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Abstract


A decision process in which rewards depend on history rather than merely on the cur-
rent state is called a decision process with non-Markovian rewards (NMRDP). In decision-
theoretic planning, where many desirable behaviours are more naturally expressed as prop-
erties of execution sequences rather than as properties of states, NMRDPs form a more
natural model than the commonly adopted fully Markovian decision process (MDP) model.
While the more tractable solution methods developed for MDPs do not directly apply in the
presence of non-Markovian rewards, a number of solution methods for NMRDPs have been
proposed in the literature. These all exploit a compact specification of the non-Markovian
reward function in temporal logic, to automatically translate the NMRDP into an equiv-
alent MDP which is solved using efficient MDP solution methods. This paper presents
nmrdpp(Non-Markovian Reward Decision Process Planner), a software platform for the
development and experimentation of methods for decision-theoretic planning with non-
Markovian rewards. The current version of nmrdpp implements, under a single interface,
a family of methods based on existing as well as new approaches which we describe in de-
tail. These include dynamic programming, heuristic search, and structured methods. Using
nmrdpp, we compare the methods and identify certain problem features that affect their
performance. nmrdpp’s treatment of non-Markovian rewards is inspired by the treatment
of domain-specific search control knowledge in the TLPlan planner, which it incorporates
as a special case. In the First International Probabilistic Planning Competition, nmrdpp
was able to compete and perform well in both the domain-independent and hand-coded
tracks, using search control knowledge in the latter.
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1. Introduction


1.1 The Problem


Markov decision processes (MDPs) are now widely accepted as the preferred model for
decision-theoretic planning problems (Boutilier, Dean, & Hanks, 1999). The fundamental
assumption behind the MDP formulation is that not only the system dynamics but also the
reward function are Markovian. Therefore, all information needed to determine the reward
at a given state must be encoded in the state itself.


This requirement is not always easy to meet for planning problems, as many desirable
behaviours are naturally expressed as properties of execution sequences (see e.g., Drum-
mond, 1989; Haddawy & Hanks, 1992; Bacchus & Kabanza, 1998; Pistore & Traverso,
2001). Typical cases include rewards for the maintenance of some property, for the periodic
achievement of some goal, for the achievement of a goal within a given number of steps
of the request being made, or even simply for the very first achievement of a goal which
becomes irrelevant afterwards.


For instance, consider a health care robot which assists ederly or disabled people by
achieving simple goals such as reminding them to do important tasks (e.g. taking a pill),
entertaining them, checking or transporting objects for them (e.g. checking the stove’s
temperature or bringing coffee), escorting them, or searching (e.g. for glasses or for the
nurse) (Cesta et al., 2003). In this domain, we might want to reward the robot for making
sure a given patient takes his pill exactly once every 8 hours (and penalise it if it fails
to prevent the patient from doing this more than once within this time frame!), we may
reward it for repeatedly visiting all rooms in the ward in a given order and reporting any
problem it detects, it may also receive a reward once for each patient’s request answered
within the appropriate time-frame, etc. Another example is the elevator control domain
(Koehler & Schuster, 2000), in which an elevator must get passengers from their origin to
their destination as efficiently as possible, while attempting to satisfying a range of other
conditions such as providing priority services to critical customers. In this domain, some
trajectories of the elevator are more desirable than others, which makes it natural to encode
the problem by assigning rewards to those trajectories.


A decision process in which rewards depend on the sequence of states passed through
rather than merely on the current state is called a decision process with non-Markovian
rewards (NMRDP) (Bacchus, Boutilier, & Grove, 1996). A difficulty with NMRDPs is that
the most efficient MDP solution methods do not directly apply to them. The traditional way
to circumvent this problem is to formulate the NMRDP as an equivalent MDP, whose states
result from augmenting those of the original NMRDP with extra information capturing
enough history to make the reward Markovian. Hand crafting such an MDP can however
be very difficult in general. This is exacerbated by the fact that the size of the MDP
impacts the effectiveness of many solution methods. Therefore, there has been interest
in automating the translation into an MDP, starting from a natural specification of non-
Markovian rewards and of the system’s dynamics (Bacchus et al., 1996; Bacchus, Boutilier,
& Grove, 1997). This is the problem we focus on.
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1.2 Existing Approaches


When solving NMRDPs in this setting, the central issue is to define a non-Markovian reward
specification language and a translation into an MDP adapted to the class of MDP solution
methods and representations we would like to use for the type of problems at hand. More
precisely, there is a tradeoff between the effort spent in the translation, e.g. in producing a
small equivalent MDP without many irrelevant history distinctions, and the effort required
to solve it. Appropriate resolution of this tradeoff depends on the type of representations
and solution methods envisioned for the MDP. For instance, structured representations and
solution methods which have some ability to ignore irrelevant information may cope with a
crude translation, while state-based (flat) representations and methods will require a more
sophisticated translation producing an MDP as small as feasible.


Both the two previous proposals within this line of research rely on past linear temporal
logic (PLTL) formulae to specify the behaviours to be rewarded (Bacchus et al., 1996, 1997).
A nice feature of PLTL is that it yields a straightforward semantics of non-Markovian
rewards, and lends itself to a range of translations from the crudest to the finest. The two
proposals adopt very different translations adapted to two very different types of solution
methods and representations. The first (Bacchus et al., 1996) targets classical state-based
solution methods such as policy iteration (Howard, 1960) which generate complete policies
at the cost of enumerating all states in the entire MDP. Consequently, it adopts an expensive
translation which attempts to produce a minimal MDP. By contrast, the second translation
(Bacchus et al., 1997) is very efficient but crude, and targets structured solution methods
and representations (see e.g., Hoey, St-Aubin, Hu, & Boutilier, 1999; Boutilier, Dearden, &
Goldszmidt, 2000; Feng & Hansen, 2002), which do not require explicit state enumeration.


1.3 A New Approach


The first contribution of this paper is to provide a language and a translation adapted to
another class of solution methods which have proven quite effective in dealing with large
MDPs, namely anytime state-based heuristic search methods such as LAO* (Hansen &
Zilberstein, 2001), LRTDP (Bonet & Geffner, 2003), and ancestors (Barto, Bardtke, &
Singh, 1995; Dean, Kaelbling, Kirman, & Nicholson, 1995; Thiébaux, Hertzberg, Shoaff,
& Schneider, 1995). These methods typically start with a compact representation of the
MDP based on probabilistic planning operators, and search forward from an initial state,
constructing new states by expanding the envelope of the policy as time permits. They may
produce an approximate and even incomplete policy, but explicitly construct and explore
only a fraction of the MDP. Neither of the two previous proposals is well-suited to such
solution methods, the first because the cost of the translation (most of which is performed
prior to the solution phase) annihilates the benefits of anytime algorithms, and the second
because the size of the MDP obtained is an obstacle to the applicability of state-based
methods. Since here both the cost of the translation and the size of the MDP it results
in will severely impact on the quality of the policy obtainable by the deadline, we need an
appropriate resolution of the tradeoff between the two.


Our approach has the following main features. The translation is entirely embedded in
the anytime solution method, to which full control is given as to which parts of the MDP
will be explicitly constructed and explored. While the MDP obtained is not minimal, it
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is of the minimal size achievable without stepping outside of the anytime framework, i.e.,
without enumerating parts of the state space that the solution method would not necessarily
explore. We formalise this relaxed notion of minimality, which we call blind minimality in
reference to the fact that it does not require any lookahead (beyond the fringe). This is
appropriate in the context of anytime state-based solution methods, where we want the
minimal MDP achievable without expensive pre-processing.


When the rewarding behaviours are specified in PLTL, there does not appear to be a
way of achieving a relaxed notion of minimality as powerful as blind minimality without
a prohibitive translation. Therefore instead of PLTL, we adopt a variant of future linear
temporal logic (FLTL) as our specification language, which we extend to handle rewards.
While the language has a more complex semantics than PLTL, it enables a natural trans-
lation into a blind-minimal MDP by simple progression of the reward formulae. Moreover,
search control knowledge expressed in FLTL (Bacchus & Kabanza, 2000) fits particularly
nicely in this framework, and can be used to dramatically reduce the fraction of the search
space explored by the solution method.


1.4 A New System


Our second contribution is nmrdpp, the first reported implementation of NMRDP solution
methods. nmrdpp is designed as a software platform for their development and experimen-
tation under a common interface. Given a description of the actions in a domain, nmrdpp
lets the user play with and compare various encoding styles for non-Markovian rewards
and search control knowledge, various translations of the resulting NMRDP into MDP, and
various MDP solution methods. While solving the problem, it can be made to record a
range of statistics about the space and time behaviour of the algorithms. It also supports
the graphical display of the MDPs and policies generated.


While nmrdpp’s primary interest is in the treatment of non-Markovian rewards, it is
also a competitive platform for decision-theoretic planning with purely Markovian rewards.
In the First International Probabilistic Planning Competition, nmrdpp was able to enrol
in both the domain-independent and hand-coded tracks, attempting all problems featuring
in the contest. Thanks to its use of search control-knowledge, it scored a second place
in the hand-coded track which featured probabilistic variants of blocks world and logistics
problems. More surprisingly, it also scored second in the domain-independent subtrack con-
sisting of all problems that were not taken from the blocks world and logistic domains. Most
of these latter problems had not been released to the participants prior to the competition.


1.5 A New Experimental Analysis


Our third contribution is an experimental analysis of the factors that affect the performance
of NMRDP solution methods. Using nmrdpp, we compared their behaviours under the
influence of parameters such as the structure and degree of uncertainty in the dynamics,
the type of rewards and the syntax used to described them, reachability of the conditions
tracked, and relevance of rewards to the optimal policy. We were able to identify a number
of general trends in the behaviours of the methods and provide advice concerning which
are best suited in certain circumstances. Our experiments also lead us to rule out one of
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the methods as systematically underperforming, and to identify issues with the claim of
minimality made by one of the PLTL approaches.


1.6 Organisation of the Paper


The paper is organised as follows. Section 2 begins with background material on MDPs,
NMRDPs, and existing approaches. Section 3 describes our new approach and Section 4
presents nmrdpp. Sections 5 and 6 report our experimental analysis of the various ap-
proaches. Section 7 explains how we used nmrdpp in the competition. Section 8 concludes
with remarks about related and future work. Appendix B gives the proofs of the theorems.
Most of the material presented is compiled from a series of recent conference and workshop
papers (Thiébaux, Kabanza, & Slaney, 2002a, 2002b; Gretton, Price, & Thiébaux, 2003a,
2003b). Details of the logic we use to represent rewards may be found in our 2005 paper
(Slaney, 2005).


2. Background


2.1 MDPs, NMRDPs, Equivalence


We start with some notation and definitions. Given a finite set S of states, we write
S∗ for the set of finite sequences of states over S, and Sω for the set of possibly infinite
state sequences. Where ‘Γ’ stands for a possibly infinite state sequence in Sω and i is a
natural number, by ‘Γi’ we mean the state of index i in Γ, by ‘Γ(i)’ we mean the prefix
〈Γ0, . . . ,Γi〉 ∈ S∗ of Γ. Γ; Γ′ denotes the concatenation of Γ ∈ S∗ and Γ′ ∈ Sω.


2.1.1 MDPs


A Markov decision process of the type we consider is a 5-tuple 〈S, s0, A,Pr, R〉, where S is
a finite set of fully observable states, s0 ∈ S is the initial state, A is a finite set of actions
(A(s) denotes the subset of actions applicable in s ∈ S), {Pr(s, a, •) | s∈S, a∈A(s)} is a
family of probability distributions over S, such that Pr(s, a, s′) is the probability of being
in state s′ after performing action a in state s, and R : S 7→ IR is a reward function such
that R(s) is the immediate reward for being in state s. It is well known that such an MDP
can be compactly represented using dynamic Bayesian networks (Dean & Kanazawa, 1989;
Boutilier et al., 1999) or probabilistic extensions of traditional planning languages (see e.g.,
Kushmerick, Hanks, & Weld, 1995; Thiébaux et al., 1995; Younes & Littman, 2004).


A stationary policy for an MDP is a function π : S 7→ A, such that π(s) ∈ A(s) is
the action to be executed in state s. The value Vπ of the policy at s0, which we seek to
maximise, is the sum of the expected future rewards over an infinite horizon, discounted by
how far into the future they occur:


Vπ(s0) = lim
n→∞


E


[ n∑
i=0


βiR(Γi) | π,Γ0 = s0


]
where 0 ≤ β < 1 is the discount factor controlling the contribution of distant rewards.
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In the initial state s0, p is false and two actions are
possible: a causes a transition to s1 with probability
0.1, and no change with probability 0.9, while for b the
transition probabilities are 0.5. In state s1, p is true,
and actions c and d (“stay” and “go”) lead to s1 and s0


respectively with probability 1.
A reward is received the first time p is true, but not
subsequently. That is, the rewarded state sequences are:


〈s0, s1〉
〈s0, s0, s1〉
〈s0, s0, s0, s1〉
〈s0, s0, s0, s0, s1〉 etc.


Figure 1: A Simple NMRDP


2.1.2 NMRDPs


A decision process with non-Markovian rewards is identical to an MDP except that the
domain of the reward function is S∗. The idea is that if the process has passed through
state sequence Γ(i) up to stage i, then the reward R(Γ(i)) is received at stage i. Figure 1
gives an example. Like the reward function, a policy for an NMRDP depends on history,
and is a mapping from S∗ to A. As before, the value of policy π is the expectation of the
discounted cumulative reward over an infinite horizon:


Vπ(s0) = lim
n→∞


E


[ n∑
i=0


βiR(Γ(i)) | π,Γ0 = s0


]


For a decision process D = 〈S, s0, A,Pr, R〉 and a state s ∈ S, we let D̃(s) stand for
the set of state sequences rooted at s that are feasible under the actions in D, that is:
D̃(s) = {Γ ∈ Sω | Γ0 = s and ∀i ∃a ∈ A(Γi) Pr(Γi, a,Γi+1) > 0}. Note that the definition
of D̃(s) does not depend on R and therefore applies to both MDPs and NMRDPs.


2.1.3 Equivalence


The clever algorithms developed to solve MDPs cannot be directly applied to NMRDPs.
One way of dealing with this problem is to translate the NMRDP into an equivalent MDP
with an expanded state space (Bacchus et al., 1996). The expanded states in this MDP
(e-states, for short) augment the states of the NMRDP by encoding additional information
sufficient to make the reward history-independent. For instance, if we only want to reward
the very first achievement of goal g in an NMRDP, the states of an equivalent MDP would
carry one extra bit of information recording whether g has already been true. An e-state can
be seen as labelled by a state of the NMRDP (via the function τ in Definition 1 below) and
by history information. The dynamics of NMRDPs being Markovian, the actions and their
probabilistic effects in the MDP are exactly those of the NMRDP. The following definition,
adapted from that given by Bacchus et al. (1996), makes this concept of equivalent MDP
precise. Figure 2 gives an example.
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Figure 2: An MDP Equivalent to the NMRDP in Figure 1. τ(s′0) = τ(s′2) = s0. τ(s′1) =
τ(s′3) = s1. The initial state is s′0. State s′1 is rewarded; the other states are not.


Definition 1 MDP D′=〈S′, s′0, A′,Pr′, R′〉 is equivalent to NMRDP D = 〈S, s0, A,Pr, R〉 if
there exists a mapping τ : S′ 7→ S such that:1


1. τ(s′0) = s0.


2. For all s′ ∈ S′, A′(s′) = A(τ(s′)).


3. For all s1, s2 ∈ S, if there is a ∈ A(s1) such that Pr(s1, a, s2) > 0, then for all s′1 ∈ S′
such that τ(s′1) = s1, there exists a unique s′2 ∈ S′, τ(s′2) = s2, such that for all
a′ ∈ A′(s′1), Pr′(s′1, a


′, s′2)=Pr(s1, a′, s2).


