

Journal of Artificial Intelligence Research 25 (2006) 389–424 Submitted 09/05; published 03/06

On Graphical Modeling of Preference and Importance

Ronen I. Brafman brafman@cs.stanford.edu
Department of Computer Science
Stanford University
Stanford CA 94305

Carmel Domshlak dcarmel@ie.technion.ac.il
Faculty of Industrial Engineering and Management
Technion - Israel Institute of Technology
Haifa, Israel 32000

Solomon E. Shimony shimony@cs.bgu.ac.il

Department of Computer Science
Ben-Gurion University
Beer Sheva, Israel 84105

Abstract

In recent years, CP-nets have emerged as a useful tool for supporting preference elici-
tation, reasoning, and representation. CP-nets capture and support reasoning with qual-
itative conditional preference statements, statements that are relatively natural for users
to express. In this paper, we extend the CP-nets formalism to handle another class of very
natural qualitative statements one often uses in expressing preferences in daily life – state-
ments of relative importance of attributes. The resulting formalism, TCP-nets, maintains
the spirit of CP-nets, in that it remains focused on using only simple and natural preference
statements, uses the ceteris paribus semantics, and utilizes a graphical representation of
this information to reason about its consistency and to perform, possibly constrained, opti-
mization using it. The extra expressiveness it provides allows us to better model tradeoffs
users would like to make, more faithfully representing their preferences.

1. Introduction

The ability to make decisions and to assess potential courses of action is a corner-stone of
numerous AI applications, including expert systems, autonomous agents, decision-support
systems, recommender systems, configuration software, and constrained optimization ap-
plications. To make good decisions, we must be able to assess and compare different al-
ternatives. Sometimes, this comparison is performed implicitly, as in many recommender
systems (Burke, 2000; Resnick & Varian, 1997). But frequently, explicit information about
the decision-maker’s preferences is required.

In classical decision theory and decision analysis utility functions are used to represent
the decision-maker’s preferences. However, the process of obtaining the type of information
required to generate a good utility function is involved, time-consuming and requires non-
negligible effort on the part of the user (French, 1986). Sometimes such effort is necessary
and possible, but in many applications the user cannot be engaged for a lengthy period of
time and cannot be supported by a human decision analyst. For instance, this is the case in
on-line product recommendation systems and other software decision-support applications.

c©2006 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Brafman, Domshlak, & Shimony

When a utility function cannot be or need not be obtained, one should resort to other,
more qualitative forms of preference representation. Ideally, this qualitative information
should be easily obtainable from the user by non-intrusive means. That is, we should be
able to extract such information from natural and relatively simple statements of preference
provided by the user, and this elicitation process should be amenable to automation. In
addition, automated reasoning about such qualitative preference information should be
semantically effective and computationally efficient.

One framework for preference representation that addresses these concerns is that of
Conditional Preference Networks (CP-nets) (Boutilier et al. 1999, 2004a). CP-nets is a
graphical preference representation model grounded in the notion of conditional preferen-
tial independence. In preference elicitation with CP-nets, the decision maker (directly or
indirectly) describes how her preference over the values of one variable depends on the value
of other variables. For example, she may state that her preference for a dessert depends on
the main-course as well as whether or not she had an alcoholic beverage. In turn, her pref-
erence for an alcoholic beverage may depend on the main course and the time of day. This
information is described by a graphical structure in which the nodes represent variables of
interest and edges capture direct preferential dependence relations between the variables.
Each node is annotated with a conditional preference table (CPT) describing the user’s
preference over alternative values of this node given different values of the parent nodes.
CP-nets capture a class of intuitive and useful natural language statements of the form “I
prefer the value x0 for variable X given that Y = y0 and Z = z0”. Such statements do not
require complex introspection nor a quantitative assessment.

From the practical perspective, there is another class of preference statements that is no
less intuitive or important, yet is not captured by the CP-net model. These statements have
the form: “It is more important to me that the value of X be better than that the value
of Y be better.” We call these relative importance statements. For instance, one might say
“The length of the journey is more important to me than the choice of airline”. A more
refined notion of importance, though still intuitive and easy to communicate, is that of con-
ditional relative importance: “The length of the journey is more important to me than the
choice of airline if I need to give a talk the following day. Otherwise, the choice of airline is
more important.” The latter statement is of the form: “A better assignment for X is more
important than a better assignment for Y given that Z = z0.” Notice that information
about relative importance is different from information about preferential independence.
For instance, in the example above, user’s preference for an airline does not depend on the
duration of the journey because, e.g., she compares airlines based only on their service,
security levels, and the quality of their frequent flyer program. Informally, using statements
of relative importance the user expresses her preference over compromises that may be
required. Such information is very important in customized product configuration applica-
tions (Sabin & Weigel, 1998; Haag, 1998; Freuder & O’Sullivan, 2001), where production,
supply, and other constraints are posed on the product space by the producer, and these
constraints are typically even unknown to the customer. Indeed, in many applications, var-
ious resource (e.g., money, time, bandwidth) constraints exist, and the main computational
task is that of finding a solution that is feasible and not preferentially dominated by any
other solution.

390

TCP-Nets

In this paper we consider enhancing the expressive power of CP-nets by introducing
information about importance relations, obtaining a preference-representation structure
which we call TCP-nets (for tradeoffs-enhanced CP-nets). By capturing information about
both conditional preferential independence and conditional relative importance, TCP-nets
provide a richer framework for representing user preferences, allowing stronger conclusions
to be drawn, yet remaining committed to the use of only very intuitive, qualitative infor-
mation. At the same time, we show that the added relative importance information has
significant impact on both the consistency of the specified relation, and the techniques used
for reasoning about it. Focusing on these computational issues, we show that the graphi-
cal structure of the “mixed” set of preference statements captured in a TCP-net can often
be exploited in order to achieve efficiency both in consistency testing and in preferential
reasoning.

This paper is organized as follows: Section 2 describes the notions underlying TCP-nets:
preference relations, preferential independence, and relative importance. In Section 3 we
define TCP-nets, specify their semantics, and provide a number of examples. In Section 4
we characterize a class of conditionally acyclic TCP-nets whose consistency is guaranteed
and then, in Section 5 we discuss the complexity of identifying members of this class. In
Section 6 we present an algorithm for outcome optimization in conditionally acyclic TCP-
nets, and discuss the related tasks of reasoning about preferences given a TCP-net. We
conclude with a discussion of related and future work in Section 7.

2. Preference Orders, Independence, and Relative Importance

In this section we describe the semantic concepts underlying TCP-nets: preference orders,
preferential independence, conditional preferential independence, as well as relative impor-
tance and conditional relative importance.

2.1 Preference and Independence

We model a preference relation as a strict partial order. Thus, we use the terms preference
order and strict partial order interchangeably. A strict partial order is a binary relation
over outcomes that is anti-reflexive, anti-symmetric and transitive. Given two outcomes
o, o′, we write o � o′ to denote that o is strictly preferred to o′.

The above choice implies that two outcomes cannot be equally preferred. This choice
follows from the fact that the language of preferences we use in this paper does not allow
statements of indifference (as opposed to incomparability), and thus there is no need for
using weak orderings. Incorporating statements of indifference is pretty straightforward, as
explained by Boutilier et al. (2004a), but introduces much overhead if we were to formally
treat it throughout this paper.

The types of outcomes we are concerned with consist of possible assignments to some set
of variables. More formally, we assume some given set V = {X1, . . . , Xn} of variables with
corresponding domains D(X1), . . . ,D(Xn). The set of possible outcomes is then D(V) =
D(X1)× · · · ×D(Xn), where we use D(·) to denote the domain of a set of variables as well.
For example, in the context of the problem of configuring a personal computer (PC), the
variables may be processor type, screen size, operating system etc., where screen size has
the domain {17in, 19in, 21in}, operating system has the domain {LINUX, Windows98,

391

Brafman, Domshlak, & Shimony

WindowsXP}, etc. Each complete assignment to the set of variables specifies an outcome –
a particular PC configuration. Thus, a preference relation over these outcomes specifies a
strict partial order over possible PC configurations.

The number of possible outcomes is exponential in n, while the set of possible orderings
on them is more than doubly exponential in n. Therefore, explicit specification and rep-
resentation of an ordering is not realistic, and thus we must describe it implicitly using a
compact representation model. The notion of preferential independence plays a key role in
such representations. Intuitively, X ⊂ V is preferentially independent of Y = V−X if and
only if for all assignments to Y, our preference over X values is identical.

Definition 1 Let x1,x2 ∈ D(X) for some X ⊆ V, and y1,y2 ∈ D(Y), where Y = V−X.
We say that X is preferentially independent of Y iff, for all x1, x2, y1, y2 we have that

x1y1 � x2y1 iff x1y2 � x2y2 (1)

For example, in our PC configuration example, the user may assess screen size to be pref-
erentially independent of processor type and operating system. This could be the case if
the user always prefers a larger screen to a smaller screen, independent of the selection of
processor and/or OS.

Preferential independence is a strong property, and is therefore not very common. A
more refined notion is that of conditional preferential independence. Intuitively, X is con-
ditionally preferentially independent of Y given Z if and only if for every fixed assignment
to Z, the ranking of X values is independent of the value of Y.

Definition 2 Let X,Y and Z be a partition of V and let z ∈ D(Z). X is conditionally
preferentially independent of Y given z iff, for all x1, x2, y1, y2 we have that

x1y1z � x2y1z iff x1y2z � x2y2z, (2)

and X is conditionally preferentially independent of Y given Z iff X is conditionally pref-
erentially independent of Y given every assignment z ∈ D(Z).

Returning to our PC example, the user may assess operating system to be independent of
all other features given processor type. That is, he always prefers LINUX given an AMD
processor and WindowsXP given an Intel processor (e.g., because he might believe that
WindowsXP is optimized for the Intel processor, whereas LINUX is otherwise better). Note
that the notions of preferential independence and conditional preferential independence are
among a number of standard and well-known notions of independence in multi-attribute
utility theory (Keeney & Raiffa, 1976).

2.2 Relative Importance

Although statements of preferential independence are natural and useful, the orderings ob-
tained by relying on them alone are relatively weak. To understand this, consider two
preferentially independent boolean attributes A and B with values a1, a2 and b1, b2, respec-
tively. If A and B are preferentially independent, then we can specify a preference order
over A values, say a1 � a2, independently of the value of B. Similarly, our preference over

392

TCP-Nets

B values, say b1 � b2, is independent of the value of A. From this we can deduce that a1b1

is the most preferred outcome and a2b2 is the least preferred outcome. However, we do
not know the relative order of a1b2 and a2b1. This is typically the case when we consider
independent variables: We can rank each one given a fixed value of the other, but often,
we cannot compare outcomes in which both values are different. One type of information
that can address some (though not necessarily all) such comparisons is information about
relative importance. For instance, if we state that A is more important than B, it means
that we prefer an improvement in A over an improvement in B. In that case, we know that
a1b2 � a2b1, and can totally order the set of outcomes as a1b1 � a1b2 � a2b1 � a2b2.

One may ask why it is important for us to order a1b2 and a2b1 – after all, we know
that a1b1 is the most preferred outcome. However, in many typical scenarios, we have
auxiliary or user constraints that prevent us from providing the user with the most preferred
(unconstrained) outcome. A simple and common example is that of budget constraints,
other resource limitations, such are bandwidth and buffer size (as in the adaptive rich-
media systems described by Brafman and Friedman (2005) are also common. In such cases,
it is important to know which attributes the user cares about more strongly, and to try to
maintain good values for these attributes, compromising on the others.

Returning to our PC configuration example, suppose that the attributes operating sys-
tem and processor type are mutually preferentially independent. We might say that proces-
sor type is more important than operating system, e.g, because we believe that the effect
of the processor’s type on system performance is more significant than the effect of the
operating system.

Definition 3 Let a pair of variables X and Y be mutually preferentially independent given
W = V − {X, Y }. We say that X is more important than Y , denoted by X � Y , if for
every assignment w ∈ D(W) and for every xi, xj ∈ D(X), ya, yb ∈ D(Y), such that xi � xj

given w, we have that:
xiyaw � xjybw. (3)

Note that Eq. 3 holds even when yb � ya given w. For instance, when both X and Y
are binary variables, and x1 � x2 and y1 � y2 hold given w, then X � Y iff we have
x1y2w � x2y1w for all w ∈ D(W). Notice that this is a strict notion of importance – any
reduction in Y is preferred to any reduction in X. Clearly, this idea can be further refined
by providing an actual ordering over elements of D(XY), and we discuss this extension
in Section 3.4. In addition, one can consider relative importance assessments among more
than two variables. However, we feel that the benefit of capturing such statements is small:
We believe that statements of relative importance referring to more than two attributes are
not very natural for users to articulate, and their inclusion would significantly reduce the
computational advantages of graphical modeling. Therefore, in this work we focus only on
relative importance statements referring to pairs of attributes.

