1999) will not be effective when we compile the planning graph to SAT. On the
flip side, BLACKBOX allows non-directional search, and the opportunity to exploit existing SAT
solvers, rather than develop customized solvers for the planning graph. At present, it is not clear
whether either of these approaches dominates the other. In my own informal experiments, I found
that certain problems, such as Att-log-x, are easier to solve with non-directional search offered by
BLACKBOX, while others, such as Gripper-x, are easier to solve with the Graphplan backward
search. The results of the recent AIPS planning competition are also inconclusive in this respect
(McDermott, 1998).

While my main rationale for focusing on dynamic CSP model of the planning graph is due to
its closeness to Graphplan’s backward search, Gelle (1998) argues that keeping activity constraints
distinct from value constraints has several advantages in terms of modularity of the representation.
In Graphplan, this advantage becomes apparent when not all activation constraints are knowna
priori , but are posted dynamically during search,. This is the case in several extensions of the
Graphplan algorithm that handle conditional effects (Kambhampati et al., 1997; Anderson, Smith,
& Weld, 1998; Koehler et al., 1997), and incomplete initial states (Weld, Anderson, & Smith, 1998).

Although EBL and DDB strategies try to exploit the symmetry in the search space to improve the
search performance, they do not go far enough in many cases. For example, in the Gripper domain,
the real difficulty is that search gets lost in the combinatorics of deciding which hand should be used
to pick which ball for transfer into the next room–a decision which is completely irrelevant for the
quality of the solution (or the search failures, for that matter). While EBL/DDB allow Graphplan
to cut the search down a bit, allowing transfer of up to 10 balls from one room to another, they
are over come beyond 10 balls. There are two possible ways of scaling further. The first is to
“variablize” memos, and realize that certain types of failures would have occurred irrespective of
the actual identity of the hand that is used. Variablization, also called “generalization” is a part
of EBL methods (Kambhampati, 1998; Kambhampati et al., 1997). Another way of scaling up
in such situations would be to recognize the symmetry inherent in the problem and abstract the
resources from the search. In (Srivastava & Kambhampati, 1999), we describe this type of resource
abstraction approach for Graphplan.

10. Conclusion and Future work

In this paper, I traced the connections between the Graphplan planning graph and CSP, and mo-
tivated the need for exploiting CSP techniques to improve the performance of Graphplan back-
ward search. I then adapted and evaluated several CSP search techniques in the contest of Graph-

30

PLANNING GRAPH AS A CSP

plan. These included EBL, DDB, forward checking, dynamic variable ordering, sticky values, and
random-restart search. My empirical studies show the EBL/DDB is particularly useful in dramati-
cally speeding up Graphplan’s backward search (by up tp 1000x in some instances). The speedups
can be improved further (by up to 8x) with the addition of forward checking, dynamic variable or-
dering and sticky values on top of EBL/DDB. I also showed that EBL/DDB techniques are equally
effective in helping Graphplan, even if random-restart search strategies are used.

A secondary contribution of this paper is a clear description of the connections between the
Graphplan planning graph, and the (dynamic) constraint satisfaction problem. These connections
help us understand some unique properties of the Graphplan memoization strategy, when viewed
from CSP standpoint (see Section 9).

There are several possible ways of extending this work. The first would be to support the
use of learned memos across problems (or when the specification of a problem changes, as is the
case during replanning). Blum & Furst (1997) suggest this as a promising future direction, and
the EBL framework described here makes the extension feasible. As discussed in (Kambhampati,
1998; Schiex & Verfaillie, 1993), supporting such inter-problem usage involves “contextualizing”
the learned no-goods. In particular, since the soundness of memos depends only on the initial state
of the problem (given that operators do not change from problem to problem), inter-problem usage
of memos can be supported by tagging each learned memo with the specific initial state literals that
supported that memo. Memos can then be used at the corresponding level of a new problem as
long as their initial state justification holds in the new problem. The initial state justification for
the memos can be computed incrementally by a procedure that first justifies the propagated mutex
relations in terms of the initial state, and then justifies individual memos in terms of the justifications
of the mutexes and other memos from which they are derived.

The success of EBL/DDB approaches in Graphplan is in part due to the high degree of re-
dundancy in the planning graph structure. For example, the propositions (actions) at levell in a
planning graph are a superset of the propositions (actions) at levell � 1, the mutexes (memos) at
level l are a subset of the mutexes (memos) at levell � 1). While the EBL/DDB techniques help
Graphplan exploit some of this redundancy by avoiding previous failures, the exploitation of redun-
dancy can be pushed further. Indeed, the search that Graphplan does on a planning graph of sizel

is almost are-play of the search it did on the planning graph of sizel � 1 (with a few additional
choices). In (Zimmerman & Kambhampati, 1999), we present a complementary technique called
“explanation-guided backward search” that attempts to exploit thisdeja vuproperty of the Graph-
plan’s backward search. Our technique involves keeping track of an elaborate trace of the search at
a levell (along with the failure information), termed the “pilot explanation” for levell, and using the
pilot explanation to guide the search at levell � 1. The way EBL/DDB help in this process is that
they significantly reduce the size of the pilot explanations that need to be maintained. Preliminary
results with this technique shows that it complements EBL/DDB and provides significant further
savings in search.