4. For any feasible state sequence Γ ∈ D̃(s0) and Γ′ ∈ D̃′(s′0) such that τ(Γ′i) = Γi for
all i, we have: R′(Γ′i) = R(Γ(i)) for all i.


Items 1–3 ensure that there is a bijection between feasible state sequences in the NMRDP
and feasible e-state sequences in the MDP. Therefore, a stationary policy for the MDP can be
reinterpreted as a non-stationary policy for the NMRDP. Furthermore, item 4 ensures that
the two policies have identical values, and that consequently, solving an NMRDP optimally
reduces to producing an equivalent MDP and solving it optimally (Bacchus et al., 1996):


Proposition 1 Let D be an NMRDP, D′ an equivalent MDP for it, and π′ a policy for
D′. Let π be the function defined on the sequence prefixes Γ(i) ∈ D̃(s0) by π(Γ(i)) = π′(Γ′i),
where for all j ≤ i τ(Γ′j) = Γj. Then π is a policy for D such that Vπ(s0) = Vπ′(s′0).


1. Technically, the definition allows the sets of actions A and A′ to be different, but any action in which
they differ must be inapplicable in reachable states in the NMRDP and in all e-states in the equivalent
MDP. For all practical purposes, A and A′ can be seen as identical.
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2.2 Existing Approaches


Both existing approaches to NMRDPs (Bacchus et al., 1996, 1997) use a temporal logic of
the past (PLTL) to compactly represent non-Markovian rewards and exploit this compact
representation to translate the NMRDP into an MDP amenable to off-the-shelf solution
methods. However, they target different classes of MDP representations and solution meth-
ods, and consequently, adopt different styles of translations.


Bacchus et al. (1996) target state-based MDP representations. The equivalent MDP
is first generated entirely – this involves the enumeration of all e-states and all transitions
between them. Then, it is solved using traditional dynamic programming methods such as
value or policy iteration. Because these methods are extremely sensitive to the number of
states, attention is paid to producing a minimal equivalent MDP (with the least number of
states). A first simple translation which we call pltlsim produces a large MDP which can
be post-processed for minimisation before being solved. Another, which we call pltlmin,
directly results in a minimal MDP, but relies on an expensive pre-processing phase.


The second approach (Bacchus et al., 1997), which we call pltlstr, targets structured
MDP representations: the transition model, policies, reward and value functions are repre-
sented in a compact form, e.g. as trees or algebraic decision diagrams (ADDs) (Hoey et al.,
1999; Boutilier et al., 2000). For instance, the probability of a given proposition (state
variable) being true after the execution of an action is specified by a tree whose internal
nodes are labelled with the state variables on whose previous values the given variable de-
pends, whose arcs are labelled by the possible previous values (> or ⊥) of these variables,
and whose leaves are labelled with probabilities. The translation amounts to augmenting
the structured MDP with new temporal variables tracking the relevant properties of state
sequences, together with the compact representation of (1) their dynamics, e.g. as trees over
the previous values of relevant variables, and (2) of the non-Markovian reward function in
terms of the variables’ current values. Then, structured solution methods such as structured
policy iteration or the SPUDD algorithm are run on the resulting structured MDP. Neither
the translation nor the solution methods explicitly enumerates the states.


We now review these approaches in some detail. The reader is referred to the respective
papers for additional information.


2.2.1 Representing Rewards with PLTL


The syntax of PLTL, the language chosen to represent rewarding behaviours, is that of
propositional logic, augmented with the operators � (previously) and S (since) (see Emer-
son, 1990). Whereas a classical propositional logic formula denotes a set of states (a subset
of S), a PLTL formula denotes a set of finite sequences of states (a subset of S∗). A formula
without temporal modality expresses a property that must be true of the current state, i.e.,
the last state of the finite sequence. �f specifies that f holds in the previous state (the
state one before the last). f1 S f2, requires f2 to have been true at some point in the se-
quence, and, unless that point is the present, f1 to have held ever since. More formally, the
modelling relation |= stating whether a formula f holds of a finite sequence Γ(i) is defined
recursively as follows:


• Γ(i) |= p iff p ∈ Γi, for p ∈ P, the set of atomic propositions
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• Γ(i) |= ¬f iff Γ(i) 6|= f


• Γ(i) |= f1 ∧ f2 iff Γ(i) |= f1 and Γ(i) |= f2


• Γ(i) |= �f iff i > 0 and Γ(i− 1) |= f


• Γ(i) |= f1 S f2 iff ∃j ≤ i,Γ(j) |= f2 and ∀k, j < k ≤ i,Γ(k) |= f1


From S, one can define the useful operators ♦- f ≡ > S f meaning that f has been true at
some point, and �f ≡ ¬♦-¬f meaning that f has always been true. E.g, g∧¬� ♦- g denotes
the set of finite sequences ending in a state where g is true for the first time in the sequence.
Other useful abbreviation are �k (k times ago), for k iterations of the � modality, ♦- kf for
∨k


i=1 �i f (f was true at some of the k last steps), and �kf for ∧k
i=1 �i f (f was true at all


the k last steps).
Non-Markovian reward functions are described with a set of pairs (fi : ri) where fi is


a PLTL reward formula and ri is a real, with the semantics that the reward assigned to a
sequence in S∗ is the sum of the ri’s for which that sequence is a model of fi. Below, we let
F denote the set of reward formulae fi in the description of the reward function. Bacchus
et al. (1996) give a list of behaviours which it might be useful to reward, together with
their expression in PLTL. For instance, where f is an atemporal formula, (f : r) rewards
with r units the achievement of f whenever it happens. This is a Markovian reward. In
contrast (♦- f : r) rewards every state following (and including) the achievement of f , while
(f∧¬�♦- f : r) only rewards the first occurrence of f . (f∧�k¬f : r) rewards the occurrence
of f at most once every k steps. (�n¬ � ⊥ : r) rewards the nth state, independently of
its properties. (�2f1 ∧�f2 ∧ f3 : r) rewards the occurrence of f1 immediately followed by
f2 and then f3. In reactive planning, so-called response formulae which describe that the
achievement of f is triggered by a condition (or command) c are particularly useful. These
can be written as (f ∧ ♦- c : r) if every state in which f is true following the first issue of
the command is to be rewarded. Alternatively, they can be written as (f ∧�(¬f S c) : r) if
only the first occurrence of f is to be rewarded after each command. It is common to only
reward the achievement f within k steps of the trigger; we write for example (f ∧ ♦- kc : r)
to reward all such states in which f holds.


From a theoretical point of view, it is known (Lichtenstein, Pnueli, & Zuck, 1985) that
the behaviours representable in PLTL are exactly those corresponding to star-free regular
languages. Non star-free behaviours such as (pp)∗ (reward an even number of states all
containing p) are therefore not representable. Nor, of course, are non-regular behaviours
such as pnqn (e.g. reward taking equal numbers of steps to the left and right). We shall not
speculate here on how severe a restriction this is for the purposes of planning.


2.2.2 Principles Behind the Translations


All three translations into an MDP (pltlsim, pltlmin, and pltlstr) rely on the equiv-
alence f1 S f2 ≡ f2 ∨ (f1 ∧ �(f1 S f2)), with which we can decompose temporal modalities
into a requirement about the last state Γi of a sequence Γ(i), and a requirement about the
prefix Γ(i− 1) of the sequence. More precisely, given state s and a formula f , one can com-
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pute in2 O(||f ||) a new formula Reg(f, s) called the regression of f through s. Regression
has the property that, for i > 0, f is true of a finite sequence Γ(i) ending with Γi = s iff
Reg(f, s) is true of the prefix Γ(i − 1). That is, Reg(f, s) represents what must have been
true previously for f to be true now. Reg is defined as follows:


• Reg(p, s) = > iff p ∈ s and ⊥ otherwise, for p ∈ P


• Reg(¬f, s) = ¬Reg(f, s)


• Reg(f1 ∧ f2, s) = Reg(f1, s) ∧ Reg(f2, s)


• Reg(�f, s) = f


• Reg(f1 S f2, s) = Reg(f2, s) ∨ (Reg(f1, s) ∧ (f1 S f2))


For instance, take a state s in which p holds and q does not, and take f = (�¬q) ∧ (p S q),
meaning that q must have been false 1 step ago, but that it must have held at some point
in the past and that p must have held since q last did. Reg(f, s) = ¬q ∧ (p S q), that is,
for f to hold now, then at the previous stage, q had to be false and the p S q requirement
still had to hold. When p and q are both false in s, then Reg(f, s) = ⊥, indicating that f
cannot be satisfied, regardless of what came earlier in the sequence.


For notational convenience, whereX is a set of formulae we writeX forX∪{¬x | x ∈ X}.
Now the translations exploit the PLTL representation of rewards as follows. Each expanded
state (e-state) in the generated MDP can be seen as labelled with a set Ψ ⊆ Sub(F ) of
subformulae of the reward formulae in F (and their negations). The subformulae in Ψ must
be (1) true of the paths leading to the e-state, and (2) sufficient to determine the current
truth of all reward formulae in F , as this is needed to compute the current reward. Ideally
the Ψs should also be (3) small enough to enable just that, i.e. they should not contain
subformulae which draw history distinctions that are irrelevant to determining the reward
at one point or another. Note however that in the worst-case, the number of distinctions
needed, even in the minimal equivalent MDP, may be exponential in ||F ||. This happens for
instance with the formula �kf , which requires k additional bits of information memorising
the truth of f over the last k steps.


2.2.3 pltlsim


For the choice of the Ψs, Bacchus et al. (1996) consider two cases. In the simple case, which
we call pltlsim, an MDP obeying properties (1) and (2) is produced by simply labelling
each e-state with the set of all subformulae in Sub(F ) which are true of the sequence leading
to that e-state. This MDP is generated forward, starting from the initial e-state labelled
with s0 and with the set Ψ0 ⊆ Sub(F ) of all subformulae which are true of the sequence
〈s0〉. The successors of any e-state labelled by NMRDP state s and subformula set Ψ are
generated as follows: each of them is labelled by a successor s′ of s in the NMRDP and by
the set of subformulae {ψ′ ∈ Sub(F ) | Ψ |= Reg(ψ′, s′)}.


For instance, consider the NMRDP shown in Figure 3. The set F = {q∧��p} consists of
a single reward formula. The set Sub(F ) consists of all subformulae of this reward formula,


2. The size ||f || of a reward formula is measured as its length and the size ||F || of a set of reward formulae
F is measured as the sum of the lengths of the formulae in F .
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start_state  a(0.04)  b(0.2) 


p


 a(0.16) 


p, q


 a(0.64) q


 a(0.16)  b(0.8) 


 a(1)  b(1) 


 a(1)  b(1) 


 a(0.8) 


 a(0.2)  b(1) 


In the initial state, both p and q are false.
When p is false, action a independently sets
p and q to true with probability 0.8. When
both p and q are false, action b sets q to true
with probability 0.8. Both actions have
no effect otherwise. A reward is obtained
whenever q ∧ � � p. The optimal policy
is to apply b until q gets produced, making
sure to avoid the state on the left-hand side,
then to apply a until p gets produced, and
then to apply a or b indifferently forever.


Figure 3: Another Simple NMRDP


and their negations, that is Sub(F ) = {p, q,�p,�� p, q∧�� p,¬p,¬q,¬� p,¬��p,¬(q∧
� � p)}. The equivalent MDP produced by pltlsim is shown in Figure 4.


2.2.4 pltlmin


Unfortunately, the MDPs produced by pltlsim are far from minimal. Although they could
be postprocessed for minimisation before invoking the MDP solution method, the above
expansion may still constitute a serious bottleneck. Therefore, Bacchus et al. (1996) consider
a more complex two-phase translation, which we call pltlmin, capable of producing an
MDP also satisfying property (3). Here, a preprocessing phase iterates over all states in
S, and computes, for each state s, a set l(s) of subformulae, where the function l is the
solution of the fixpoint equation l(s) = F ∪ {Reg(ψ′, s′) | ψ′ ∈ l(s′), s′ is a successor of s}.
Only subformulae in l(s) will be candidates for inclusion in the sets labelling the respective
e-states labelled with s. That is, the subsequent expansion phase will be as above, but taking
Ψ0 ⊆ l(s0) and ψ′ ⊆ l(s′) instead of Ψ0 ⊆ Sub(F ) and ψ′ ⊆ Sub(F ). As the subformulae in
l(s) are exactly those that are relevant to the way feasible execution sequences starting from
e-states labelled with s are rewarded, this leads the expansion phase to produce a minimal
equivalent MDP.


Figure 5 shows the equivalent MDP produced by pltlmin for the NMRDP example in
Figure 3, together with the function l from which the labels are built. Observe how this
MDP is smaller than the pltlsim MDP: once we reach the state on the left-hand side in
which p is true and q is false, there is no point in tracking the values of subformulae, because
q cannot become true and so the reward formula cannot either. This is reflected by the fact
that l({p}) only contains the reward formula.


In the worst case, computing l requires a space, and a number of iterations through S,
exponential in ||F ||. Hence the question arises of whether the gain during the expansion
phase is worth the extra complexity of the preprocessing phase. This is one of the questions
our experimental analysis in Section 5 will try to answer.


2.2.5 pltlstr


The pltlstr translation can be seen as a symbolic version of pltlsim. The set T of
added temporal variables contains the purely temporal subformulae PTSub(F ) of the reward
formulae in F , to which the � modality is prepended (unless already there): T = {�ψ | ψ ∈
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start_state
f6,f7,f8,f9,f10


Reward=0
 a(0.04)  b(0.2) 


p
f1,f7,f8,f9,f10


Reward=0


 a(0.16) 


p, q
f1,f2,f8,f9,f10


Reward=0


 a(0.64) 
q


f2,f6,f8,f9,f10
Reward=0


 a(0.16)  b(0.8) 


p
f1,f3,f7,f9,f10


Reward=0


 a(1)  b(1) 


p, q
f1,f2,f3,f9,f10


Reward=0


 a(1)  b(1) 


 a(0.8) 


 a(0.2)  b(1) 


p
f1,f3,f4,f7,f10


Reward=0
 a(1)  b(1) 


 a(1)  b(1) 


p, q
f1,f2,f3,f4,f5


Reward=1


 a(1)  b(1) 


 a(1)  b(1) 


The following subformulae in Sub(F ) label
the e-states:
f1 : p
f2 : q
f3 : �p
f4 : � � p
f5 : q ∧� � p
f6 : ¬p
f7 : ¬q
f8 : ¬� p
f9 : ¬� �p
f10 : ¬(q ∧� � p)


Figure 4: Equivalent MDP Produced by pltlsim


start_state
f4,f5,f6


Reward=0
 a(0.04)  b(0.2) 


p
f4


Reward=0


 a(0.16) 


p, q
f3,f4,f5


Reward=0


 a(0.64) 
q


f4,f5,f6
Reward=0


 a(0.16)  b(0.8) 


 a(1)  b(1) 


p, q
f2,f3,f4


Reward=0


 a(1)  b(1) 


 a(0.8) 


 a(0.2)  b(1) 


p, q
f1,f2,f3


Reward=1


 a(1)  b(1) 


 a(1)  b(1) 


The function l is given by:
l({}) = {q ∧� � p, �p, p}
l({p}) = {q ∧� � p}
l({q}) = {q ∧� � p, �p, p}
l({p, q}) = {q ∧� � p, �p, p}


The following formulae label the e-states:
f1 : q ∧� � p
f2 : �p
f3 : p
f4 : ¬(q ∧� � p)
f5 : ¬� p
f6 : ¬p


Figure 5: Equivalent MDP Produced by pltlmin
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p


1.00 0.00


prv p


1.00 0.00


q


prv prv p


0.00 1.00


1. dynamics of �p 2. dynamics of � � p 3. reward


Figure 6: ADDs Produced by pltlstr. prv (previously) stands for �


PTSub(F ), ψ 6= �ψ′} ∪ {�ψ | �ψ ∈ PTSub(F )}. By repeatedly applying the equivalence
f1 S f2 ≡ f2 ∨ (f1 ∧�(f1 S f2)) to any subformula in PTSub(F ), we can express its current
value, and hence that of reward formulae, as a function of the current values of formulae
in T and state variables, as required by the compact representation of the transition and
reward models.