Relative importance information is a natural enhancement of independence information.
As such, relative importance retains a desirable property - it corresponds to statements that
a naive user would find simple and clear to evaluate and articulate. Moreover, it can be
generalized naturally to a notion of conditional relative importance. For instance, suppose
that the relative importance of processor type and operating system depends on the primary
usage of the PC. For example, when the PC is used primarily for graphical applications, then

393

Brafman, Domshlak, & Shimony

the choice of an operating system is more important than that of a processor because certain
important software packages for graphic design are not available on LINUX. However, for
other applications, the processor type is more important because applications for both
Windows and LINUX exist. Thus, we say that X is more important than Y given z if we
always prefer to reduce the value of Y rather than the value of X, whenever z holds.

Definition 4 Let X and Y be a pair of variables from V, and let Z ⊆ W = V − {X, Y }.
We say that X is more important than Y given z ∈ D(Z) iff, for every assignment w′ on
W′ = V − ({X, Y } ∪ Z) we have:

xiyazw′ � xjybzw′ (4)

whenever xi � xj given zw′. We denote this relation by X �z Y . Finally, if for some
z ∈ D(Z) we have either X �z Y , or Y �z X, then we say that the relative importance of
X and Y is conditioned on Z, and write RI(X, Y |Z).

3. TCP-nets

The TCP-net (for Tradeoff-enhanced CP-nets) model is an extension of CP-nets (Boutilier
et al., 2004a) that encodes conditional relative importance statements, as well as the con-
ditional preference statements supported in CP-nets. The primary usage of the TCP-net
graphical structure is in consistency analysis of the provided preference statements, and in
classification of complexity and developing efficient algorithms for various reasoning tasks
over these statements. In particular, as we later show, when this structure is “acyclic”
(for a suitable definition of this notion!), the set of preference statements represented by
the TCP-net is guaranteed to be consistent – that is, there is a strict total order over the
outcomes that satisfies all the preference statements. In what follows we formally define the
TCP-net model. As it subsumes the CP-net model, we will immediately define this more
general model rather than proceed in stages.

3.1 TCP-net Definition

TCP-nets are annotated graphs with three types of edges. The nodes of a TCP-net cor-
respond to the problem variables V. The first type of (directed) edges comes from the
original CP-nets model and captures direct preferential dependencies, that is, such an edge
from X to Y implies that the user has different preferences over Y values given different
values of X. The second (directed) edge type captures relative importance relations. The
existence of such an edge from X to Y implies that X is more important than Y . The third
(undirected) edge type captures conditional importance relations: Such an edge between
nodes X and Y exists if there exists a non-empty variable subset Z ⊆ V−{X, Y } for which
RI(X, Y |Z) holds. Without loss of generality, in what follows, the set Z is assumed to be
the minimal set of variables upon which the relative importance between X and Y depends.

As in CP-nets, each node X in a TCP-net is annotated with a conditional preference
table (CPT). This table associates preferences over D(X) for every possible value assignment
to the parents of X (denoted Pa(X)). In addition, in TCP-nets, each undirected edge is
annotated with a conditional importance table (CIT). The CIT associated with such an edge

394

TCP-Nets

(X, Y) describes the relative importance of X and Y given the value of the corresponding
importance-conditioning variables Z.

Definition 5 A TCP-net N is a tuple 〈V, cp, i, ci, cpt, cit〉 where:

(1) V is a set of nodes, corresponding to the problem variables {X1, . . . , Xn}.

(2) cp is a set of directed cp-arcs {α1, . . . , αk} (where cp stands for conditional preference).
A cp-arc 〈

−−−−→
Xi, Xj〉 is in N iff the preferences over the values of Xj depend on the actual

value of Xi. For each X ∈ V, let Pa(X) = {X ′|〈
−−−→
X ′, X〉 ∈ cp}.

(3) i is a set of directed i-arcs {β1, . . . , βl} (where i stands for importance). An i-arc (
−−−−→
Xi, Xj)

is in N iff Xi � Xj.

(4) ci is a set of undirected ci-arcs {γ1, . . . , γm} (where ci stands for conditional impor-
tance). A ci-arc (Xi, Xj) is in N iff we have RI(Xi, Xj |Z) for some Z ⊆ V−{Xi, Xj}.1
We call Z the selector set of (Xi, Xj) and denote it by S(Xi, Xj).

(5) cpt associates a CPT with every node X ∈ V, where CPT (X) is a mapping from
D(Pa(X)) (i.e., assignments to X’s parent nodes) to strict partial orders over D(X).

(6) cit associates with every ci-arc γ = (Xi, Xj) a (possibly partial) mapping CIT (γ) from
D (S(Xi, Xj)) to orders over the set {Xi, Xj}.2

A TCP-net in which the sets i and ci (and therefore also cit) are empty, is also a CP-net.
Thus, it is the elements i, ci, and cit that describe absolute and conditional importance of
attributes provided by TCP-nets, beyond the conditional preference information captured
by CP-nets.

3.2 TCP-net Semantics

The semantics of a TCP-net is defined in terms of the set of strict partial orders consistent
with the set of constraints imposed by the preference and importance information captured
by this TCP-net. The intuitive idea is rather straightforward: (1) A strict partial order
� satisfies the conditional preferences for variable X if any two complete assignments that
differ only on the value of X are ordered by � consistently with the ordering on X values
in the CPT of X. Recall that this ordering can depend on the parent of X in the graph.
(2) A strict partial order � satisfies the assertion that X is more important than Y if given
any two complete assignments that differ on the value of X and Y only, � prefers that
assignment which provides X with a better value. (3) A strict partial order � satisfies the
assertion that X is more important than Y given some assignment z to variable set Z if
given any two complete assignments that differ on the value X and Y only, and in (both
of) which Z is assigned z, � prefers that assignment which provides X with a better value.

1. Observe that every i-arc (
−−−−→
Xi, Xj) can be seen as representing RI(Xi, Xj |∅). However, a clear distinction

between i-arcs and ci-arc simplifies specification of many forthcoming notions and claims (e.g., Lemma 3
in Section 4, as well as the related notion of root variables.)

2. That is, the relative importance relation between Xi and Xj may be specified only for certain values of
the selector set.

395

Brafman, Domshlak, & Shimony

This is defined more formally below. We use �X
u to denote the preference relation over

the values of X given an assignment u to U ⊇ Pa(X).

Definition 6 Consider a TCP-net N = 〈V, cp, i, ci, cpt, cit〉.

1. Let W = V − ({X} ∪ Pa(X)) and let p ∈ D(Pa(X)). A preference (=strict partial)
order � over D(V) satisfies �X

p iff xipw � xjpw, for every w ∈ D(W), whenever
xi �X

p xj holds.

2. A preference order � over D(V) satisfies CPT (X) ∈ cpt iff it satisfies �X
p for every

assignment p of Pa(X).

3. A preference order � over D(V) satisfies X � Y iff for every w ∈ D(W) such that
W = V − {X, Y }, xiyaw � xjybw whenever xi �X

w xj.

4. A preference order � over D(V) satisfies X �z Y iff for every w ∈ D(W) such that
W = V − ({X, Y } ∪ Z), xiyazw � xjybzw whenever xi �X

zw xj.

5. A preference order � over D(V) satisfies CIT (γ) of the ci-arc γ = (X, Y) ∈ cit if it
satisfies X �z Y whenever an entry in the table conditioned on z ranks X as more
important.

A preference order � over D(V) satisfies a TCP-net N = 〈V, cp, i, ci, cpt, cit〉 iff:

(1) for every X ∈ V, � satisfies CPT (X),

(2) for every i-arc β = (
−−−−→
Xi, Xj) ∈ i, � satisfies X � Y , and

(3) for every ci-arc γ = (Xi, Xj) ∈ ci, � satisfies CIT (γ).

Definition 7 A TCP-net is satisfiable iff there is some strict partial order � over D(V)
that satisfies it; o � o′ is implied by a TCP-net N iff it holds in all preference orders over
D(V) that satisfy N .

Lemma 1 Preferential entailment with respect to a satisfiable TCP-net is transitive. That is,
if N |= o � o′ and N |= o′ � o′′, then N |= o � o′′.

Proof: If N |= o � o′ and N |= o′ � o′′, then o � o′ and o′ � o′′ in all preference orders
satisfying N . As each of these ordering is transitive, we must have o � o′′ in all satisfying
orderings. �

Note that, strictly speaking, we should use the term “satisfiable” rather than “consis-
tent” with respect to a set of preference statements, given that we provide a model theory,
and not a proof theory. However, since the corresponding proof theory follows in a com-
pletely straightforward manner from our semantics combined with transitivity, this raises
no problem.

396

TCP-Nets

3.3 TCP-net Examples

Having provided the formal specification of the TCP-nets model, let us now illustrate TCP-
nets with a few examples. For simplicity of presentation, in the following examples all
variables are binary, although the semantics of TCP-nets is given by Definitions 6 and 7
with respect to arbitrary finite domains.

Example 1 (Evening Dress) Figure 1(a) presents a CP-net that consists of three variables
J , P , and S, standing for the jacket, pants, and shirt, respectively. I prefer black to white as
a color for both the jacket and the pants, while my preference for the shirt color (red/white)
is conditioned on the color combination of jacket and pants: If they are of the same color, a
white shirt will make my dress too colorless, therefore, red shirt is preferable. Otherwise, if
the jacket and the pants are of different colors, a red shirt will probably make my evening
dress too flashy, therefore, a white shirt is preferable. The solid lines in Figure 1(c) show
the preference relation induced directly by the information captured by this CP-net; The
top and the bottom elements are the worst and the best outcomes, respectively, and the
arrows are directed from less preferred to more preferred outcomes.

Jb � Jw Pb � Pw

?>=<89:;J

��/
//

//
//

//
GFED@ABCP

����
��
��
��
�

?>=<89:;S

Jb ∧ Pb Sr � Sw

Jw ∧ Pb Sw � Sr

Jb ∧ Pw Sw � Sr

Jw ∧ Pw Sr � Sw

(a)

?>=<89:;J

��/
//

//
//

//
� //GFED@ABCP

����
��
��
��
�

?>=<89:;S

(b)

�� ���� ��Jw ∧ Pw ∧ Sw

��

��

��

�� ���� ��Jw ∧ Pw ∧ Sr

�� �� ���� ��Jw ∧ Pb ∧ Sr

��

��

//____ �� ���� ��Jb ∧ Pw ∧ Sr

}}

ttiiiiiiiiiiiiiiiiiiiiiiiiiiii

�� ���� ��Jb ∧ Pw ∧ Sw

%%LLLLLLLLLLLLLLLL
�� ���� ��Jw ∧ Pb ∧ Sw

��

oo_ _ _ _

�� ���� ��Jb ∧ Pb ∧ Sw

���� ���� ��Jb ∧ Pb ∧ Sr

(c)

Figure 1: “Evening Dress” CP-net & TCP-net.

Figure 1(b) depicts a TCP-net that extends this CP-net by adding an i-arc from J to P ,
i.e., having black jacket is (unconditionally) more important than having black pants. This

397

Brafman, Domshlak, & Shimony

induces additional relations among outcomes, captured by the dashed lines in Figure 1(c).
3

The reader may rightfully ask whether the statement of importance in Example 1 is not
redundant: According to my preference, it seems that I will always wear a black suit with
a red shirt. However, while my preferences are clear, various constraints may make some
outcomes, including the most preferred one, infeasible. For instance, I may not have a clean
black jacket, in which case the most preferred feasible alternative is a white jacket, black
pants, and a white shirt. Alternatively, suppose that the only clean clothes I have are velvet
black jacket and white pants, and silk white jacket and black pants. My wife forbids me to
mix velvet and silk, and so I will have to compromise, and to wear either the black (velvet)
jacket with the white (velvet) pants, or the white (silk) jacket with the black (silk) pants. In
this case, the fact that I prefer wearing the preferred jacket to wearing the preferred pants
determines higher desirability for the velvet combination. Now, if my wife has to prepare
my evening dress while I am late at work writing a paper, having this information will help
her to choose among the available options an outfit that I would like most.

