

Journal of Arti�cial Intelligence Research 12 (2000) 339{386 Submitted 12/99; published 6/00


On Reasonable and Forced Goal Orderings and their Use in


an Agenda-Driven Planning Algorithm


Jana Koehler jana koehler@ch.schindler.com


Schindler Lifts, Ltd.


R & D Technology Management


6031 Ebikon, Switzerland


J�org Ho�mann hoffmann@informatik.uni-freiburg.de


Institute for Computer Science


Albert Ludwigs University


Georges-K�ohler-Allee, Geb. 52


79110 Freiburg, Germany


Abstract


The paper addresses the problem of computing goal orderings, which is one of the


longstanding issues in AI planning. It makes two new contributions. First, it formally


de�nes and discusses two di�erent goal orderings, which are called the reasonable and the


forced ordering. Both orderings are de�ned for simple STRIPS operators as well as for


more complex ADL operators supporting negation and conditional e�ects. The complexity


of these orderings is investigated and their practical relevance is discussed. Secondly, two


di�erent methods to compute reasonable goal orderings are developed. One of them is


based on planning graphs, while the other investigates the set of actions directly. Finally,


it is shown how the ordering relations, which have been derived for a given set of goals


G, can be used to compute a so-called goal agenda that divides G into an ordered set of


subgoals. Any planner can then, in principle, use the goal agenda to plan for increasing


sets of subgoals. This can lead to an exponential complexity reduction, as the solution to a


complex planning problem is found by solving easier subproblems. Since only a polynomial


overhead is caused by the goal agenda computation, a potential exists to dramatically speed


up planning algorithms as we demonstrate in the empirical evaluation, where we use this


method in the IPP planner.


1. Introduction


How to e�ectively plan for interdependent subgoals has been in the focus of AI planning
research for a very long time. Starting with the early work on ABSTRIPS (Sacerdoti, 1974)
or on conjunctive-goal planning problems (Chapman, 1987), quite a number of approaches
have been presented and the complexity of the problems has been studied. But until today,
planners have made only some progress in solving bigger planning instances and scalability
of classical planning systems is still a problem.


In this paper, we focus on the following problem: Given a set of conjunctive goals, can
we de�ne and detect an ordering relation over subsets from the original goal set? To arrive
at such an ordering relation over subsets, we �rst focus on the atomic facts contained in the
goal set. We formally de�ne two closely related ordering relations over such atomic goals,
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which we call reasonable and forced ordering, and study their complexity. It turns out that
both are very hard to decide.


Consequently, we introduce two eÆcient methods that can both be used to approximate
reasonable goal orderings. The de�nitions are �rst given for simple STRIPS domains, where
the desired theoretical properties can be easily proven. Afterwards, we extend our de�nitions
to ADL operators (Pednault, 1989) handling conditional e�ects and negative preconditions,
and discuss why we do not further invest any e�ort in trying to �nd forced orderings.


We show how a set of ordering relations between atomic goals can be used to divide the
goal set into disjunct subsets, and how these subsets can be ordered with respect to each
other. The resulting sequence of subsets comprises the so-called goal agenda, which can
then be used to control an agenda-driven planning algorithm.


The method, called Goal Agenda Manager, is implemented in the context of the IPP
planning system, where we show its potential of exponentially reducing computation times
on certain planning domains.


The paper is organized as follows: Section 2 introduces and motivates reasonable and
forced goal orderings. Starting with simple STRIPS operators, they are formally de�ned,
and their complexity is investigated. In Section 3, we present two methods, which com-
pute an approximation of the reasonable ordering and discuss both orderings from a more
practical point of view. The section concludes with an extension of our de�nitions to ADL
operators having conditional e�ects. Section 4 shows how a planning system can bene�t
from ordering information by computing a goal agenda that guides the planner. We de�ne
how subsets of goals can be ordered with respect to each other and discuss how a goal
agenda can a�ect the theoretical properties, in particular the completeness of a planning
algorithm. Section 5 contains the empirical evaluation of our work, showing results that we
obtained using the goal agenda in IPP. In Section 6 we summarize our approach in the light
of related work. The paper concludes with an outlook on possible future research directions
in Section 7.


2. Ordering Relations between Atomic Goals


For a start, we only investigate simple STRIPS domains just allowing sets of atoms to
describe states, the preconditions, and the add and delete lists of operators.


De�nition 1 (State) The set of all ground atoms is denoted with P . A state s 2 2P is a


subset of ground atoms.


Note that all states are assumed to be complete, i.e., we always know for an atom p whether
p 2 s or p 62 s holds. We also assume that all operator schemata are ground, i.e., we only
talk about actions.


De�nition 2 (Strips Action) A STRIPS action o has the usual form


pre(o) �! ADD add(o) DEL del(o)


where pre(o) are the preconditions of o, add(o) is the Add list of o and del(o) is the Delete


list of the action, each being a set of ground atoms. We also assume that del(o)\add(o) = ;.
The result of applying a STRIPS action to a state is de�ned as usual:
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Result(s; o) :=


�
(s [ add(o)) n del(o) if pre(o) � s
s otherwise


If pre(o) � s holds, the action is said to be applicable in s. The result of applying a


sequence of more than one action to a state is recursively de�ned as


Result(s; ho1; : : : ; oni) := Result(Result(s; ho1; : : : ; on�1i); on):


De�nition 3 (Planning Problem) A planning problem (O; I;G) is a triple where O is


the set of actions, and I (the initial state) and G (the goals) are sets of ground atoms. A


plan P is an ordered sequence of actions. If all actions in a plan are taken out of a certain
action set O, we denote this by writing PO.


Note that we de�ne a plan to be a sequence of actions, not a sequence of parallel steps,
as it is done for graphplan (Blum & Furst, 1997), for example. This makes the subsequent
theoretical investigation more readable. The results directly carry over to parallel plans.


Given two atomic goals A and B, various ways to de�ne an ordering relation over
them can be imagined. First, one can distinguish between domain-speci�c and domain-


independent goal ordering relations. But although domain-speci�c orderings can be very
e�ective, they need to be redeveloped for each single domain. Therefore, one is in particular
interested in domain-independent ordering relations having a broader range of applicability.
Secondly, following H�ullem et al. (1999), one can distinguish the goal selection and the goal
achievement order. The �rst ordering determines in which order a planner works on the
various atomic goals, while the second one determines the order, in which the solution
plan achieves the goals. In this paper, we compute an ordering of the latter type. In
the agenda-driven planning approach that we propose later in the paper, both orderings
coincide anyway. The goals that are achieved �rst in the plan are those that the planner
works on �rst.


The following scenario motivates how an achievement order for goals can be possibly
de�ned. Given two atomic goals A and B, for which a solution plan exists, let us assume
the planner has just achieved the goal A, i.e., it has arrived at a state s(A;:B), in which A
holds, but B does not hold yet. Now, if there exists a plan that is executable in s(A;:B)


and achieves B without ever deleting A, a solution has been found. If no such plan can be
found, then two possible reasons exist:


1. The problem is unsolvable|achieving A �rst leads the planner into a deadlock situa-
tion. Thus, the planner is forced to achieve B before or simultaneously with A.


2. The only existing solution plans have to destroy A temporarily in order to achieve B.
But then, A should not be achieved �rst. Instead, it seems to be reasonable to achieve
B before or simultaneously with A for the sake of shorter solution plans.


In the �rst situation, the ordering \B before or simultaneously with A" is forced by in-
herent properties of the planning domain. In the second situation, the ordering \B before or
simultaneously with A" appears to be reasonable in order to avoid non-optimal plans. Con-
sequently, we will de�ne two goal orderings, called the forced and the reasonable ordering.
For the sake of clarity, we �rst give some more basic de�nitions.
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De�nition 4 (Reachable State) Let (O; I;G) be a planning problem and let P be the
set of ground atoms that occur in the problem. We say that a state s � P is reachable, i�
there exists a sequence ho1; : : : ; oni out of actions in O for which s = Result(I; ho1; : : : ; oni)
holds.


De�nition 5 (Generic State s(A;:B)) Let (O;I;G) be a planning problem. By s(A;:B)


we denote any reachable state in which A has just been achieved, but B is false,
i.e., B 62 s(A;:B) and there is a sequence of actions ho1; : : : ; oni such that s(A;:B) =
Result(I; ho1; : : : ; oni), with A 2 add(on).


One can imagine s(A;:B) as a state about which we only have incomplete information.
All the states s it represents satisfy s j= A;:B, but the other atoms p 2 P with p 6= A;B
can adopt arbitrary truth values.


De�nition 6 (Reduced Action Set OA) Let (O;I;G) be a planning problem, and let


A 2 G be an atomic goal. By OA we denote the set of all actions that do not delete A,
i.e., OA = fo 2 O j A 62 del(o)g.


We are now prepared to de�ne what we exactly mean by forced and reasonable goal orderings.


De�nition 7 (Forced Ordering �f) Let (O; I;G) be a planning problem, and let A;B 2
G be two atomic goals. We say that there is a forced ordering between B and A, written
B �f A, if and only if


8 s(A;:B) : :9 PO : B 2 Result(s(A;:B);P
O)


If De�nition 7 is satis�ed, then each plan achieving A and B must achieve B before
or simultaneously with A, because otherwise it will encounter a deadlock, rendering the
problem unsolvable.


De�nition 8 (Reasonable Ordering �r) Let (O;I;G) be a planning problem, and let


A;B 2 G be two atomic goals. We say that there is a reasonable ordering between B and


A, written B �r A, if and only if


8 s(A;:B) : :9 POA : B 2 Result(s(A;:B);P
OA)


De�nition 8 gives B �r A the meaning that if, after the goal A has been achieved, there
is no plan anymore that achieves B without|at least temporarily|destroying A, then B
is a goal prior to A.


We remark that obviously B �f A implies B �r A, but not vice versa. We also make
a slightly less obvious observation at this point: The formulae in De�nitions 7 and 8 use
a universal quanti�cation over states s(A;:B). If in a planning problem there is no such
state at all, the formulae are satis�ed and the goals A and B get ordered, i.e., B �f A and
B �r A follow, respectively. In this case, however, there is not much information gained
by a goal ordering between A and B, because any sequence of actions will achieve B prior
or simultaneously with A|A cannot be achieved with B still being false. Thus in this
case, the ordering relations B �f A and B �r A are trivial in the sense that no reasonable
planner would invest much e�ort in considering the goals A and B ordered the other way
round anyway.
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De�nition 9 (Trivial Ordering Relation) Let (O;I;G) be a planning problem, and let
A;B 2 G be two atomic goals. An ordering relation B �f A or B �r A is called trivial i�
there is no state s(A;:B).


In this paper, we will usually consider forced and reasonable goal orderings as non-trivial
orderings and make the distinction explicit only if we have to do so.


De�nitions 7 and 8 seem to deliver promising candidates for an achievement order.
Unfortunately, both are very hard to test: it turns out that their corresponding decision
problems are PSPACE hard.


Theorem 1 Let F ORDER denote the following problem:


Given two atomic facts A and B, as well as an action set O and an initial state I, does
B �f A hold ?


Deciding F ORDER is PSPACE-hard.


Proof: The proof proceeds by polynomially reducing PLANSAT (Bylander, 1994)|the
decision problem of whether there exists a solution plan for a given arbitrary STRIPS
planning instance|to the problem of deciding F ORDER.


Let I, G, and O denote the initial state, the goal state, and the action set in an arbitrary
STRIPS instance. Let A, B, and C be new atomic facts not contained in the instance so
far. We build a new action set and initial state for our F ORDER instance by setting


O0 := O [


8<
:


oI1 = fCg �! ADD fAg DEL fCg;
oI2 = fAg �! ADD I DEL fAg;
oG = G �! ADD fBg DEL ;


9=
;


and


I 0 := fCg


With these de�nitions, reaching B from A is equivalent to solving the original problem. The
other way round, unreachability of B from A|forced ordering B �f A|is equivalent to
the unsolvability of the original problem. In order to prove this, we consider the following:
The only way of achieving A is by applying oI1 to I


0. Consequently, the only state s(A;:B)


is fAg, cf. De�nition 5. Thus starting with the assumption that B �f A is valid, we apply
the following equivalences:


B �f A


, 8 s(A;:B) : :9 P
O0


: B 2 Result(s(A;:B);P
O0


) cf. De�nition 7


, :9 PO
0


: B 2 Result(fAg;PO
0


) fAg is the only reachable state s(A;:B)


, :9 PO : G � Result(I;PO) with the de�nition of O0


, no solution plan exists for I;G and given O
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Thus, the complement of PLANSAT can be polynomially reduced to F ORDER. As PSPACE
= co-PSPACE, we are done.


Theorem 2 Let R ORDER denote the following problem:


Given two atomic facts A and B, as well as an action set O and an initial state I, does
B �r A hold ?


Deciding R ORDER is PSPACE-hard.


Proof: The proof proceeds by polynomially reducing PLANSAT to R ORDER.


Let I, G, and O be the initial state, the goal state, and the action set in an arbitrary
STRIPS planning instance. Let A, B, C, and D be new atomic facts not contained in the
instance so far. We de�ne the new action set O0 by setting


O0 := O [


8<
:


oI1 = fCg �! ADD fA;Dg DEL fCg;
oI2 = fA;Dg �! ADD I DEL fDg;
oG = G �! ADD fBg DEL ;


9=
;


and the new initial state by


I 0 := fCg


As in the proof of Theorem 1, the intention behind these de�nitions is to make solvability
of the original problem equivalent to reachability of B from A. For reasonable orderings,
reachability is concerned with actions that do not delete A, which is why we need the safety
condition D.


Precisely, the only way to achieve A is by applying oI1 to I
0, i.e., per De�nition 5 the


only state s(A;:B) is fA;Dg. As no action in the new operator set O0 deletes A, we have
the following sequence of equivalences.


B �r A


, 8 s(A;:B) :9 P
O0


A : B 2 Result(s(A;:B);P
O0


A) cf. De�nition 8


, :9 PO
0


A : B 2 Result(fA;Dg;PO
0


A ) fA;Dg is the only reachable state s(A;:B)


, :9 PO
0


: B 2 Result(fA;Dg;PO
0


) no action in O0deletes A


, :9 PO such that G � Result(I;PO) with the de�nition of O0


, no solution plan exists for I;G;O


Thus, the complement of PLANSAT can be polynomially reduced to R ORDER. With
PSPACE = co-PSPACE, we are done.