For our NMRDP example in Figure 3, the set of purely temporal variables is PTSub(F ) =
{�p,� � p}, and T is identical to PTSub(F ). Figure 6 shows some of the ADDs forming
part of the symbolic MDP produced by pltlstr: the ADDs describing the dynamics of
the temporal variables, i.e., the ADDs describing the effects of the actions a and b on their
respective values, and the ADD describing the reward.


As a more complex illustration, consider this example (Bacchus et al., 1997) in which


F = {♦- (p S (q ∨�r))} ≡ {> S (p S (q ∨�r))}


We have that
PTSub(F ) = {> S (p S (q ∨�r)), p S (q ∨�r),�r}


and so the set of temporal variables used is


T = {t1 : �(> S (p S (q ∨�r))), t2 : �(p S (q ∨�r)), t3 : �r}


Using the equivalences, the reward can be decomposed and expressed by means of the
propositions p, q and the temporal variables t1, t2, t3 as follows:


> S (p S (q ∨�r)) ≡
(p S (q ∨�r)) ∨�(> S (p S (q ∨�r))) ≡
(q ∨�r) ∨ (p ∧�(p S (q ∨�r))) ∨ t1 ≡
(q ∨ t3) ∨ (p ∧ t2) ∨ t1


As with pltlsim, the underlying MDP produced by pltlstr is far from minimal – the
encoded history features do not even vary from one state to the next. However, size is
not as problematic as with state-based approaches, because structured solution methods do
not enumerate states and are able to dynamically ignore some of the variables that become
irrelevant during policy construction. For instance, when solving the MDP, they may be
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able to determine that some temporal variables have become irrelevant because the situation
they track, although possible in principle, is too costly to be realised under a good policy.
This dynamic analysis of rewards contrast with pltlmin’s static analysis (Bacchus et al.,
1996) which must encode enough history to determine the reward at all reachable future
states under any policy.


One question that arises is that of the circumstances under which this analysis of irrel-
evance by structured solution methods, especially the dynamic aspects, is really effective.
This is another question our experimental analysis will try to address.


3. fltl: A Forward-Looking Approach


As noted in Section 1 above, the two key issues facing approaches to NMRDPs are how
to specify the reward functions compactly and how to exploit this compact representation
to automatically translate an NMRDP into an equivalent MDP amenable to the chosen
solution method. Accordingly, our goals are to provide a reward function specification
language and a translation that are adapted to anytime state-based solution methods. After
a brief reminder of the relevant features of these methods, we consider these two goals
in turn. We describe the syntax and semantics of the language, the notion of formula
progression for the language which will form the basis of our translation, the translation
itself, its properties, and its embedding into the solution method. We call our approach
fltl. We finish the section with a discussion of the features that distinguish fltl from
existing approaches.


3.1 Anytime State-Based Solution Methods


The main drawback of traditional dynamic programming algorithms such as policy iteration
(Howard, 1960) is that they explicitly enumerate all states that are reachable from s0 in
the entire MDP. There has been interest in other state-based solution methods, which may
produce incomplete policies, but only enumerate a fraction of the states that policy iteration
requires.


Let E(π) denote the envelope of policy π, that is the set of states that are reachable
(with a non-zero probability) from the initial state s0 under the policy. If π is defined
at all s ∈ E(π), we say that the policy is complete, and that it is incomplete otherwise.
The set of states in E(π) at which π is undefined is called the fringe of the policy. The
fringe states are taken to be absorbing, and their value is heuristic. A common feature of
anytime state-based algorithms is that they perform a forward search, starting from s0 and
repeatedly expanding the envelope of the current policy one step forward by adding one or
more fringe states. When provided with admissible heuristic values for the fringe states,
they eventually converge to the optimal policy without necessarily needing to explore the
entire state space. In fact, since planning operators are used to compactly represent the
state space, they may not even need to construct more than a small subset of the MDP
before returning the optimal policy. When interrupted before convergence, they return a
possibly incomplete but often useful policy.


These methods include the envelope expansion algorithm (Dean et al., 1995), which
deploys policy iteration on judiciously chosen larger and larger envelopes, using each suc-
cessive policy to seed the calculation of the next. The more recent LAO∗ algorithm (Hansen
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& Zilberstein, 2001) which combines dynamic programming with heuristic search can be
viewed as a clever implementation of a particular case of the envelope expansion algorithm,
where fringe states are given admissible heuristic values, where policy iteration is run up to
convergence between envelope expansions, and where the clever implementation only runs
policy iteration on the states whose optimal value can actually be affected when a new fringe
state is added to the envelope. Another example is a backtracking forward search in the
space of (possibly incomplete) policies rooted at s0 (Thiébaux et al., 1995), which is per-
formed until interrupted, at which point the best policy found so far is returned. Real-time
dynamic programming (RTDP) (Barto et al., 1995) is another popular anytime algorithm
which is to MDPs what learning real-time A∗ (Korf, 1990) is to deterministic domains, and
which has asymptotic convergence guarantees. The RTDP envelope is made up of sample
paths which are visited with a frequency determined by the current greedy policy and the
transition probabilities in the domain. RTDP can be run on-line, off-line for a given number
of steps or until interrupted. A variant called LRTDP (Bonet & Geffner, 2003) incorporates
mechanisms that focus the search on states whose value has not yet converged, resulting in
convergence speed up and finite time convergence guarantees.


The fltl translation we are about to present targets these anytime algorithms, although
it could also be used with more traditional methods such as value and policy iteration.


3.2 Language and Semantics


Compactly representing non-Markovian reward functions reduces to compactly representing
the behaviours of interest, where by behaviour we mean a set of finite sequences of states
(a subset of S∗), e.g. the {〈s0, s1〉, 〈s0, s0, s1〉, 〈s0, s0, s0, s1〉 . . .} in Figure 1. Recall that the
reward is issued at the end of any prefix Γ(i) in that set. Once behaviours are compactly
represented, it is straightforward to represent non-Markovian reward functions as mappings
from behaviours to real numbers – we shall defer looking at this until Section 3.6.


To represent behaviours compactly, we adopt a version of future linear temporal logic
(FLTL) (see Emerson, 1990), augmented with a propositional constant ‘$’, intended to be
read ‘The behaviour we want to reward has just happened’ or ‘The reward is received now’.
The language $FLTL begins with a set of basic propositions P giving rise to literals:


L ::= P | ¬P | > | ⊥ | $


where > and ⊥ stand for ‘true’ and ‘false’, respectively. The connectives are classical ∧ and
∨, and the temporal modalities © (next) and U (weak until), giving formulae:


F ::= L | F ∧ F | F ∨ F | ©F | F UF


Our ‘until’ is weak: f1 U f2 means f1 will be true from now on until f2 is, if ever. Unlike
the more commonly used strong ‘until’, this does not imply that f2 will eventually be true.
It allows us to define the useful operator � (always): �f ≡ f U⊥ (f will always be true
from now on). We also adopt the notations ©kf for k iterations of the © modality (f will
be true in exactly k steps), ♦kf for


∨k
i=1


©if (f will be true within the next k steps), and
�kf for


∧k
i=1


©if (f will be true throughout the next k steps).
Although negation officially occurs only in literals, i.e., the formulae are in negation


normal form (NNF), we allow ourselves to write formulae involving it in the usual way,
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provided that they have an equivalent in NNF. Not every formula has such an equivalent,
because there is no such literal as ¬$ and because eventualities (‘f will be true some time’)
are not expressible. These restrictions are deliberate. If we were to use our notation and
logic to theorise about the allocation of rewards, we would indeed need the means to say
when rewards are not received or to express features such as liveness (‘always, there will be
a reward eventually’), but in fact we are using them only as a mechanism for ensuring that
rewards are given where they should be, and for this restricted purpose eventualities and
the negated dollar are not needed. In fact, including them would create technical difficulties
in relating formulae to the behaviours they represent.


The semantics of this language is similar to that of FLTL, with an important difference:
because the interpretation of the constant $ depends on the behaviour B we want to reward
(whatever that is), the modelling relation |= must be indexed by B. We therefore write
(Γ, i) |=


B
f to mean that formula f holds at the i-th stage of an arbitrary sequence Γ ∈ Sω,


relative to behaviour B. Defining |=
B


is the first step in our description of the semantics:


(Γ, i) |=
B


$ iff Γ(i) ∈ B
(Γ, i) |=


B
>


(Γ, i) 6|=
B
⊥


(Γ, i) |=
B
p, for p ∈ P, iff p ∈ Γi


(Γ, i) |=
B
¬p, for p ∈ P, iff p 6∈ Γi


(Γ, i) |=
B
f1 ∧ f2 iff (Γ, i) |=


B
f1 and (Γ, i) |=


B
f2


(Γ, i) |=
B
f1 ∨ f2 iff (Γ, i) |=


B
f1 or (Γ, i) |=


B
f2


(Γ, i) |=
B
©f iff (Γ, i+ 1) |=


B
f


(Γ, i) |=
B
f1 U f2 iff ∀k ≥ i if (∀j, i ≤ j ≤ k (Γ, j) 6|=


B
f2) then (Γ, k) |=


B
f1


Note that except for subscript B and for the first rule, this is just the standard FLTL
semantics, and that therefore $-free formulae keep their FLTL meaning. As with FLTL, we
say Γ |=


B
f iff (Γ, 0) |=


B
f , and |=


B
f iff Γ |=


B
f for all Γ ∈ Sω.


The modelling relation |=
B


can be seen as specifying when a formula holds, on which
reading it takes B as input. Our next and final step is to use the |=


B
relation to define,


for a formula f , the behaviour Bf that it represents, and for this we must rather assume
that f holds, and then solve for B. For instance, let f be �(p → $), i.e., we get rewarded
every time p is true. We would like Bf to be the set of all finite sequences ending with a
state containing p. For an arbitrary f , we take Bf to be the set of prefixes that have to be
rewarded if f is to hold in all sequences:


Definition 2 Bf ≡
⋂
{B | |=


B
f}


To understand Definition 2, recall that B contains prefixes at the end of which we get
a reward and $ evaluates to true. Since f is supposed to describe the way rewards will
be received in an arbitrary sequence, we are interested in behaviours B which make $
true in such a way as to make f hold without imposing constraints on the evolution of
the world. However, there may be many behaviours with this property, so we take their
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intersection,3 ensuring that Bf will only reward a prefix if it has to because that prefix is in
every behaviour satisfying f . In all but pathological cases (see Section 3.4), this makes Bf


coincide with the (set-inclusion) minimal behaviour B such that |=
B
f . The reason for this


‘stingy’ semantics, making rewards minimal, is that f does not actually say that rewards
are allocated to more prefixes than are required for its truth. For instance, �(p→ $) says
only that a reward is given every time p is true, even though a more generous distribution
of rewards would be consistent with it.


3.3 Examples


It is intuitively clear that many behaviours can be specified by means of $FLTL formulae.
While there is no simple way in general to translate between past and future tense ex-
pressions,4 all of the examples used to illustrate PLTL in Section 2.2 above are expressible
naturally in $FLTL, as follows.


The classical goal formula g saying that a goal p is rewarded whenever it happens is
easily expressed: �(p→ $). As already noted, Bg is the set of finite sequences of states such
that p holds in the last state. If we only care that p is achieved once and get rewarded at
each state from then on, we write �(p→ �$). The behaviour that this formula represents
is the set of finite state sequences having at least one state in which p holds. By contrast,
the formula ¬pU (p ∧ $) stipulates only that the first occurrence of p is rewarded (i.e. it
specifies the behaviour in Figure 1). To reward the occurrence of p at most once every k
steps, we write �((©k+1p ∧�k¬p) → ©k+1$).


For response formulae, where the achievement of p is triggered by the command c,
we write �(c → ©�(p → $)) to reward every state in which p is true following the first
issue of the command. To reward only the first occurrence p after each command, we write
�(c→ ©(¬pU (p∧$))). As for bounded variants for which we only reward goal achievement
within k steps of the trigger command, we write for example �(c→ �k(p→ $)) to reward
all such states in which p holds.


It is also worth noting how to express simple behaviours involving past tense operators.
To stipulate a reward if p has always been true, we write $U¬p. To say that we are rewarded
if p has been true since q was, we write �(q → ($U¬p)).


Finally, we often find it useful to reward the holding of p until the occurrence of q. The
neatest expression for this is ¬qU ((¬p ∧ ¬q) ∨ (q ∧ $)).


3.4 Reward Normality


$FLTL is therefore quite expressive. Unfortunately, it is rather too expressive, in that it
contains formulae which describe “unnatural” allocations of rewards. For instance, they
may make rewards depend on future behaviours rather than on the past, or they may


3. If there is no B such that |=B f , which is the case for any $-free f which is not a logical theorem, then
Bf is


T
∅ – i.e. S∗ following normal set-theoretic conventions. This limiting case does no harm, since


$-free formulae do not describe the attribution of rewards.
4. It is an open question whether the set of representable behaviours is the same for $FLTL as for PLTL,


that is star-free regular languages. Even if the behaviours were the same, there is little hope that a
practical translation from one to the other exists.
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leave open a choice as to which of several behaviours is to be rewarded.5 An example of
dependence on the future is ©p→ $, which stipulates a reward now if p is going to hold
next. We call such formula reward-unstable. What a reward-stable f amounts to is that
whether a particular prefix needs to be rewarded in order to make f true does not depend
on the future of the sequence. An example of an open choice of which behavior to reward is
�(p→ $) ∨�(¬p→ $) which says we should either reward all achievements of the goal p
or reward achievements of ¬p but does not determine which. We call such formula reward-
indeterminate. What a reward-determinate f amounts to is that the set of behaviours
modelling f , i.e. {B | |=


B
f}, has a unique minimum. If it does not, Bf is insufficient (too


small) to make f true.
In investigating $FLTL (Slaney, 2005), we examine the notions of reward-stability and


reward-determinacy in depth, and motivate the claim that formulae that are both reward-
stable and reward-determinate – we call them reward-normal – are precisely those that
capture the notion of “no funny business”. This is the intuition that we ask the reader to
note, as it will be needed in the rest of the paper. Just for reference then, we define:


Definition 3 f is reward-normal iff for every Γ ∈ Sω and every B ⊆ S∗, Γ |=
B
f iff for


every i, if Γ(i) ∈ Bf then Γ(i) ∈ B.


The property of reward-normality is decidable (Slaney, 2005). In Appendix A we give
some simple syntactic constructions guaranteed to result in reward-normal formulae. While
reward-abnormal formulae may be interesting, for present purposes we restrict attention to
reward-normal ones. Indeed, we stipulate as part of our method that only reward-normal
formulae should be used to represent behaviours. Naturally, all formulae in Section 3.3 are
normal.


3.5 $FLTL Formula Progression


Having defined a language to represent behaviours to be rewarded, we now turn to the
problem of computing, given a reward formula, a minimum allocation of rewards to states
actually encountered in an execution sequence, in such a way as to satisfy the formula.
Because we ultimately wish to use anytime solution methods which generate state sequences
incrementally via forward search, this computation is best done on the fly, while the sequence
is being generated. We therefore devise an incremental algorithm based on a model-checking
technique normally used to check whether a state sequence is a model of an FLTL formula
(Bacchus & Kabanza, 1998). This technique is known as formula progression because it
‘progresses’ or ‘pushes’ the formula through the sequence.