Indeed, as noted earlier, many applications involve limited resources, such as money,
time, bandwidth, memory, etc. In many instances, the optimal assignment violates these
resource constraints, and we must compromise and accept a less desirable, but feasible as-
signment. TCP-nets capture information that allows us make more informed compromises.

Example 2 (Flight to the USA) Figure 2(a) illustrates a more complicated CP-net, de-
scribing my preference over the flight options to a conference in the USA, from Israel. This
network consists of five variables, standing for various parameters of the flight:

Day of the Flight The variable D distinguishes between flights leaving a day (D1d) and
two days (D2d) before the conference, respectively. Since I am married, and I am
really busy with my work, I prefer to leave on the day before the conference.

Airline The variable A represents the airline. I prefer to fly with British Airways (Aba)
than with KLM (Aklm).

Departure Time The variable T distinguishes between morning/noon (Tm) and evening/night
(Tn) flights. Among flights leaving two days before the conference I prefer an evening/night
flight, because it will allow me to work longer on the day of the flight. However, among
flights leaving a day before the conference I prefer a morning/noon flight, because I
would like to have a few hours before the conference opening in order to rest at the
hotel.

Stop-over The variable S distinguishes between direct (S0s) and indirect (S1s) flights,
respectively. On day flights I am awake most of the time and, being a smoker, prefer
a stop-over in Europe (so I can have a smoking break). However, on night flights I
sleep, leading to a preference for direct flights, since they are shorter.

Ticket Class The variable C stands for ticket class. On a night flight, I prefer to sit
in economy class (Ce) (I don’t care where I sleep, and these seats are significantly
cheaper), while on a day flight I prefer to pay for a seat in business class (Cb) (Being
awake, I can better appreciate the good seat, food, and wine).

398

TCP-Nets

D1d � D2d

GFED@ABCD

��?>=<89:;T

����
��
��
��
�

��0
00

00
00

00
?>=<89:;A

?>=<89:;S GFED@ABCC

D1d Tm � Tn

D2d Tn � Tm

Tm S1s � S0s

Tn S0s � S1s

Aba � Aklm

Tm Cb � Ce

Tn Ce � Cb

GFED@ABCD

��?>=<89:;T

����
��
��
��
�

��0
00

00
00

00
� // ?>=<89:;A

?>=<89:;S �
T,A GFED@ABCC

Tm ∧Aklm S � C

Tm ∧Aba C � S

Tn ∧Aba S � C

(a) (b)

Figure 2: “Flight to the USA” CP-net & TCP-net from Example 2.

The CP-net in Figure 2(a) captures all these preference statements, and the underlying
preferential dependencies, while Figure 2(b) presents a TCP-net that extends this CP-net
to capture relative importance relations between some parameters of the flight. First, there
is an i-arc from T to A, because getting more suitable flying time is more important to me
than getting the preferred airline. Second, there is a ci-arc between S and C, where the
relative importance of S and C depends on the values of T and A:3

1. On a KLM day flight, an intermediate stop in Amsterdam is more important to me
than flying business class (I feel that KLM’s business class does not have a good
cost/performance ratio, while visiting a casino in Amsterdam’s airport sounds to me
like a good idea.)

2. For a British Airways night flight, the fact that the flight is direct is more important
to me than getting a cheaper economy seat (I am ready to pay for business class, in
order not to spend even one minute at Heathrow airport at night).

3. On a British Airways day flight, business class is more important to me than having
a short intermediate break (it is hard to find a nice smoking area at Heathrow).

The CIT of this ci-arc is also shown in Figure 2(b). 3

3.4 Relative Importance with Non-binary Variables

Having read so far, the reader may rightfully ask whether the notion of relative (conditional)
importance ceteris paribus, as specified in Section 2.2 (Eq. 3 and 4), is not too strong when

3. For clarity, the ci-arc in Figure 2(b) is schematically labeled with its importance-conditioning variables
T and A.

399

Brafman, Domshlak, & Shimony

D1d � D2d

GFED@ABCD

��

?>=<89:;A

		��
��
��
��
��
��
��
��
��
��

?>=<89:;T

��6
66

66
66

66
6

SC

Aba � Aklm

D1d Tm � Tn

D2d Tn � Tm
Tm ∧Aba S1sCb � S0sCb � S1sCe � S0sCe

Tm ∧Aklm S1sCb � S1sCe � S0sCb � S0sCe

Tn ∧Aba S0sCe � S0sCb � S1sCe � S1sCb

Tn ∧Aba S0sCe � S0sCb � S1sCb

S0sCe � S1sCe � S1sCb

Figure 3: The network obtained by clustering variables S and C in Example 2.

the variables are not binary. For example, consider a more refined notion of departure time
(variable T) in Example 2, and suppose there are more than two companies flying from
Israel to the USA (variable A). In this case, one may prefer a better flight time, even if
this requires a compromise in the airline, as long as this compromise is not too significant.
For instance, to get a better flight time, one may be willing to compromise and accept any
airline but only among those she ranks in the top i places in this context.

More generally, our notion of importance, as well as some more refined notions of it,
are really means of specifying an ordering over assignments to variable pairs. In a sense,
one could reduce TCP-nets into CP-nets by combining variables between which we have
an importance relation. Thus, for instance, in the “Flight to the USA” example, we could
combine the variables S and C (see Figure 3). The resulting variable, SC will have as its
domain the Cartesian product of the domains of S and C. The preferences for the values
of SC are now conditioned on T , the current parent of S and C, as well as on A, which
belongs to the selector set of their CIT. In general, the selector set (and parents of) a pair of
variables can be viewed as conditioning the preferences over the value combinations for this
pair. Hence, such clustering can help us already in the case of binary variables as certain
orderings over the assignments to two binary variables cannot be specified with a TCP-net.
However, this is clearly more of an issue in the case of non-binary variables, where the
number of combinations of pairs of values is much larger.

The bottom line is that more complex importance relations between pairs of variables
can be captured. The main questions is how. The strict importance relation we use captures
certain such relations in a very compact manner. As such, its specification (e.g., in terms of
natural language statements) is very easy. This does not rule out the possibility of expressing
more refined relations. Various linguistic constructs could be used to express such relations.
However, technically, they can all be captured by clustering the relevant variables, and the
resulting representation would be a TCP-net, or possibly simply a CP-net. Of course, it
is quite possible that some relations have an alternative compact representation that could
help make reasoning with them more efficient than simply collapsing them, and this can be
a useful question for future research to examine.

400

TCP-Nets

?>=<89:;D

��?>=<89:;T

����
��
��
��
�

��0
00

00
00

00
� // ?>=<89:;A

?>=<89:;S �
T,A ?>=<89:;C

Tm ∧Aklm S � C

Tm ∧Aba C � S

Tn ∧Aba S � C

?>=<89:;D

��?>=<89:;T

����
��
��
��
�

��0
00

00
00

00
// ?>=<89:;A

����
��
��
��
�

yytttttttttttttttt

?>=<89:;S ?>=<89:;C

(a) (b)

/.-,()*+D

��/.-,()*+T

��

��5
55

55
///.-,()*+A

wwoooooooooo

��

/.-,()*+S // /.-,()*+C

/.-,()*+D

��/.-,()*+T

��

��5
55

55
///.-,()*+A

wwoooooooooo

��

/.-,()*+S /.-,()*+C

/.-,()*+D

��/.-,()*+T

��

��5
55

55
///.-,()*+A

wwoooooooooo

��

/.-,()*+S /.-,()*+Coo

/.-,()*+D

��'&%$!"#T

����
��

��2
22

2 // '&%$!"#A

xxqqqqqqqqq

����
��

'&%$!"#S /.-,()*+Coo

(Tm ∧Aklm)-directed (Tn ∧Aklm)-directed (Tm ∧Aba)-directed (Tn ∧Aba)-directed

(c)

Figure 4: (a) “Flight to USA” TCP-net. (b) Its dependency graph. (c), Four w-directed
graphs.

4. Conditionally Acyclic TCP-nets

Returning to the notion of TCP-net satisfiability, observe that Definition 7 provides no prac-
tical tools for verifying satisfiability of a given TCP-net. Tackling this issue, in this section
we introduce a large class of TCP-nets whose members are guaranteed to be satisfiable. We
refer to this class of TCP-nets as conditionally acyclic.

Let us begin with the notion of the dependency graph induced by a TCP-net.

Definition 8 The dependency graph N ? of TCP-net N contains all the nodes and edges
of N . Additionally, for every ci-arc (Xi, Xj) in N and every Xk ∈ S(Xi, Xj), N ? contains
a pair of directed edges (Xk, Xi) and (Xk, Xj), if these edges are not already in N .

Figure 4(b) depicts the dependency graph of the TCP-net from the “Flight to USA”
example, repeated for convenience in Figure 4(a). For the next definition, recall that the
selector set of a ci-arc is the set of nodes whose value determines the “direction” of this
arc. Recall also, that once we assign a value to the selector set, we are, in essence, orienting

401

Brafman, Domshlak, & Shimony

all the conditional importance edges. More generally, once all selector sets are assigned, we
transform both N and N ?. This motivates the following definition.

Definition 9 Let S(N) be the union of all selector sets of N . Given an assignment w to
all nodes in S(N), the w-directed graph of N ? consists of all the nodes and directed edges
of N ?. In addition it has a directed edge from Xi to Xj if such an edge is not already in
N ?, and (Xi, Xj) is a ci-arc of N and the CIT for (Xi, Xj) specifies that Xi � Xj given w.

Figure 4(c) presents all the four w-directed graphs of the TCP-net from the “Flight to
USA” example. Note that, for the KLM night flights, the relative importance of S and C
is not specified, thus there is no edge between S and C in the (Tn ∧ Aklm)-directed graph
of N ?.

Using Definitions 8 and 9, we specify the class of conditionally acyclic TCP-nets, and
show that it is satisfiable4.

Definition 10 A TCP-net N is conditionally acyclic if, for every assignment w to S(N),
the induced w-directed graphs of N ? are acyclic.

We now show that every conditionally acyclic TCP-net is satisfiable, and begin with
providing two auxiliary lemmas.

Lemma 2 The property of conditional acyclicity of TCP-nets is hereditary. That is, given two
TCP-nets N = 〈V, cp, i, ci, cpt, cit〉 and N ′ = 〈V′, cp′, i′, ci′, cpt′, cit′〉, if

1. N is conditionally acyclic, and

2. V′ ⊆ V, cp′ ⊆ cp, i′ ⊆ i, ci′ ⊆ ci, cpt′ ⊆ cpt, cit′ ⊆ cit,

then N ′ is also conditionally acyclic.

Proof: The proof is straightforward from Definition 10 since removing nodes and/or
edges from N , as well as removing some preference and importance information from CPTs
and CITs of N , can only remove cycles from the w-directed graphs of N ?. Hence, if N is
conditionally acyclic, then so is any subnet of N . �

Lemma 3 Every conditionally acyclic TCP-net N = 〈V, cp, i, ci, cpt, cit〉 contains at least one

variable X ∈ V, such that, for each Y ∈ V \ {X}, we have 〈
−−→
Y, X〉 6∈ cp, (

−−→
Y, X) 6∈ i, and

(X, Y) 6∈ ci.

Proof: To prove the existence of such a root variable X ∈ N , consider the dependency
graph N ?. Since N is conditionally acyclic, there has to be a node X ′ ∈ N ? that has neither
incoming directed nor undirected edges associated with it. The see the latter, observe that
(i) every endpoint of an undirected edge in N ? will also have an incoming directed edge, and

4. The authors would like to thank Nic Wilson for pointing out an error in the original definition of
conditionally acyclic TCP-nets in (Brafman & Domshlak, 2002).

402

TCP-Nets

(ii) there has to be at least one node in N ? with no incoming directed edges, or otherwise
the conditional acyclicity of N will be trivially violated. However, such a node X ′ will also
be a root node in N since the edge set of N ? is a superset of that of N . �

Theorem 1 Every conditionally acyclic TCP-net is satisfiable.