Consequently, �nding reasonable and forced ordering relations between atomic goals is
already as hard as the original planning problem and it appears unlikely that a planner will
gain any advantage from doing that. A possible way out of the dilemma is to de�ne new
ordering relations, which can be decided in polynomial time and which are, ideally, suÆcient
for the existence of reasonable or forced goal orderings. In the following, we introduce two
such orderings.
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3. The Computation of Goal Orderings


In this section, we will


1. de�ne a goal ordering �e, which can be computed using graphplan's exclusivity
information about facts. We prove that this ordering is suÆcient for �r and that it
can be decided in polynomial time (the subscript \e" stands for \eÆcient").


2. de�ne a goal ordering �h, which is computed based on a heuristic method that is
much faster than the computation based on graphplan, and also delivers powerful
goal ordering information (the subscript \h" stands for \heuristic").


3. discuss that most of the currently available benchmark planning domains do not con-
tain forced orderings, i.e., �f will fail in providing a problem decomposition for them.


4. show how our orderings can be extended to handle more expressive ADL operators.


3.1 Reasonable Goal Orderings based on graphplan


A goal ordering is always computed for a speci�c planning problem involving an initial
state I, a goal set G � fA;Bg, and the set O of all ground actions. In order to develop an
eÆcient computational method, we proceed in two steps now:


1. We compute more knowledge about the generic state s(A;:B).


2. We de�ne the relation �e and investigate its theoretical properties. In particular, we
prove that �e implies �r.


The state s(A;:B) represents states that are reachable from I, and in which A has
been achieved, but B does not hold. Given this information about s(A;:B), one can derive
additional knowledge about it. In particular, it is possible to determine a subset of atoms F,
of which one de�nitely knows that F\s(A;:B) = ; must hold. One method to determine F is
obtained via the computation of invariants, i.e., logical formulae that hold in all reachable
states, cf. (Fox & Long, 1998). After having determined the invariants, one assumes that A
holds, but B does not, and then computes the logical implications. Another possibility is to
simply use graphplan (Blum & Furst, 1997). Starting from I with O, the planning graph
is built until the graph has leveled o� at some time step. The proposition level at this time
step represents a set of states, which is a superset of all states that are reachable from I
when applying actions from O. All atoms, which are marked as mutually exclusive (Blum
& Furst, 1997) of A in this level can never hold in a state satisfying A. Thus, they cannot
hold in s(A;:B). We denote this set with FAGP|the False set with respect to A returned by
graphplan.1


F
A
GP := fp j p is exclusive of A when the graph has leveled o�g (1)


Note that the planning graph is only grown once for a given I and O, but can be used to
determine the FAGP sets for all atomic goals A 2 G.


1. We assume the reader to be familiar with graphplan, because this planning system is very well known in
the planning research community. Otherwise, (Blum & Furst, 1997) provide the necessary background.
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Lemma 1 FAGP \ sA = ; holds for all states sA satisfying A 2 sA that are reachable from
I using actions from O.


The proof follows immediately from the de�nitions of \level-o�" and \two propositions
being mutual exclusive" given in (Blum & Furst, 1997).


We now provide a simple test which is suÆcient for the existence of a reasonable ordering
B �r A between two atomic goals A and B.


De�nition 10 (EÆcient Ordering �e) Let (O;I;G � fA;Bg) be a planning problem.


Let FAGP be the False set for A. The ordering B �e A holds if and only if


8 o 2 OA : B 2 add(o)) pre(o) \ F
A
GP 6= ;


This means, B is ordered before A if the reduced action set only contains actions, which
either do not have B in their add lists or if they do, then they require a precondition which
is contained in the False set. Such preconditions can never hold in a state satisfying A and
thus, these actions will never be applicable.


Theorem 3


B �e A) B �r A


Proof: Assume that B 6�r A, i.e., B 2 Result(s(A;:B);P
OA) for a reachable state s(A;:B)


with A 2 s(A;:B), B 62 s(A;:B), and a Plan POA = ho1; : : : ; oni where oi 2 OA for 1 � i � n.
As A 62 del(oi) for all i (De�nition 6), we have


A 2 Result(s(A;:B); ho1; : : : ; oii) for 0 � i � n


and, with Lemma 1,


F
A
GP \Result(s(A;:B); ho1; : : : ; oii) = ; for 0 � i � n (2)


Furthermore, as B 62 s(A;:B), but B 2 Result(s(A;:B); ho1; : : : ; oni), there must be a
step which makes B true, i.e.,


91 � k � n : B 62 Result(s(A;:B); ho1; : : : ; ok�1i) ^B 2 Result(s(A;:B); ho1; : : : ; oki)


For this step, we obviously have B 2 add(ok) and consequently, with the de�nition
of B �e A, pre(ok) \ FAGP 6= ;. Now, as ok must be applicable in the state where it
is executed (otherwise it would not add anything to this state), the preconditions of ok
must hold, i.e., pre(ok) � Result(s(A;:B); ho1; : : : ; ok�1i). This immediately leads to FAGP \
Result(s(A;:B); ho1; : : : ; ok�1i) 6= ;, which is a contradiction to Equation (2).


Quite obviously, the ordering �e can be decided in polynomial time.


Theorem 4 Let E ORDER denote the following problem:


Given two atomic facts A and B, as well as an initial state I and an action set O, does
B �e A hold ?


Then, E ORDER can be decided in polynomial time: E ORDER 2 P.
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Proof: To begin with, we need to show that computing FAGP takes only polynomial time.
From the results in (Blum & Furst, 1997), it follows directly that building a planning graph
is polynomial in jIj, jOj, l and t, where l is the maximal length of any precondition, add
or delete list of an action, and t is the number of time steps built. Taking l as a parameter
of the input size, it remains to show that a planning graph levels o� after a polynomial
number t of time steps. Now, a planning graph has leveled o� if between some time steps
t and t + 1 neither the set of facts nor the number of exclusion relations change. Between
two subsequent time steps, the set of facts can only increase|facts already occuring in the
graph remain there|and the number of exclusions can only decrease|non-exclusive facts
will be non-exclusive in all subsequent layers. Thus, the maximal number of time steps to
be built until the graph has leveled o� is dominated by the maximal number of changes
that can occur between two subsequent layers, which is dominated by the maximal number
of facts plus the maximal number of exclusion relations. The maximal number of facts is
O(jIj+ jOj � l), and the maximal number of exclusions is O((jIj+ jOj � l)2), the square of
the maximal number of facts.


Having computed FAGP in polynomial time, testing B �e A involves looking at all actions
in O, and rejecting them if they either


� delete A, which is decidable in time O(l), or


� have a precondition, which is an element of FAGP , decidable in time O(l�(jIj+ jOj� l)).


Thus we have an additional runtime for the test, which is O(jOj � l � (jIj+ jOj � l)).


Let us consider the following example, which illustrates the computation of �e using
a common representational variant of the blocks world with actions to stack, unstack,
pickup, and putdown blocks:


pickup(?ob)
clear(?ob) on-table(?ob) arm-empty() �! ADD holding(?ob)


DEL clear(?ob) on-table(?ob) arm-empty().


putdown(?ob)


holding(?ob) �! ADD clear(?ob) arm-empty() on-table(?ob)


DEL holding(?ob).


stack(?ob,?underob)


clear(?underob) holding(?ob) �! ADD arm-empty() clear(?ob) on(?ob,?underob)


DEL clear(?underob) holding(?ob).


unstack(?ob,?underob)


on(?ob,?underob) clear(?ob) arm-empty() �! ADD holding(?ob) clear(?underob)


DEL on(?ob,?underob) clear(?ob) arm-empty().


Given the simple task of stacking three blocks:


initial state: on-table(a) on-table(b) on-table(c)
goal state: on(a,b) on(b,c)
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is there a reasonable ordering between the two atomic goals? Intuitively, the blocks world
domain possesses a very natural goal ordering, namely that the planner should start building
each tower from the bottom to the top and not the other way round.2


Let us �rst investigate whether the relation on(a; b) �e on(b; c) holds. Vividly speaking,
it asks whether it is still possible to stack the block a on b after on(b; c) has been achieved.
As a �rst step, we run graphplan to �nd out which atoms are exclusive of on(b; c) when
the planning graph, which corresponds to this problem, has leveled o�. The result is


F
on(b;c)
GP = fclear(c), on-table(b), holding(c), holding(b), on(a,c), on(c,b), on(b,a)g


One observes immediately that these atoms can never be true in a state that satis�es
on(b; c).


Secondly, we remove all ground actions which delete on(b; c) (in this case, only the action
unstack(b,c) satis�es this condition) and obtain the reduced action set Oon(b;c).


Now we are ready to test if on(a; b) �e on(b; c) holds. The only action, which can add
on(a; b) is stack(a,b). It has the preconditions holding(a) and clear(b), neither of which


is a member of F
on(b;c)
GP . The test fails and we get on(a; b) 6�e on(b; c).


As a next step, we test whether on(b; c) �e on(a; b) holds. graphplan returns the
following False set:


F
on(a;b)
GP = fclear(b), on-table(a), holding(b), holding(a), on(a,c), on(c,b), on(b,a)g


The action unstack(a,b) is not contained in Oon(a;b) because it deletes on(a; b). The
only action which adds on(b; c) is stack(b,c). It needs the preconditions clear(c) and
holding(b). The second precondition holding(b) is contained in the set of false facts,


i.e., holding(b) 2 F
on(a;b)
GP and thus, we conclude on(b; c) �e on(a; b). Altogether, we have


on(a; b) 6�e on(b; c) and on(b; c) �e on(a; b), which correctly reects the intuition that b
needs to be stacked onto c before a can be stacked onto b.


Although �e appears to impose very strict conditions on a domain in order to derive a
reasonable goal ordering, it succeeds in �nding reasonable goal orderings in all available test
domains in which such orderings exists. For example, in the tyreworld, in bulldozer problems,
in the shopping problem (Russel & Norvig, 1995), the fridgeworld, the glass domain, the
tower of hanoi domain, the link-world, and the woodshop. Its only disadvantage are the
computational resources it requires, since building planning graphs, while being theoretically
polynomial, is a quite time- and memory-consuming thing to do.3


Therefore, the next section presents a fast heuristic computation of goal orderings, which
analyzes the domain actions directly and does not need to build planning graphs anymore.


2. Note that the goals do not specify where the block c has to go, but leave this to the planner.
3. More recent implementations of planning graphs, which are for example developed for STAN (Fox &


Long, 1999) and IPP 4.0 (Koehler, 1999) do not build the graphs explicitly anymore and are orders of
magnitude faster than the original graphplan implementation, but still the computation of the planning
graph takes almost all the time that is needed to determine the �e relations.
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3.2 Reasonable Goal Orderings derived by a Fast Heuristic Method


One can analyze the available actions directly using a method we will call Direct Analysis
(DA). It determines an initial value for F by computing the intersection of all delete lists of
all actions which contain A in their add list, as de�ned in the following equation.


F
A
DA :=


\
o 2 O; A2 add(o)


del(o) (3)


The atoms in this set are all false in a state where A has just been achieved: they are
deleted from the state description independently of the action that is used to add A. As a
short example, let us consider the two actions


�! ADD fAg DEL fC;Dg


�! ADD fA;Cg DEL fDg


Only the atom D is deleted by both actions, and thus D is the only element initially
contained in FADA.


However, Equation (3) only says that when A is added then the atoms from FADA will be
deleted. It does not say anything about whether it might be possible to reestablish atoms
in FADA. One can easily imagine that actions exist, which leave A true, and at the same
time add such atoms. If this is the case, there are reachable states in which A and atoms
from FADA hold.


Now, our goal is to derive an ordering relation that can be easily computed, and that
ideally, like the �e relation, is suÆcient for the �r relation. Therefore, we want to make
sure that the atoms in FADA are really false in any state after A has been achieved. We
arrive at an approximation of atoms that remain false by performing a �xpoint reduction
on the FADA set, removing those atoms that are achievable in the following sense.


De�nition 11 (Achievable Atoms) An atom p is achievable from a state s given an
action set O (written A(s; p;O)) if and only if


p 2 s _ 9 o 2 O : p 2 add(o) ^ 8 p0 2 pre(o) : A(s; p0;O)


The de�nition says that an atom p is achievable from a state s if it holds in s, or if there
exists an action in the domain, which adds p and whose preconditions are all achievable
from s. This is a necessary condition for the existence of a plan PO from s to a state where
p holds.


Lemma 2 9 PO : p 2 Result(s;PO)) A(s; p;O)


Proof: The atom p must either already be contained in the state s, or it has to be added
by a step o out of PO. In the second case, all preconditions of o need to be established by
PO in the same way. Thus p and all preconditions of the step, which adds it, are achievable
in the sense of De�nition 11.
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There are two obvious diÆculties with De�nition 11: First, p 2 s must be tested. With
complete knowledge about the state s, this should not cause any problems. In our case,
however, we only have the generic state s(A;:B) and cannot decide whether an arbitrary
atom is contained in it or not. Secondly, we observe an in�nite regression over preconditions,
which must be tested for achievability.


As for the �rst problem, it turns out that it is a good heuristic to simply assume p 62 s,
i.e., no test is performed at all. As for the second problem, in order to avoid in�nite
looping of the \achievable"-test, one needs to terminate the regression over preconditions
at a particular level. The point in question is how far to regress? A quick approximation
simply decides \achievable" after the �rst recursive call.


De�nition 12 (Possibly Achievable Atoms) An atom p is possibly achievable given


an action set O (written pA(p;O)) if and only if


9 o 2 O : p 2 add(o) ^ 8 p0 2 pre(o) : 9 o0 2 O : p0 2 add(o0)


holds, i.e., there is an action that adds p and all of its preconditions are add e�ects of other


actions in O.


If the assumption is justi�ed that none of the atoms p is contained in the state s, then
being possibly achievable is a necessary condition for being achievable.