Our progression technique is shown in Algorithm 1. In essence, it computes the mod-
elling relation |=


B
given in Section 3.2. However,unlike the definition of |=


B
, it is designed


to be useful when states in the sequence become available one at a time, in that it defers the
evaluation of the part of the formula that refers to the future to the point where the next
state becomes available. Let s be a state, say Γi, the last state of the sequence prefix Γ(i)


5. These difficulties are inherent in the use of linear-time formalisms in contexts where the principle of
directionality must be enforced. They are shared for instance by formalisms developed for reasoning
about actions such as the Event Calculus and LTL action theories (see e.g., Calvanese, De Giacomo, &
Vardi, 2002).
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that has been generated so far, and let b be a boolean true iff Γ(i) is in the behaviour B to
be rewarded. Let the $FLTL formula f describe the allocation of rewards over all possible
futures. Then the progression of f through s given b, written Prog(b, s, f), is a new formula
which will describe the allocation of rewards over all possible futures of the next state, given
that we have just passed through s. Crucially, the function Prog is Markovian, depending
only on the current state and the single boolean value b. Note that Prog is computable in
linear time in the length of f , and that for $-free formulae, it collapses to FLTL formula
progression (Bacchus & Kabanza, 1998), regardless of the value of b. We assume that Prog
incorporates the usual simplification for sentential constants ⊥ and >: f ∧ ⊥ simplifies to
⊥, f ∧ > simplifies to f , etc.


Algorithm 1 $FLTL Progression
Prog(true, s, $) = >
Prog(false, s, $) = ⊥
Prog(b, s,>) = >
Prog(b, s,⊥) = ⊥
Prog(b, s, p) = > iff p ∈ s and ⊥ otherwise
Prog(b, s,¬p) = > iff p 6∈ s and ⊥ otherwise
Prog(b, s, f1 ∧ f2) = Prog(b, s, f1) ∧ Prog(b, s, f2)
Prog(b, s, f1 ∨ f2) = Prog(b, s, f1) ∨ Prog(b, s, f2)
Prog(b, s,©f) = f
Prog(b, s, f1 U f2) = Prog(b, s, f2) ∨(Prog(b, s, f1) ∧ f1 U f2)


Rew(s, f) = true iff Prog(false, s, f) = ⊥
$Prog(s, f) = Prog(Rew(s, f), s, f)


The fundamental property of Prog is the following. Where b⇔ (Γ(i) ∈ B):


Property 1 (Γ, i) |=
B
f iff (Γ, i+ 1) |=


B
Prog(b,Γi, f)


Proof: See Appendix B. �


Like |=
B


, the function Prog seems to require B (or at least b) as input, but of course
when progression is applied in practice we only have f and one new state at a time of Γ,
and what we really want to do is compute the appropriate B, namely that represented by
f . So, similarly as in Section 3.2, we now turn to the second step, which is to use Prog to
decide on the fly whether a newly generated sequence prefix Γ(i) is in Bf and so should
be allocated a reward. This is the purpose of the functions $Prog and Rew, also given in
Algorithm 1. Given Γ and f , the function $Prog in Algorithm 1 defines an infinite sequence
of formulae 〈f0, f1, . . .〉 in the obvious way:


f0 = f
fi+1 = $Prog(Γi, fi)


To decide whether a prefix Γ(i) of Γ is to be rewarded, Rew first tries progressing the
formula fi through Γi with the boolean flag set to ‘false’. If that gives a consistent result,
we need not reward the prefix and we continue without rewarding Γ(i), but if the result is
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⊥ then we know that Γ(i) must be rewarded in order for Γ to satisfy f . In that case, to
obtain fi+1 we must progress fi through Γi again, this time with the boolean flag set to the
value ‘true’. To sum up, the behaviour corresponding to f is {Γ(i)|Rew(Γi, fi)}.


To illustrate the behaviour of $FLTL progression, consider the formula f = ¬pU (p∧ $)
stating that a reward will be received the first time p is true. Let s be a state in which p
holds, then Prog(false, s, f) = ⊥∨ (⊥∧¬pU (p ∧ $)) ≡ ⊥. Therefore, since the formula has
progressed to ⊥, Rew(s, f) is true and a reward is received. $Prog(s, f) = Prog(true, s, f) =
>∨ (⊥∧¬pU (p∧ $)) ≡ >, so the reward formula fades away and will not affect subsequent
progression steps. If, on the other hand, p is false in s, then Prog(false, s, f) = ⊥ ∨ (> ∧
¬pU (p∧$)) ≡ ¬pU (p∧$)). Therefore, since the formula has not progressed to ⊥, Rew(s, f)
is false and no reward is received. $Prog(s, f) = Prog(false, s, f) = ¬pU (p∧$), so the reward
formula persists as is for subsequent progression steps.


The following theorem states that under weak assumptions, rewards are correctly allo-
cated by progression:


Theorem 1 Let f be reward-normal, and let 〈f0, f1, . . .〉 be the result of progressing it
through the successive states of a sequence Γ using the function $Prog. Then, provided no
fi is ⊥, for all i Rew(Γi, fi) iff Γ(i) ∈ Bf .


Proof: See Appendix B �


The premise of the theorem is that f never progresses to ⊥. Indeed if fi = ⊥ for some
i, it means that even rewarding Γ(i) does not suffice to make f true, so something must
have gone wrong: at some earlier stage, the boolean Rew was made false where it should
have been made true. The usual explanation is that the original f was not reward-normal.
For instance ©p → $, which is reward unstable, progresses to ⊥ in the next state if p is
true there: regardless of Γ0, f0 = ©p → $ = ©¬p ∨ $, Rew(Γ0, f0) = false, and f1 = ¬p,
so if p ∈ Γ1 then f2 = ⊥. However, other (admittedly bizarre) possibilities exist: for
example, although ©p → $ is reward-unstable, its substitution instance ©©> → $, which
also progresses to ⊥ in a few steps, is logically equivalent to $ and is reward-normal.


If the progression method were to deliver the correct minimal behaviour in all cases
(even in all reward-normal cases) it would have to backtrack on the choice of values for the
boolean flags. In the interest of efficiency, we choose not to allow backtracking. Instead,
our algorithm raises an exception whenever a reward formula progresses to ⊥, and informs
the user of the sequence which caused the problem. The onus is thus placed on the domain
modeller to select sensible reward formulae so as to avoid possible progression to ⊥. It
should be noted that in the worst case, detecting reward-normality cannot be easier than
the decision problem for $FLTL so it is not to be expected that there will be a simple
syntactic criterion for reward-normality. In practice, however, commonsense precautions
such as avoiding making rewards depend explicitly on future tense expressions suffice to
keep things normal in all routine cases. For a generous class of syntactically recognisable
reward-normal formulae, see Appendix A.


3.6 Reward Functions


With the language defined so far, we are able to compactly represent behaviours. The
extension to a non-Markovian reward function is straightforward. We represent such a
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function by a set6 φ ⊆ $FLTL × IR of formulae associated with real valued rewards. We
call φ a reward function specification. Where formula f is associated with reward r in φ,
we write ‘(f : r) ∈ φ’. The rewards are assumed to be independent and additive, so that
the reward function Rφ represented by φ is given by:


Definition 4 Rφ(Γ(i)) =
∑


(f :r)∈φ


{r | Γ(i) ∈ Bf}


E.g, if φ is {¬pU (p∧ $) : 5.2,�(q → �$) : 7.3}, we get a reward of 5.2 the first time that p
holds, a reward of 7.3 from the first time that q holds onwards, a reward of 12.5 when both
conditions are met, and 0 otherwise.


Again, we can progress a reward function specification φ to compute the reward at
all stages i of Γ. As before, progression defines a sequence 〈φ0, φ1, . . .〉 of reward function
specifications, with φi+1 = RProg(Γi, φi), where RProg is the function that applies Prog to
all formulae in a reward function specification:


RProg(s, φ) = {(Prog(s, f) : r) | (f : r) ∈ φ}


Then, the total reward received at stage i is simply the sum of the real-valued rewards
granted by the progression function to the behaviours represented by the formulae in φi:∑


(f :r)∈φi


{r | Rew(Γi, f)}


By proceeding that way, we get the expected analog of Theorem 1, which states progression
correctly computes non-Markovian reward functions:


Theorem 2 Let φ be a reward-normal7 reward function specification, and let 〈φ0, φ1 . . .〉 be
the result of progressing it through the successive states of a sequence Γ using the function
RProg. Then, provided (⊥ :r) 6∈φi for any i, then


∑
(f :r)∈φi


{r | Rew(Γi, f)} = Rφ(Γ(i)).


Proof: Immediate from Theorem 1. �


3.7 Translation Into MDP


We now exploit the compact representation of a non-Markovian reward function as a reward
function specification to translate an NMRDP into an equivalent MDP amenable to state-
based anytime solution methods. Recall from Section 2 that each e-state in the MDP is
labelled by a state of the NMRDP and by history information sufficient to determine the
immediate reward. In the case of a compact representation as a reward function specification
φ0, this additional information can be summarised by the progression of φ0 through the
sequence of states passed through. So an e-state will be of the form 〈s, φ〉, where s ∈ S is


6. Strictly speaking, a multiset, but for convenience we represent it as a set, with the rewards for multiple
occurrences of the same formula in the multiset summed.


7. We extend the definition of reward-normality to reward specification functions in the obvious way, by
requiring that all reward formulae involved be reward normal.
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a state, and φ ⊆ $FLTL × IR is a reward function specification (obtained by progression).
Two e-states 〈s, φ〉 and 〈t, ψ〉 are equal if s = t, the immediate rewards are the same, and
the results of progressing φ and ψ through s are semantically equivalent.8


Definition 5 Let D = 〈S, s0, A,Pr, R〉 be an NMRDP, and φ0 be a reward function spec-
ification representing R (i.e., Rφ0 = R, see Definition 4). We translate D into the MDP
D′ = 〈S′, s′0, A′,Pr′, R′〉 defined as follows:


1. S′ ⊆ S × 2$FLTL ×IR


2. s′0 = 〈s0, φ0〉


3. A′(〈s, φ〉) = A(s)


4. If a ∈ A′(〈s, φ〉), then Pr′(〈s, φ〉, a, 〈s′, φ′〉) =
{


Pr(s, a, s′) if φ′ = RProg(s, φ)
0 otherwise


If a 6∈ A′(〈s, φ〉), then Pr′(〈s, φ〉, a, •) is undefined


5. R′(〈s, φ〉) =
∑


(f :r)∈φ


{r | Rew(s, f)}


6. For all s′ ∈ S′, s′ is reachable under A′ from s′0.


Item 1 says that the e-states are labelled by a state and a reward function specification. Item
2 says that the initial e-state is labelled with the initial state and with the original reward
function specification. Item 3 says that an action is applicable in an e-state if it is applicable
in the state labelling it. Item 4 explains how successor e-states and their probabilities are
computed. Given an action a applicable in an e-state 〈s, φ〉, each successor e-state will
be labelled by a successor state s′ of s via a in the NMRDP and by the progression of φ
through s. The probability of that e-state is Pr(s, a, s′) as in the NMRDP. Note that the
cost of computing Pr′ is linear in that of computing Pr and in the sum of the lengths of the
formulae in φ. Item 5 has been motivated before (see Section 3.6). Finally, since items 1–5
leave open the choice of many MDPs differing only in the unreachable states they contain,
item 6 excludes all such irrelevant extensions. It is easy to show that this translation leads
to an equivalent MDP, as defined in Definition 1. Obviously, the function τ required for
Definition1 is given by τ(〈s, φ〉) = s, and then the proof is a matter of checking conditions.


In our practical implementation, the labelling is one step ahead of that in the definition:
we label the initial e-state with RProg(s0, φ0) and compute the current reward and the cur-
rent reward specification label by progression of predecessor reward specifications through
the current state rather than through the predecessor states. As will be apparent below,
this has the potential to reduce the number of states in the generated MDP.


Figure 7 shows the equivalent MDP produced for the $FLTL version of our NMRDP
example in Figure 3. Recall that for this example, the PLTL reward formula was q∧�� p.
In $FLTL, the allocation of rewards is described by �((p ∧©©q) → ©©$). The figure also


8. Care is needed over the notion of ‘semantic equivalence’. Because rewards are additive, determining
equivalence may involve arithmetic as well as theorem proving. For example, the reward function speci-
fication {(p → $ : 3), (q → $ : 2)} is equivalent to {((p∧ q) → $ : 5), ((p∧¬q) → $ : 3), ((¬p∧ q) → $ : 2)}
although there is no one-one correspondence between the formulae in the two sets.
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start_state
f1


Reward=0
 a(0.04)  b(0.2) 


p
f1,f2


Reward=0


 a(0.16) 


p, q
f1,f2


Reward=0


 a(0.64) 
q
f1


Reward=0


 a(0.16)  b(0.8) 


p
f1,f2,f3


Reward=0


 a(1)  b(1) 


p, q
f1,f2,f3


Reward=0


 a(1)  b(1) 


 a(0.8) 


 a(0.2)  b(1) 


 a(1)  b(1) 


p, q
f1,f2,f3


Reward=1


 a(1)  b(1) 


 a(1)  b(1) 


The following formulae label the e-states:
f1 : �((p ∧©©q) → ©©$)
f2 : ©q → ©$
f3 : q → $


Figure 7: Equivalent MDP Produced by fltl


shows the relevant formulae labelling the e-states, obtained by progression of this reward
formula. Note that without progressing one step ahead, there would be 3 e-states with state
{p} on the left-hand side, labelled with {f1}, {f1, f2}, and {f1, f2, f3}, respectively.


3.8 Blind Minimality


The size of the MDP obtained, i.e. the number of e-states it contains is a key issue for
us, as it has to be amenable to state-based solution methods. Ideally, we would like the
MDP to be of minimal size. However, we do not know of a method building the minimal
equivalent MDP incrementally, adding parts as required by the solution method. And since
in the worst case even the minimal equivalent MDP can be larger than the NMRDP by a
factor exponential in the length of the reward formulae (Bacchus et al., 1996), constructing
it entirely would nullify the interest of anytime solution methods.


However, as we now explain, Definition 5 leads to an equivalent MDP exhibiting a relaxed
notion of minimality, and which is amenable to incremental construction. By inspection,
we may observe that wherever an e-state 〈s, φ〉 has a successor 〈s′, φ′〉 via action a, this
means that in order to succeed in rewarding the behaviours described in φ by means of
execution sequences that start by going from s to s′ via a, it is necessary that the future
starting with s′ succeeds in rewarding the behaviours described in φ′. If 〈s, φ〉 is in the
minimal equivalent MDP, and if there really are such execution sequences succeeding in
rewarding the behaviours described in φ, then 〈s′, φ′〉 must also be in the minimal MDP.
That is, construction by progression can only introduce e-states which are a priori needed.
Note that an e-state that is a priori needed may not really be needed: there may in fact
be no execution sequence using the available actions that exhibits a given behaviour. For
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instance, consider the response formula �(p → (©kq → ©k$)), i.e., every time trigger p
is true, we will be rewarded k steps later provided q is true then. Obviously, whether p
is true at some stage affects the way future states should be rewarded. However, if the
transition relation happens to have the property that k steps from a state satisfying p, no
state satisfying q can be reached, then a posteriori p is irrelevant, and there was no need to
label e-states differently according to whether p was true or not – observe an occurrence of
this in the example in Figure 7, and how this leads fltl to produce an extra state at the
bottom left of the Figure. To detect such cases, we would have to look perhaps quite deep
into feasible futures, which we cannot do while constructing the e-states on the fly. Hence
the relaxed notion which we call blind minimality does not always coincide with absolute
minimality.