Proof: We prove this constructively by building a satisfying preference ordering. In fact,
our inductive hypothesis will be stronger: any conditionally acyclic TCP-net has a strict
total order that satisfies it. The proof is by induction on the number of problem variables.
The result trivially holds for one variable by definition of CPTs, since we can simply use
any strict total order consistent with its CPT (and trivially satisfying Definition 6.)

Assume that the theorem holds for all conditionally acyclic TCP-nets with fewer than
n variables. Let N be a TCP-net over n variables, and X be one of the root variables of N .
(The existence of such a root X is guaranteed by Lemma 3.) Let D(X) = {x1, . . . , xk} be
the domain of the chosen root variable X, and let x1 ≺ . . . ≺ xk be a total ordering of D(X)
that is consistent with the (possibly partial) preferential ordering dictated by CPT (X) in
N . For each xi, 1 ≤ i ≤ k, construct a TCP-net Ni, with n − 1 variables V − {X} by
removing X from the original network, and:

1. For each variable Y , such that there is a cp-arc 〈
−−→
X, Y 〉 ∈ N , revise the CPT of Y by

restricting each row to X = xi.

2. For each ci-arc γ = (Y1, Y2), such that X ∈ S(γ), revise the CIT of γ by restricting
each row to X = xi. If, as a result of this restriction, all rows in the new CIT express
the same relative importance between Y1 and Y2, replace γ in Ni by the corresponding
i-arc, i.e., either (

−−−→
Y1, Y2) or (

−−−→
Y2, Y1). Alternatively, if the CIT of γ becomes empty,

then γ is simply removed from Ni.

3. Remove the variable X, together with all cp-arcs of the form 〈
−−→
X, Y 〉, and all i-arcs of

the form (
−−→
X, Y).

From Lemma 2 we have that conditional acyclicity of N implies conditional acyclicity
of all the reduced TCP-nets Ni. Therefore, by the inductive hypothesis we can construct
a preference ordering �i for each of the reduced networks Ni. Now we can construct the
preferential ordering for the original network N as follows. Every outcome with X = xj is
ranked as preferred to any outcome with X = xi, for 1 ≤ i < j ≤ k. All the outcomes with
identical X value, xi, are ranked according to the ordering �i associated with Ni (ignoring
the value of X). Clearly, by construction, the ordering we defined is a strict total order: it
was obtained by taking a set of strict total orders and ordering them, respectively. From
Definition 6, it is easy to see that this strict total order satisfies N . �

A close look at the proof of Theorem 1 reveals that the key property of conditionally
acyclic TCP-nets is that they induce an “ordering” over the nodes of the network. This
ordering is not fixed, but is context dependent. Different assignments to the variables in
the prefix of this ordering will yield different suffixes. Put differently, the ordering depends

403

Brafman, Domshlak, & Shimony

on the values of the variables, and it captures the relative importance of each variable in
each particular context. In particular, nodes that appear earlier in the ordering are more
important in this particular context.

The above observation helps explain the rationale for our definition of the dependency
graph (Definition 8). In some sense, this graph captures constraints on the ordering of
variables. The TCP-net is conditionally acyclic if these constraints are satisfiable. We use
this perspective to explain some choices made in the definition of the dependency graph
which may seem arbitrary. First, consider the direction of (unconditional) importance edges
from the more important to the less important variable. This simply goes in line with our
desire to use a topological ordering in which the more important variables appear first.
Second, consider the direction of CP-net edges from parent to children. It turns out that in
CP-nets, there is an induced importance relationship between parents and children: parents
are more important than their children (see (Boutilier et al., 2004a)). Thus, edges in the
dependency graph must point from parent to child.

Finally, in order to make sense of this idea of context-dependent ordering, we must
order the variables in the selector set of a ci-arc before the nodes connected by this arc.
The motivation for this last choice may be a bit less clear. The following example shows the
necessity of this (i.e., why Theorem 1 cannot be provided for a stronger notion of TCP-net
acyclicity obtained by defining w-directed graphs over N rather than over N ?).

c A � B

c B � A
?>=<89:;A �

C

��

GFED@ABCB

GFED@ABCC

A a � a

B b � b

C a : c � c

a : c � c

Consider a TCP-net as depicted above. This TCP-net N is defined over three boolean
variables V = {A,B, C}, and having cp = {〈

−−→
A,C〉}, ci = {(A,B)} with S(A,B) = {C},

and i = ∅. Clearly, the two possible w-directed graphs of N (not of N ?) are acyclic.
Now, suppose that there exists a strict partial order �′ over D(V) that satisfies N . By
Definition 6, we have

(1) abc �′ abc (from CPT (C)),

(2) abc �′ abc (from CIT ((A,B)) and CPT (B)),

(3) abc �′ abc (from CPT (C)), and

(4) abc �′ abc (from CIT ((A,B)) and CPT (A)).

However, this implies that �′ is not anti-symmetric, contradicting our assumption that �′
is a strict partial order.

404

TCP-Nets

5. Verifying Conditional Acyclicity

In contrast to standard acyclicity in directed graphs, the property of conditional acyclicity
cannot be easily tested in general. Naive verification of the acyclicity of every w-directed
graph can require time exponential in the size of S(N). Here we study the complexity
of verifying conditional acyclicity, discuss some hard and polynomial subclasses of this
problem, and provide some sufficient and/or necessary conditions for conditional acyclicity
that can be easily checked for certain subclasses of TCP-nets.

Let N be a TCP-net. If there are no cycles in the undirected graph underlying N ?

(i.e., the graph obtained from N ? by making all directed edges into undirected edges),
then clearly all w-directed graphs of N ? are acyclic, and this property of N ? is simple to
check. Alternatively, suppose that the underlying undirected graph of N ? does contain
cycles. If projection of each such cycle back to N ? contains directed arcs oriented in
different directions on the cycle (one “clockwise” and another “counter-clockwise”), then
all w-directed graphs of N ? are still guaranteed to be acyclic. For instance, any subset (of
size > 2) of the variables {T,A, S,C} in our running example in Figure 4 forms a cycle
in the undirected graph underlying N ?, yet each such cycle satisfies the aforementioned
criterion. This sufficient condition for conditional acyclicity can also be checked in (low
order) polynomial time.

The remaining cases are where the dependency graph N ? contains what we define below
as semi-directed cycles, and in the rest of this section we study these cases more closely.

Definition 11 Let A be a mixed set of directed and undirected edges, and AU be the undi-
rected graph underlying A (that is, the graph obtained from A by dropping orientation of its
directed edges.) We say that A is a semi-directed cycle if and only if

(1) AU forms a simple cycle (that is, AU consists of a single connected component with all
vertices having degree 2 w.r.t. AU).

(2) Not all of the edges in A are directed.

(3) All the directed edges of A point in the same direction along AU (i.e., “clockwise” or
“counter-clockwise”).

Each assignment w to the selector sets of ci-arcs in a semi-directed cycle A of N ?

induces a direction for all these ci-arcs. We say that semi-directed cycle A is conditionally
acyclic if under no such assignment w do we obtain a directed cycle from A. Otherwise,
A is called conditionally directed. Figure 5 illustrates a semi-directed cycle (based on the
variables from our running example) with two possible configurations of its CITs that make
this semi-directed cycle conditionally directed and conditionally acyclic, respectively.

Using these notions, Lemma 4 shows that testing conditional acyclicity for TCP-nets is
naturally decomposable.

Lemma 4 A TCP-net N is conditionally acyclic if and only if every semi-directed cycle of N ?

is conditionally acyclic.

Proof: The proof is straightforward: If there is a variable assignment that makes one of
the semi-directed cycles of N ? conditionally directed, then no other cycle need be examined.

405

Brafman, Domshlak, & Shimony

?>=<89:;T

��

�
D ?>=<89:;A

?>=<89:;S �
D ?>=<89:;C

OO

D1d S � C

D1d A � T

(a)

D1d S � C

D1d T � A

(b)

Figure 5: A semi-directed cycle: (a) conditionally directed, and (b) conditionally acyclic.

Conversely, consider one of the semi-directed cycles A of N ?. If no assignment to S(A)
makes A conditionally directed, then additional assignments to variables in other selector
sets do not change this property. �

The decomposition presented by Lemma 4 allows us to prove our first complexity result
for testing conditional acyclicity. Theorem 2 below shows that determining that a TCP-net
is conditionally acyclic is coNP-hard.

Theorem 2 Given a binary-valued TCP-net N , the decision problem: is there a conditionally
directed cycle in N ?, is NP-complete, even if for every ci-arc γ ∈ N we have |S(γ)| = 1.

Proof: The proof of hardness is by reduction from 3-sat. Given a 3-cnf formula F ,
construct the following TCP-net N . For every variable Xi and every clause Cj in F ,
construct a boolean variable Xi and variable Cj in N , respectively (we retain the same
names, for simplicity). In addition, for every clause Cj , construct three boolean variables
Lj,k, 1 ≤ k ≤ 3, corresponding to the literals appearing in Cj . Let n be the number of
clauses in F . The TCP-net N is somewhat degenerate, since it has no cp-arcs. However,
it has an i-arc (

−−−−−→
Cj , Lj,k) for each clause Cj and every literal Lj,k ∈ Cj . In addition, for

every literal Lj,k ∈ Cj , there is a ci-arc (Lj,k, C(j+1) mod n), whose selector variable is the
variable Xi represented in Lj,k. The relative importance between Lj,k and C(j+1) mod n on
the selector Xi as follows: if Lj,k is a positive literal, then variable Lj,k is more important
than C(j+1) mod n if Xi is true, and less important if Xi is false. For negative literals, the
dependence on the selector variable is reversed. This completes the construction - clearly a
polynomial-time operation. Figure 6 illustrates the subnet of N corresponding to a clause
Cj = (x1 ∨ x2 ∨ x3), where Lj,1, Lj,2, Lj,3 correspond to x1, x2, x3, respectively.

We claim that N ?, the dependency graph for the network N we just constructed, has a
conditionally directed cycle just when F is satisfiable5. It is easy to see that there is a path
from Cj to C(j+1) mod n just when the values of the variables participating in Cj are such
that Cj is satisfied. Thus, an assignment that creates a directed path from C0 to C0 is an

5. In this particular construction, the directed edges in N ? outgoing from the selector variables Xi have
no effect on the existence of conditionally directed cycles in N ?. Therefore, here we can simply consider
the TCP-net N instead of its dependency graph N ?.

406

TCP-Nets

ONMLHIJKLj,1

�
;;

;;
;;

X1

;;
;;

;;

WVUTPQRSCj

�������

BB������

� //

�
::

::
::

��:
::

::
:

ONMLHIJKLj,2 �
X2 WVUTPQRSCj+1

ONMLHIJKLj,3

�������

X3

������

ONMLHIJKLj,1

;;
;;

;;
;;

;;
;;

;
GFED@ABCX1

oo

��

GFED@ABCX2

xxrrrrrrrrrrrrrrrrrrrrrr

����
��

��
��

��
��

�
GFED@ABCX3

yyssssssssssssssssssss

||yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

WVUTPQRSCj

BB������������
//

��:
::

::
::

::
::

:
ONMLHIJKLj,2 WVUTPQRSCj+1

ONMLHIJKLj,3

�������������

(a) (b)

Figure 6: (a) TCP-net subnet for Cj = (x1 ∨ x2 ∨ x3), and (b) its dependency graph.

assignment that satisfies all clauses, and the problems are equivalent - hence our decision
problem is NP-hard. Deciding existence of a conditional directed cycle is in NP: Indeed,
verifying the existence of a semi-directed cycle A given an assignment to S(A) (the union
of the selector sets of all ci-arcs in A) can be done in polynomial time. Thus, the problem
is NP-complete. �

One reason for the complexity of the general problem, as emerges from the proof of
Theorem 2, is the possibility that the number of semi-directed cycles in the TCP-net de-
pendency graph is exponential in the size of the network. For example, the network in the
reduction has 3n semi-directed cycles, due to the three possible paths generated in each
subnet as depicted in Figure 6(a). Thus, it is natural to consider networks for which the
number of semi-directed cycles is not too large. In what follows, we call a TCP-net N
m-cycle bounded if the number of different semi-directed cycles in its dependency graph N ?

is at most m.
From Lemma 4 it follows that, given an m-cycle bounded TCP-net N , if m is polynomial

in the size of N , then we can reduce testing conditional acyclicity of N ? into separate
tests for conditional acyclicity of every semi-directed cycle A of N ?. A naive check for the
conditional acyclicity of a semi-directed cycle A requires time exponential in the size of S(A)
– where S(A) is the union of the selector sets of all ci-arcs in A. Thus, if S(A) is small for
each semi-directed cycle in N ?, then conditional acyclicity of N ? can be checked quickly. In
fact, often we can determine that a semi-directed cycle A is conditionally directed/acyclic
even more efficiently than enumerating all possible assignments to S(A).