Lemma 3 Let s be a state for which p 62 s and also 8o 2 O : p 2 add(o) ) pre(o) \ s = ;
holds. Then we have


A(s; p;O)) pA(p;O)


Proof: From A(s; p;O) and p 62 s, we know that there is a step o 2 O, p 2 add(o), with
8 p0 2 pre(o) A(s; p0;O). We also know that pre(o) \ s = ;, so for each p0 2 pre(o) there
must be an achiever o0 2 O : p0 2 add(o0).


The condition that all of the facts p must not be contained in the state s seems to be
rather rigid. Nevertheless, the condition of being possibly achievable delivers good results
on all of the benchmark domains and it is easy to decide. We can now use this test to both


� perform a �xpoint reduction on the set FADA and


� decide whether an atomic goal B should be ordered before A.


The �xpoint reduction, as depicted in Figure 1 below, uses the approximative test pA(f;O�)
to remove facts from FADA that can be achieved. It �nds all these facts under certain
restrictions, see below. As a side e�ect of the �xpoint algorithm, we obtain the set O� of
actions that our method assumes to be applicable after a state s(A;:B). We then order B
before A i� it cannot possibly be achieved using these actions.
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F� := FADA


O� := OA n fo j F
� \ pre(o) 6= ;g


fixpoint reached := false


while :fixpoint reached
fixpoint reached := true


for f 2 F�


if pA(f;O�) then
F� := F� n ffg
O� := OA n fo j F� \ pre(o) 6= ;g
fixpoint reached := false


endif


endfor


endwhile


return F�, O�


Figure 1: Quick, heuristic �xpoint reduction of the set FADA.


The computation checks whether atoms of F�, which is initially set to FADA, are possibly
achievable using only those actions, which do not delete A and which do not require atoms
from F� as a precondition. Achievable atoms are removed from F�, and O� gets updated
accordingly. If in one iteration, F� does not change, the �xpoint is reached, i.e., F� will not
further decrease and O� will not further increase|the �nal sets F� of false facts and O� of
applicable actions are returned.


Let us illustrate the �xpoint computation with a short example consisting of the empty
initial state, the goals fA;Bg, and the following set of actions


op1: �! ADD f A g DEL f C, D g
op2: �! ADD fA, C g DEL f D g
op3: f C g �! ADD f D g
op4: f D g �! ADD f B g


When assuming that A has been achieved, we obtain F� = FADA = fDg as the initial
value of the False set, since D is the only atom that op1 and op2 delete when adding A.
Figure 2 illustrates a hypothetical planning process. Starting in the empty initial state
and trying to achieve A �rst, we get two di�erent states s(A;:B) in which A holds. The
atom D does not hold in any of them and thus in both states, no action is applicable that
requires D as a precondition. This excludes op4 from OA, yielding the initial action set
O� = fop1;op2;op3g. Now, op4 is the only action that can add B. Therefore, if we used
this action set to see if B can still be achieved, we would �nd that this is not the case.
Consequently, without performing the �xpoint computation, we would order B before A.
But as can be seen in Figure 2, this would not be a reasonable ordering: there is the plan
hop3 ;op4i that achieves B from the state s(A;:B) = Result(I;op2) without destroying A.


The �xpoint computation works us around this problem as follows: There is the ac-
tion op3, which can add the precondition D of op4 without deleting A. When checking
pA(D;O�) in the �rst iteration, the �xpoint procedure �nds this action. It then checks


351







Koehler & Hoffmann


whether the preconditions of op3 are achievable in the sense that they are added by an-
other action. This is the case since the only precondition C is added by op2. Thus, D is
removed from F�, which becomes empty now. The action op4 is put back into the set O�,
which now becomes identical with the action set OA. This set, in turn, is identical with the
original action set O as no action deletes A. The �xpoint process terminates and B will
not be ordered before A as it can be achieved using the action op4. This correctly reects
the fact that there exists a plan from the state s(A;:B) = Result(I; hop2i) = fC;Ag to a
state that satis�es B without destroying A.


0/


op1 op2


op3


op4


C, A, D


C, A, D, B


C, AADeadlock


D holds in a state satisfying A


There is a plan from A to B


Figure 2: An example illustrating why we need the �xpoint computation.


As already pointed out, the intention behind the �xpoint procedure is the following:
Starting from a state s(A;:B), we want to know which facts can become true without
destroying A, and consequently, which actions can become applicable. In the �rst step,
only actions that do not use any of the facts in FADA are applicable, as all those facts are
deleted from the state description when A is added. However, such actions may make facts
in FADA true, so we want to remove those facts from FADA. If we manage to �nd all the facts
that can be made true without destroying A, then the �nal set F� will contain only those
facts that do not hold in a state reachable from s(A;:B) without destroying A. In this case,
the �nal action set O� will contain all the actions that can be applied after s(A;:B), and we
can safely use this action set to determine whether another goal B can still be achieved or
not.


However, as we only use the approximative test pA(f;O�) with f 2 F� to �nd out if
a fact in the current F� set is achievable, there may be facts which are achievable without
destroying A, but which remain in the set F�. This could exclude actions from the set
O� which can be safely applied after s(A;:B). Under certain restrictions, however, we can
prove that this will not happen. In order to do so, we need to impose a restriction on the
particular state s(A;:B), in which we achieved the goal A: If none of the preconditions of


actions, which add facts contained in FA
DA, occur in the state s(A;:B), then the �xpoint


procedure will remove all facts from FA
DA that are achievable without destroying A. We will


use this property of the �xpoint procedure later to show that our heuristic ordering relation
approximates reasonable orderings.
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Lemma 4 Let (O;I;G) be a planning problem, and let A 2 G be an atomic goal. Let
s(A;:B) be a reachable state where A has just been achieved. Let POA = ho1; : : : ; oni be


a sequence of actions not destroying A. Let F� be the set of facts that is returned by the


�xpoint computation depicted in Figure 1. If we have


8f 2 F
A
DA : 8o 2 OA : f 2 add(o)) pre(o) \ s(A;:B) = ; (�)


then no fact in F� holds in the state that is reached by applying POA , i.e.,


Result(s(A;:B);P
OA) \ F


� = ;


Proof:


Let F�j and O
�
j denote the state of the fact and action sets, respectively, after j iterations


of the algorithm depicted in Figure 1. As F� only decreases during the computation, we have
F� � F�j for all j. Let s0; : : : ; sn denote the sequence of states that are encountered when


executing POA = ho1; : : : ; oni in s(A;:B), i.e., s0 = s(A;:B) and si = Result(si�1; hoii) for
0 � i � n. We can assume that each action oi is applicable in state si�1, i.e., pre(oi) � si�1.
Otherwise, oi does not cause any state transition, and we can skip it from POA . Obviously,
we have sn = Result(s(A;:B);P


OA), so we need to show that sn\F
� = ;. The proof proceeds


by induction over the length n of POA .


n = 0: POA = hi and sn = s0 = s(A;:B). All facts in FADA are deleted from the state


description when A is added, so we have sn \ FADA = ;. As FADA = F�0 and F� � F�0, the
proposition follows immediately.


n! n+ 1: POA = ho1; : : : ; on; on+1i. From the induction hypothesis, we know that
si \ F� = ; for 0 � i � n. What we need to show is sn+1 \ F� = ;.


Let j be the step in the �xpoint iteration where F�j \
S


i=0;:::;n si becomes empty, i.e., j
denotes the iteration in which the intersection of all the states si; i � n with F�j is empty
for the �rst time. Such an iteration exists, because all the intersections si \ F� with i � n
are empty.


Now each action oi; 1 � i � n + 1 is applicable in state si�1, i.e., pre(oi) � si�1, and
thus pre(oi)\F


�
j = ; for all the actions oi in P


OA . Therefore, all these actions are contained
in O�


j , as this set contains all the actions out of OA whose intersection with F�j is empty.


Let us focus on the facts in the state sn+1. All these facts are achieved by executing P
OA in


s(A;:B). In other words, there is a plan from s(A;:B) to each of these facts. As we have just
seen, this plan consists out of actions in O�


j . Applying Lemma 2 to all the facts p 2 sn+1


using s(A;:B) and P
OA (= PO


�


j ), we know that all facts p are achievable using actions from
O�
j .


8p 2 sn+1 : A(s(A;:B); p;O
�
j )


We will now show that those facts f 2 sn+1 we are interested in, namely the F facts that are
added by on+1 and that are still contained in Fj, are also possibly achievable using actions
from O�


j . Let f be a fact f 2 sn+1, f 2 F�j . We apply Lemma 3 using s(A;:B), f , and
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O�
j . We can apply Lemma 3 as obviously f 62 s(A;:B), and as 8o 2 O�


j : f 2 add(o) )
pre(o) \ s(A;:B) = ; by prerequisite (�). With A(s(A;:B); p;O


�
j ), we arrive at


8f 2 sn+1 \ F
�
j : pA(f;O


�
j )


What remains to be proven is that all these facts f will be removed from F� during the
�xpoint computation. With the argumentation above, it is suÆcient to show that all the
facts f 2 sn+1\F


�
j will get tested for pA(f;O


�
j ) in iteration j+1 of the �xpoint computation.


These tests will succeed and lead to sn+1 \ F�j+1 = ;, yielding, as desired, sn+1 \ F� = ;.
Remember that F�j+1 � F�. There are two cases, which we need to consider:


1. j = 0: all intersections si \ F�0 are initially empty, i.e., si \ FADA = ; for 0 � i � n. In
this case, all facts f 2 sn+1 \ FADA are tested for pA(f;O�


0) in iteration j + 1 = 1 of
the �xpoint computation.


2. j > 0: in this case, at least one of the intersections si \ F�j became empty in iteration
j by de�nition of j, i.e., at least one fact was removed from F� in this iteration.
Therefore, the �xpoint has not been reached yet, and the computation performs at
least one more iteration, namely iteration j + 1. All facts in F�j will be tested in this
iteration, in particular all facts f 2 sn+1 \ F�j .


With these observations, the induction is complete and the proposition is proven.


As has already been said, we now simply order B before A, if it is not possibly achievable
using the action set that resulted from the �xpoint computation. The ordering relation �h


(where h stands for \heuristic") obtained in this way approximates the reasonable goal
ordering �r.


De�nition 13 (Heuristic Ordering �h) Let (O;I;G � fA;Bg) be a planning problem.


Let O� be the set of actions that is obtained from O by performing the �xpoint computation


shown in Figure 1.


The ordering B �h A holds if and only if


:pA(B;O�)


If A has been reached in a particular state s(A;:B) where the assumptions made by
the �xpoint computation and by the test for pA(B;O�) are justi�ed, then being not pos-
sibly achievable is a suÆcient condition for the non-existence of a plan to B that does not
temporarily destroy A.


Theorem 5 Let (O;I;G) be a planning problem, and let A;B 2 G be two atomic goals. Let


s(A;:B) be a reachable state where A has just been achieved, but B is still false, i.e., B 62
s(A;:B). Let F


� and O� be the sets of facts and actions, respectively, that are derived by the


�xpoint computation shown in Figure 1. If we have


8f 2 F
A
DA [ fBg : 8o 2 OA : f 2 add(o)) pre(o) \ s(A;:B) = ; (��)


then we have


:pA(B;O�)) :9POA : B 2 Result(s(A;:B);P
OA)
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Proof: Assume that there is a plan POA = ho1; : : : ; oni that does not destroy A, but
achieves B, i.e., B 2 Result(s(A;:B); ho1; : : : ; oni). With the restriction of (��) to the


facts in FADA, Lemma 4 can be applied to each action sequence ho1; : : : ; oi�1i yielding
Result(s(A;:B); ho1; : : : ; oi�1i) \ F� = ;. Consequently, each oi is either


� not applicable in Result(s(A;:B); ho1; : : : ; oi�1i),


� or its preconditions are contained in Result(s(A;:B); ho1; : : : ; oi�1i), yielding pre(oi)\
F� = ;.


In the �rst case, we simply skip oi as it does not have any e�ects. In the second case,
oi 2 O� follows. Thus, we have a plan constructed out of actions in O� that achieves B
from s(A;:B). Applying Lemma 2 leads us to A(s(A;:B); B;O


�). We have B 62 s(A;:B).
We also know, from (��) with respect to B, as O� � OA, that 8o 2 O� : B 2 add(o) )
pre(o)\s(A;:B) = ; holds. Therefore, we can now apply Lemma 3 and arrive at pA(B;O�),
which is a contradiction.


We return to the blocks world example and show how the computation of �h proceeds.


Let us �rst investigate whether on(a; b) �h on(b; c) holds. The initial value for F
on(b;c)
DA is


obtained from the delete list of the stack(b,c) action, which is the only one that adds this
goal.


F
on(b;c)
DA = fclear(c); holding(b)g


Intuitively, it is immediately clear that neither of these facts can ever hold in a state
where on(b; c) is true: if b is on c, then c is not clear and the gripper cannot hold b. It


turns out that the �xpoint computation respects this intuition and leaves the set F
on(b;c)
DA


unchanged, yielding F� = fclear(c); holding(b)g. We do not repeat the �xpoint process in
detail here, because it can be reconstructed from Figure 1 and the details are not necessary
for understanding how the correct ordering relations are derived. In short, for both facts
there are achievers in the reduced action set, but all of them need preconditions for which
no achiever is available. For example, holding(b) can be achieved by either an unstack or
a pickup action. Both either need b to stand on another block or to stand on the table.
All actions that can achieve these facts need holding(b) to be true and are thus excluded
from the reduced action set.


After �nishing the �xpoint computation, the planner tests pA(on(a; b);O�), where O�


contains all actions except those that delete on(b; c) and those that use clear(c) or holding(b)
as a precondition. It �nds that the action stack(a,b) adds on(a; b). The preconditions
of this action are holding(a) and clear(b). These conditions are added by the actions
pickup(a) and unstack(a,b), respectively, which are both contained in O�: neither of
them needs c to be clear or b to be in the gripper. Thus, the test �nds that in fact, on(a; b)
is possibly achievable using the actions in O�, and no ordering is derived, i.e., on(a; b) 6�h


on(b; c) follows.