We now formalise the difference between true and blind minimality. For this purpose,
it is convenient to define some functions ρ and µ mapping e-states e to functions from S∗


to IR intuitively assigning rewards to sequences in the NMRDP starting from τ(e). Recall
from Definition 1 that τ maps each e-state of the MDP to the underlying NMRDP state.


Definition 6 Let D be an NMRDP. Let S′ be the set of e-states in an equivalent MDP D′


for D. Let e be any reachable e-state in S′. Let Γ′(i) be a sequence of e-states in D̃′(s′0)
such that Γ′(i) = e. Let Γ(i) be the corresponding sequence in D̃(s0) obtained under τ in
the sense that, for each j ≤ i, Γ(j) = τ(Γ′j). Then for any ∆ ∈ S∗, we define


ρ(e) : ∆ 7→
{
R(Γ(i− 1);∆) if ∆0 = Γi


0 otherwise


and


µ(e) : ∆ 7→
{
R(Γ(i− 1);∆) if ∆ ∈ D̃(Γi)
0 otherwise


For any unreachable e-state e, we define both ρ(e)(∆) and µ(e)(∆) to be 0 for all ∆.


Note carefully the difference between ρ and µ. The former describes the rewards assigned
to all continuations of a given state sequence, while the latter confines rewards to feasible
continuations. Note also that ρ and µ are well-defined despite the indeterminacy in the
choice of Γ′(i), since by clause 4 of Definition 1, all such choices lead to the same values for
R.


Theorem 3 Let S′ be the set of e-states in an equivalent MDP D′ for D = 〈S, s0, A,Pr, R〉.
D′ is minimal iff every e-state in S′ is reachable and S′ contains no two distinct e-states s′1
and s′2 with τ(s′1) = τ(s′2) and µ(s′1) = µ(s′2).


Proof: See Appendix B. �


Blind minimality is similar, except that, since there is no looking ahead, no distinction can
be drawn between feasible trajectories and others in the future of s:


Definition 7 Let S′ be the set of e-states in an equivalent MDP D′ for D = 〈S, s0, A,Pr, R〉.
D′ is blind minimal iff every e-state in S′ is reachable and S′ contains no two distinct e-
states s′1 and s′2 with τ(s′1) = τ(s′2) and ρ(s′1) = ρ(s′2).
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Theorem 4 Let D′ be the translation of D as in Definition 5. D′ is a blind minimal
equivalent MDP for D.


Proof: See Appendix B. �


The size difference between the blind-minimal and minimal MDPs will depend on the
precise interaction between rewards and dynamics for the problem at hand, making theoret-
ical analyses difficult and experimental results rather anecdotal. However, our experiments
in Section 5 and 6 will show that from a computation time point of view, it is often prefer-
able to work with the blind-minimal MDP than to invest in the overhead of computing the
truly minimal one.


Finally, recall that syntactically different but semantically equivalent reward function
specifications define the same e-state. Therefore, neither minimality nor blind minimality
can be achieved in general without an equivalence check at least as complex as theorem
proving for LTL. In pratical implementations, we avoid theorem proving in favour of em-
bedding (fast) formula simplification in our progression and regression algorithms. This
means that in principle we only approximate minimality and blind minimality, but this
appears to be enough for practical purposes.


3.9 Embedded Solution/Construction


Blind minimality is essentially the best achievable with anytime state-based solution meth-
ods which typically extend their envelope one step forward without looking deeper into the
future. Our translation into a blind-minimal MDP can be trivially embedded in any of these
solution methods. This results in an ‘on-line construction’ of the MDP: the method entirely
drives the construction of those parts of the MDP which it feels the need to explore, and
leave the others implicit. If time is short, a suboptimal or even incomplete policy may be
returned, but only a fraction of the state and expanded state spaces might be constructed.
Note that the solution method should raise an exception as soon as one of the reward for-
mulae progresses to ⊥, i.e., as soon as an expanded state 〈s, φ〉 is built such that (⊥ : r) ∈ φ,
since this acts as a detector of unsuitable reward function specifications.


To the extent enabled by blind minimality, our approach allows for a dynamic analysis of
the reward formulae, much as in pltlstr (Bacchus et al., 1997). Indeed, only the execution
sequences feasible under a particular policy actually explored by the solution method con-
tribute to the analysis of rewards for that policy. Specifically, the reward formulae generated
by progression for a given policy are determined by the prefixes of the execution sequences
feasible under this policy. This dynamic analysis is particularly useful, since relevance of
reward formulae to particular policies (e.g. the optimal policy) cannot be detected a priori.


The forward-chaining planner TLPlan (Bacchus & Kabanza, 2000) introduced the idea
of using FLTL to specify domain-specific search control knowledge and formula progression
to prune unpromising sequential plans (plans violating this knowledge) from deterministic
search spaces. This has been shown to provide enormous time gains, leading TLPlan to
win the 2002 planning competition hand-tailored track. Because our approach is based
on progression, it provides an elegant way to exploit search control knowledge, yet in the
context of decision-theoretic planning. Here this results in a dramatic reduction of the
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Thiébaux, Gretton, Slaney, Price & Kabanza


fraction of the MDP to be constructed and explored, and therefore in substantially better
policies by the deadline.


We achieve this as follows. We specify, via a $-free formula c0, properties which we know
must be verified by paths feasible under promising policies. Then we simply progress c0
alongside the reward function specification, making e-states triples 〈s, φ, c〉 where c is a $-free
formula obtained by progression. To prevent the solution method from applying an action
that leads to the control knowledge being violated, the action applicability condition (item
3 in Definition 5) becomes: a ∈ A′(〈s, φ, c〉) iff a ∈ A(s) and c 6= ⊥ (the other changes are
straightforward). For instance, the effect of the control knowledge formula �(p→ ©q) is to
remove from consideration any feasible path in which p is not followed by q. This is detected
as soon as violation occurs, when the formula progresses to ⊥. Although this paper focuses
on non-Markovian rewards rather than dynamics, it should be noted that $-free formulae
can also be used to express non-Markovian constraints on the system’s dynamics, which
can be incorporated in our approach exactly as we do for the control knowledge.


3.10 Discussion


Existing approaches (Bacchus et al., 1996, 1997) advocate the use of PLTL over a finite
past to specify non-Markovian rewards. In the PLTL style of specification, we describe
the past conditions under which we get rewarded now, while with $FLTL we describe the
conditions on the present and future under which future states will be rewarded. While the
behaviours and rewards may be the same in each scheme, the naturalness of thinking in one
style or the other depends on the case. Letting the kids have a strawberry dessert because
they have been good all day fits naturally into a past-oriented account of rewards, whereas
promising that they may watch a movie if they tidy their room (indeed, making sense of the
whole notion of promising) goes more naturally with $FLTL. One advantage of the PLTL
formulation is that it trivially enforces the principle that present rewards do not depend
on future states. In $FLTL, this responsibility is placed on the domain modeller. The best
we can offer is an exception mechanism to recognise mistakes when their effects appear,
or syntactic restrictions. On the other hand, the greater expressive power of $FLTL opens
the possibility of considering a richer class of decision processes, e.g. with uncertainty as
to which rewards are received (the dessert or the movie) and when (some time next week,
before it rains).


At any rate, we believe that $FLTL is better suited than PLTL to solving NMRDPs
using anytime state-based solution methods. While the pltlsim translation could be eas-
ily embedded in such a solution method, it loses the structure of the original formulae
when considering subformulae individually. Consequently, the expanded state space easily
becomes exponentially bigger than the blind-minimal one. This is problematic with the
solution methods we consider, because size severely affects their performance in solution
quality. The pre-processing phase of pltlmin uses PLTL formula regression to find sets
of subformulae as potential labels for possible predecessor states, so that the subsequent
generation phase builds an MDP representing all and only the histories which make a dif-
ference to the way actually feasible execution sequences should be rewarded. Not only does
this recover the structure of the original formula, but in the best case, the MDP produced
is exponentially smaller than the blind-minimal one. However, the prohibitive cost of the
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pre-processing phase makes it unsuitable for anytime solution methods. We do not con-
sider that any method based on PLTL and regression will achieve a meaningful relaxed
notion of minimality without a costly pre-processing phase. fltl is an approach based on
$FLTL and progression which does precisely that, letting the solution method resolve the
tradeoff between quality and cost in a principled way intermediate between the two extreme
suggestions above.


The structured representation and solution methods targeted by Bacchus et al. (1997)
differ from the anytime state-based solution methods fltl primarily aims at, in particular
in that they do not require explicit state enumeration at all. Here, non-minimality is not as
problematic as with the state-based approaches. In virtue of the size of the MDP produced,
the pltlstr translation is, as pltlsim, clearly unsuitable to anytime state-based methods.9


In another sense, too, fltl represents a middle way, combining the advantages conferred by
state-based and structured approaches, e.g. by pltlmin on one side, and pltlstr on the
other. From the former fltl inherits a meaningful notion of minimality. As with the latter,
approximate solution methods can be used and can perform a restricted dynamic analysis of
the reward formulae. In particular, formula progression enables even state-based methods
to exploit some of the structure in ‘$FLTL space’. However, the gap between blind and
true minimality indicates that progression alone is insufficient to always fully exploit that
structure. There is a hope that pltlstr is able to take advantage of the full structure of
the reward function, but also a possibility that it will fail to exploit even as much structure
as fltl, as efficiently. An empirical comparison of the three approaches is needed to answer
this question and identify the domain features favoring one over the other.


4. NMRDPP


The first step towards a decent comparison of the different approaches is to have a framework
that includes them all. The Non-Markovian Reward Decision Process Planner, nmrdpp,
is a platform for the development and experimentation of approaches to NMRDPs. it
provides an implementation of the approaches we have described in a common framework,
within a single system, and with a common input language. nmrdpp is available on-line,
see http://rsise.anu.edu.au/~charlesg/nmrdpp. It is worth noting that Bacchus et al.
(1996, 1997) do not report any implementation of their approaches.


4.1 Input language


The input language enables the specification of actions, initial states, rewards, and search
control-knowledge. The format for the action specification is essentially the same as in the
SPUDD system (Hoey et al., 1999). The reward specification is one or more formulae, each
associated with a name and a real number. These formulae are in either PLTL or $FLTL.
Control knowledge is given in the same language as that chosen for the reward. Control
knowledge formulae will have to be verified by any sequence of states feasible under the
generated policies. Initial states are simply specified as part of the control knowledge or as
explicit assignments to propositions.


9. It would be interesting, on the other hand, to use pltlstr in conjunction with symbolic versions of such
methods, e.g. Symbolic LAO* (Feng & Hansen, 2002) or Symbolic RTDP (Feng, Hansen, & Zilberstein,
2003).
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action flip
heads (0.5)


endaction


action tilt
heads (heads (0.9) (0.1))


endaction


heads = ff
[first, 5.0]? heads and ~prv (pdi heads)
[seq, 1.0]? (prv^2 heads) and (prv heads) and ~heads


Figure 8: Input for the Coin Example. prv (previously) stands for � and
pdi (past diamond) stands for ♦- .


For instance, consider a simple example consisting of a coin showing either heads or
tails (¬heads). There are two actions that can be performed. The flip action changes the
coin to show heads or tails with a 50% probability. The tilt action changes it with 10%
probability, otherwise leaving it as it is. The initial state is tails. We get a reward of 5.0 for
the very first head (this is written heads ∧ ¬� ♦- heads in PLTL) and a reward of 1.0 each
time we achieve the sequence heads, heads, tails (�2heads∧�heads∧¬heads in PLTL). In
our input language, this NMRDP is described as shown in Figure 8.


4.2 Common framework


The common framework underlying nmrdpp takes advantage of the fact that NMRDP
solution methods can, in general, be divided into the distinct phases of preprocessing,
expansion, and solving. The first two are optional.


For pltlsim, preprocessing simply computes the set Sub(F ) of subformulae of the reward
formulae. For pltlmin, it also includes computing the labels l(s) for each state s. For
pltlstr, preprocessing involves computing the set T of temporal variables as well as the
ADDs for their dynamics and for the rewards. fltl does not require any preprocessing.


Expansion is the optional generation of the entire equivalent MDP prior to solving.
Whether or not off-line expansion is sensible depends on the MDP solution method used. If
state-based value or policy iteration is used, then the MDP needs to be expanded anyway.
If, on the other hand, an anytime search algorithm or structured method is used, it is
definitely a bad idea. In our experiments, we often used expansion solely for the purpose of
measuring the size of the generated MDP.


Solving the MDP can be done using a number of methods. Currently, nmrdpp provides
implementations of classical dynamic programming methods, namely state-based value and
policy iteration (Howard, 1960), of heuristic search methods: state-based LAO* (Hansen &
Zilberstein, 2001) using either value or policy iteration as a subroutine, and of one structured
method, namely SPUDD (Hoey et al., 1999). Prime candidates for future developments are
(L)RTDP (Bonet & Geffner, 2003), symbolic LAO* (Feng & Hansen, 2002), and symbolic
RTDP (Feng et al., 2003).
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> loadWorld(’coin’) load coin NMRDP
> preprocess(’sPltl’) pltlstr preprocessing
> startCPUtimer
> spudd(0.99, 0.0001) solve MDP with SPUDD(β, ε)
> stopCPUtimer
> readCPUtimer report solving time
1.22000
> iterationCount report number of iterations
1277
> displayDot(valueToDot) display ADD of value function


Expected value heads


(prv heads) (prv heads)


(prv (prv pdi heads)) (prv (prv pdi heads)) (prv^2 heads)


(prv pdi heads)18.87 23.87 18.62 23.62 (prv pdi heads)


18.25 23.15 19.25 24.15


> displayDot(policyToDot) display policy
Optimal policy heads


(prv heads)


flip tilt


> preprocess(’mPltl’) pltlmin preprocessing
> expand completely expand MDP
> domainStateSize report MDP size
6
> printDomain ("") | ’show-domain.rb’ display postcript rendering of MDP


-
Reward=0 flip(0.5) tilt(0.9)


heads
Reward=5


flip(0.5) tilt(0.1)


heads
Reward=0


flip(0.5) tilt(0.9)


-
Reward=0


flip(0.5)tilt(0.1)


flip(0.5) tilt(0.9)


-
Reward=1


flip(0.5)tilt(0.1)


tilt(0.9)flip(0.5)


heads
Reward=0


tilt(0.1) flip(0.5)


flip(0.5)tilt(0.9)


flip(0.5) tilt(0.1)


flip(0.5)tilt(0.9)


flip(0.5) tilt(0.1)


> valIt(0.99, 0.0001) solve MDP with VI(β, ε)
> iterationCount report number of iterations
1277
> getPolicy output policy (textual)
...


Figure 9: Sample Session
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4.3 Approaches covered


Altogether, the various types of preprocessing, the choice of whether to expand, and the
MDP solution methods, give rise to quite a number of NMRDP approaches, including, but
not limited to those previously mentioned (see e.g. pltlstr(a) below). Not all combina-
tions are possible. E.g., state-based processing variants are incompatible with structured
solution methods (the converse is possible in principle, however). Also, there is at present
no structured form of preprocessing for $FLTL formulae.


pltlstr(a) is an example of an interesting variant of pltlstr, which we obtain by
considering additional preprocessing, whereby the state space is explored (without explicitly
enumerating it) to produce a BDD representation of the e-states reachable from the start
state. This is done by starting with a BDD representing the start e-state, and repeatedly
applying each action. Non-zero probabilities are converted to ones and the result “or-ed”
with the last result. When no action adds any reachable e-states to this BDD, we can
be sure it represents the reachable e-state space. This is then used as additional control
knowledge to restrict the search. It should be noted that without this phase pltlstr makes
no assumptions about the start state, and thus is left at a possible disadvantage. Similar
structured reachability analysis techniques have been used in the symbolic implementation
of LAO* (Feng & Hansen, 2002). However, an important aspect of what we do here is that
temporal variables are also included in the BDD.