Lemma 5 Let A be a semi-directed cycle in N ?. If A is conditionally acyclic, then it contains
a pair of ci-arcs γi, γj such that S(γi) ∩ S(γj) 6= ∅.

In other words, if the selector sets of the ci-arcs in A are all pairwise disjoint, then A
is conditionally directed. Thus, Lemma 5 provides a necessary condition for conditional
acyclicity of A that can be checked in time polynomial in the number of variables.

407

Brafman, Domshlak, & Shimony

Proof (Lemma 5) If all selector sets of the ci-arcs in A are pairwise disjoint, then trivially
there exists an assignment to S(A) orienting all the ci-arcs of A in one direction. �

Before developing sufficient conditions for conditional acyclicity, let us introduce some
useful notation. First, given a ci-arc γ = (X, Y), we say that an assignment w to a subset
S ′ of S(γ) orients γ if all rows in CIT (γ) consistent with w express the same relative
importance between X and Y , if any. In other words, w orients γ if, given w, the relative
importance between X and Y is independent of S(γ) \ S ′. Second, if a semi-directed cycle
A contains some directed edges, we refer to their (by definition, unique) direction as the
direction of A.

Lemma 6 A semi-directed cycle A is conditionally acyclic if it contains a pair of ci-arcs γi, γj

such that either:

(a) A contains directed edges, and for every assignment w to S(γi) ∩ S(γj), either γi or γj is
oriented by w in the direction opposite to the direction of A.

(b) All edges in A are undirected, and for every assignment w to S(γi) ∩ S(γj), γi and γj are
oriented by w in opposite directions with respect to A.

Proof: Follows immediately from the conditions in the lemma. �

Lemma 6 provides a sufficient condition for conditional acyclicity of A that can be
checked in time exponential in the maximal size of selector set intersection for a pair of
ci-arcs in A. Note that the size of the TCP-net is at least as large as the above exponential
term, because the description of the CIT is exponential in the size of the corresponding
selector set. Thus, checking this condition is only linear in the size of the network.

Definition 12 Given a semi-directed cycle A, let shared(A) denote the union of all pairwise
intersections of the selector sets of the ci-arcs in A:

shared(A) =
⋃

γi,γj∈A
S(γi) ∩ S(γj)

Lemma 7

(a) If a semi-directed cycle A contains directed edges, then A is conditionally acyclic if and
only if, for each assignment u on shared(A), there exists a ci-arc γu ∈ A that is oriented
by u in the direction opposite to the direction of A.

(b) If a semi-directed cycle A contains only ci-arcs, then A is conditionally acyclic if and only
if, for each assignment u on shared(A), there exist two ci-arcs γ1

u, γ2
u ∈ A that are oriented

by u in opposite directions with respect to A.

Proof: The sufficiency of the above condition is clear, since it subsumes the condition in
Lemma 6. Thus, we are left with proving necessity. We start with the second case in which

408

TCP-Nets

A contains only ci-arcs. Assume to the contrary that A is conditionally acyclic, but there
exists an assignment u on shared(A) such that no pair of ci-arcs in A are oriented by u in
opposite directions with respect to A.

For each ci-arc γ ∈ A, let S∗(γ) = S(γ) \ shared(A). Consider the following disjoint
partition A = Ai

u ∪ Aci
u induced by u on A: For each ci-arc γ ∈ A, if u orients γ, then we

have γ ∈ Ai
u. Otherwise, if the direction of γ is not independent of S∗(γ) given u, we have

γ ∈ Aci
u. We make two observations:

1. Our initial (contradicting) assumption implies that all the (now directed) edges in Ai
u

agree on the direction with respect to A.

2. If for some ci-arc γ ∈ A we have S∗(γ) = ∅, then we have γ ∈ Ai
u, since all the

selectors of γ are instantiated by u.

If we have Aci
u = ∅, then the first observation trivially contradicts our initial assumption

that A is conditionally acyclic. Alternatively, if Aci
u 6= ∅, then, by definition of shared(A),

we have that S∗(γi) ∩ S∗(γj) = ∅ for each pair of ci-arcs γi, γj ∈ Aci
u. This means that

we can assign each such (non-empty, by the second observation) S∗(γi) independently, and
thus can extend u into an assignment on S(A) that will orient all the ci-arcs in Aci

u either
in the direction of Ai

u if Ai
u 6= ∅, or in an arbitrary joint direction if Ai

u = ∅. Again, this
contradicts our assumption that A is conditionally acyclic. Hence, we have proved that our
condition is necessary for the second case. The proof for the first case in which A contains
some directed edges is similar. �

In general, the size of shared(A) is O(|V|). Since we have to check the set of assignments
over shared(A), this implies that the problem may be hard. Theorem 3 shows that this is
indeed the case.

Theorem 3 Given a binary-valued, 1-cycle bounded TCP-net N , the decision problem: is
there a conditionally directed cycle in N ?, is NP-complete, even if for every ci-arc γ ∈ N we
have |S(γ)| ≤ 3.

Proof: The proof of hardness is by reduction from 3-sat. Given a 3-cnf formula F ,
construct the following TCP-net N . For every variable Xi and every clause Cj in F ,
construct boolean variables Xi and Cj in N , respectively. In addition, add a single dummy
variable C, and an i-arc (

−−−→
C,C1). Let n be the number of clauses in F . For 1 ≤ j ≤ n− 1,

we have n − 1 ci-arcs Ej = (Cj , Cj+1). In addition, we have ci-arc En = (Cn, C). For all
1 ≤ j ≤ n, the CIT for Ej is determined by clause Cj , as follows. The selector set for Ej is
just the set of variables appearing in Cj , and the relative importance between the variables
of Ej is determined as follows: Cj is less important than Cj+1 just when the values of the
variables in the selector set are such that Cj is false. (For j = n, read C instead of Cj+1).

The constructed TCP-net N is 1-cycle bounded, because there is only one semi-directed
cycle in its dependency graph N ?, namely C,C1, . . . , Cn, C. We claim that this semi-
directed cycle is conditionally directed just when F is satisfiable. It is easy to see that the
directed path from C to C exists when all the ci-arcs are being directed from Cj to Cj+1,
which occurs exactly when the variable assignment makes the clause Cj satisfiable. Hence,

409

Brafman, Domshlak, & Shimony

a directed cycle occurs in N exactly when the assignment makes all clauses satisfiable,
making the two problems equivalent. Thus our decision problem is NP-hard. Finally, as
deciding existence of a conditional directed cycle is in NP (see the proof of Theorem 3), the
problem is NP-complete. �

Observe that the proof of Theorem 3 does not work when the size of all the selector
sets is bounded by 2, because 2-sat is in P. The immediate question is whether in this
latter case the problem becomes tractable, and for binary-valued TCP-nets the answer is
affirmative.

Theorem 4 Given a binary-valued, m-cycle bounded TCP-net N , where m is polynomial in
the size of N and, for every ci-arc γ ∈ N we have |S(γ)| ≤ 2, the decision problem: is there a
conditional directed cycle in N ?, is in P.

Proof: The proof uses a reduction from conditional acyclicity testing to satisfiability. Let
A be a semi-directed cycle with |S(γ)| ≤ k for every ci-arc γ ∈ A. We reduce the conditional
acyclicity testing problem to an equivalent k-sat problem instance. In particular, since 2-
sat is solvable in linear time (Even, Itai, & Shamir, 1976), together with Lemma 4 this
proves the claim.

First, assume that A has at least one directed edge (either i-arc or cp-arc). By definition
of semi-directed cycles, all directed edges of A point in the same direction, specifying the
only possible cyclic orientation ω of A. For each ci-arc γi ∈ A, let the selector set be
S(γi) = {Xi,1, ..., Xi,k}.6 Clearly, A is conditionally directed if and only if all the ci-arcs of
A can be directed consistently with ω.

Given such a semi-directed cycle A, we create a corresponding k-cnf formula F , such
that F is satisfiable just whenA is conditionally directed. Let us call all CIT (γi) entries that
are consistent with ω by the term ω-entries. Since S(γ) = {Xi,1, ..., Xi,k} and N is binary
valued, we can represent the non-ω entries in CIT (γi) as a conjunction of disjunctions,
i.e., in CNF form. The number of disjunctions is equal to the number of non-ω entries
in CIT (γi), and each disjunction is comprised of k literals. Thus, the representation of
CIT (γi) is a k-CNF formula, of size linear in the size of CIT (γi). (In fact, the size of the
resulting formula can sometimes be significantly smaller, as one can frequently simplify the
component CNF fragments, but this property is not needed here.)

Finally, compose all the CNF representations of the CIT (γi), for every γi ∈ A, resulting
in a k-CNF formula of size linear in the combined number of table entries. The construction
of F is clearly a linear-time operation. Likewise, it is easy to see that F is satisfiable just
when there is an assignment to S(A) converting A into a directed cycle.

The minor unresolved issue is with semi-directed cycles consisting of ci-arcs only. Given
such a semi-directed cycle A, we reduce the problem into two sub-problems with a directed
arc. Let A′ and A′′ be cycles created from A by inserting one dummy variable and one i-arc
into A – clockwise for A′, counter-clockwise for A′′. Now, A is conditionally directed if and
only if either A′ or A′′ (or both) are conditionally directed. �

6. If |S(γi)| < k, the only impact will be a more compact reduction below.

410

TCP-Nets

To summarize our analysis of verifying conditional acyclicity, one must first identify the
semi-directed cycles in the dependency graph of the TCP-net. Next, one must show that
given each assignment w to the importance-conditioning variables of each semi-directed
cycle, the w-directed graph is acyclic. This problem is coNP-hard in general networks7,
but there are interesting classes of networks in which it is tractable. This is the case when
the number of semi-directed cycles is not too large and either the size of shared(A) for
each such cycle or the size of each selector set is not too large. Note that in practice, one
would expect to have small selector sets – statements such as “X is more important than
Y when A = a and B = b and . . . and Z = z” appear to be more complex than what
one would expect to hear. Thus, Lemma 6, Lemma 7 (for semi-directed cycles with small
shared(A)), and Theorem 4 are of more than just theoretical interest. Naturally, extending
the toolbox of TCP-net subclasses that can be efficiently tested for consistency is clearly of
both theoretical and practical interest.

6. Reasoning about Conditionally Acyclic TCP-nets

While automated consistency verification is the core part of the preference elicitation stage,
efficiency of reasoning about user preferences is one of the main desiderata of any model
for preference representation. Of particular importance is the task of preference-based
optimization and constrained optimization, which we discuss in the first part of this section.
Another important task, which provides an important component in the algorithm for
constrained optimization we present, is outcome comparison – discussed in the second part
of this section.

6.1 Generating Optimal Assignments

Following the notation of Boutilier et al. (2004a), if x and y are assignments to disjoint
subsets X and Y of the variable set V, respectively, we denote the combination of x and y
by xy. If X∩Y = ∅ and X∪Y = V, we call xy a completion of assignment x, and denote
by Comp(x) the set of all completions of x.

One of the central properties of the original CP-net model (Boutilier et al., 2004a)
is that, given an acyclic CP-net N and a (possibly empty) partial assignment x on its
variables, it is simple to determine an outcome consistent with x (a completion of x) that
is preferentially optimal with respect to N . The corresponding linear time forward sweep
procedure is as follows: Traverse the variables in some topological order induced by N , and
set each unassigned variable to its most preferred value given its parents’ values.

Our immediate observation is that this procedure works as is also for conditionally
acyclic TCP-nets: The relative importance relations do not play a role in this case, and
the network is traversed according to a topological order induced by the CP-net part of
the given TCP-net. In fact, Corollary 1 holds for any TCP-net that has no directed cycles
consisting only of cp-arcs.

Corollary 1 Given a conditionally acyclic TCP-net and a (possibly empty) partial assignment x
on its variables, the forward sweep procedure constructs the most preferred outcome in Comp(x).

7. This actually means that when the network is not too large, we can probably solve this in a reasonable
amount of time.