Now, the other way round, on(b; c) �h on(a; b) is tested. The initial value for F
on(a;b)
DA is


obtained from the single action stack(a,b) as


F
on(a;b)
DA = fclear(b); holding(a)g
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Again, the �xpoint computation does not cause any changes, resulting in F� = fclear(b);
holding(a)g. The process now tests whether pA(on(b; c);O�) holds, where O� contains
all actions except those that delete on(a; b) and those that use clear(b) or holding(a) as
a precondition. The only action that can add on(b; c) is stack(b,c). This action needs
as preconditions the facts holding(b) and clear(c). The process now �nds that a crucial
condition for achieving the �rst fact is violated: Each action that can achieve holding(b)
has clear(b) as a precondition, because b must be clear �rst before the gripper can hold it.
Since clear(b) is an element of F�, none of the actions achieving holding(b) is contained in
O�. Consequently, the test for pA(on(b; c);O�) fails and we obtain the ordering on(b; c) �h


on(a; b). This makes sense as the gripper cannot grasp b and stack it onto c anymore, once
on(a; b) is achieved.


3.3 On Forced Goal Orderings and Invertible Planning Problems


So far, we have introduced two easily computable ordering relations �h and �e that both
approximate the reasonable goal ordering �r. One might wonder why we do not invest any
e�ort in trying to �nd forced goal orderings. There are two reasons for that:


1. As we have already seen in Section 2, any forced goal ordering is also a reasonable
goal ordering, i.e., a method that approximates the latter can also be used as a crude
approximation to the former.


2. Many benchmark planning problems are invertible in a certain sense. Those problems
do not contain forced orderings anyway.


In this section, we elaborate in detail the second argument. The results are a bit more
general than necessary at this point. We want to make use of them later when we show that
the Agenda-Driven planning algorithm we propose is complete with respect to a certain class
of planning problems. We proceed by formally de�ning this class of planning problems, show
that these problems do not contain forced orderings, and identify a suÆcient criterion for
the membership of a problem in this class. Finally, we demonstrate that many benchmark
planning problems do in fact satisfy this criterion. For a start, we introduce the notion of
a deadlock in a planning problem.


De�nition 14 (Deadlock) Let (O;I;G) be a planning problem. A reachable state s is


called a deadlock i� there is no sequence of actions that leads from s to the goal, i.e., i�


s = Result(I;PO) and :9 P
0O : G � Result(s;P


0O).


The class of planning problems we are interested in is the class of problems that are
deadlock-free. Naturally, a problem is called deadlock-free if none of its reachable states is
a deadlock in the sense of De�nition 14.


Non-trivial forced goal orderings imply the existence of deadlocks (remember that an
ordering B �f A or B �r A is called trivial i� there is no state s(A;:B) at all).


Lemma 5 Let (O;I;G) be a planning problem, and let A;B 2 G be two atomic goals. If


there is a non-trivial forced ordering B �f A between A and B, then there exists a deadlock


state s in the problem.
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Proof: Recalling De�nition 9 and assuming non-triviality of �f , we know that there is
at least one state s(A;:B) where A is made true, but B is still false. From De�nition 7,
we know that there is no plan in any such state that achieves B. In particular, it is not
possible to achieve all goals starting out from s(A;:B). Thus, the state s := s(A;:B) must be
a deadlock.


We will now investigate deadlocks in more detail and discuss that most of the commonly
used benchmark problems do not contain them, i.e., they are deadlock-free. With Lemma 5,
we then also know that such domains do not contain non-trivial forced goal orderings
either|so there is not much point in trying to �nd them. We do not care about trivial goal
orderings. Such orderings force any reasonable planning algorithm to consider the goals in
the correct order.


The existence of deadlocks depends on structural properties of a planning problem:
There must be action sequences, which, once executed, lead into states from which the goals
cannot be reached anymore. These sequences must have undesired e�ects, which cannot be
inverted by any other sequence of actions in O. Changing perspective, one obtains a hint
on how a suÆcient condition for the non-existence of deadlocks might be de�ned. Assume
we have a planning problem where the e�ects of each action sequence in the domain can
be inverted by executing a certain other sequence of actions. In such an invertible planning
problem, it is in particular possible to get back to the initial state from each reachable state.
Therefore, if such a problem is solvable, then it does not contain deadlocks: From any state,
one can reach all goals by going back to the initial state �rst, and then execute an arbitrary
solution thereafter. We will now formally de�ne the notion of invertible planning problems,
and turn the above argumentation into a proof.


De�nition 15 (Invertible Planning Problem) Let (O; I;G) be a planning problem, and


let s denote the states that are reachable from I with actions from O. The problem is called


invertible if and only if


8 s : 8 PO : 9 P
O
: Result(Result(s;PO);P


O
) = s


Theorem 6 Let (O; I;G) be an invertible planning problem, for which a solution exists.
Then (O;I;G) does not contain any deadlocks.


Proof: Let s = Result(I;POs ) be an arbitrary reachable state. As the problem is invert-


ible, we know that there is a sequence of actions P
O
s for which Result(s;P


O
s ) = I holds.


As the problem is solvable, we have a solution plan PO starting from I and achieving


G � Result(I;PO). Together, we obtain G � Result(Result(s;P
O
s );P


O). Therefore, the


concatenation of P
O
s and PO is a solution plan executable in s and consequently, s is no


deadlock.


We now know that invertible planning problems, if solvable, do not contain deadlocks and
consequently, they do not contain (non-trivial) forced goal orderings. What we will see next
is that, as a matter of fact, most benchmark planning problems are invertible. We arrive
at a suÆcient condition for invertibility through the notion of inverse actions.
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De�nition 16 (Inverse Action) Given an action set O containing an action o of the
form pre(o) �! add(o) del(o). An action o 2 O is called inverse to o if and only if o has


the form pre(o) �! add(o) del(o) and satis�es the following conditions


1. pre(o) � pre(o) [ add(o) n del(o)


2. add(o) = del(o)


3. del(o) = add(o)


Under certain conditions, applying an inverse action leads back to the state one started
from.


Lemma 6 Let s be a state and o be an action, which is applicable in s. If del(o) � pre(o)
and s \ add(o) = ; hold, then an action o that is inverse to o in the sense of De�nition 16


is applicable in Result(s; hoi) and Result(Result(s; hoi); hoi) = s follows.


Proof: As o is applicable in s, we have pre(o) � s. The atoms in add(o) are added, and
the atoms in del(o) are removed from s, so altogether we have


Result(s; hoi) � (pre(o) [ add(o)) n del(o) � pre(o)


Thus, o is applicable in Result(s; hoi).
Furthermore, we have Result(s; hoi) = s [ add(o) n del(o) and with that


Result(Result(s; hoi); hoi)


= Result(s [ add(o) n del(o); hoi)


= (s [ add(o) n del(o)) [ add(o) n del(o)


= (s [ add(o) n del(o)) [ del(o) n add(o) (cf. De�nition 16)


= s [ add(o) n add(o) (because del(o) � pre(o) � s)


= s (because s \ add(o) = ;)


Lemma 6 states two prerequisites: (1) inclusion of the operator's delete list in its precon-
ditions and (2) an empty intersection of the operator's add list with the state where it is
applicable. A planning problem is called invertible if it meets both prerequisites and if there
is an inverse to each action.


Theorem 7 Given a planning problem (O;I;G) with the set of ground actions O satisfying


del(o) � pre(o) and pre(o) � s ) add(o) \ s = ; for all actions and reachable states s. If
there is an inverse action o 2 O for each action o 2 O, then the problem is invertible.


Proof: Let s be a reachable state, and let PO = ho1; : : : oni be a sequence of actions. We


need to show the existence of a sequence P
O
for which


Result(Result(s;PO);P
O
) = s (� � �)
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holds. We de�ne P
O
:= hon; : : : ; o1i, and prove (� � �) by induction over n.


n = 0: Here, we have PO = P
O
= hi, and Result(Result(s; hi); hi) = s is obvious.


n! n+ 1: Now PO = ho1; : : : ; on; on+1i. From the induction hypothesis we know that
Result(Result(s; ho1; : : : ; oni); hon; : : : ; o1i) = s. To make the following a bit more readable,
let s0 denote s0 := Result(s; ho1; : : : ; oni). We have


Result(Result(s; ho1; : : : ; on+1i); hon+1; : : : ; o1i)


= Result(Result(s0; hon+1i); hon+1; : : : ; o1i)


= Result(Result(Result(s0; hon+1i); hon+1i); hon; : : : ; o1i)


= Result(s0; hon; : : : ; o1i) (cf. Lemma 6 on s0 and on+1)


= s (per induction)


Altogether, we know now that invertible problems, if solvable, do not contain forced
orderings. We also know that problems, where there is an inverse action to each action in
O, are invertible following Theorem 7. Theorem 7 requires del(o) � pre(o) to hold for each
action o, and pre(o) � s ) add(o) \ s = ; to hold for all actions and reachable states s.
We will see that all conditions, (a) inclusion of the delete list in the precondition list, (b)
empty intersection of an action's add list with reachable states where it is applicable, and
(c) existence of inverse actions, hold in most currently used benchmark domains.4


Concerning the condition (a) that actions only delete facts they require as precondi-
tions, one �nds this phenomenon in all domains that are commonly used by the planning
community, at least in those that are known to the authors. It is just something that seems
to hold in any reasonable logical problem formulation. Some authors even postulate it as
an assumption for their algorithms to work, cf. (Fox & Long, 1998).


Similarly in the case of conditions (b) and (c): One usually �nds inverse actions in
benchmark domains. Also, an action's preconditions usually imply|by state invariants|
that its add e�ects are all false. For example in the blocks world, stack and unstack
actions invert each other, and an action's add e�ects are exclusive of its preconditions|
the former are contained in the union of the False constructed for the preconditions, see
Section 3.1. Similarly in domains that deal with logistics problems, for example logistics,
trains, ferry, gripper etc., one can often �nd inverse pairs of actions with their preconditions
always excluding the add e�ects. Sometimes, two di�erent ground instances of the same
operator schema yield an inverse pair. For example, in gripper, the two ground instances


move(roomA, roomB)


at-robby(roomA) �! ADD at-robby(roomB) DEL at-robby(roomA).


and


4. In order to avoid reasoning about reachable states in condition (b), one could also postulate that an
action has all of its add e�ects as negative preconditions, cf. (Jonsson, Haslum, & B�ackstr�om, 2000).
This is, however, not commonly used in the typical planning benchmark problems.
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move(roomB, roomA)
at-robby(roomB) �! ADD at-robby(roomA) DEL at-robby(roomB).


of the move(?from,?to) operator schema invert each other. Similarly, in towers of hanoi,
where there is only the single move operator schema, an inverse instance can be found
for each ground instance of the schema, and the add e�ects are always false when the
preconditions are true.


Only very rarely, non-invertible actions can be found in benchmark domains. If they
occur, their role in the domain is often quite limited as for example the operators cuss and
inate in Russel's Tyreworld.


cuss


�! DEL annoyed().


inate(?x:wheel)


have(pump) not-inated(?x) intact(?x) �! ADD inated(?x) DEL not-inated(?x).


Obviously, there is not much point in de�ning something like a decuss or a deate
operator. More formally speaking, none of the ground actions to these operators destroys
a goal or a precondition of any other action in the domain. Therefore, it does not matter
that their e�ects cannot be inverted. In particular, no forced goal ordering can be derived
wrt. these actions. 5


The importance of inverse actions in real-world domains has also been discussed by
Nayak and Williams (1997), who describe the planner BURTON controlling the Cassini
spacecraft. In contrast to these domains, problems such as those for example used by
Barrett et al. in (1994) almost never contain inverse actions. Consequently, in these domains
plenty of forced goal orderings could be discovered and used by a planner to avoid deadlock
situations. The widespread, although perhaps unconscious use of invertible problems for
benchmarking is a current phenomenon related to STRIPS descending planning systems. As
one of the anonymous reviewers pointed out to us, quite a number of non-invertible planning
problems have also been proposed in the planning literature, e.g., the register assignment


problem (Nilsson, 1980), the robot crossing a road problem (Sanborn & Hendler, 1988), some
instances of manufacturing problems (Regli, Gupta, & Nau, 1995), and the Yale Shooting


problem (McDermott & Hanks, 1987). For these problems, i.e., for problems that are not
invertible, one could|in the spirit of argument 1 at the very beginning of this section|
simply use �e and �h to approximate forced orderings if one is interested in �nding at least
those. More precisely, �e and �h are methods that might detect forced orderings|as those
are also reasonable|but that might also �nd more, not necessarily forced, orderings. If
one is not interested in �nding only the forced orderings, this is a possible way to go. For
example, in a simple blocks world modi�cation where blocks cannot be unstacked anymore
once they are stacked|which forces the planner to build the stacks bottom up|both �e


and �h are still capable of �nding the correct goal orderings.


5. The cuss operator, by the way, is the only one known to the authors that deletes a fact it is not using
as a precondition. It is also the only one we know that could be removed from the domain description
without changing anything.
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3.4 An Extension of Goal Orderings to ADL Actions


The orderings, which have been introduced so far, can be easily extended to deal with
ground ADL actions having conditional e�ects and using negation instead of delete lists.
Such actions have the following syntactic structure:


o : �0(o) = pre0(o) �! e�+0 (o); e�
�
0 (o)


�1(o) = pre1(o) �! e�+1 (o); e�
�
1 (o)


...
�n(o) = pren(o) �! e�+n (o); e�


�
n (o)


All unconditional elements of the action are summarized in �0(o): The precondition
of the action is denoted with pre0(o), and its unconditional positive and negative e�ects
with e�+0 (o) and e��0 (o), respectively. Each conditional e�ect �i(o) consists of an e�ect
condition (antecedent) prei(o), and the positive and negative e�ects e�+i (o) and e��i (o).
Additionally, we denote with �(o) the set of all unconditional and conditional e�ects,
i.e., �(o) = f�0(o); �1(o); : : : ; �n(o)g.


The computation of �e immediately carries over to ADL actions when an extension of
planning graphs is used, which can handle conditional e�ects, e.g., IPP (Koehler, Nebel,
Ho�mann, & Dimopoulos, 1997) or SGP (Anderson & Weld, 1998). One simply takes the
set of exclusive facts that is returned by these systems to determine the set FA


GP . The test
from De�nition 10, which decides whether there is an ordering B �e A of two atomic goals
A and B, is extended to ADL as follows.