4.4 The nmrdpp System


nmrdpp is controlled by a command language, which is read either from a file or interac-
tively. The command language provides commands for the different phases (preprocessing,
expansion, solution) of the methods, commands to inspect the resulting policy and value
functions, e.g. with rendering via DOT (AT&T Labs-Research, 2000), as well as supporting
commands for timing and memory usage. A sample session, where the coin NMRDP is
successively solved with pltlstr and pltlmin is shown in Figure 9.


nmrdpp is implemented in C++, and makes use of a number of supporting libraries.
In particular, it relies heavily on the CUDD package for manipulating ADDs (Somenzi,
2001): action specification trees are converted into and stored as ADDs by the system,
and moreover the structured algorithms rely heavily on CUDD for ADD computations.
The state-based algorithms make use of the MTL – Matrix Template Library for matrix
operations. MTL takes advantage of modern processor features such as MMX and SSE
and provides efficient sparse matrix operations. We believe that our implementations of
MDP solution methods are comparable with the state of the art. For instance, we found
that our implementation of SPUDD is comparable in performance (within a factor of 2) to
the reference implementation (Hoey et al., 1999). On the other hand, we believe that data
structures used for regression and progression of temporal formulae could be optimised.


5. Experimental Analysis


We are faced with three substantially different approaches that are not easy to compare,
as their performance will depend on domain features as varied as the structure in the
transition model, the type, syntax, and length of the temporal reward formula, the presence
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of rewards unreachable or irrelevant to the optimal policy, the availability of good heuristics
and control-knowledge, etc, and on the interactions between these factors. In this section,
we report an experimental investigation into the influence of some of these factors and try
to answer the questions raised previously:10


1. is the dynamics of the domain the predominant factor affecting performance?


2. is the type of reward a major factor?


3. is the syntax used to describe rewards a major factor?


4. is there an overall best method?


5. is there an overall worst method?


6. does the preprocessing phase of pltlmin pay, compared to pltlsim?


7. does the simplicity of the fltl translation compensate for blind-minimality, or does
the benefit of true minimality outweigh the cost of pltlmin preprocessing?


8. are the dynamic analyses of rewards in pltlstr and fltl effective?


9. is one of these analyses more powerful, or are they rather complementary?


In some cases but not all, we were able to identify systematic patterns. The results in this
section were obtained using a Pentium4 2.6GHz GNU/Linux 2.4.20 machine with 500MB
of ram.


5.1 Preliminary Remarks


Clearly, fltl and pltlstr(a) have great potential for exploiting domain-specific heuris-
tics and control-knowledge; pltlmin less so. To avoid obscuring the results, we therefore
refrained from incorporating these features in the experiments. When running LAO*, the
heuristic value of a state was the crudest possible (the sum of all reward values in the
problem). Performance results should be interpreted in this light – they do not necessarily
reflect the practical abilities of the methods that are able to exploit these features.


We begin with some general observations. One question raised above was whether the
gain during the PLTL expansion phase is worth the expensive preprocessing performed by
pltlmin, i.e. whether pltlmin typically outperforms pltlsim. We can definitively answer
this question: up to pathological exceptions, preprocessing pays. We found that expansion
was the bottleneck, and that post-hoc minimisation of the MDP produced by pltlsim did
not help much. pltlsim is therefore of little or no practical interest, and we decided not to
report results on its performance, as it is often an order of magnitude worse than that of
pltlmin. Unsurprisingly, we also found that pltlstr would typically scale to larger state
spaces, inevitably leading it to outperform state-based methods. However, this effect is not
uniform: structured solution methods sometimes impose excessive memory requirements
which makes them uncompetitive in certain cases, for example where �nf , for large n,
features as a reward formula.


10. Here is an executive summary of the answers for the executive reader. 1. no, 2. yes, 3. yes, 4. pltlstr
and fltl, 5. pltlsim, 6. yes, 7. yes and no, respectively, 8. yes, 9. no and yes, respectively.
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5.2 Domains


Experiments were performed on four hand-coded domains (propositions + dynamics) and
on random domains. Each hand-coded domain has n propositions pi, and a dynamics
which makes every state possible and eventually reachable from the initial state in which
all propositions are false. The first two such domains, spudd-linear and spudd-expon
were discussed by Hoey et al. (1999); the two others are our own.


The intention of spudd-linear was to take advantage of the best case behaviour of
SPUDD. For each proposition pi, it has an action ai which sets pi to true and all propositions
pj , 1 ≤ j < i to false. spudd-expon, was used by Hoey et al. (1999) to demonstrate the
worst case behaviour of SPUDD. For each proposition pi, it has an action ai which sets pi


to true only when all propositions pj , 1 ≤ j < i are true (and sets pi to false otherwise), and
sets the latter propositions to false. The third domain, called on/off, has one “turn-on”
and one “turn-off” action per proposition. The “turn-on-pi” action only probabilistically
succeeds in setting pi to true when pi was false. The turn-off action is similar. The fourth
domain, called complete, is a fully connected reflexive domain. For each proposition pi


there is an action ai which sets pi to true with probability i/(n+1) (and to false otherwise)
and pj , j 6= i to true or false with probability 0.5. Note that ai can cause a transition to
any of the 2n states.


Random domains of size n also involve n propositions. The method for generating their
dynamics is detailed in appendix C. Let us just summarise by saying that we are able to
generate random dynamics exhibiting a given degree of “structure” and a given degree of
uncertainty. Lack of structure essentially measures the bushiness of the internal part of the
ADDs representing the actions, and uncertainty measures the bushiness of their leaves.


5.3 Influence of Dynamics


The interaction between dynamics and reward certainly affects the performance of the
different approaches, though not so strikingly as other factors such as the reward type (see
below). We found that under the same reward scheme, varying the degree of structure or
uncertainty did not generally change the relative success of the different approaches. For
instance, Figures 10 and 11 show the average run time of the methods as a function of
the degree of structure, resp. degree of uncertainty, for random problems of size n = 6 and
reward �n¬�> (the state encountered at stage n is rewarded, regardless of its properties11).
Run-time increases slightly with both degrees, but there is no significant change in relative
performance. These are typical of the graphs we obtain for other rewards.


Clearly, counterexamples to this observation exist. These are most notable in cases of
extreme dynamics, for instance with the spudd-expon domain. Although for small values
of n, such as n = 6, pltlstr approaches are faster than the others in handling the reward
�n¬�> for virtually any type of dynamics we encountered, they perform very poorly with
that reward on spudd-expon. This is explained by the fact that only a small fraction of
spudd-expon states are reachable in the first n steps. After n steps, fltl immediately
recognises that reward is of no consequence, because the formula has progressed to >.
pltlmin discovers this fact only after expensive preprocessing. pltlstr, on the other
hand, remains concerned by the prospect of reward, just as pltlsim would.


11. ©n$ in $FLTL
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Figure 10: Changing the Degree of Structure
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Figure 11: Changing the Degree of Uncertainty


5.4 Influence of Reward Types


The type of reward appears to have a stronger influence on performance than dynamics.
This is unsurprising, as the reward type significantly affects the size of the generated MDP:
certain rewards only make the size of the minimal equivalent MDP increase by a constant
number of states or a constant factor, while others make it increase by a factor exponential
in the length of the formula. Table 1 illustrates this. The third column reports the size of
the minimal equivalent MDP induced by the formulae on the left hand side.12


A legitimate question is whether there is a direct correlation between size increase and
(in)appropriateness of the different methods. For instance, we might expect the state-based
methods to do particularly well in conjunction with reward types inducing a small MDP and


12. The figures are not necessarily valid for non-completely connected NMRDPs. Unfortunately, even for
completely connected domains, there does not appear to be a much cheaper way to determine the MDP
size than to generate it and count states.
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Thiébaux, Gretton, Slaney, Price & Kabanza


type formula size fastest slowest
first time all pis (∧n


i=1pi) ∧ (¬� ♦- ∧n
i=1 pi) O(1)||S|| pltlstr(a) pltlmin


pis in sequence from start state (∧n
i=1 �i pi) ∧�n¬�> O(n)||S|| fltl pltlstr


two consecutive pis ∨n−1
i=1 (�pi ∧ pi+1) O(nk)||S|| pltlstr fltl


all pis n times ago �n ∧n
i=1 pi O(2n)||S|| pltlstr pltlmin


Table 1: Influence of Reward Type on MDP Size and Method Performance
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Figure 12: Changing the Syntax


otherwise badly in comparison with structured methods. Interestingly, this is not always
the case. For instance, in Table 1 whose last two columns report the fastest and slowest
methods over the range of hand-coded domains where 1 ≤ n ≤ 12, the first row contradicts
that expectation. Moreover, although pltlstr is fastest in the last row, for larger values
of n (not represented in the table), it aborts through lack of memory, unlike the other
methods.


The most obvious observations arising out of these experiments is that pltlstr is nearly
always the fastest – until it runs out of memory. Perhaps the most interesting results are
those in the second row, which expose the inability of methods based on PLTL to deal
with rewards specified as long sequences of events. In converting the reward formula to
a set of subformulae, they lose information about the order of events, which then has to
be recovered laboriously by reasoning. $FLTL progression in contrast takes the events one
at a time, preserving the relevant structure at each step. Further experimentation led us
to observe that all PLTL based algorithms perform poorly where reward is specified using
formulae of the form �kf , ♦- kf , and �kf (f has been true k steps ago, within the last k
steps, or at all of the last k steps).


5.5 Influence of Syntax


Unsurprisingly, we find that the syntax used to express rewards, which affects the length
of the formula, has a major influence on the run time. A typical example of this effect is
captured in Figure 12. This graph demonstrates how re-expressing prvOut ≡ �n(∧n


i=1pi)
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Figure 13: Effect of Multiple Rewards on MDP size
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Figure 14: Effect of Multiple Rewards on Run Time


as prvIn ≡ ∧n
i=1 �n pi, thereby creating n times more temporal subformulae, alters the


running time of all PLTL methods. fltl is affected too as $FLTL progression requires two
iterations through the reward formula. The graph represents the averages of the running
times over all the methods, for the complete domain.


Our most serious concern in relation to the PLTL approaches is their handling of reward
specifications containing multiple reward elements. Most notably we found that pltlmin
does not necessarily produce the minimal equivalent MDP in this situation. To demon-
strate, we consider the set of reward formulae {f1, f2, . . . , fn}, each associated with the
same real value r. Given this, PLTL approaches will distinguish unnecessarily between past
behaviours which lead to identical future rewards. This may occur when the reward at an
e-state is determined by the truth value of f1∨f2. This formula does not necessarily require
e-states that distinguish between the cases in which {f1 ≡ >, f2 ≡ ⊥} and {f1 ≡ ⊥, f2 ≡ >}
hold; however, given the above specification, pltlmin makes this distinction. For example,
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taking fi = �pi, Figure 13 shows that fltl leads to an MDP whose size is at most 3 times
that of the NMRDP. In contrast, the relative size of the MDP produced by pltlmin is
linear in n, the number of rewards and propositions. These results are obtained with all
hand-coded domains except spudd-expon. Figure 14 shows the run-times as a function
of n for complete. fltl dominates and is only overtaken by pltlstr(A) for large values
of n, when the MDP becomes too large for explicit exploration to be practical. To obtain
the minimal equivalent MDP using pltlmin, a bloated reward specification of the form
{(� ∨n


i=1 (pi ∧n
j=1,j 6=i ¬pj) : r), . . . , (� ∧n


i=1 pi : n ∗ r)} is necessary, which, by virtue of its
exponential length, is not an adequate solution.


5.6 Influence of Reachability


All approaches claim to have some ability to ignore variables which are irrelevant because
the condition they track is unreachable:13 pltlmin detects them through preprocessing,
pltlstr exploits the ability of structured solution methods to ignore them, and fltl ig-
nores them when progression never exposes them. However, given that the mechanisms for
avoiding irrelevance are so different, we expect corresponding differences in their effects.
On experimental investigation, we found that the differences in performance are best illus-
trated by looking at response formulae, which assert that if a trigger condition c is reached
then a reward will be received upon achievement of the goal g in, resp. within, k steps.
In PLTL, this is written g ∧ �kc, resp. g ∧ ♦- kc, and in $FLTL, �(c → ©k(g → $)), resp.
�(c→ �k(g → $))


When the goal is unreachable, PLTL approaches perform well. As it is always false, the
goal g does not lead to behavioural distinctions. On the other hand, while constructing the
MDP, fltl considers the successive progressions of ©kg without being able to detect that it
is unreachable until it actually fails to happen. This is exactly what the blindness of blind
minimality amounts to. Figure 15 illustrates the difference in performance as a function of
the number n of propositions involved in the spudd-linear domain, when the reward is of
the form g ∧�nc, with g unreachable.


fltl shines when the trigger is unreachable. Since c never happens, the formula will
always progress to itself, and the goal, however complicated, is never tracked in the gener-
ated MDP. In this situation PLTL approaches still consider �kc and its subformulae, only
to discover, after expensive preprocessing for pltlmin, after reachability analysis for pltl-
str(a), and never for pltlstr, that these are irrelevant. This is illustrated in Figure 16,
again with spudd-linear and a reward of the form g ∧�nc, with c unreachable.


5.7 Dynamic Irrelevance


Earlier we claimed that one advantage of pltlstr and fltl over pltlmin and pltlsim
is that the former perform a dynamic analysis of rewards capable of detecting irrelevance
of variables to particular policies, e.g. to the optimal policy. Our experiments confirm
this claim. However, as for reachability, whether the goal or the triggering condition in
a response formula becomes irrelevant plays an important role in determining whether a


13. Here we sometimes speak of conditions and goals being ‘reachable’ or ‘achievable’ rather than ‘feasible’,
although they may be temporally extended. This is to keep in line with conventional vocabulary as in
the phrase ‘reachability analysis’.
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Figure 15: Response Formula with Unachievable Goal


n
1 3 5 7 9 11


To
ta


l C
P


U
 ti


m
e 


(s
ec


)


50


100
150


250
350


FLTL
PLTLSTRUCT


PLTLMIN
PLTLSTRUCT(A)


Figure 16: Response Formula with Unachievable Trigger


pltlstr or fltl approach should be taken: pltlstr is able to dynamically ignore the goal,
while fltl is able to dynamically ignore the trigger.


This is illustrated in Figures 17 and 18. In both figures, the domain considered is
on/off with n = 6 propositions, the response formula is g ∧�nc as before, here with both
g and c achievable. This response formula is assigned a fixed reward. To study the effect of
dynamic irrelevance of the goal, in Figure 17, achievement of ¬g is rewarded by the value
r (i.e. we have (¬g : r) in PLTL). In Figure 18, on the other hand, we study the effect of
dynamic irrelevance of the trigger and achievement of ¬c is rewarded by the value r. Both
figures show the runtime of the methods as r increases.


Achieving the goal, resp. the trigger, is made less attractive as r increases up to the
point where the response formula becomes irrelevant under the optimal policy. When this
happens, the run-time of pltlstr resp. fltl, exhibits an abrupt but durable improvement.
The figures show that fltl is able to pick up irrelevance of the trigger, while pltlstr is able
to exploit irrelevance of the goal. As expected, pltlmin whose analysis is static does not pick
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Figure 17: Response Formula with Unrewarding Goal
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Figure 18: Response Formula with Unrewarding Trigger


up either and performs consistently badly. Note that in both figures, pltlstr progressively
takes longer to compute as r increases because value iteration requires additional iterations
to converge.