411

Brafman, Domshlak, & Shimony

This strong computational property of outcome optimization with respect to acyclic CP-
nets (and conditionally acyclic TCP-nets) does not hold if some of the TCP-net variables
are constrained by a set of hard constraints, C. In this case, determining the set of prefer-
entially non-dominated8 feasible outcomes is not trivial. For acyclic CP-nets, a branch and
bound algorithm for determining the optimal feasible outcomes was introduced by Boutilier,
Brafman, Domshlak, Hoos, and Poole (2004b). This algorithm has the important anytime
property – once an outcome is added to the current set of non-dominated outcomes, it is
never removed. An important implication of this property is that the first generated assign-
ment that satisfies the set of hard constraints is also preferentially non-dominated. In other
words, finding just one non-dominated solution in this algorithm boils down to solving the
underlying CSP under certain variable and value ordering strategies.

Here we develop an extension/modification of the algorithm of Boutilier et al. (2004b)
to conditionally acyclic TCP-nets. The extended algorithm Search-TCP retains the any-
time property and is shown in Figure 7. The key difference between processing an acyclic
CP-net and a conditionally acyclic TCP-net is that the semantics of the former implic-
itly induces a single partial order of importance over the variables (where each node pre-
cedes its descendants) (Boutilier et al., 2004a), while the semantics of the latter induces a
hierarchically-structured set of such partial orders: Each such partial order corresponds to
a single assignment to the set of selector variables of the network, or, more specifically, to
a certain w-directed graph.

Formally, the problem is defined by a conditionally acyclic TCP-net Norig, and a set of
hard constraints Corig, posed on the variables of Norig. The Search-TCP algorithm (depicted
in Figure 7) is recursive, and each recursive call receives three parameters:

1. A TCP-net N , which is a subnet of the original conditionally acyclic TCP-net Norig,

2. A set C of hard constraints among the variables of N , which is a subset of the original
set of constraints Corig obtained by restricting Corig to the variables of N , and

3. An assignment K to all the variables in Norig −N . In what follows, we refer to this
assignment K as a context.

The initial call to Search-TCP is done with Norig, Corig, and {}, respectively.
Basically, the Search-TCP algorithm starts with an empty set of solutions, and gradually

extends it by adding new non-dominated solutions to Corig. At each stage of the algorithm,
the current set of solutions serves as a “lower bound” for future candidates; A new candidate
at any point is compared to all solutions generated up to that point. If the candidate is
dominated by no member of the current solution set, then it is added into this set.

The Search-TCP algorithm is guided by the graphical structure of Norig. It proceeds
by assigning values to the variables in a top-down manner, assuring that outcomes are
generated in an order that satisfies (i.e., consistent with) N . On a recursive call to the
Search-TCP procedure with a TCP-net N , the eliminated variable X is one of the root
variables of N (line 1). Recall that, by Lemma 3, conditional acyclicity of N guarantees
the existence of such a root variable X. The values of X are considered according to

8. An outcome o is said to be non-dominated with respect to some preference order � and a set of outcomes
S if there is no other o′ ∈ S such that o′ � o.

412

TCP-Nets

Search-TCP (N , C, K)
Input: Conditionally acyclic TCP-net N ,

Hard constraints C on the variables of N ,
Assignment K to the variables of Norig \ N .

Output: Set of all, non-dominated w.r.t. N , solutions for C.

1. Choose any variable X s.t. there is no cp-arc 〈
−−→
Y, X〉,

no i-arc (
−−→
Y, X), and no (X, Y) in N .

2. Let x1 � . . . � xk be a total order on D(X) consistent with the preference
ordering of D(X) by the assignment on Pa(X) in K.

3. Initialize the set of local results by R = ∅
4. for (i = 1; i ≤ k; i + +) do
5. X = xi

6. Strengthen the constraints C by X = xi to obtain Ci

7. if Cj ⊆ Ci for some j < i or Ci is inconsistent then
8. continue with the next iteration

else
9. Let K′ be the partial assignment induced by X = xi and Ci

10. Ni = Reduce (N ,K′)
11. Let N 1

i , . . . ,Nm
i be the components of Ni, connected

either by the edges of Ni or by the constraints Ci.
12. for (j = 1; j ≤ m; j + +) do
13. Rj

i = Search-TCP(N j
i , Ci,K ∪ K′)

14. if Rj
i 6= ∅ for all j ≤ m then

15. foreach o ∈ K′ ×R1
i × · · · × Rm

i do
16 if K ∪ o′ 6� K ∪ o holds for each o′ ∈ R then add o to R
17. return R

Figure 7: The Search-TCP algorithm for conditionally acyclic TCP-net based constrained
optimization.

the preference ordering induced on D(X) by the assignment provided by the context K to
Pa(X) (where Pa(X) is defined with respect to Norig). Note that K necessarily contains
some assignment to Pa(X) since X is a root variable of the currently considered subnet N
of Norig. Any additional variable assignment X = xi converts the current set of constraints
C into a strictly non-weaker constraint set Ci. As a result of this propagation of X = xi,
values for some variables (at least, the value of X) are fixed automatically, and this partial
assignment K′ extends the current context K in recursive processing of the next variable.
The Reduce procedure, presented in Figure 8, refines the TCP-net N with respect to K′:
For each variable assigned by K′, we reduce both the CPTs and the CITs involving this
variable, and remove this variable from the network. This reduction of the CITs may remove
conditioning of relative importance between some variables, and thus convert some ci-arcs

413

Brafman, Domshlak, & Shimony

into i-arcs, and/or remove some ci-arcs completely. The main point is that, in contrast to
CP-nets, for a pair of X values xi, xj , the variable elimination orderings for processing the
networks Ni and Nj , resulting from propagating Ci and Cj , respectively, may disagree on
the ordering of some variables.

Reduce (N , K′)
1. foreach {X = xi} ∈ K′ do
2. foreach cp-arc 〈

−−→
X, Y 〉 ∈ N do

3. Restrict the CPT of Y to the rows dictated by X = xi.
4. foreach ci-arc γ = (Y1, Y2) ∈ N s.t. X ∈ S(γ) do
5. Restrict the CIT of γ to the rows dictated by X = xi.
6. if, given the restricted CIT of γ, relative importance

between Y1 and Y2 is independent of S(γ), then
7. if CIT of γ is not empty then
8. Replace γ by the corresponding i-arc.
9. else Remove γ.
10. Remove from N all the edges involving X.
11. return N .

Figure 8: The Reduce procedure.

If the partial assignment K′ causes the current CP-net to become disconnected with
respect to both the edges of the network and the inter-variable hard constraints, then
each connected component invokes an independent search (lines 11-16). This is because
optimization of the variables within such a component is independent of the variables outside
that component. In addition, after strengthening the set of constraints C by X = xi to Ci

(line 6), some pruning takes place in the search tree (lines 7-8): If the set of constraints
Ci is strictly more restrictive than some other set of constraints Cj = C ∪ {X = xj} where
j < i, then the search under X = xi is not continued. The reason for this pruning is that
it can be shown that any feasible outcome a involving X = xi is dominated by (i.e., less
preferable than) some feasible outcome b involving X = xj and thus a cannot be in the
set of non-dominated solutions for the original set of constraints9. Therefore, the search is
depth-first branch-and-bound, where the set of non-dominated solutions generated so far is
a proper subset of the required set of all the non-dominated solutions for the problem, and
thus it corresponds to the current lower bound.

When the potentially non-dominated solutions for a particular subgraph are returned
with some assignment X = xi, each such solution is compared to all non-dominated solutions
involving more preferred (in the current context K) assignments X = xj , j < i (line 16).
A solution with X = xi is added to the set of the non-dominated solutions for the current
subgraph and context if and only if it passes this non-domination test. From the semantics

9. This pruning was introduced by Boutilier et al. (2004b) for acyclic CP-nets, and it remains valid the
same way for conditionally acyclic TCP-nets. For the proof of soundness of this pruning technique we
refer the reader to Lemma 2 in (Boutilier et al., 2004b).

414

TCP-Nets

of the TCP-nets, given the same context K, a solution involving X = xi can not be preferred
to a solution involving X = xj , j < i. Thus, the generated global set R never shrinks.

Theorem 5 Given a conditionally acyclic TCP-net N and a set of hard constraints C over the
variables of N , an outcome o belongs to the set R generated by the algorithm Search-TCP if
and only if o is consistent with C, and there is no other outcome o′ consistent with C such that
N |= o′ � o.

Proof: Let RC be the desired set of all the preferentially non-dominated solution to C.
To prove this theorem, we should show that:

1. Completeness: No preferentially non-dominated solution to C is pruned out, that is,
we have R ⊇ RC , and

2. Soundness: The resulting set R contains no preferentially dominated solution to C,
that is, R ⊆ RC .

(1) The solutions to C are pruned by Search-TCP only in two places, namely at the search
space pruning in lines 7-8, and at the non-dominance test step in line 16. For the first case,
the correctness of the pruning technique used in lines 7-8 is given by Lemma 2 in (Boutilier
et al., 2004b), and thus this pruning does not violate completeness of Search-TCP. For the
second case, if an explicitly generated solution o is rejected due to the failure of its non-
dominance test, then o 6∈ RC is apparent since the rejection of o here is based on presenting
a concrete solution o′ such that N |= o′ � o. Hence, we have R ⊇ RC .

(2) To show R ⊆ RC it is enough to prove that a newly generated solution cannot dominate
an existing solution, that is, if o was added to the generated set of solutions after o′ then
it is not the case that N |= o � o′. The proof is by induction on the number of problem
variables. First, the claim trivially holds for any one-variable TCP-net, as the order in which
the solutions are examined in line 16 coincides with the total order selected for the single
variable of the network in line 2. Now, assume that the claim holds for all conditionally
acyclic TCP-nets with fewer than n variables. Let N be a TCP-net over n variables, C be
a set of hard constraints on these variables, and X be the root variable of N selected in
line 1. Let R = {o1, . . . , or} be the output of Search-TCP for these N and C, where the
elements of R are numbered according to the order of their non-dominance examination in
line 16. Now, assume that there exists a pair of assignments oi, oj ∈ R, such that i < j, yet
N |= oj � oi.

First, suppose that oi and oj provide the same value to X, that is oi = xlo
′
i and

oj = xlo
′
j , for some xl ∈ D(X). In this case, however, o′i and o′j belong to the output of the

same recursive call to Search-TCP with Nl and Cl, and thus, by our inductive hypothesis, o′i
and o′j are preferentially incomparable. Likewise, Nl is obtained in line 10 by reducing N
with respect to xl, and thus the variables of Nl are preferentially independent of X. Hence,
preferential incomparability of o′i and o′j implies preferential incomparability of oi and oj ,
and thus N |= oj � oi cannot be the case.

Alternatively, suppose that oi and oj provide two different values to X, that is oi = xlo
′
i

and oj = xmo′j , xl, xm ∈ D(X), where D(X) is numbered according to the total ordering of

415

Brafman, Domshlak, & Shimony

its values selected in line 2. Observe that, by the construction of Search-TCP, i < j trivially
implies l < m. However, using the arguments identical to these in the constructive proof of
Theorem 6, there exists at least one preference order � of the complete assignments to the
variables of N in which we have oi � oj . Hence, it cannot be the case that N |= oj � oi,
and thus contradiction of our assumption that N |= oj � oi is now complete. �

Note that, if we are interested in getting one non-dominated solution for the given set of
hard constraints (which is often the case), we can output the first feasible outcome generated
by Search-TCP. No comparisons between pairs of outcomes are required because there is
nothing to compare with the first generated solution. However, if we are interested in getting
all, or even a few non-dominated solutions, then the efficiency of preferential comparison
between pairs of outcomes becomes an important factor in the entire complexity of the
Search-TCP algorithm. Hence, in the next section we consider such preferential comparisons
more closely.