De�nition 17 (Ordering �e for ADL) Let (O;I;G � fA;Bg) be a planning problem.


Let FAGP be the False set for A. The ordering B �e A holds if and only if


8 o 2 O; �i(o) 2 �(o) : B 2 e�+i (o) ^A 62 Di(o) ) (prei(o) [ pre0(o)) \ F
A
GP 6= ;


Here, Di(o) denotes all negative e�ects that are implied by the conditions of �i(o).


Di(o) :=


�
e��0 (o) [


S
prej(o) � prei(o)


e��j (o) i 6= 0


e��0 (o) i = 0


Thus, B is ordered before A if all (unconditional or conditional) e�ects that add B either
imply an e�ect that deletes A, or need conditions that cannot be made true together with
A. Note that an e�ect �i requires all the conditions in prei(o) [ pre0(o) to be satis�ed,
which is impossible in any state where A holds because of the non-empty intersection with
FAGP .


The computation of �h requires a little more adaptation e�ort. In order to obtain the
set FA


DA, we now need to investigate the conditional e�ects as well. For each action that
has A as a conditional or unconditional e�ect, we determine which atoms are negated by
it, no matter which e�ect is used to achieve A. We obtain these atoms by intersecting the
appropriate sets Di(o).


D(o) :=
\


A 2 e�+i (o)


Di(o)
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These are exactly the facts that are always deleted by o when achieving A, no matter which
e�ect we use.


The intersection of the sets D(o) for all actions o yields the desired set FA
DA. Let us


consider the following small example to clarify the computation.


�0(o) = fUg �! fWg f:Xg;
�1(o) = fV;Wg �! fAg f:Xg;
�2(o) = fWg �! fUg f:Y g


We obtain D1(o) = f:Xg [ f:Y g = f:X;:Y g, because the precondition of �2(o) is
implied by the �rst conditional e�ect �1(o). As �1(o) is the only e�ect that can achieve A,
we get D(o) = D1(o) = f:X;:Y g.


We obtain a smaller set D(o), if we add A as an unconditional positive e�ect of the
action.


�0(o) = fUg �! fW;Ag f:Xg;
�1(o) = fV;Wg �! fAg f:Xg;
�2(o) = fWg �! fUg f:Y g


In this case, we need to intersect the sets D0(o) = f:Xg and D1(o) = f:X;:Y g,
yielding D(o) = f:Xg. This reects the fact that, when achieving A via the unconditional
e�ect of o, only X gets removed from the state.


The �xpoint computation requires to adapt the computation of O�. First, we repeat the
same steps as in the case of simple STRIPS actions and consider the unconditional negative
e�ects and the intersection of the preconditions with the False set:


O� := O n fo j A 2 e��0 (o) _ F
A
DA \ pre0(o) 6= ;g


Then, we additionally remove from each action the conditional e�ects that either imply the
deletion of A or have an impossible e�ect condition.


O� := red(O�) = fred(o)jo 2 O�g


Here, red is a function red(o) : o 7! o0 such that


�(o0) = �(o) n f�k(o) j A 2 Dk(o) _ prek(o) \ F
A
DA 6= ;g


Finally, we need to rede�ne De�nition 12, which expresses the conditions under which a
fact is believed to be possibly achievable given a certain set of operators O.


De�nition 18 (Possibly Achievable Atoms for ADL) An atom p is possibly achiev-
able given an action set O (written pA(p;O)) if and only if


9 o 2 O; �i 2 �(o) : p 2 e�+i (o) ^
8 p0 2 (prei(o) [ pre0(o)) : 9 o


0 2 O; �i0 2 �(o0) : p0 2 e�+i0 (o
0)


holds, i.e., there is a positive e�ect for p and all of its conditions and preconditions can be


made true by other e�ects in the reduced action set.
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The process, which decides whether an atomic goal B is heuristically ordered before another
goal A (i.e., whether B �h A holds) proceeds in exactly the same way as described in
Section 3.2: The False set FADA for A is reduced by the �xpoint computation, which remains
unchanged, but employs the updated routines for computing O� and for deciding pA(f;O�).
As a result, B is ordered before A (B �h A) if and only if it is not possibly achievable
pA(B;O�) using the action set that results from the �xpoint.


4. The Use of Goal Orderings During Planning


After having determined the ordering relations that hold between pairs of atomic goals
from a given goal set, the question is how to make use of them during planning. Several
proposals have been made in the literature, see Section 6 for a detailed discussion. In this
paper, we propose a novel approach that extracts an explicit ordering between subsets of
the goal set|called the goal agenda. The planner, in our case IPP, is then run successively
on the planning subproblems represented in the agenda.


4.1 The Goal Agenda


The �rst step one has to take for computing the goal agenda is to perform a so-called goal
analysis. During goal analysis, each pair A;B 2 G of atomic goals must be examined in
order to �nd out whether an ordering relation A � B, or B � A, or both, or none holds
between them. For the ordering relation �, an arbitrary de�nition can be used. In our
experiments, the relation � was always either �e or �h.


After having determined all ordering relations that hold between atomic goals, we want
to split the goal set into smaller sets based on these relations, and we want to order the
smaller sets, also based on these relations. More precisely, our goal is to have a sequence of
goal sets G1; : : : ; Gn with


n[
i=1


Gi = G


and


Gi \Gj = ;


for i 6= j; 1 � i; j � n. We also want the sequence of goal sets to respect the ordering
relations that have been derived between atomic goals. To make this explicit, we �rst
introduce a simple representation for the detected atomic orderings: the goal graph G.


G := (V;E)


where


V := G


and


E := f(A;B) 2 G � G j A � Bg


Now, the desired properties, which the sequence of goal sets should possess, can be easily
stated:
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� Goals A;B that lie on a cycle in G belong to the same set, i.e., A;B 2 Gi.


� If G contains a path from a goal A to a goal B, but not vice versa, then A is ordered
before B, i.e., A 2 Gi and B 2 Gj with i < j.


These are the only properties that appear to be reasonable for a goal-set sequence respecting
the atomic orderings. We will now introduce a simple algorithmic method that does produce
a sequence of goal sets which meets these requirements.


First of all, the transitive closure of G is computed. This can be done in at most cubic
time in the size of the goal set (Warshall, 1962). Then, for each node A in the transitive
closure, the ingoing edges Ain and outgoing edges Aout are counted. All disconnected nodes
with Ain = Aout = 0 are moved into a separate set of goals G-sep containing now those
atomic goals, which do not participate in a � relation. For all other nodes A, their degree
d(A) = Ain�Aout is determined as the di�erence between the number of ingoing edges and
the number of outgoing edges. Nodes with identical degree are merged into one set. The
sets are then ordered by increasing degree and yield our desired sequence of goal sets. The
only problem remaining is the set G-sep. If it is non-empty, it is not clear in which place
to put it.


Let us consider a small example of the process. Figure 3 depicts on the left the goal
graph, which results from the goal set G = fA;B;C;D;Eg and the ordering relations
A � B;B � C and B � D, and its transitive closure on the right.


A


B


C


D
E E


A


B


D


C


Figure 3: On the left, the goal graph depicting the � relations between the atomic subgoals.
On the right, the transitive closure of this graph.


In Figure 4, the number of in- and outgoing edges of each goal, the corresponding degrees,
and resulting goal-set sequence are shown.


0
0 E


-3 -1 2


E
G-sep


0


3


1


2


0


0


2


A 2
D


C
B {A} {B} {C,D}


Figure 4: On the left, the number of in- and outgoing edges for each node. On the right,
the degree of the nodes and the merged sets of goals having same degree. The
node E becomes a member of the G-sep set and remains unordered.


It is not diÆcult to verify that the resulting goal sequence respects the atomic goal orderings:
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� Nodes occurring on a cycle in a graph have isomorphic in- and outgoing edges in the
transitive closure of that graph. In particular, they have the same degree and get
merged into the same set Gi.


� Say we have a graph, where there is a path from A to B, but not vice versa. Then,
in the transitive closure of that graph, we will have an edge from A to each node
that B has a path to, and additionally the edge from A to B, i.e., Aout > Bout


follows. Similarly, we have an ingoing edge to B for each node that has a path to
A, and additionally, the edge from A to B, which gives us Bin > Ain. Altogether,
d(A) = Ain � Aout < Bin � Aout < Bin � Bout = d(B) and thus, the degree of A is
smaller than the degree of B and as required, A gets ordered before B.


Note that nothing is said in this argumentation about the set of unordered goals, G-
sep. This set could, in principle, be inserted anywhere in the sequence with the resulting
sequence still respecting the atomic orderings. A possible heuristic may use this goal set as
the �rst in the sequence, because apparently there is no problem to reach all other goals
after the goals in this set have been achieved. Another heuristic could put this set at the end
as there is neither a problem to reach this goal set from all other goals. We have decided to
deal with the problem in a more sophisticated way by trying to derive an ordering relation
between G-sep and the other goal sets Gi that have already been derived. In order to do
so, we need to extend our de�nitions of goal orderings to sets of goals.


4.2 Extension of Goal Orderings to Goal Sets


Given a set of atomic goals, it has always been a problem which of the exponentially many
subsets should be compared with each other in order to derive a reasonable goal ordering
between goal sets. A consideration of all possible subsets is out of question, because it will
result in an exponential overhead. The partial goal agenda that we have obtained so far
o�ers one possible answer. It suggests taking the set G-sep and trying to order it with
respect to the goal sets emerging from the goal graph.


Given a planning problem (O; I;G) and two subsets of atomic goals fA1; : : : ; Ang � G
and fB1; : : : ; Bkg � G, the de�nition of�e and�h for sets of atomic goals is straightforward.
For the sake of simplicity, we consider only STRIPS actions here. The de�nitions can be
directly extended to ADL.


To de�ne an ordering�E, which extends�e to sets, we begin by de�ning a set F
fA1;:::;Ang
GP


of all atoms, which are exclusive of at least one atomic goal Ai in the planning graph
generated for (O; I;G):


F
fA1;:::;Ang
GP := fp j p is exclusive of at least one Ai when the graph has leveled o� g


The set OfA1;:::;Ang is obtained accordingly by removing from O all actions that delete
at least one of the Ai, i.e., OfA1;:::;Ang = fo 2 O j 8 i 2 f1; : : : ; ng : Ai 62 del(o)g.


De�nition 19 (Ordering �E over Goal Sets) Let (O; I;G) be a planning problem with


fA1; : : : ; Ang � G and fB1; : : : ; Bkg � G. Let F
fA1;:::;Ang
GP be the False set for fA1; : : : ; Ang.


The ordering fB1; : : : ; Bkg �E fA1; : : : Ang holds if and only if


9 j 2 f1; : : : ; kg : 8 o 2 OfA1;:::;Ang : Bj 2 add(o)) pre(o) \ F
fA1;:::;Ang
GP 6= ;:
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In a similar way, �h can be extended to �H . For each Ai, the sets F
Ai


DA are determined


based on Equation (3). The set F
fA1;:::;Ang
DA is simply the union over the individual sets:


F
fA1;:::;Ang
DA :=


[
i


F
Ai


DA (4)


Then the �xpoint computation is entered with


O� := O n fo 2 O j 9 i 2 f1; : : : ; ng : Ai 2 del(o) _ F
fA1;:::;Ang
DA \ pre(o) 6= ;g (5)


The recomputation of O� in each iteration of the �xpoint algorithm from Figure 1 is done
accordingly. Apart from this, the algorithm remains unchanged.


De�nition 20 (Ordering �H) Let (O; I;G) be a planning problem with fA1; : : : ; Ang �
G and fB1; : : : ; Bkg � G. Let O� be the set of actions that is obtained by performing


the �xpoint computation shown in Figure 1, modi�ed to handle sets of facts as de�ned in


Equations (4) and (5). The ordering fB1; : : : ; Bkg �H fA1; : : : ; Ang holds if and only if


9 j 2 f1; : : : ; kg : :pA(Bj;O
�)


All given goal sets then undergo goal analysis, i.e., each pair of sets is checked for an
ordering relation �E or �H . Each derived relation de�nes an edge in a graph with the
subgoal sets as nodes. The transitive closure is determined as before, and the degree of
each node is computed. If the graph contains no disconnected nodes, then a total ordering
over subsets of goals results by ordering the nodes based on their degree. This ordering
de�nes the goal agenda. In the case of disconnected nodes, we default to the heuristic of
adding the corresponding goals to the last goal set in the agenda.


4.3 The Agenda-Driven Planning Algorithm


Given a planning problem (O;I;G), let us assume that a goal agenda G1; G2; : : : ; Gk with
k entries has been returned by the analysis. Each entry contains a subset Gi � G. The
basic idea for the agenda-driven planning algorithm is now to �rst feed the planner with
the original initial state I1 := I and the goals G1 := G1, then execute the solution plan P
in I, yielding the new initial state I2 = Result(I1;P). Then, a new planning problem is
initialized as (O;I2;G2). After solving this problem, we want the goals in G2 to be true,
but we also want the goals in G1 to remain true, so we set G2 := G1 [G2. The continuous
merging of successive entries from the agenda yields a sequence of incrementally growing
goal sets for the planner, namely


Gi :=
i[


j=1


Gj


In a little more detail, the agenda-driven planning algorithm we implemented for IPP works
as follows. First, IPP is called on the problem (O; I;G1) and returns the plan P1, which
achieves the subgoal set G1. P1 is a sequence of parallel sets of actions, which is returned
by IPP similarly to graphplan. Given this plan, the resulting state R(I;P1) = I2 is
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computed based on the operational semantics of the planning actions.6 In the case of a set
of STRIPS actions, one simply adds all ADD e�ects to and deletes all DEL e�ects from
a state description in order to obtain the resulting state, following the Result function in
De�nition 2. For STRIPS, the Result function coincides directly with the R function. In
the case of a set of parallel ADL actions, one needs to consider all possible linearizations
of the parallel action set and has to deal with the conditional e�ects separately. For each
linearization, a di�erent resulting state can be obtained, but each of them will satisfy the
goals. To obtain the new initial state I2, one takes the intersection of the resulting states
for each possible linearization of the actions in a parallel set. This means to compute n!
linearizations for a parallel action set of n actions in each time step. Since n is usually
small (more than 5 or 6 ADL actions per time step are very rare), the practical costs for
this computation are neglectible.