5.8 Summary


In our experiments with artificial domains, we found pltlstr and fltl preferable to state-
based PLTL approaches in most cases. If one insists on using the latter, we strongly
recommend preprocessing. fltl is the technique of choice when the reward requires tracking
a long sequence of events or when the desired behaviour is composed of many elements with
identical rewards. For response formulae, we advise the use of pltlstr if the probability of
reaching the goal is low or achieving the goal is very costly, and conversely, we advise the
use of fltl if the probability of reaching the triggering condition is low or if reaching it is
very costly. In all cases, attention should be paid to the syntax of the reward formulae and
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in particular to minimising its length. Indeed, as could be expected, we found the syntax
of the formulae and the type of non-Markovian reward they encode to be a predominant
factor in determining the difficulty of the problem, much more so than the features of the
Markovian dynamics of the domain.


6. A Concrete Example


Our experiments have so far focused on artificial problems and have aimed at characterising
the strengths and weaknesses of the various approaches. We now look at a concrete example
in order to give a sense of the size of more interesting problems that these techniques can
solve. Our example is derived from the Miconic elevator classical planning benchmark
(Koehler & Schuster, 2000). An elevator must get a number of passengers from their origin
floor to their destination. Initially, the elevator is at some arbitrary floor and no passenger
is served nor has boarded the elevator. In our version of the problem, there is one single
action which causes the elevator to service a given floor, with the effect that the unserved
passengers whose origin is the serviced floor board the elevator, while the boarded passengers
whose destination is the serviced floor unboard and become served. The task is to plan the
elevator movement so that all passengers are eventually served.14


There are two variants of Miconic. In the ‘simple’ variant, a reward is received each
time a passenger becomes served. In the ‘hard’ variant, the elevator also attempts to
provide a range of priority services to passengers with special requirements: many passengers
will prefer travelling in a single direction (either up or down) to their destination, certain
passengers might be offered non-stop travel to their destination, and finally, passengers
with disabilities or young children should be supervised inside the elevator by some other
passenger (the supervisor) assigned to them. Here we omit the VIP and conflicting group
services present in the original hard Miconic problem, as the reward formulae for those do
not create additional difficulties.


Our formulation of the problem makes use of the same propositions as the PDDL descrip-
tion of Miconic used in the 2000 International Planning Competition: dynamic propositions
record the floor the elevator is currently at and whether passengers are served or boarded,
and static propositions record the origin and destination floors of passengers, as well as the
categories (non-stop, direct-travel, supervisor, supervised) the passengers fall in. However,
our formulation differs from the PDDL description in two interesting ways. Firstly, since
we use rewards instead of goals, we are able to find a preferred solution even when all
goals cannot simultaneously be satisfied. Secondly, because priority services are naturally
described in terms of non-Markovian rewards, we are able to use the same action descrip-
tion for both the simple and hard versions, whereas the PDDL description of hard miconic
requires additional actions (up, down) and complex preconditions to monitor the satisfac-
tion of priority service constraints. The reward schemes for Miconic can be encapsulated
through four different types of reward formula.


1. In the simple variant, a reward is received the first time each passenger Pi is served:


14. We have experimented with stochastic variants of Miconic where passengers have some small probability
of desembarking at the wrong floor. However, we find it more useful to present results for the deterministic
version since it is closer to the Miconic deterministic planning benchmark and since, as we have shown
before, rewards have a far more crucial impact than dynamics on the relative performance of the methods.
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PLTL: ServedPi ∧� � ¬ServedPi


$FLTL: ¬ServedPi U (ServedPi ∧ $)


2. Next, a reward is received each time a non-stop passenger Pi is served in one step
after boarding the elevator:
PLTL: NonStopPi ∧� � ¬BoardedPi ∧� � ¬ServedPi ∧ ServedPi


$FLTL: �((NonStopPi ∧ ¬BoardedPi ∧ ¬ServedPi ∧©©ServedPi) → ©©$)


3. Then, a reward is received each time a supervised passenger Pi is served while having
been accompanied at all times inside the elevator by his supervisor15 Pj :


PLTL: SupervisedPi ∧ SupervisorPjPi ∧ ServedPi∧
� � ¬ServedPi ∧�(BoardedPi → BoardedPj)


$FLTL: ¬ServedPi U ((BoardedPi ∧ SupervisedPi ∧ ¬(BoardedPj ∧ SupervisorPjPi)∧
¬ServedPi) ∨ (ServededPi ∧ $))


4. Finally, reward is received each time a direct travel passenger Pi is served while having
travelled only in one direction since boarding, e.g., in the case of going up:
PLTL: DirectPi ∧ ServedPi ∧�¬ServedPi∧


((
∨


j


∨
k>j(AtF loork ∧�AtF loorj)) S (BoardedPi ∧�¬BoardedPi))


$FLTL: �((DirectPi ∧BoardedPi) → (¬ServedPi U ((¬(
∨


j


∨
k>iAtF loorj ∧©AtF loork)∧


¬ServedPi) ∨ (servedPi ∧ $))))
and similarly in the case of going down.


Experiments in this section were run on a Dual Pentium4 3.4GHz GNU/Linux 2.6.11
machine with 1GB of ram. We first experimented with the simple variant, giving a reward
of 50 each time a passenger is first served. Figure 19 shows the CPU time taken by the
various approaches to solve random problems with an increasing number n of floors and
passengers, and Figure 20 shows the number of states expanded when doing so. Each data
point corresponds to just one random problem. To be fair with the structured approach, we
ran pltlstr(a) which is able to exploit reachability from the start state. A first observation
is that although pltlstr(a) does best for small values of n, it quickly runs out of memory.
pltlstr(a) and pltlsim both need to track formulae of the form � � ¬ServedPi while
pltlsim does not, and we conjecture that this is why they run out of memory earlier. A
second observation is that attempts at PLTL minimisation do not pay very much here.
While pltlmin has reduced memory because it tracks fewer subformulae, the size of the
MDP it produces is identical to the size of the pltlsim MDP and larger than that of the
fltl MDP. This size increase is due to the fact that PLTL approaches label differently
e-states in which the same passengers are served, depending on who has just become served
(for those passengers, the reward formula is true at the e-state). In contrast, our fltl
implementation with progression one step ahead labels all these e-states with the reward


15. To understand the $FLTL formula, observe that we get a reward iff (BoardedPi ∧ SupervisedPi) →
(BoardedPj∧SupervisorPjPi) holds until ServedPi becomes true, and recall that the formula ¬q U ((¬p∧
¬q) ∨ (q ∧ $)) rewards the holding of p until the occurrence of q.
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Figure 19: Simple Miconic - Run Time
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Figure 20: Simple Miconic - Number of Expanded States


formulae relevant to the passengers that still need to be served, the other formulae having
progressed to >. The gain in number of expanded states materialises into run time gains,
resulting in fltl eventually taking the lead.


Our second experiment illustrates the benefits of using an even extremely simple admis-
sible heuristic in conjunction with fltl. Our heuristic is applicable to discounted stochastic
shortest path problems, and discounts rewards by the shortest time in the future in which
they are possible. Here it simply amounts to assigning a fringe state to a value of 50 times
the number of still unserved passengers (discounted once), and results in avoiding floors at
which no passenger is waiting and which are not the destination of a boarded passenger.
Figures 21 and 22 compare the run time and number of states expanded by fltl when used
in conjunction with value iteration (valIt) to when it is used in conjunction with an LAO*
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Figure 21: Effect of a Simple Heuristic on Run Time
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Figure 22: Effect of a Simple Heuristic on the Number of Expanded States


search informed by the above heuristic (LAO(h)). Uninformed LAO* (LAO*(u), i.e. LAO*
with a heuristic of 50 ∗ n at each node) is also included as a reference point to show the
overhead induced by heuristic search. As can be seen from the graphs, the heuristic search
generates significantly fewer states and this eventually pays in terms of run time.


In our final experiment, we considered the hard variant, giving a reward of 50 as before
for service (1), a reward of 2 for non-stop travel (2), a reward of 5 for appropriate supervision
(3), and a reward of 10 for direct travel (2). Regardless of the number n of floors and
passengers, problems only feature a single non-stop traveller, a third of passengers require
supervision, and only half the passengers care about traveling direct. CPU time and number
of states expanded are shown in Figures 23 and 24, respectively. As in the simple case,
pltlsim and pltlstr quickly run out of memory. Formulae of type (2) and (3) create too
many additional variables to track for these approaches, and the problem does not seem
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Figure 23: Hard Miconic - Run Time
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Figure 24: Hard Miconic - Number of Expanded States


to exhibit enough structure to help pltlstr. fltl remains the fastest. Here, this does
not seem to be so much due to the size of the generated MDP which is just slightly below
that of the pltlmin MDP, but rather to the overhead incurred by minimisation. Another
observation arising from this experiment is that only very small instances can be handled
in comparison to the classical planning version of the problem solved by state of the art
optimal classical planners. For example, at the 2000 International Planning Competition,
the PropPlan planner (Fourman, 2000) optimally solved instances of hard Miconic with
20 passengers and 40 floors in about 1000 seconds on a much less powerful machine.
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7. nmrdpp in the Probabilistic Planning Competition


We now report on the behaviour of nmrdpp in the probabilistic track of the 4th Interna-
tional Planning Competition (IPC-4). Since the competition did not feature non-Markovian
rewards, our original motivation in taking part was to further compare the solution methods
implemented in nmrdpp in a Markovian setting. This objective largely underestimated the
challenges raised by merely getting a planner ready for a competition, especially when that
competition is the first of its kind. In the end, we decided that successfully preparing nm-
rdpp to attempt all problems in the competition using one solution method (and possibly
search control knowledge), would be an honorable result.


The most crucial problem we encountered was the translation of PPDDL (Younes &
Littman, 2004), the probabilistic variant of PDDL used as input language for the compe-
tition, into nmrdpp’s ADD-based input language. While translating PPDDL into ADDs
is possible in theory, devising a translation which is practical enough for the need of the
competition (small number of variables, small, quickly generated, and easily manipulable
ADDs) is another matter. mtbdd, the translator kindly made available to participants by
the competition organisers, was not always able to achieve the required efficiency. At other
times, the translation was quick but nmrdpp was unable to use the generated ADDs effi-
ciently. Consequently, we implemented a state-based translator on top of the PDDL parser
as a backup, and opted for a state-based solution method since it did not rely on ADDs
and could operate with both translators.


The version of nmrdpp entered in the competition did the following:


1. Attempt to get a translation into ADDs using mtbdd, and if that proves infeasible,
abort it and rely on the state-based translator instead.


2. Run fltl expansion of the state space, taking search control knowledge into account
when available. Break after 10mn if not complete.


3. Run value iteration to convergence. Failing to achieve any useful result (e.g. because
expansion was not complete enough to even reach a goal state), go back to step 2.


4. Run as many of the 30 trials as possible in the remaining time,16 following the gen-
erated policy where defined, and falling back on the non-deterministic search control
policy when available.


With Step 1 we were trying to maximise the instances in which the original ADD-based
nmrdpp version could be run intact. In Step 3, it was decided not to use LAO* because
when run with no good heuristic, it often incurs a significant overhead compared to value
iteration.


The problems featured in the competition can be classified into goal-based or reward-
based problems. In goal-based problems, a (positive) reward is only received when a goal
state is reached. In reward-based problems, action performance may also incur a (usually
negative) reward. Another orthogonal distinction can be made between problems from


16. On each given problem, planners had 15mn to run whatever computation they saw as appropriate (in-
cluding parsing, pre-processing, and policy generation if any), and execute 30 trial runs of the generated
policy from an initial state to a goal state.
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domains that were not communicated in advance to the participants and those from domains
that were. The latter consisted of variants of blocks world and logistics (or box world)
problems, and gave the participating planners an opportunity to exploit knowledge of the
domain, much as in the hand-coded deterministic planning track.


We decided to enroll nmrdpp in a control-knowledge mode and in a domain-independent
mode. The only difference between the two modes is that the first uses FLTL search
control knowledge written for the known domains as additional input. Our main concern
in writing the control knowledge was to achieve a reasonable compromise between the size
and effectiveness of the formulae. For the blocks world domain, in which the two actions
pickup-from and putdown-to had a 25% chance of dropping the block onto the table, the
control knowledge we used encoded a variant of the well-known GN1 near-optimal strategy
for deterministic blocks world planning (Slaney & Thiébaux, 2001): whenever possible,
try putting a clear block in its goal position, otherwise put an arbitrary clear block on
the table. Because blocks get dropped on the table whenever an action fails, and because
the success probabilities and rewards are identical across actions, optimal policies for the
problem are essentially made up of optimal sequences of actions for the deterministic blocks
world and there was little need for a more sophisticated strategy.17 In the colored blocks
world domain, where several blocks can share the same color and the goal only refers to the
color of the blocks, the control knowledge selected an arbitrary goal state of the non-colored
blocks world consistent with the colored goal specification, and then used the same strategy
as for the non-colored blocks world. The performance of this strategy depends entirely on
the goal-state selected and can therefore be arbitrarily bad.


Logistics problems from IPC-2 distinguish between airports and other locations within
a city; trucks can drive between any two locations in a city and planes can fly between
any two airports. In contrast, the box world only features cities, some of which have an
airport, some of which are only accessible by truck. A priori, the map of the truck and
plane connections is arbitrary. The goal is to get packages from their city of origin to their
city of destination. Moving by truck has a 20% chance of resulting in reaching one of the
three cities closest to the departure city rather than the intended one. The size of the box
world search space turned out to be quite challenging for nmrdpp. Therefore, when writing
search control knowledge, we gave up any optimality consideration and favored maximal
pruning. We were helped by the fact that the box world generator produces problems with
the following structure. Cities are divided into clusters, all of which are composed of at
least one airport city. Furthermore each cluster has at least one hamiltonian circuit which
trucks can follow. The control knowledge we used forced all planes but one, and all trucks
but one in each cluster to be idle. In each cluster, the truck allowed to move could only
attempt driving along the chosen hamiltonian circuit, picking up and dropping parcels as
it went.


The planners participating in the competition are shown in Table 2. Planners E, G2,
J1, and J2 are domain-specific: either they are tuned for blocks and box worlds, or they use
domain-specific search control knowledge, or learn from examples. The other participating
planners are domain-independent.


