The selection process drives the searching towards the regions of the best individuals. The mutation operator randomly modifies, with a given probability, one or more genes of a chromosome, thus increasing the structural diversity of the population. As we can see, it is clearly an exploration operator, that helps to recover the genetic diversity lost during the selection phase and to explore new solutions avoiding premature convergence. In this way, the probability of reaching a given point in the search space is never zero. This operator, in fact, implements a random search whose well-studied features are useful in the field of evolutionary computation.
The crossover operator combines the genes of two or more parents to
generate better offspring. It is based on the idea that the exchange
of information between good chromosomes will generate even better
offspring. The effect of the crossover operator can be studied from
two different points of view: at chromosome level and at gene level.
The effect of the crossover operator at chromosome level can be
considered in a geometric way. Given two parents
and
with two genes, we
denote by
the hypercube defined by their genes
(Figure 1a). At gene level the representation would be
linear, defining in this case a segment or interval
for each pair of genes (Figure
1b). Most crossover operators generate individuals in
the exploitation zones,
or
. In this way, the crossover operator implements a
depth search or exploitation, leaving the breadth search or
exploration for the mutation operator.
This policy, intuitively very natural, makes the population converge
to values within the hypercubes defined by their parents, producing a
rapid decrease in the population diversity which could end up in a
premature convergence to a non-optimal solution. Recent studies on
BLX- crossover [ES93], the crossover based on fuzzy
connectives [HHVLV94], and fuzzy recombination [VMC95],
have confirmed the good performance of those crossover operators that
also generate individuals in the exploration zone. These operators
avoid the loss of diversity and the premature convergence to inner
points of the search space, but also the generation of new individuals
in the exploration zone could slow the search process. For this
reason, the crossover operator should establish an adequate balance
between exploration (or interpolation) and exploitation (or
extrapolation), and generate offspring in the exploration and
exploitation zones in the correct proportion.
![]() |
Establishing a balance between exploration and exploitation is
important, but it is also important that such a balance is
self-adaptive [Kit01,BD01,DB01], that
is, it must guarantee that the dispersion of the offspring depends on
the dispersion of the parents. So, two close parents must generate
close offspring, and two distant parents must generate distant
offspring. The control of dispersion in the crossover based on fuzzy
connectives is based on the generation of offspring using the fuzzy
connectives t-norms, t-conorms, average functions, and a
generalized operator of compensation [Miz89]. In fuzzy
recombination the offspring is generated using two triangular
distributions whose averages derive from each of the genes of the two
parents. In BLX- we have the same probability of generating an
offspring between the parents, and in an area close to the parents
whose amplitude is modulated by the
parameter.
Ono and Kobayashi [OK97] have proposed a Unimodal Normally
Distributed Crossover (UNDX), where three parents are used to generate
two or more children. The children are obtained using an ellipsoidal
distribution where one axis is the segment that joins the two parents
and the extent of the orthogonal direction is decided by the
perpendicular distance of the third parent from the axis. The authors
claim that this operator should preserve the statistics of the
population. This crossover is also self-adaptive, but it differs from
BLX- by the fact that it is more probable to generate
offspring near the average of the first two parents.
Another self-adaptive crossover is the Simulated Binary Crossover (SBX) [DA95]. Based on the search features of the single-point crossover used in binary-coded genetic algorithms, this operator respects the interval schemata processing, in the sense that common interval schemata of the parents are preserved in the offspring. The SBX crossover puts the stress on generating offspring near the parents. So, the crossover guarantees that the extent of the children is proportional to the extent of the parents, and also favors that near parent individuals are monotonically more likely to be chosen as children than individuals distant from the parents.
The main goal of this paper is to propose a crossover operator that avoids the loss of diversity of the population of individuals, and, at the same time, favors the speed of convergence of the algorithm. These two goals are, at first, conflicting; their adequate balance is controlled by two of the basic features of the crossover operator: i) the balance between exploration and exploitation and, ii) the self-adaptive component. These two features make the evolutionary algorithms avoid premature convergence and favor local fine-tuning. Both attributes are highly appreciated in any search algorithm.
In most current crossover operators, the features of the offspring depend on the features of just a few parents. These crossovers do not take into account population features such as localization and dispersion of the individuals. The use of these statistical features of the population may help the convergence of the population towards the global optimum.
The crossover operator implements basically a depth or exploitative search, just like other methods such as steepest gradient descent, local search or simulated annealing, but in these three search methods the algorithm takes the quality of the solutions into account. So, it is reasonable to think that it is also convenient for the crossover operator to consider the performance on the individuals involved in the crossover operation. This idea is already implemented by some heuristic crossovers [Wri91].
Nevertheless, following the previous line of argument, it seems rather poor to use just two parents, and not to consider the most promising directions towards which it would be advisable to drive the search. That is, instead of using a local heuristic that uses two individuals, involving the whole population or an adequate subset in the determination of the direction of the search whose features would be specially suitable.
Motivated by this line of argument, in this paper we propose a
crossover operator, which will be called Confidence Interval
Based Crossover using Norm (CIXL2). On the one hand, it takes
advantage of the selective component that is derived from the
extraction of the features of the best
individuals of the
population and that indicates the direction of the search, and on the
other hand, it makes a self-adaptive sampling around those features
whose width depends on the number of best individuals, dispersion of
those best individuals, confidence coefficient, and localization of
the individuals that participate in the crossover. Now, the
exploitation region is not the area between the two parents that are
involved in the crossover, but the area defined by the confidence
interval built from the
best individuals of the population; and
the exploratory region is the rest of the search domain. To the
previous concepts of exploration and exploitation, merely geometrical,
is added a probabilistic component that depends on the population
features of the best individuals.
Estimation of Distribution Algorithms (EDAs) or Probabilistic Model-Building Evolutionary Algorithms [MP98,MMR99] are based on a, seemingly, similar idea. These algorithms do not have mutation and crossover operators. After every generation the population distribution of the selected individuals is estimated and the new individuals are obtained sampling this estimated distribution. However, the underlying idea behind our crossover is the extraction of population features, mean and standard deviation, in order to detect the regions where there is a higher probability of getting the best individuals. In order to perform the crossover, we create three virtual parents that represent the localization estimator mean, and the bounds of the confidence interval from which, with a certain confidence degree, this localization estimator takes the values. In this way, the children generated from these three parents will inherit the features of the best individuals of the population.
The rest of the paper is organized as follows: Section 2 explains the definition of CIXL2 and its features; Section 3 discusses the problem of the selection of the test sets, and justifies the use of a test set based on the one proposed by Eiben and B�ck [EB97a]; Section 4 describes the experimental setup of evolutionary algorithm (RCGA) used in the tests; Section 5 studies the optimal values of the parameters of CIXL2; Section 6 compares the performance of CIXL2 against other crossovers; Section 7 compares CIXL2 with EDAs; Section 8 describes the application of RCGAs with CIXL2 to neural network ensembles; and, finally, Section 9 states the conclusions of our paper and the future research lines.
Domingo 2005-07-11