This way, given a solution to a subproblem (O;Ii;Gi), one calculates the new initial
state Ii+1 and runs the planner on the subsequent planning problem (O;Ii+1;Gi+1) until
the planning problem (O;Ik;Gk) is solved.


The plan solving the original planning problem (O; I;G) is obtained by taking the
sequence of subplans P1;P2; : : : ;Pk. One could argue that planning for increasing goal
sets can lead to highly non-optimal plans. But IPP still uses the \no-ops �rst" strategy to
achieve goals, which was originally introduced in the graphplan system (Blum & Furst,
1997). Employing this strategy, the graphplan algorithm, in short, �rst tries to achieve
goals by simply keeping them true, if possible. Since all goals G1;G2; : : : ;Gi are already
satis�ed in the initial state Ii+1, starting from which the planner tries to achieve Gi+1, this
strategy ensures that these goals are only destroyed and re-established if no solution can
be found otherwise. The no-ops �rst strategy is merely a graphplan feature, but any
reasonable planning strategy should preserve goals that are already true in the initial state
whenever possible.


The soundness of the agenda-driven planning algorithm is obvious because Gk = G and
we have a sequence of sound subplans yielding a state transition from the initial state I to
a state satisfying G.


The completeness of the approach is less obvious and holds only if the planner cannot
make wrong decisions before �nally reaching the goals. More precisely, the approach is
complete on problems that do not contain deadlocks as they were introduced in De�nition 14.


Theorem 8 Given a solvable planning problem (O; I;G), and a goal agenda G1;G2; : : :Gk
with Gi � Gi+1 and Gk = G. Running any complete planner in the agenda-driven manner


described above will yield a solution if the problem is deadlock-free.


Proof: Let us assume the planner does not �nd a solution in step i of the agenda-driven
algorithm, i.e., no solution is found for the subproblem (O;Ii;Gi). As the planner is assumed
to be complete on each subproblem, this implies unsolvability of (O;Ii;Gi). If this problem
is not solvable, then neither is the problem (O;Ii;G) solvable, since Gi � G holds. Therefore,
the goals cannot be reached from Ii. Furthermore, Ii is a reachable state|it was reached
by executing the partial solution plans P1; : : : ;Pi�1 in the initial state. Consequently, Ii
must be a deadlock state in the sense of De�nition 14, which is a contradiction.


6. See (Koehler et al., 1997) for the exact de�nition of R, which we do not want to repeat here.
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This result states the feasibility of our approach: As we have shown, most benchmark
problems that are currently investigated do contain inverse actions, are therefore invertible
(Theorem 7), and are with that also deadlock-free (Theorem 6). Thus, with Theorem 8,
our approach preserves completeness in these domains.


However in the general case, completeness cannot be guaranteed. The following example
illustrates a situation where the assumption s(A;:B) 6j= p (assuming that preconditions of
achieving actions are not contained in the state where A is reached, cf. the derivation of the
ordering �h in Section 3) is wrong and yields a goal ordering under which no plan can be
found anymore although the problem is solvable.


Given the initial state fC;Dg and the goals fA;Bg, the planner has the following set
of ground STRIPS actions :


op1: fCg �! ADD fBg DEL fDg


op2: fDg �! ADD fEg


op3: fEg �! ADD fFg
op4: fFg �! ADD fAg


The analysis will return an ordering B �h A because B is only added by op1, but its
precondition C is not an e�ect of any of the other actions. Thus it concludes that C is
not reachable from a state in which A holds. But in this example, C holds in all reachable
states. The assumption s(A;:B) 6j= C as made by the test pA(B;O�) is wrong. Thus, B
can be reached after A. On the other hand, A �r B holds, we even have a forced ordering
A �f B. But when testing for A �h B, this ordering remains undetected, because our
method does not discover that the precondition F of op4 is not achievable from the state
in which B holds: we obtain FBDA = fDg, which excludes op2 from O�, but op3 and op4
remain in the set of usable actions. Thus, op4 is considered a legal achiever of A, and op3
is considered a legal achiever for its precondition F . We could only detect the right ordering
if we regressed over the action chain op4, op3, op2 and found out that, with D being in
the F set of B, all these actions must be excluded from O�.


Consequently, the goal agenda fBg; fAg is fed into the planner, which solves the �rst
subproblem using op1, but then fails in achieving A from the state fB;Cg since there is
no inverse action to op1 and D cannot be re-established in any other way.


5. Empirical Results


We implemented both methods to approximate �r as a so-called Goal Agenda Manager
(GAM) for the IPP planning system (Koehler et al., 1997). GAM is activated after the
set of ground actions has been determined and either uses �e or �h to approximate the
reasonable goal ordering. Then it calls the IPP planning algorithm on each entry from the
goal agenda and outputs the solution plan as the concatenation of the solution plans that
have been found for each entry in the agenda.7


7. The source code of GAM, which is based on IPP 3.3, and the collection of domains from which
we draw the subsequent examples can be downloaded from http://www.informatik.uni-freiburg.de/~
koehler/ipp/gam.html. All experiments have been performed on a SPARC 1/170.
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The empirical evaluation that we performed uses the IPP domain collection, which con-
tains 48 domains with more than 500 planning problems. Out of these domains, we were
able to derive goal ordering information in 10 domains. These domains indeed pose con-
straints on the ordering in which a planner has to a achieve a set of goals. In all other
domains, where no goal orderings could be derived, we found that either only a single goal
has to be achieved, for example in the manhattan, movie, molgen, and montlake domains
or the goals can be achieved in any order, as for example in the logistics, gripper, and ferry


domains. We found no benchmark domain, in which a natural goal ordering existed, but
our method failed to detect it. As a matter of fact, looking at a goal ordering that seems to
be natural, one usually �nds that the ordering is reasonable in the sense of De�nition 8, see
for example the blocks world, woodshop, and tyreworld domains. Our method �nds almost
all of the reasonable orderings, which indicates that both approximation techniques �e and
�h are appropriate for detecting ordering information.


In the following, we will �rst compare the �e and �h techniques in terms of runtime
and number of goal agenda entries generated. Then we take a closer look at the agendas
that are generated in selected domains and investigate how they inuence the performance
of the IPP planning system. The exact de�nition of all domains can be downloaded from
the IPP webpage, we just give the name of the domain and the name of the particular
planning problem as well as the number of (ground) actions a domain contains, because
this parameter nicely characterizes the size of a domain and with that usually the diÆculty
to handle it.


In all examples, the times shown to compute the goal agenda contain the e�ort to
parse and instantiate the operators, i.e., to compute the set of actions. Times for parsing
and instantiation are not listed explicitly, because they are, on the test examples used here,
usually very close to zero and do not inuence the performance of the planner in a signi�cant
way.


5.1 Comparison of �h and �e


We begin our comparison with a summary of results that we obtained in di�erent represen-
tational variants of the blocks world. The bw large a to bw large d examples originate from
the SATPLAN test suite (Kautz & Selman, 1996) to which we added the larger examples
bw large e to bw large g. The parcplan example comes from (El-Kholy & Richards, 1996)
and uses multiple grippers and limited space on the table. The stack n examples use the
graphplan blocks world representation and simply require to stack n blocks on each other,
which are all on the table in the initial state.


The two methods return exactly the same ordering relations across all blocks world


problems. But as Figure 5 con�rms, the computation of �e based on planning graphs is
much more time-consuming. It hits the computational border when a domain contains more
than 10000 actions. The computation of �h is much faster and also scales to larger action
sets.
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problem #actions #agenda entries CPU(�e) CPU(�h)


bw large a 162 1 0.69 0.07
bw large b 242 5 1.45 0.11
bw large c 450 7 4.85 0.22
bw large d 722 11 14.18 0.35
bw large e 722 11 12.95 0.35
bw large f 1250 6 44.93 0.58
bw large g 1800 9 97.11 0.88


parcplan 1960 4 25.84 1.47


stack 20 800 19 6.91 0.36
stack 40 3200 39 160.00 1.74
stack 60 7200 59 840.42 4.85
stack 80 12800 79 - 11.38


Figure 5: Comparison of �e and �h on blocks world problems. #actions shows the number
of actions in the set O, from which the planner tries to construct a plan. #agenda
entries says how many goal subsets have been detected and ordered by GAM.
Column 4 and 5 display the CPU time that is required by both methods to
compute the agenda when provided with the set O. A dash will always mean
that IPP ran out of memory on a 1 Gbyte machine.


Figure 6 and Figure 7 show the results for the other domains, in which our method
is able to detect reasonable orderings. Figure 6 lists the domains, in which both methods
return the same goal agendas. The tyreworld, hanoi, and fridgeworld domains originate from
UCPOP (Penberthy & Weld, 1992), while the link-repeat domain can be found in (Veloso
& Blythe, 1994). The performance results coincide with those shown in Figure 5. Figure 7
shows the same picture in terms of runtime performance, but in these domains di�erent
agendas are returned by �e and �h.


The woodshop and scheduling domains contain actions with conditional e�ects, while
the other domains only use STRIPS operators. The computation of �e fails to derive goal
orderings for all scheduling world problems (of which we only display the largest problem
sched6) and for the wood1 problem. The explanation for this behavior can be found in the
di�erent treatment of conditional e�ects by both methods. IPP does only �nd a very limited
form of mutex relations between conditional e�ects when building the planning graph. A
goal, which is achieved with a conditional e�ect, will not very often be exclusive to a large
number of other facts in the graph. Thus, the F sets are very small or sometimes even empty
and consequently, only very few actions can be excluded when performing the reachability
analysis and thus, reasonable orderings may remain undetected. Direct analysis investigates
the conditional e�ects in more detail and is therefore able to derive much larger F sets.


The behavior of the �h method in the STRIPS domains bulldozer, glassworld, and
shopping world is caused by the same phenomenon. In these domains, one can derive much
larger F sets using planning graphs and in turn these sets exclude more actions. Since direct
analysis �nds smaller or empty F sets, it also �nds less �h relations. The woodshop domain
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domain problem #actions #agenda entries CPU(�e) CPU(�h)


tyreworld �xit1 26 6 0.05 0.01
�xit2 59 6 0.20 0.03
�xit3 108 6 0.45 0.06
�xit4 173 6 0.84 0.10
�xit5 254 6 1.56 0.15
�xit10 899 6 16.29 0.64


hanoi hanoi3 48 3 0.05 0.02
hanoi4 90 4 0.10 0.04
hanoi5 150 5 0.19 0.08
hanoi6 231 6 0.35 0.12
hanoi7 336 7 0.63 0.19


fridgeworld fridge 779 2 0.77 0.55


link-repeat link10 31 2 0.19 0.01
link30 31 2 0.21 0.01


Figure 6: Comparison of �e and �h on those benchmark domains, in which they return
identical agendas.


domain problem #actions #agenda entries CPU(�e) CPU(�h)


bulldozer bull 61 2/1 0.09 0.03


glassworld glass1 26 2/1 0.02 0.01
glass2 114 2/1 0.19 0.09
glass3 122 2/1 0.22 0.09


shoppingworld shop 81 2/1 0.07 0.02


scheduling sched6 104 1/4 01.0 0.12


woodshop wood1 15 1/3 0.03 0.01
wood2 15 6/5 0.03 0.01
wood3 43 6/5 0.14 0.06


Figure 7: Domains in which �e and �h return di�erent goal agendas, which we give in the
form n1=n2. The number before the slash says how many entries are contained
in the agenda computed by �e, the number following the slash says how many
entries are contained in the agenda computed by �h. #agenda entries=1 means
that the agenda contains only a single entry, namely the original goal set, and no
ordering was derived.


shows that the results can di�er within the same domain, but depending on the speci�c
planning problem. The problem wood2 varies from the problem wood1 in the sense that one
goal is slightly di�erent|an object needs to be put into a di�erent shape|and that two
more goals are present. While there are no goal orderings derived between pairs of the old
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goals from wood1, lots of �e relations are derived between mixed pairs of old and new goals
in wood2, yielding a detailed goal agenda. The problem wood3 contains additional objects
and many more goals, which can also be successfully ordered.


In the subsequent experiments, we decided to solely use the heuristic ordering�h because
the computation of �h is less costly than the computation of �e in all cases, yielding
comparable agendas in most cases. In the three domains that we investigate more closely,
namely the blocks world, tyreworld and hanoi domains, the agendas derived by both methods
are, in fact, exactly the same.


5.2 Inuence of Goal Orderings on the Performance of IPP and Interaction


with RIFO


In this section, we analyze the inuence of the goal agenda on the performance of IPP
and combine it with another domain analysis method, called RIFO (Nebel, Dimopoulos, &
Koehler, 1997). RIFO is a family of heuristics that enables IPP to exclude irrelevant actions
and initial facts from a planning problem. It can be very e�ectively combined with GAM,
because if IPP plans for only a subset of goals from the original goal set, it is very likely
that also only a subset of the relevant actions is needed to �nd a plan. More precisely, we
obtain one subproblem for each entry in the agenda, and, for each such subproblem, we
use RIFO for preprocessing before planning with IPP. In this con�guration, GAM reduces
the search space for IPP by decreasing the number of subgoals the planner has to achieve
at each moment, while RIFO reduces the search space dramatically by selecting only those
actions that are relevant for this goal subset.


5.2.1 The Blocks World


Figure 8 illustrates the parcplan problem (El-Kholy & Richards, 1996) in detail. Seven
robot arms can be used to order 10 blocks into 3 stacks on 5 possible positions on the table.
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Figure 8: The parcplan problem with limited space on the table, seven robot arms, and
several stacks.


The goal agenda derived by IPP orders the blocks into horizontal layers:


1: on-table(21, t2) ^ on-table(11, t1)
2: on-table(31, t3) ^ on(22, 21) ^ on(12, 11)
3: on(32, 31) ^ on(13, 12) ^ on(23, 22)
4: on(14, 13) ^ on(24, 23)
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The optimal plan of 20 actions solving the problem is found by IPP using GAM in 14 s,
where it spends one second on computing the goal agenda, almost 13 seconds to build the
planning graphs, but only 0.01 second to search for a plan. Only 70 actions have to be tried
to �nd the solution. Without the goal analysis, IPP needs approx. 47 s and searches 52893
actions in more than 26 seconds.