6.2 Dominance Testing for TCP-nets

One of the most fundamental queries in any preference-representation formalism is whether
some outcome o dominates (i.e., is strictly preferred to) some other outcome o′. As discussed
above, such dominance queries are required whenever we wish to generate more than one
non-dominated solution to a set of hard constrains. Much like in CP-nets, a dominance
query 〈N , o, o′〉 with respect to a TCP-net can be treated as a search for an improving
flipping sequence from the (purported) less preferred outcome o′ to the (purported) more
preferred outcome o through a sequence of successively more preferred outcomes, such
that each flip in this sequence is directly sanctioned by the given TCP-net. Formally, an
improving flipping sequence in the context of TCP-nets can be defined as follows:

Definition 13 A sequence of outcomes

o′ = o0 ≺ o1 ≺ · · · ≺ om−1 ≺ om = o

is an improving flipping sequence with respect to a TCP-net N if and only if, for 0 ≤ i < m,
either

1. (CP-flips) outcome oi is different from the outcome oi+1 in the value of exactly one
variable Xj, and oi[j] ≺ oi+1[j] given the (identical) values of Pa(Xj) in oi and oi+1,
or

2. (I-flips) outcome oi is different from the outcome oi+1 in the value of exactly two
variables Xj and Xk, oi[j] ≺ oi+1[j] and oi[k] � oi+1[k] given the (identical) values
of Pa(Xj) and Pa(Xk) in oi and oi+1, and Xj � Xk given RI(Xj , Xk|Z) and the
(identical) values of Z in oi and oi+1.10

Clearly, each value flip in such a flipping sequence is sanctioned by the TCP-net N , and
the CP-flips are exactly the flips allowed in CP-nets (Boutilier et al., 2004a).

10. We implicitly assumed that neither node is the parent of the other. An implicit consequence of the
standard semantics of conditional preferences is a node is more important than its children. Thus, there
is no need to specify this explicitly.

416

TCP-Nets

Theorem 6 Given a TCP-net N and a pair of outcomes o and o′, we have that N |= o � o′

if and only if there is an improving flipping sequence with respect to N from o′ to o.

Proof:

⇐= Given an improving flipping sequence F :

o′ = o0 ≺ o1 ≺ · · · ≺ om−1 ≺ om = o

from o′ to o with respect to N , by Definition 13, we have N |= oi � oi+1 for any improving
flip from F . The proposition follows from the transitivity of preferential entailment with
respect to TCP-nets (Lemma 1).

=⇒ Let G be the graph of preferential ordering induced by N , i.e., nodes of G stand for all
outcomes, and there is a directed edge from o1 to o2 if and only if there is an improving
CP-flip or I-flip of o1 to o2, sanctioned by N . Clearly, directed paths in G are equivalent to
improving flipping sequences with respect to N .

First, we show that any preference ordering � that respects the paths in G (that is,
if there is a path from o1 to o2 in G, then we have o2 � o1) satisfies N . Assume to the
contrary that �∗ respects the paths in G, and does not satisfy N . Then, by the definition
of satisfiability (Definition 7), there must exist either:

1. Some variable X, assignment p ∈ D(Pa(X)), values x, x′ ∈ D(X), and assignment
w to the remaining variables W = V − (X ∪ Pa(X)), such that pxw �∗ px′w, but
CPT (X) dictates that x′ � x given p, or

2. Some importance arc ξ between a pair of variables X and Y , assignment z ∈ D(S(ξ))
(if ξ is an i-arc, then S(ξ) = ∅), values x, x′ ∈ D(X), y, y′ ∈ D(Y), and assignment w
to the remaining variables W = V−({X, Y }∪S(ξ)), such that pxyw �∗ px′y′w, but
(i) the CPT (X) dictates that x′ � x, and (ii) the (possibly empty) CIT of ξ dictates
that X � Y given z.

However, in the first case, if N specifies x′ � x given p, there is a CP-flip from px′w to pxw,
contradicting the fact that �∗ extends G. Similarly, in the second case, if N specify x′ � x
given w, and X �Y given z, then there is an I-flip from px′y′w to pxyw, contradicting the
fact that �∗ extends G.

Now, by the construction of G, if there is no improving flipping sequence from o′ to
o, then there is no directed path in G from o′ to o. Therefore, there exist a preference
ordering �∗ respecting the paths in G in which o′ �∗ o. However, based on the above
observation on preference orderings respecting the paths in G, �∗ also satisfies N , which
implies N 6|= o � o′. �

Various methods can be used to search for a flipping sequence. In particular, we be-
lieve that at least some of the techniques, developed for this task with respect to CP-
nets by Domshlak and Brafman (2002), Domshlak (2002), and Boutilier et al. (2004a)
can be applied to the TCP-net model – an issue left for future research. However, in
general, dominance testing with respect to CP-nets (and thus TCP-nets) is known to be

417

Brafman, Domshlak, & Shimony

NP-hard (Boutilier et al., 2004a), thus in practice one may possibly consider performing
approximate constrained optimization, using the Search-TCP algorithm with a dominance
testing based on one of the tractable refinements of TCP-nets such as those discussed
by Brafman, Domshlak, and Kogan (2004a).

7. Discussion

CP-nets (Boutilier et al., 1999, 2004a) is a relatively new graphical model for representation
and reasoning about preferences. Its development, however, already stimulated research in
several directions (e.g., see (Brafman & Chernyavsky, 2005; Brafman & Dimopoulos, 2004;
Brewka, 2002; Boutilier et al., 2001; Domshlak et al., 2003; Rossi et al., 2004; Lang, 2002;
Wilson, 2004b, 2004a)). In this paper we introduced the qualitative notions of absolute
and conditional relative importance between pairs of variables and extended the CP-net
model to capture the corresponding preference statements. The extended model is called
TCP-nets. We identified a wide class of TCP-nets that are satisfiable, notably the class of
conditionally acyclic TCP-nets, and analyzed complexity and algorithms for testing mem-
bership in this class of networks. We also studied reasoning about TCP-nets, focusing on
outcome optimization in conditionally acyclic TCP-nets with and without hard constraints.

Our work opens several directions for future research. First, an important open theo-
retical question is the precise complexity of dominance testing in TCP-nets. In the context
of CP-nets this problem has been studied by Domshlak (2002), Boutilier et al. (2004a),
Goldsmith et al. (2005). Another question is the consistency of TCP-nets that are not
conditionally acyclic. A preliminary study of this issue in context of cyclic CP-nets has
been done by Domshlak and Brafman (2002) and Goldsmith et al. (2005).

The growing research on preference modeling is motivated by the need for preference
elicitation, representation, and reasoning techniques in diverse areas of AI and user-centric
information systems. In particular, one of the main application areas we have in mind
is this of automatic personalized product configuration (Sabin & Weigel, 1998). Thus, in
the remaining part of this section, we first consider the process of preference elicitation
with TCP-nets, listing a few practical challenges that should be addressed to make this
process appealing to users en-masse. Then, we relate our work to some other approaches
to preference-based optimization.

7.1 Preference Elicitation with TCP-nets (and Other Logical Models of
Preference)

The process of preference elicitation is known to be complex as into account should be taken
not only the formal model of the user’s preferences but also numerous important factors
of human-computer interaction (e.g., see (Faltings, Pu, Torrens, & Viappiani, 2004; Pu &
Faltings, 2004)). In this paper we focus on a formalism for structuring and analyzing the
user’s preferences, although for some (probably offline) applications, this formalism could
actually be used to drive the input process, much like a Bayes network can be used to help
experts express their beliefs.

Depending on the application, a schematic process of constructing a TCP-net would
commence by asking the decision maker to identify the variables of interest, or by presenting
them to the user, if they are fixed. For example, in the application of CP-net to adaptive

418

TCP-Nets

document presentation (Domshlak, Brafman, & Shimony, 2001; Brafman, Domshlak, &
Shimony, 2004b), the content provider chooses a set of content elements, which correspond
to the set of variables. For an online shopper-assistant agent, the variables are likely to
be fixed (e.g., if the agent is an online PC customizer) (Brafman et al., 2004a). Next, the
user is asked to consider for each variable, the value of which other variables influence her
preferences over the values of this variable. At this point cp-arcs and CPTs are introduced.
Next, the user is asked to consider relative importance relations, and the i and ci-arcs are
added. For each ci-arc, the corresponding CIT is filled.

Clearly, one may prefer to keep the preference elicitation process more user-driven, al-
lowing the user simply provide us with a set of preference statements. But if such a set
of statements fits the language expressible by the TCP-nets model, then the specific TCP-
net underlying these statements can be constructed from a simple analysis of referents and
conditionals of these statements. Such TCP-net extraction from the statements will be
simpler if these statements will be provided in this or another formal language, or obtained
via some carefully designed, structured user interface. However, for the user it is obviously
more natural to provide these statements in natural language. Hence, an interesting practi-
cal question related to elicitation of qualitative preferences is model acquisition from speech
and/or text (Asher & Morreau, 1995; Glass, 1999; Bethard, Yu, Thornton, Hatzivassiloglou,
& Jurafsky, 2004). Observe that the intuitiveness of the qualitative preferential statements
is closely related to the fact that they have a straightforward representation in natural lan-
guage of everyday life. In addition, collections of typical preferential statements seem to
form a linguistic domain that is a priori constrained in a very special manner. This may
allow us to develop specialized techniques and tools for understanding the corresponding
language. Both offline and online language understanding should be considered, since a user
can either describe her preferences offline, as a self-contained text, or can be asked online, as
a part of interactive process of (possibly mixed) preference elicitation and preference-based
constrained optimization.

Yet another possible approach for eliciting TCP-nets, as well as some alternative logical
models of preferences, would be to allow the user expressing pair-wise comparisons between
completely specified choices, and then construct a TCP-net consistent with this input.
In the scope of quantitative models for preference representation, such an example-based
model generation has been adopted in numerous user-centric optimization systems (e.g.,
see (Linden, Hanks, & Lesh, 1997; Blythe, 2002).) However, devising such a framework for
learning qualitative models of preference seems to be somewhat more challenging. In theory,
nothing prevents us from adopting example-based generation of TCP-nets since the latter
can be seen as just a compact representation of a preference relation over a space of choices.
The question, however, is whether a reasonably small set of pair-wise choice comparisons
can provide us with a sufficient basis for learning not just a TCP-net consistent with these
“training examples”, but a compact TCP-net that will generalize in a justifiable manner
beyond the provided examples. To the best of our knowledge, so far this question has
been studied for no logical preference-representation models, and hence it clearly poses a
challenging venue for future research.11

11. Note that, if we are only interested in compact modeling of pair-wise comparisons between the choices,
then numerous techniques from the area of machine learning can be found useful. For instance, one can
learn a decision tree classifying ordered pairs of choices as “preferred” (first choice to the second choice)

419

Brafman, Domshlak, & Shimony

7.2 Related Work

As we show in Section 6, extending CP-nets to TCP-nets is appealing mainly in the scope of
decision scenarios where the space of all syntactically possible choices is (either explicitly or
implicitly) constrained by some hard constraints. We now review some related approaches
to preference-based optimization that appeared in the literature.

A primary example of preference-based optimization is the soft-constraints formalism
(e.g., see Bistarelli et al. (1997)), developed to model constraint satisfaction problems that
are either over-constrained (and thus unsolvable according to the standard meaning of
satisfaction) (Freuder & Wallace, 1992), or suffer from imprecise knowledge about the actual
constraints (Fargier & Lang, 1993). In this formalism, the constrained optimization problem
is represented as a set of preference orders over assignments to subsets of variables, together
with some operator for combining the preference relations over these subsets of variables to
a preference relation over the assignments to the whole set of variables. Each such subset
of variables corresponds to a soft constraint that can be satisfied to different extent by
different variable assignments. There is much flexibility in how such “local” preference
orders are specified, and how they are combined. Various soft-constraints models, such
as weighted (Bistarelli et al., 1999), fuzzy (Schiex, 1992), probabilistic (Fargier & Lang,
1993), and lexicographic (Fargier et al., 1993) CSPs, are discussed in the literature on soft
constraint satisfaction.

The conceptual difference between our approach and the soft-constraints formalism is
that the latter is based on tightly coupled representation of preferences and constraints,
while our representation of these two paradigms is completely decoupled. Informally, soft
constraints machinery has been developed for optimization of partial constraint satisfaction,
while we are dealing with optimization in the face of constraint satisfaction. For instance, in
personalized product configuration, there are two parties involved typically: the manufac-
turer and the consumer. The manufacturer brings forth its product expertise, and with it
a set of hard constraints on possible system configurations and the operating environment.
The user expresses her preferences over properties of the final product. Typically numerous
configurations satisfy the production constraints, and the manufacturer strives to provide
the user with maximal satisfaction by finding one of the most preferred, feasible product
configuration. This naturally leads to a decoupled approach.