Acknowledgements

This research is supported in part by NSF young investigator award (NYI) IRI-9457634, ARPA/Rome
Laboratory planning initiative grant F30602-95-C-0247, Army AASERT grant DAAH04-96-1-
0247, AFOSR grant F20602-98-1-0182 and NSF grant IRI-9801676. I thank Maria Fox and Derek
Long for taking the time to implement and experiment with EBL/DDB on their STAN system. I

31

KAMBHAMPATI

would also like to thank them, as well as Terry Zimmerman, Biplav Srivastava, Dan Weld, Avrim
Blum and Steve Minton for comments on previous drafts of this paper. Special thanks are due to
Dan Weld, who hosted me at University of Washington in Summer 1997, and spent time discussing
the connections between CSP and Graphplan. Finally, I thank Mark Peot and David Smith for their
clean Lisp implementation of the Graphplan algorithm, which served as the basis for my extensions.

References

Anderson, C., Smith, D., & Weld, D. (1998). Conditional effects in graphplan. InProc. AI Planning
Systems Conference.

Bacchus, F., & van Run, P. (1995). Dynamic variable ordering in CSPs. InProc. Principles and
Practice of Constraint Programming (CP-95). Published as Lecture Notes in Artificial Intel-
ligence, No. 976. Springer Verlag.

Bayardo, R., & Schrag, R. (1997). Using CSP look-back techniques to solve real-world sat in-
stances. InProc. AAAI-97.

Blum, A., & Furst, M. (1997). Fast planning through planning graph analysis.Artificial Intelligence,
90(1-2).

Bonet, B., Loerincs, G., & Geffner, H. (1999). A robust and fast action selection mechanism for
planning. InIn Proc. AAAI-97.

Do, B., & Kambhampati, S. (2000). Solving planning graph by compiling it into CSP. InProc. 5th
International Conference on AI Planning and Scheduling.

Do, B., Srivastava, B., & Kambhampati, S. (2000). Investigating the effect of relevance and reacha-
bility constraints on the sat encodings of planning. InProc. 5th International Conference on
AI Planning and Scheduling.

Fox, M. (1998). Private correspondence..

Fox, M., & Long, D. (1999). Efficient implementation of plan graph.Journal of Artificial Intelli-
gence Research, 10.

Frost, D., & Dechter, R. (1994). In search of the best constraint satisfactions earch. InProc. AAAI-
94.

Gelle, E. (1998).On the generation of locally consistent solution spaces in mixed dynamic con-
straint problems. Ph.D. thesis, Ingenieure informaticienne EPFL de nationalite Suisse, Lau-
sanne, Switzerland.

Gerevini, A. (1999). Fast planning through greedy planning graphs. InProc. AAAI-99.

Gomes, C., Selman, B., & Kautz, H. (1998). Boosting combinatorial search through randomization.
In Proc. AAAI-98, pp. 431–437.

Kambhampati, S. (1997). Challenges in bridging plan synthesis paradigms. InProc. IJCAI-97.

32

PLANNING GRAPH AS A CSP

Kambhampati, S. (1998). On the relations between intelligent backtracking and explanation-based
learning in planning in constraint satisfaction.Artifical Intelligence, 105(1-2).

Kambhampati, S. (1999). Improving graphplan’s search with ebl & ddb techniques. InProc. IJCAI-
99.

Kambhampati, S., Katukam, S., & Qu, Y. (1997). Failure driven dynamic search control for partial
order planners: An explanation-based approach.Artificial Intelligence, 88(1-2), 253–215.

Kambhampati, S., & Nigenda, R. (2000). Distance-based goal ordering heuristics for graphplan. In
Proc. 5th International Conference on AI Planning and Scheduling.

Kambhampati, S., Parker, E., & Lambrecht, E. (1997). Understanding and extending graphplan.
In Proceedings of 4th European Conference on Planning. URL: rakaposhi.eas.asu.edu/ewsp-
graphplan.ps.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Plannng, propositional logic and stochastic
search. InProc. AAAI-96.

Kautz, H., & Selman, B. (1999). Blackbox: Unifying sat-based and graph-based planning. InProc.
IJCAI-99.

Koehler, J., Nebel, B., Hoffman, J., & Dimopoulos, Y. (1997). Extending planning graphs to an adl
subset. Tech. rep. 88, Albert Ludwigs University.

Li, C., & Anbulagan (1997). Heuristics based on unit propagation for satisfiability problems. In
Proc. IJCAI-97.

McDermott, D. (1998). Aips-98 planning competition results.
ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html.

McDermott, D. (1999). Using regression graphs to control search in planning.Aritificial Intelli-
gence, 109(1-2), 111–160.

Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction problems. InProc. AAAI-90.

Nguyen, X., & Kambhampati, S. (2000). Extracting effective and admissible state-space heuristics
from the planning graph. Tech. rep. ASU CSE TR 00-03, Arizona State University.

Prosser, P. (1993). Domain filtering can degrade intelligent backtracking search. InProc. IJCAI-93.

Rymon, R. (1992). Set enumeration trees. InProc. KRR-92.

Schiex, T., & Verfaillie, G. (1993). Nogood recording for static and dynamic constraint satisfaction
problems. InProc. 5th intl. conference on tools with artificial intelligence.

Selman, B., Levesque, H., & Mitchell, D. (1992). GSAT: a new method for solving hard satisfiability
problems. InIn Proc. AAAI-92.

Smith, D., & Weld, D. (1999). Temporal planning with mutual exclusion reasoning. InProc.
IJCAI-99.

33

KAMBHAMPATI

Srivastava, B., & Kambhampati, S. (1999). Scaling up planning by teasing out resource scheduling.
In Proc. European Conference on Planning.

Tsang, E. (1993).Foundations of Constraint Satisfaction. Academic Press, San Diego, California.

Weld, D., Anderson, C., & Smith, D. (1998). Extending graphplan to handle uncertainty & sensing
actions. InProc. AAAI-98.

Zimmerman, T., & Kambhampati, S. (1999). Exploiting symmetry in the plan-graph via
explanation-guided search. InProc. AAAI-99.

34