RIFO (Nebel et al., 1997) fails in detecting a subset of relevant actions when the original
goal set has to be considered, but it succeeds in selecting relevant actions for the subproblems
stated in the agenda. It reduces runtime down to less than 8 s with 1 s again spent on the
goal agenda, almost 6 s spent on the removal of irrelevant actions and initial facts, less
than 1 s spent on building the planning graphs. As previously, almost no time is spent on
planning.


Figure 9 shows IPP on the SATPLAN blocks world examples from (Kautz & Selman,
1996), the bw large.e example taken from (Dimopoulos, Nebel, & Koehler, 1997), and two
very large examples bw large.f (containing 25 blocks and requiring to build 6 stacks in the
goal state) and bw large.g with 30 blocks/8 stacks.


SATPLAN # actions plan length IPP +G +G+R +G+R+L


bw large.a 162 12 (12) 0.70 0.74 0.58 0.34
bw large.b 242 22 (18) 26.71 0.86 0.55 0.52
bw large.c 450 48 - 7.34 2.42 2.58
bw large.d 722 54 - 11.62 3.74 3.81
bw large.e 722 52 - 11.14 3.99 3.97
bw large.f 1250 90 - - - 16.01
bw large.g 1800 84 - - 117.56 28.71


Figure 9: Performance on the extended SATPLAN blocks world test suite. The second
column shows the number of ground actions in this domain, the third column
shows the plan length, i.e., the number of actions contained in the plan, generated
by GAM and in parentheses the plan length generated by IPP without GAM given
that IPP without GAM is able to solve the corresponding problem. +G means
that IPP is using GAM, +G+R means IPP uses GAM and RIFO, +G+R+L
means that subgoals from the same set in the agenda are arbitrarily linearized.
All runtimes cover the whole planning process starting with parsing the operator
and domain �le, performing the GAM and RIFO analysis (if active), and then
searching the graph until a plan is found.


IPP 3.3 without GAM can only solve the bw large.a and bw large.b problems. Using a
goal agenda, some plans become slightly longer, but performance is increasing dramatically.
Plan length is growing because blocks are accidentally put in positions where they cut o�
goals that are still ahead in the agenda and thus, additional actions need to be added to
the plan to remove these blocks from wrong positions. A further speed-up is possible when
RIFO is additionally used, because it reduces the size of planning graphs dramatically.
Finally, goals that belong to the same subset in the agenda can be linearized based on the
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heuristic assumption that if the analysis found no reasonable goal orderings, then the goals
are achievable in any order. With this option, the problems are solved almost instantly.


The reader may wonder at this point why we use linearization of agenda entries only
as an extra option and do not investigate it further. There are two reasons for that. First,
linearization does have negative side e�ects in most domains that we investigated. For
example, it yields much longer plans in the logistics domain and all its variants. When
linearizing the single entry that the agenda for a logistics problem contains, all packages get
transported to their goal position one by one. Of course, this takes much more planning
steps than simultaneously transporting packages with coinciding destinations.


Secondly, the e�ects of linearization are somewhat unpredictible, even in domains where
it usually tends to yield good results. This is because GAM does not recognise all inter-
actions between goals. Consider a blocks world problem with four blocks A, B, C and D.
Say B is positioned on C initially, the other blocks being each on the table, and the goal is
to have on(A;B) and on(C;D). The agenda for this problem will comprise a single entry
containing both goals. In fact, there is no reasonable goal ordering here. Nevertheless,
stacking A onto B immedeatly is a bad idea, as the planner needs to move C to achieve
on(C;D). Being not aware of this, GAM might linearize the single agenda entry to have
on(A;B) up front, which makes the problem harder than it actually is. Thus, the runtime
advantages that linearization sometimes yields on the blocks world can be more or less seen
as cases of \good luck".


Figure 10 shows IPP on the stack n problems. IPP without any domain analysis can
handle up to 12 blocks in less than 5 minutes, but for 13 blocks more than 15 minutes are
needed. Using GAM, 40 blocks can be stacked in less than 5 minutes. Using GAM and
RIFO, the 5 minutes limit is extended to 80 blocks, while stack100 is solved in 11.5 min
where 11.3 min are spent for both analysis methods and only 0.2 min are needed for building
the planning graphs and extracting a plan.
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Figure 10: IPP 3.3 on a simple, but huge stacking problem.


Figure 11 shows the sharing of the overall problem-solving time between GAM, RIFO
and the IPP search algorithm on blocks world problems. Similar results are obtained in the
tyreworld. GAM takes between 3 and 16 %, RIFO takes between 75 and 96 %, and the
search e�ort is reduced down to approx. 1 %. The overall problem solving time is clearly
determined by RIFO, while the search e�ort becomes a marginal factor in the determination
of performance. This indicates that a further speed-up is possible when improving the
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performance of GAM and RIFO. It also indicates that even the hardest planning problems
can become easy if they are structured and decomposed in the right way.


problem # actions GAM RIFO search algorithm


stack 20 800 0.31 = 16 % 1.44 = 75 % 0.13 = 7 %
stack 40 3200 1.57 = 7 % 18.77 = 90 % 0.51 = 2 %
stack 60 7200 4.40 = 4 % 93.10 = 94 % 1.15 = 1 %
stack 80 12800 9.60 = 3 % 283.60 = 96 % 2.33 = 1 %
parcplan 1960 0.86 = 12 % 5.52 = 76 % 0.83 = 11 %


Figure 11: Distribution of problem-solving time on blocks world examples between GAM,
RIFO, and the search algorithm, which comprises the time to build and search
the planning graph. The remaining fraction of total problem-solving time, which
is not shown in the table, is spent on parsing and instantiating the operators.


5.2.2 The Tyreworld


The tyreworld problem, originally formulated by Stuart Russell, asks a planner to �nd out
how to replace a at tire. It is easily solved by IPP within a few milliseconds. The problem
becomes much harder if the number of at tires is increasing, cf. Figure 12.


Tires # actions IPP +G+R +G+R+L Search Space


1 26 0.10 (12/19) 0.15 (14/19) 0.16 (17/19) 1298/88
2 59 17.47 (18/30) 0.41 (24/32) 0.32 (30/34) 1290182/210
3 108 - 2.87 (32/44) 0.63 (41/46) -/366
4 173 - - 1.12 (52/60) -/565
5 254 - - 1.93 (63/73) -/807
6 353 - - 3.42 (73/85) -/1092
7 464 - - 4.81 (84/98) -/1420
8 593 - - 8.07 (95/121) -/1791
9 738 - - 11.27 (106/124) -/ 2205
10 899 - - 16.89 (118/136) -/2662


Figure 12: IPP in the Tyreworld. The numbers in parentheses show the time steps, followed
by the number of actions in the generated plan. The last column compares the
search spaces. The number before the slash shows the \number of actions tried"
parameter for the plain IPP planning algorithm, while the number following
the slash shows the \number of actions tried" for IPP using GAM, RIFO, and
the linearization of entries in the agenda. A dash means that the \number
of actions tried" is unknown because IPP failed in solving the corresponding
planning problem.
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IPP is only able to solve the problem for 1 and 2 tires. Using GAM and RIFO, 3
tires can be handled. Solution length under GAM is slightly increasing, which is caused
by superuous jack-up and jack-down actions. In short, this is explained as follows. Each
wheel needs to be mounted on its hub, which is expressed by an on(?r, ?h) goal. To mount
a wheel, its hub must be jacked up. After mounting, the nuts are done up. Then, the hub
needs to be jacked down again, in order to tighten the nuts achieving a tight(?n, ?h) goal.
Now, GAM puts all of the on goals into one entry preceeding the tight goals. Thus, solving
the entry containing the on goals, each hub is jacked up, the wheel is put on, and the hub
is immediatly jacked down again in order to replace the next wheel. Afterwards, solving
the tight goals, each hub must be jacked up|and down|one more time for doing up the
nuts. Solving the problem in this manner, the planner inserts one superuous jack-up, and
one superuous jack-down action for each wheel. More precisely, superuous actions are
inserted for all but one wheel, namely the wheel that is last mounted when solving the on
goals. After mounting this wheel, all on goals are achieved, and the planner proceeds to
the next agenda entry with this wheel still being jacked up. Then, trying to achieve the
tight goals, IPP recognizes that the shortest plan (in terms of the number of parallel steps)
results when the nuts are �rst done up on the hub that is already jacked up. Thus, this hub
is only jacked up one time, achieving the corresponding on goal, and jacked down again one
time, before achieving its tight goal.
In the case of 3 tires, the following goal subsets are identi�ed and ordered:


1: inated(r3), inated(r2), inated(r1)
2: on(r3, hub3), on(r1, hub1), on(r2, hub2)
3: tight(n2, hub2), tight(n3, hub3), tight(n1, hub1)
4: in(w3, boot), in(pump, boot), in(w1, boot), in(w2, boot)
5: in(jack, boot)
6: in(wrench, boot)
7: closed(boot)


The hardest subproblem in the agenda is to achieve the on(ri; hubi) goals in entry 2,
i.e., to mount inated spare wheels on the various hubs. Trying to generate a maximum par-
allelized plan is impossible for IPP for more than 3 tires. But since the goals are completely
independent of each other, any linearization of them will perfectly work. The resulting
plans become slightly longer due to the way that the tight goals are achieved when using
the -L option. We noticed earlier that for one wheel (the one that is last mounted when
solving the on goals) no superuous jack-up and jack-down actions need to be inserted into
the plan. Linearizing the agenda entries, superuous jack-up and jack-down actions must
most likely be inserted for all wheels, yielding plans that are two steps longer. The reason
for that is that any tight goal might be the �rst in the linearization. Most likely, this is
not the tight goal corresponding to the hub that is still jacked up, so the planner needs to
insert one superuous jack-down action here. Later, it must jack up this hub again, yielding
another superuous action. Using +G+R+L in the case of 10 tires, only 2662 actions need
to be tried until a plan of 136 actions is found, which takes 0.08 s. GAM requires 0.55 s,
RIFO requires 14.42 s, 1.74 s are consumed to generate the planning graphs, and 0.08 s are
spent to compute the initial states for all subproblems. The remaining 0.02 s are consumed
for parsing and instantiating.
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5.2.3 The Tower of Hanoi


A surprising result is obtained in the tower of hanoi domain. In this domain, a stack of discs
has to be moved from one peg to a third peg with an auxiliary second peg between them,
but never a larger disc can be put onto a smaller disc. In the case of three discs d1, d2, d3
of increasing size, the goals are stated as on(d3,peg3), on(d2,d3), on(d1,d2). GAM returns
the following agenda, which correctly reects the ordering that the largest disc needs to be
put in its goal position �rst.


1: on(d3,peg3)


2: on(d2,d3)


3: on(d1,d2)


The goal agenda leads to a partition into subproblems that corresponds to the recursive
formulation of the problem solving algorithm, i.e., to solve the problem for n discs, the
planner �rst has to solve the problem for n � 1 discs, etc. For the �rst entry, a plan of 4
actions (time steps 0 to 3 below) is generated, which achieves the goal on(d3,peg3).8 Then
a plan of 2 actions (time steps 4 and 5) achieves the goals on(d3,peg3) and on(d2,d3) with
on(d3,peg3) holding already in the initial state. Finally, a one-step plan (time step 6) is
generated that moves the third disc with the other two discs being already in the goal
position.


time step 0: move(d1,d2,peg3)


time step 1: move(d2,d3,peg2)


time step 2: move(d1,peg3,d2)


time step 3: move(d3,peg1,peg3)


time step 4: move(d1,d2,peg1)


time step 5: move(d2,peg2,d3)


time step 6: move(d1,peg1,d2)


Surprisingly, IPP is not able to bene�t from this information, but runtime of IPP using
GAM is exploding dramatically for increasing numbers of discs, see Figure 13.


discs #actions IPP IPP +G UCPOP UCPOP on subproblems


2 21 0.02 0.02 0.12 (27) 0.06 (17) + 0.02 (6)
3 48 0.08 0.07 8.00 (2291) 0.18 (48) + 0.06 (13) + 0.01 (6)
4 90 0.33 0.25 - -
5 150 1.57 3.10 - -
6 231 9.71 88.45 - -
7 336 69.44 2339.94 - -


Figure 13: Runtimes of IPP with and without the goal agenda on hanoi problems com-
pared to UCPOP without agenda and UCPOP on the agenda subproblems using
ZLIFO and the ibf control strategy.


8. A move action takes as �rst argument the disc to be moved, as second the disc from which it is moved,
and as third argument the disc or peg to which it is moved.
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We are not able to provide an explanation for this phenomenon, but the division into
subproblems causes a much larger search space for the planner although the same solution
plans result. RIFO cannot improve on the situation because it selects all actions as relevant.


The tower of hanoi domain is the only one we found where IPP's performance is deteri-
orated by GAM. We do currently not see a way of how one can tell in advance whether IPP
will gain an advantage from using GAM or not. The overhead caused by the goal analysis
itself is very small, but an \inadequate" split of the goals into subgoal sets can lead to more
search, see also Section 6.


However in this case, the phenomenon seems to be speci�c to IPP. We simulated the
information that is provided by GAM in UCPOP and obtained a quite di�erent picture.
The �fth column in Figure 13 shows the runtime of UCPOP using ZLIFO (Pollack, Joslin,
& Paolucci, 1997) and the ibf control strategy with the number of explored partial plans
in parentheses. UCPOP can only solve the problem for 2 and 3 discs. In the last column
of the �gure, we show the runtime and number of explored partial plans, which result
when UCPOP is run on the subproblems that result from the agenda. These are exactly
the same subproblems which IPP has to solve, but the performance of UCPOP improves
signi�cantly. Instead of taking 8 s and exploring 2291 partial plans, UCPOP only takes
0.18+0.06+0.01=0.25 s and explores only 48+13+6=67 plans. Unfortunately, any problems
or subproblems with more than 3 discs remain beyond the performance of UCPOP. The
performance improvement is independent of the search strategies used by UCPOP. For
example, if ibf control is used without ZLIFO, the number of explored partial plans is
reduced from 78606 down to 2209 in the case of the problem with 3 discs. Runtime improves
from 65 seconds down to 2 seconds. Similarly, when using bf control without ZLIFO the
number of explored partial plans reduces from 1554 down to 873.