Freuder and O’Sullivan (2001) proposed a framework of interactive sessions for over-
constrained problems. During such a session, if the constraint solver discovers that no
solution for the current set of constraints is available, the user is asked to consider “trade-
offs”. For example, following Freuder and O’Sullivan (2001), suppose that the set of user
requirements for a photo-camera configuration tool is that the weight of the camera should
be less that 10 ounces and the zoom lens should be at least 10X. If no camera meets these
requirements, the user may specify tradeoffs such as “I will increase my weight limit to 14
ounces, if I can have a zoom lens of at least 10X” (possibly using some suggestions auto-
matically generated by the tool). In turn, these tradeoffs are used for refining the current
set of requirements, and the system goes into a new constraint satisfaction process.

or “not preferred”. However, such a classification does not guarantee in general that the resulting binary
relation over the space of choices will be anti-symmetric under the assumption of preference transitivity (a
joint property that considered to be extremely natural in the literature on preference structures (Hansson,
2001).)

420

TCP-Nets

The tradeoffs exploited by Freuder and O’Sullivan (2001) correspond to the information
captured in TCP-nets by the i-arcs. However, instead of treating this information as an
incremental “compromising” update to the set of hard constraints as done by Freuder and
O’Sullivan (2001), in the TCP-net based constrained optimization presented in Section 6,
we exploit this information to guide the constraint solver to the preferable feasible solutions.
On the other hand, the motivation and ideas behind the work of Freuder and O’Sullivan as
well as these in some other works on interactive search (see works, e.g., on interactive goal
programming (Dyer, 1972), and interactive optimization based on example critique (Pu &
Faltings, 2004)) open a venue for future research on interactive preference-based constrained
optimization with TCP-nets, where elicitation of the user preferences is to be interleaved
with the search for feasible solution.

The notion of lexicographic orders/preferences (Fishburn, 1974; Schiex et al., 1995;
Freuder et al., 2003) is closely related to our notion of importance. The idea of a lexico-
graphic ordering is often used in qualitative approaches for multi-criteria decision making.
Basically, it implies that if one item does better than another on the most important (lexi-
cographically earlier) criteria on which they differ, it is considered better overall, regardless
on how poorly it may do on all other criteria. Thus, if we have four criteria (or attributes)
A,B, C, D, thus ordered, and o does well on A but miserably on B,C and D, whereas o′ is
slightly worse on A but much better on all other criteria, o is still deemed better. In terms
of our notion of variable importance, a lexicographic ordering of attributes denotes a special
form of relative importance of an attribute versus a set of attributes. Thus, in the example
above, A is more important than B,C and D combined; B is more important than C and
D combined, and C is more important than D. We note that Wilson (2004b) provides a
nice language that can capture such statements and more. Wilson allows statements of the
form “A = a is preferred to A = a all-else-being-equal, except for B and C.” That is, given
two outcomes that differ on A,B and C only, the one that assigns a to A is preferred to
the one that assigns a′, regardless of the value of B and C in these outcomes. Hence, this
richer language can in particular capture lexicographic preferences.

While we believe a lexicographic ordering over attributes is typically too strong, we
think the flexibility provided by Wilson’s language could be quite useful. However, once
one starts analyzing relationships between sets of attributes, the utility of graphical models
and their analysis power becomes questionable. Indeed, we are not aware of a graphical
analysis of Wilson’s approach, except for the special case covered by TCP-nets. Moreover,
our intuition is that relative importance of sets will be a notion that users are much less
comfortable specifying in many applications. However, this hypothesis requires empirical
verification, as well as a more general study of the exact expressive power of TCP-nets, i.e.,
characterizing partial orders that are expressible using this language. We believe that this
is an important avenue for future research.

Acknowledgments

Ronen Brafman and Solomon Shimony were partly supported by the Paul Ivanier Center
for Robotics and Production Management. Ronen Brafman was partly supported by NSF
grants SES-0527650 and IIS-0534662. Ronen Brafman’s permanent address is: Department
of Computer Science, Ben Gurion University, Israel.

421

Brafman, Domshlak, & Shimony

References

Asher, N., & Morreau, M. (1995). What some generic sentences mean. In Carlson, G., &
Pelletier, F. J. (Eds.), The Generic Book, pp. 300–338. Chicago University Press.

Bethard, S., Yu, H., Thornton, A., Hatzivassiloglou, V., & Jurafsky, D. (2004). Automatic
extraction of opinion propositions and their holders. In Proceedings of the AAAI
Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applica-
tions.

Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., & Verfaillie, G. (1999).
Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison.
Constraints, 4 (3), 275–316.

Bistarelli, S., Montanari, U., & Rossi, F. (1997). Semiring-based constraint solving and
optimization. Journal of the ACM, 44 (2), 201–236.

Blythe, J. (2002). Visual exploration and incremental utility elicitation. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), pp. 526–532.

Boutilier, C., Bacchus, F., & Brafman, R. I. (2001). UCP-networks: A directed graphical
representation of conditional utilities. In Proceedings of Seventeenth Conference on
Uncertainty in Artificial Intelligence, pp. 56–64.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D. (2004a). CP-nets: A tool
for representing and reasoning about conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research (JAIR), 21, 135–191.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D. (2004b). Preference-based
constrained optimization with CP-nets. Computational Intelligence (Special Issue on
Preferences in AI and CP), 20 (2), 137–157.

Boutilier, C., Brafman, R., Hoos, H., & Poole, D. (1999). Reasoning with conditional ceteris
paribus preference statements. In Proceedings of the Fifteenth Annual Conference on
Uncertainty in Artificial Intelligence, pp. 71–80. Morgan Kaufmann Publishers.

Brafman, R., & Chernyavsky, Y. (2005). Planning with goal preferences and constraints. In
Proceedings of the International Conference on Automated Planning and Scheduling,
pp. 182–191, Monterey, CA.

Brafman, R., & Domshlak, C. (2002). Introducing variable importance tradeoffs into CP-
nets. In Proceedings of the Eighteenth Annual Conference on Uncertainty in Artificial
Intelligence, pp. 69–76, Edmonton, Canada.

Brafman, R., Domshlak, C., & Kogan, T. (2004a). Compact value-function representations
for qualitative preferences. In Proceedings of the Twentieth Annual Conference on
Uncertainty in Artificial Intelligence, pp. 51–58, Banff, Canada.

Brafman, R., Domshlak, C., & Shimony, S. E. (2004b). Qualitative decision making in
adaptive presentation of structured information. ACM Transactions on Information
Systems, 22 (4), 503–539.

Brafman, R. I., & Dimopoulos, Y. (2004). Extended semantics and optimization algorithms
for cp-networks. Computational Intelligence (Special Issue on Preferences in AI and
CP), 20 (2), 218–245.

422

TCP-Nets

Brafman, R. I., & Friedman, D. (2005). Adaptive rich media presentations via preference-
based constrained optimization. In Proceedings of the IJCAI-05 Workshop on Ad-
vances in Preference Handling, pp. 19–24, Edinburgh, Scotland.

Brewka, G. (2002). Logic programming with ordered disjunction. In Proceedings of
Eighteenth National Conference on Artificial Intelligence, pp. 100–105, Edmonton,
Canada. AAAI Press.

Burke, R. (2000). Knowledge-based recommender systems. In Kent, A. (Ed.), Encyclopedia
of Library and Information Systems, Vol. 69, pp. 180–200. Marcel Dekker, New York.

Domshlak, C. (2002). Modeling and Reasoning about Preferences with CP-nets. Ph.D.
thesis, Ben-Gurion University, Israel.

Domshlak, C., & Brafman, R. (2002). CP-nets - reasoning and consistency testing. In
Proceedings of the Eighth International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pp. 121–132, Toulouse, France.

Domshlak, C., Brafman, R., & Shimony, S. E. (2001). Preference-based configuration of
web page content. In Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence, pp. 1451–1456, Seattle.

Domshlak, C., Rossi, F., Venable, K. B., & Walsh, T. (2003). Reasoning about soft
constraints and conditional preferences: Complexity results and approximation tech-
niques. In Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence, pp. 215–220, Acapulco, Mexico.

Dyer, J. S. (1972). Interactive goal programming. Management Science, 19, 62–70.

Even, S., Itai, A., & Shamir, A. (1976). On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5, 691–703.

Faltings, B., Pu, P., Torrens, M., & Viappiani, P. (2004). Designing example-critiquing inter-
action. In Proceedings of the International Conference on Intelligent User Interfaces,
pp. 22–29, Funchal, Madeira, Portugal.

Fargier, H., & Lang, J. (1993). Uncertainty in constraint satisfaction problems: A probabilis-
tic approach. In Proceedings of the European Conference on Symbolic and Qualitative
Approaches to Reasoning and Uncertainty, Vol. 747 of LNCS, pp. 97–104.

Fargier, H., Lang, J., & Schiex, T. (1993). Selecting preferred solutions in fuzzy constraint
satisfaction problems. In Proceedings of the First European Congress on Fuzzy and
Intelligent Technologies, pp. 1128–1134.

Fishburn, P. (1974). Lexicographic orders, utilities, and decision rules: A survey. Manage-
ment Science, 20 (11), 1442–1471.

French, S. (1986). Decision Theory. Halsted Press, New York.

Freuder, E., & O’Sullivan, B. (2001). Generating tradeoffs for interactive constraint-based
configuration. In Proceedings of the 7th International Conference on Principles and
Practice of Constraint Programming, pp. 590–594, Paphos, Cyprus.

Freuder, E. C., & Wallace, R. J. (1992). Partial constraint satisfaction. Artificial Intelli-
gence, 58, 21–70.

423

Brafman, Domshlak, & Shimony

Freuder, E. C., Wallace, R. J., & Heffernan, R. (2003). Ordinal constraint satisfaction. In
Proceedings of the Fifth International Workshop on Soft Constraints.

Glass, J. (1999). Challenges for spoken dialogue systems. In Proceedings of the IEEE ASRU
Workshop, Keystone, CO.

Goldsmith, J., Lang, J., Truszczynski, M., & Wilson, N. (2005). The computational com-
plexity of dominance and consistency in CP-nets. In Proceedings of the Nineteenth In-
ternational Joint Conference on Artificial Intelligence, pp. 144–149, Edinburgh, Scot-
land.

Haag, A. (1998). Sales configuration in business processes. IEEE Intelligent Systems and
their Applications, 13 (4), 78–85.

Hansson, S. O. (2001). Preference logic. In Gabbay, D. M., & Guenthner, F. (Eds.),
Handbook of Philosophical Logic (2 edition)., Vol. 4, pp. 319–394. Kluwer.

Keeney, R. L., & Raiffa, H. (1976). Decision with Multiple Objectives: Preferences and Value
Tradeoffs. Wiley.

Lang, J. (2002). From preference representation to combinatorial vote. In Proceedings of
the Eight International Conference on Principles of Knowledge Representation and
Reasoning (KR), pp. 277–288.

Linden, G., Hanks, S., & Lesh, N. (1997). Interactive assessment of user preference models:
The automated travel assistant. In Proceedings of the Sixth International Conference
on User Modeling, pp. 67–78.

Pu, P., & Faltings, B. (2004). Decision tradeoff using example critiquing and constraint
programming. Constraints: An International Journal, 9 (4), 289–310.

Resnick, P., & Varian, H. R. (Eds.). (1997). Special Issue on Recommender Systems, Vol. 40
of Communications of the ACM.

Rossi, F., Venable, K. B., & Walsh, T. (2004). mCP nets: Representing and reasoning with
preferences of multiple agents. In Proceedings of the Nineteenth National Conference
on Artificial Intelligence, pp. 729–734, San Jose, CL.

Sabin, D., & Weigel, R. (1998). Product conguration frameworks - A survey. IEEE Intelli-
gent Systems and their Applications, 13 (4), 42–49.

Schiex, T. (1992). Possibilistic cosntraint satisfaction, or ”How to handle soft constraints”.
In Proceedings of Eighth Conference on Uncertainty in Artificial Intelligence, pp. 269–
275.

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: Hard
and easy problems. In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, pp. 631–637.

Wilson, N. (2004a). Consistency and constrained optimisation for conditional preferences.
In Proceedings of the Sixteenth European Conference on Artificial Intelligence, pp.
888–894, Valencia.

Wilson, N. (2004b). Extending CP-nets with stronger conditional preference statements.
In Proceedings of the Nineteenth National Conference on Artificial Intelligence, pp.
735–741, San Jose, CL.

424