Knoblock (1994) also reports an improvement in performance for the Prodigy planner
(Fink & Veloso, 1994) when it is using the abstraction hierarchy generated for this domain
by the alpine module, which provides in essence the same information as the goal agenda.9


6. Summary and Comparison to Related Work


Many related approaches have been developed to provide a planner with the ability to
decompose a planning problem by giving it any kind of goal ordering information. Subse-
quently, we discuss the most important of them and review our own work in the light of
these approaches.


Our method introduces a preprocessing approach, which derives a total ordering for
subsets of goals by performing a static, heuristic analysis of the planning problem at hand.
The approach works for domains described with STRIPS or ADL operators and is based
on polynomial-time algorithms. The purpose of this method is to provide a planner with
search control, i.e., we opt at deriving a goal achievement order and then successively call
the planner on the totally ordered subsets of goals.


The method preserves the soundness of the planning system, but the completeness
only in the case that the planning domain does not contain deadlocks. We argue that


9. However, to �nd that goal ordering information, alpine requires to represent the tower of hanoi domain
involving several operators, cf. (Knoblock, 1991).
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benchmark domains quite often possess this property, which is also supported by other
authors (Williams & Nayak, 1997).


The computation of �h and �e requires only polynomial time, but both methods are
incomplete in the sense that they will not detect all reasonable goal orderings in the general
case. The complexity of deciding on the existence of forced and reasonable goal orderings
has been proven to be PSPACE-hard in Section 2 and therefore, trading completeness for
eÆciency seems to be an acceptable solution. Our complexity results relate to those found
by Bylander (1992) who proves the PSPACE-completeness of serial decomposability (Korf,
1987). Given a set of subgoals, serial decomposability means that previously satis�ed sub-
goals do not need to be violated later in the solution path, i.e., once a subgoal has been
achieved, it remains valid until the goal is reached. The purpose of our method is to derive
constraints that make those orderings explicit under which no serial decomposability of a set
of goals can be found, i.e., we consider the complementary problem, which is also reected
in our complexity proofs.


In many cases, we found that the goal agenda manager can signi�cantly improve the
performance of the IPP planning system, but we found at least one domain, namely the
tower of hanoi, where a dramatic decrease in performance can be observed although IPP


still generates the optimal plan when processing the ordered goals from the agenda. So
far, the complexity results of B�ackstr�om and Jonsson (1995) predicted that planning with
abstraction hierarchies can be exponentially less eÆcient, but because exponentially longer
plans can be generated.


The idea to analyze the e�ects and preconditions of operators and to derive ordering
constraints based on the interaction of operators can also be found in a variety of approaches.
While we analyze harmful interactions of operators in our method by studying the delete
e�ects, the approaches described in (Dawsson & Siklossy, 1977; Korf, 1985; Knoblock,
1994) concentrate on the positive interactions between operators. The successful matching
of e�ects to preconditions forms the basis to learnmacro-operators, see (Dawsson & Siklossy,
1977; Korf, 1985).


The alpine system (Knoblock, 1994) learns abstraction hierarchies for the Prodigy
planner (Fink & Veloso, 1994). The approach is based on an ordering of the preconditions
and the e�ects of each operator, i.e., all e�ects of an operator must be in the same abstraction
hierarchy and its preconditions must be placed at the same or a lower level than its e�ects.
This introduces an ordering between the possible subgoals in a domain, which is orthogonal
to the ordering we compute: In alpine, a subgoal A is ordered before a subgoal B if
A enables B, i.e., A must be possibly achieved �rst in order to achieve B. Our method
orders A before B if A cannot be achieved without necessarily destroying B. The result of
alpine and GAM are a set of binary constraints. In the case of alpine, the constraints
are computed between all atoms in a domain, while GAM restricts the analysis to the
goals only. Both approaches represent the binary constraints in a graph structure. alpine
merges atomic goals together if they belong to a strongly connected component in the graph.
GAM merges sets of goals together if they have identical degree. Then they both compute
a topological sorting of the sets that is consistent with the constraints. The resulting goal
orderings can be quite similar as the examples by Knoblock (1994) demonstrate, but GAM
approximates reasonable goal orderings in domains where alpine fails in �nding abstraction
hierarchies. Two further examples (Knoblock, 1991) are the tower of hanoi domain using
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only one move operator and the blocks world. In both domains, alpine cannot detect
the orderings because it investigates the operator schemata, not the set of ground actions,
and therefore cannot distinguish the orderings between di�erent instantiations of the same
literal. Although alpine could be modi�ed to handle ground actions, this will signi�cantly
increase the amount of computation it requires. GAM on the other hand, handles large sets
of ground actions in an eÆcient way, in particular if direct analysis is used.10


An analysis, which is quite similar to alpine, but which is performed in the framework
of HTN planning, is described by Tsuneto et al. (1998). The approach analyzes the external
conditions of methods, which cannot be achieved when decomposing the method further.
This means, such conditions have to be established by the decomposition of those methods,
which precede the method using this external condition. Two strategies to determine the
decomposition order of methods are de�ned and empirically compared. Here lies the main
di�erence to the other approaches described so far: Instead of trying to automatically
construct the decomposition orderings, they are prede�ned and �xed for all domains and
problems.


Harmful interactions among operators are studied by Smith and Peot (1993) and Etzioni
(1993). A threat of an operator o to a precondition p occurs if there is an instantiation of
o such that its e�ects are inconsistent with p (Smith & Peot, 1993). The knowledge about
threats is used to control a plan-space planner. In contrast to a state-space planner such as
IPP, computing an explicit ordering of goals does not prevent the presence of threats in a
partial plan because the order in which the goals are processed does not determine the order
in which actions occur in the plan. The notion of forced and reasonable goal orderings is
not comparable to that of a threat because a threat still has the potential of being resolved
by adding binding or ordering constraints to the plans. In contrast to this, a forced or
reasonable goal ordering persists under all bindings and enforces a speci�c ordering of the
subgoals.


Given a planning problem, static (Etzioni, 1993) computes a backchaining tree from the
goals in the form of an AND/OR graph, which it subsequently analyzes for the occurrence
of goal interactions that will necessarily occur. This analysis is much more complicated
than ours, because static has to deal with uninstantiated operators and axioms, which
describe properties of legal states. The result of the analysis are goal ordering rules, which
order goals if certain conditions are satis�ed in a state. This is the main di�erence to GAM,
which generates explicit goal orderings independently of a speci�c state. It does not need to
extract conditions that a speci�c state has to satisfy because it considers the generic state
s(A;:B) in the analysis, which represents all states satisfying A, but not B. As GAM, static
is incomplete in the sense that it cannot detect all existing goal interactions. The problem
for GAM is that deciding reasonable orderings is PSPACE-hard, as we have proven in this
paper. The problem for static is that it has to compute the necessary e�ects of an operator
in a given state. As Etzioni (1993) conjectures and Nebel and B�ackstr�om (1994) prove, this


10. Abstraction hierarchies are more general than the goal orderings we compute. They cannot only serve
for the purpose of providing a planner with goal ordering information, but also allow to generate plans
at di�erent levels of re�nement, see also (Bacchus & Yang, 1994). Two other approaches generating
abstraction hierarchies based on numerical criticality values can be found in (Sacerdoti, 1974; Bundy,
Giunchiglia, Sebastiani, & Walsh, 1996).
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problem is computationally intractable and therefore, any polynomial-time analysis method
must be incomplete.


Last, but not least there have been quite a number of approaches in the late Eighties,
which focused directly on subgoal orderings. These fall into two categories: The approaches
described in (Drummond & Currie, 1989; Hertzberg & Horz, 1989) focus on the detection of
conicts caused by goal interdependencies to guide a partial-order planner during search. We
do not investigate these approaches in more detail here because they do not extract explicit
goal orderings as a preprocess to planning as we do. The works described in (Irani & Cheng,
1987; Cheng & Irani, 1989; Joslin & Roach, 1990) implement preprocessing approaches,
which perform a structural analysis of the planning task to determine an appropriate goal
ordering before planning starts. Irani and Cheng (1987) compute a relation � between
pairs of goals, which|roughly speaking|orders a goal A after a goal B if B must be
achieved beforeA can be achieved. Their formalism is rather complicated and the theoretical
properties of the relation are not investigated. In (Cheng & Irani, 1989), the approach is
extended such that sets of goals can be ordered with respect to each other. The exact
properties of the formalism remain unclear. In (Joslin & Roach, 1990), a graph-theoretical
approach is described that generates a graph with all atoms from a given domain description
as nodes and draws an arc between a node A and a node B if an operator exists that takes
A as precondition and has B as an e�ect. When assuming that all operators have inverse
counterparts, identifying connected components in the graph is proposed as a means to
order goals. The approach is unlikely to scale to the size of problem spaces today's planners
consider and it is also completely outdated in terms of terminology.


Finally, one can wonder how the reasonable and forced goal orderings relate to others
de�ned in the literature. There is only one attempt of which we know where an ordering
relation is explicitly de�ned and its properties are studied, see (H�ullem et al., 1999). In
this paper, the notion of necessary goal orderings is introduced, which must be true in
all minimal solution plans (Kambhampati, 1995).11 The approach extends operator graphs
(Smith & Peot, 1993) and orders a goal based on three criteria called goal subsumption, goal
clobbering, and precondition violation. Goal subsumption A < B holds if every solution plan
achieving a goal B in a state s also achieves a goal A in a state s0 preceding s, and no plan
achieving one of the goals in G n fAg deletes A. Goal clobbering holds if any solution plan
for A deletes B and thus, A < B. Precondition violation holds if any solution for B results
in a deadlock from which A cannot be reached anymore, i.e., again A < B. A composite
criterion is de�ned that tests all three criteria simultaneously.12 A goal A is necessarily
ordered before B if it satis�es the composite criterion.


We remark that precondition violation seems to be equivalent to the forced orderings we
introduced, while goal clobbering appears to be similar to our reasonable orderings. It is not
possible for us to verify this conjecture as the authors of (H�ullem et al., 1999) do not give
exact formal de�nitions. We have nothing similar to goal subsumption and we argue that
this criterion will be rarely satis�ed in natural problems: if a goal A is achieved by every


11. A plan is minimal if it contains no subplan that is also a solution plan. We remark that minimality does
not mean that only shortest plans having the least number of actions are considered. In fact, minimal
plans can be highly non-optimal as long as no action is truly superuous.


12. Here, the authors are not very precise about what they mean with this. We argue that this means that
two goals are ordered if they satisfy at least one of the criteria.
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solution for a goal B anyway, then the goal A can be removed from the goal set without
changing the planning task.


The authors report that they are able to detect necessary orderings in the arti�cial
domains DiSi, cf. (Barrett & Weld, 1994), but fail in typical benchmark domains such as
the blocks world or the tyreworld. The reason for this seems to be that their operator graphs
do not represent all possible instantiations of operator schemes. As the authors claim, this
makes operator graph analysis very eÆcient. However, the heuristic ordering �h that we
introduced in this paper also takes almost no computation time, and succeeds in �nding
the goal orderings in these domains.


7. Outlook


Three promising avenues for future research are the following:


First, one can imagine that goal ordering information is also used during the search
process, i.e., by not only ordering the original goal set, but also other goals that emerge
during search. The major challenge seems to balance the e�ort on computing the goal
ordering information with the savings that can result for the search process. One can
easily imagine that ordering all goal sets that are ever generated can become a quite costly
investment without yielding a major bene�t for the planner.


Secondly, the re�nement of the goal agenda with additional subgoals is another inter-
esting future line of work. A �rst investigation using so-called intermediate goals (these are
facts that the planner must make true before it can achieve an original goal) has been
explored inside GAM and the results are reported in (Koehler & Ho�mann, 1998). Earlier
work addressing the task of learning intermediate goals can be found in (Ruby & Kibler,
1989), but this problem has not been in the focus of AI planning research since then.


A third line of work addresses the interaction of GAM with a forward-searching plan-
ning system. We have seen that GAM preserves the correctness of a planner, and that
it preserves the completeness at least on deadlock-free planning domains. We have also
seen, however, that solution plans using GAM can get longer, i.e., GAM does not pre-
serve the optimality of a planner. Recently, planning systems that do not deliver plans of
guaranteed optimality have demonstrated an impressive performance in terms of runtime
and plan length, e.g., HSP, which is �rst mentioned in (Bonet, Loerincs, & Ge�ner, 1997),
GRT (Refanidis & Vlahavas, 1999), and in particular ff (Ho�mann, 2000). These systems
are heuristic-search planners searching forward in the state space with non-admissible, but
informative heuristics.


The ff planning system developed by one of the authors has been awarded \Group A
Distinguished Performance Planning System" and has also won the Schindler Award for
the best performing planning system in the Miconic 10 Elevator domain (ADL track) at
the AIPS 2000 planning competition. The integration of goal agenda techniques into the
planner is one of the factors that enabled the excellent behavior of ff in the competition:
they were crucial for scaling to blocks world problems of 50 blocks, helped by about a factor 2
on schedule and Miconic 10, and never slowed down the algorithm.


Forward state-space search is a quite natural framework to be driven by the goal agenda:
Simply let the planner solve a subproblem, and start the next search from the state where
the last search ended. Even more appealing, heuristic forward-search planners have a deeper
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kind of interaction with GAM than for example graphplan-style planners. In addition
to the smaller problems they are facing when using the goal agenda, their heuristics are
inuenced because they employ techniques for estimating the goal distance from a state.
When using the goal agenda, di�erent goal sets result at each stage of the planning process
and therefore, the goal-distance estimate will be di�erent, too. Currently a heuristic device
inside the ff search algorithm is being developed, which knows that it is being driven by
a goal agenda, and which has access to the complete set of goals. This information can be
used to further prune unpromising branches from the search space when it discovers that
currently achieved goals will probably have to be destroyed and reachieved later on.
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