17. More sophisticated near-optimal strategies for deterministic blocks world exist (see Slaney & Thiébaux,
2001), but are much more complex to encode and might have caused time performance problems.
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Thiébaux, Gretton, Slaney, Price & Kabanza


Part. Description Reference


C symbolic LAO* (Feng & Hansen, 2002)
E* first-order heuristic search in the fluent calculus (Karabaev & Skvortsova, 2005)
G1 nmrdpp without control knowledge this paper
G2* nmrdpp with control knowledge this paper
J1* interpreter of hand written classy policies (Fern et al., 2004)
J2* learns classy policies from random walks (Fern et al., 2004)
J3 version of ff replanning upon failure (Hoffmann & Nebel, 2001)
P mgpt: lrtdp with automatically extracted heuristics (Bonet & Geffner, 2005)
Q ProbaProp: conformant probabilistic planner (Onder et al., 2006)
R structured reachability analysis and structured PI (Teichteil-Königsbuch & Fabiani, 2005)


Table 2: Competition Participants. Domain-specific planners are starred


dom bw-c-nr bw-nc-nr bx-nr expl-bw hanoise zeno tire-nr
prob 5 8 11 8 5-10 10-10 11 5-3 1-2-3-7 30-4 total


G2* 100 100 100 100 100 100 600
J1* 100 100 100 100 100 100 600
J2* 100 100 100 100 100 67 567
E* 100 100 100 100 400


J3 100 100 100 100 100 100 9 — — 23 632
G1 — 50 100 30 180
R 3 57 90 30 177
P 100 53 153
C 100 ? ≥ 100
Q 3 23 26


Table 3: Results for Goal-Based Problems. Domain-specific planners are starred. Entries
are the percentage of runs in which the goal was reached. A blank indicates that
the planner was unable to attempt the problem. A — indicates that the planner
attempted the problem but was never able to achieve the goal. A ? indicates that
the result is unavailable (due to a bug in the evaluation software, a couple of the
results initially announced were found to be invalid).


dom bw-c-r bw-nc-r bx-r file tire-r
prob 5 8 11 5 8 11 15 18 21 5-10 10-10 10-15 30-4 30-4 total


J1* 497 487 481 494 489 480 470 462 458 419 317 129 5183
G2* 495 486 480 495 490 480 468 352 286 438 376 — 4846
E* 496 492 486 495 490 2459
J2* 497 486 482 495 490 480 468 — 455 376 — — 4229


J3 496 487 482 494 490 481 — — 459 425 346 279 36 — 4475
P 494 488 466 397 184 — 58 — 2087
C 495 ? ≥ 495
G1 495 — — 495
R 494 494
Q 180 11 191


Table 4: Results for Reward-Based Problems. Domain-specific planners are starred. Entries
are the average reward achieved over the 30 runs. A blank indicates that the
planner was unable to attempt the problem. A — indicates that the planner
attempted the problem but did not achieve a strictly positive reward. A ? indicates
that the result is unavailable.
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Tables 3 and 4 show the results of the competition, which we extracted from the com-
petition overview paper (Younes, Littman, Weissmann, & Asmuth, 2005) and from the
competition web site http://www.cs.rutgers.edu/~mlittman/topics/ipc04-pt/. The
first of those tables concerns goal-based problems and the second the reward-based prob-
lems. The entries in the tables represent the goal-achievement percentage or average re-
ward achieved by the various planner versions (left-column) on the various problems (top
two rows). Planners in the top part of the tables are domain-specific. Problems from the
known domains lie on the left-hand side of the tables. The colored blocks world problems
are bw-c-nr (goal-based version) and bw-c-r (reward version) with 5, 8, and 11 blocks. The
non-colored blocks world problems are bw-nc-nr (goal-based version) with 8 blocks, and bw-
nc-r (reward-based version) with 5, 8, 11, 15, 18, and 21 blocks. The box world problems
are bx-nr (goal-based) and bx-r (reward-based), with 5 or 10 cities and 10 or 15 boxes. Prob-
lems from the unknown domains lie on the right hand side of the tables. They comprise:
expl-bw, an exploding version of the 11 block blocks world problem in which putting down
a block may destroy the object it is put on, zeno, a probabilistic variant of a zeno travel
domain problem from the IPC-3 with 1 plane, 2 persons, 3 cities and 7 fuel levels, hanoise,
a probabilistic variant of the tower of hanoi problem with 5 disks and 3 rods, file, a problem
of putting 30 files in 5 randomly chosen folders, and tire, a variant a the tire world problem
with 30 cities and spare tires at 4 of them, where the tire may go flat while driving.


Our planner nmrdpp in its G1 or G2 version, was able to attempt all problems, achiev-
ing a strictly positive reward in all but 4 of them. Not even ff (J3), the competition overall
winner, was able to successfully attempt that many problems. nmrdpp performed particu-
larly well on goal-based problems, achieving the goal in 100% of the runs except in expl-bw,
hanoise, and tire-nr (note that for these three problems, the goal achievement probability of
the optimal policy does not exceed 65%). No other planner outperformed nmrdpp on that
scale. As pointed out before, ff behaves well on the probabilistic version of blocks and box
world because the optimal policies are very close to those for the deterministic problem –
Hoffmann (2002) analyses the reasons why the ff heuristic works well for traditional plan-
ning benchmarks such as blocks world and logistics. On the other hand, ff is unable to
solve the unknown problems which have a different structure and require more substantial
probabilistic reasoning, although these problems are easily solved by a number of partici-
pating planners. As expected, there is a large discrepancy between the version of nmrdpp
allowed to use search control (G2) and the domain-independent version (G1). While the
latter performs okay with the unknown goal-based domains, it is not able to solve any of
the known ones. In fact, to except for ff, none of the participating domain-independent
planners were able to solve these problems.


In the reward-based case, nmrdpp with control knoweldge behaves well on the known
problems. Only the human-encoded policies (J1) performed better. Without control knowl-
edge nmrdpp is unable to scale on those problems, while other participants such as ff and
mgpt are. Furthermore nmrdpp appears to perform poorly on the two unknown problems.
In both cases, this might be due to the fact that it fails to generate an optimal policy: sub-
optimal policies easily have a high negative score in these domains (see Younes et al., 2005).
For r-tire, we know that nmrdpp did indeed generate a suboptimal policy. Additionally, it
could be that nmrdpp was unlucky with the sampling-based policy evaluation process: in
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tire-r in particular, there was a high variance between the costs of various trajectories in
the optimal policy.


Alltogether, the competition results suggest that control knowledge is likely to be es-
sential when solving larger problems (Markovian or not) with nmrdpp, and that, as has
been observed with deterministic planners, approaches making use of control knowledge are
quite powerful.


8. Conclusion, Related, and Future Work


In this paper, we have examined the problem of solving decision processes with non-
Markovian rewards. We have described existing approaches which exploit a compact repre-
sentation of the reward function to automatically translate the NMRDP into an equivalent
process amenable to MDP solution methods. The computational model underlying this
framework can be traced back to work on the relationship between linear temporal logic
and automata in the areas of automated verification and model-checking (Vardi, 2003;
Wolper, 1987). While remaining in this framework, we have proposed a new representation
of non-Markovian reward functions and a translation into MDPs aimed at making the best
possible use of state-based anytime heuristic search as the solution method. Our repre-
sentation extends future linear temporal logic to express rewards. Our translation has the
effect of embedding model-checking in the solution method. It results in an MDP of the
minimal size achievable without stepping outside the anytime framework, and consequently
in better policies by the deadline. We have described nmrdpp, a software platform that
implements such approaches under a common interface, and which proved a useful tool in
their experimental analysis. Both the system and the analysis are the first of their kind.
We were able to identify a number of general trends in the behaviours of the methods and
to provide advice as to which are the best suited to certain circumstances. For obvious
reasons, our analysis has focused on artificial domains. Additional work should examine a
wider range of domains of more practical interest, to see what form these results take in that
context. Ultimately, we would like our analysis to help nmrdpp automatically select the
most appropriate method. Unfortunately, because of the difficulty of translating between
PLTL and $FLTL, it is likely that nmrdpp would still have to maintain both a PLTL and
a $FLTL version of the reward formulae.


A detailed comparison of our approach to solving NMRDPs with existing methods (Bac-
chus et al., 1996, 1997) can be found in Sections 3.10 and 5. Two important aspects of future
work would help take the comparison further. One is to settle the question of the appro-
priateness of our translation to structured solution methods. Symbolic implementations of
the solution methods we consider, e.g. symbolic LAO* (Feng & Hansen, 2002), as well as
formula progression in the context of symbolic state representations (Pistore & Traverso,
2001) could be investigated for that purpose. The other is to take advantage of the greater
expressive power of $FLTL to consider a richer class of decision processes, for instance with
uncertainty as to which rewards are received and when. Many extensions of the language
are possible: adding eventualities, unrestricted negation, first-class reward propositions,
quantitative time, etc. Of course, dealing with them via progression without backtracking
is another matter.
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We should investigate the precise relationship between our line of work and recent work
on planning for temporally extended goals in non-deterministic domains. Of particular
interest are ‘weak’ temporally extended goals such as those expressible in the Eagle language
(Dal Lago et al., 2002), and temporally extended goals expressible in π-CTL* (Baral &
Zhao, 2004). Eagle enables the expression of attempted reachability and maintenance goals
of the form “try-reach p” and “try-maintain p”, which add to the goals “do-reach p” and
“do-maintain p” already expressible in CTL. The idea is that the generated policy should
make every attempt at satisfying proposition p. Furthermore, Eagle includes recovery goals
of the form “g1 fail g2”, meaning that goal g2 must be achieved whenever goal g1 fails, and
cyclic goals of the form “repeat g”, meaning that g should be achieved cyclically until it
fails. The semantics of these goals is given in terms of variants of Büchi tree automata
with preferred transitions. Dal Lago et al. (2002) present a planning algorithm based on
symbolic model-checking which generates policies achieving those goals. Baral and Zhao
(2004) describe π-CTL*, an alternative framework for expressing a subset of Eagle goals
and a variety of others. π-CTL* is a variant of CTL* which allows for formulae involving
two types of path quantifiers: quantifiers tied to the paths feasible under the generated
policy, as is usual, but also quantifiers more generally tied to the paths feasible under any
of the domain actions. Baral and Zhao (2004) do not present any planning algorithm. It
would be very interesting to know whether Eagle and π-CTL* goals can be encoded as non-
Markovian rewards in our framework. An immediate consequence would be that nmrdpp
could be used to plan for them. More generally, we would like to examine the respective
merits of non-deterministic planning for temporally extended goals and decision-theoretic
planning with non-Markovian rewards.


In the pure probabilistic setting (no rewards), recent related research includes work on
planning and controller synthesis for probabilistic temporally extended goals expressible in
probabilistic temporal logics such as CSL or PCTL (Younes & Simmons, 2004; Baier et al.,
2004). These logics enable expressing statements about the probability of the policy satis-
fying a given temporal goal exceeding a given threshold. For instance, Younes and Simmons
(2004) describe a very general probabilistic planning framework, involving concurrency, con-
tinuous time, and temporally extended goals, rich enough to model generalised semi-Markov
processes. The solution algorithms are not directly comparable to those presented here.


Another exciting future work area is the investigation of temporal logic formalisms for
specifying heuristic functions for NMRDPs or more generally for search problems with
temporally extended goals. Good heuristics are important to some of the solution methods
we are targeting, and surely their value ought to depend on history. The methods we have
described could be applicable to the description and processing of such heuristics. Related
to this is the problem of extending search control knowledge to fully operate under the
presence of temporally extended goals, rewards, and stochastic actions. A first issue is
that branching or probabilistic logics such as CTL or PCTL variants should be preferred
to FLTL when describing search control knowledge, because when stochastic actions are
involved, search control often needs to refer to some of the possible futures and even to
their probabilities.18 Another major problem is that the GOALP modality, which is the
key to the specification of reusable search control knowledge is interpreted with respect to


18. We would not argue, on the other hand, that CTL is necessary for representing non-Markovian rewards.
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a fixed reachability goal19 (Bacchus & Kabanza, 2000), and as such, is not applicable to
domains with temporally extended goals, let alone rewards. Kabanza and Thiébaux (2005)
present a first approach to search control in the presence of temporally extended goals in
deterministic domains, but much remains to be done for a system like nmrdpp to be able
to support a meaningful extension of GOALP.


Finally, let us mention that related work in the area of databases uses a similar approach
to pltlstr to extend a database with auxiliary relations containing sufficient information
to check temporal integrity constraints (Chomicki, 1995). The issues are somewhat different
from those raised by NMRDPs: as there is only ever one sequence of databases, what matters
is more the size of these auxiliary relations than avoiding making redundant distinctions.
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Many thanks to Fahiem Bacchus, Rajeev Goré, Marco Pistore, Ron van der Meyden, Moshe
Vardi, and Lenore Zuck for useful discussions and comments, as well as to the anonymous
reviewers and to David Smith for their thorough reading of the paper and their excellent
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Appendix A. A Class of Reward-Normal Formulae


The existing decision procedure (Slaney, 2005) for determining whether a formula is reward-
normal is guaranteed to terminate finitely, but involves the construction and comparison of
automata and is rather intricate in practice. It is therefore useful to give a simple syntactic
characterisation of a set of constructors for obtaining reward-normal formulae even though
not all such formulae are so constructible.


We say that a formula is material iff it contains no $ and no temporal operators – that
is, the material formulae are the boolean combinations of atoms.


We consider four operations on behaviours representable by formulae of $FLTL. Firstly,
a behaviour may be delayed for a specified number of timesteps. Secondly, it may be made
conditional on a material trigger. Thirdly, it may be started repeatedly until a material
termination condition is met. Fourthly, two behaviours may be combined to form their
union. These operations are easily realised syntactically by corresponding operations on
formulae. Where m is any material formula:


delay[f ] = ©f


cond[m, f ] = m→ f


loop[m, f ] = f Um


union[f1, f2] = f1 ∧ f2


19. Where f is an atemporal formula, GOALP(f) is true iff f is true of all goal states.
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We have shown (Slaney, 2005) that the set of reward-normal formulae is closed under delay,
cond (for any material m), loop (for any material m) and union, and also that the closure
of {$} under these operations represents a class of behaviours closed under intersection and
concatenation as well as union.


Many familiar reward-normal formulae are obtainable from $ by applying the four oper-
ations. For example, �(p → $) is loop[⊥, cond[p, $]]. Sometimes a paraphrase is necessary.
For example, �((p∧©q) → ©$) is not of the required form because of the © in the antecedent
of the conditional, but the equivalent �(p→ ©(q → $)) is loop[⊥, cond[p, delay[cond[q, $]]]].
Other cases are not so easy. An example is the formula ¬pU (p∧$) which stipulates a reward
the first time p happens and which is not at all of the form suggested. To capture the same
behaviour using the above operations requires a formula like (p→ $) ∧ (©(p→ $)U p).


Appendix B. Proofs of Theorems


Property 1 Where b⇔ (Γ(i) ∈ B), (Γ, i) |=
B
f iff (Γ, i+ 1) |=


B
Prog(b,Γi, f).


Proof: Induction on the structure of f . There are several base cases, all fairly trivial.
If f = > or f = ⊥ there is nothing to prove, as these progress to themselves and hold
everywhere and nowhere respectively. If f = p then if f holds in Γi then it progresses to >
which holds in Γi+1 while if f does not hold in Γi then it progresses to ⊥ which does not
hold in Γi+1. The case f = ¬p is similar. In the last base case, f = $. Then the following
are equivalent:


(Γ, i) |=
B
f


Γ(i) ∈ B
b
Prog(b,Γi, f) = >
(Γ, i+ 1) |=


B
Prog(b,Γi, f)


Induction case 1: f = g ∧ h. The following are equivalent:
(Γ, i) |=


B
f


(Γ, i) |=
B
g and (Γ, i) |=


B
h


(Γ, i+ 1) |=
B


Prog(b,Γi, g) and (Γ, i+ 1) |=
B


Prog(b,Γi, h) (by induction hypothesis)
(Γ, i+ 1) |=


B
Prog(b,Γi, g) ∧ Prog(b,Γi, h)


(Γ, i+ 1) |=
B


Prog(b,Γi, f)


Induction case 2: f = g ∨ h. Analogous to case 1.


Induction case 3: f = ©g. Trivial by inspection of the definitions.


Induction case 4: f = gUh. Then f is logically equivalent to h ∨ (g ∧ ©(gUh) which by
cases 1, 2 and 3 holds at stage i of Γ for behaviour B iff Prog(b,Γi, f) holds at stage i+1.


�


Theorem 1 Let f be reward-normal, and let 〈f0, f1, . . .〉 be the result of progressing it
through the successive states of a sequence Γ. Then, provided no fi is ⊥, for all i Rew(Γi, fi)
iff Γ(i) ∈ Bf .
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Proof: First, by the definition of reward-normality, if f is reward-normal then Γ |=
B
f iff


for all i, if Γ(i) ∈ Bf then Γ(i) ∈ B. Next, if Γ |=
B
f then progressing f through Γ according


to B (that is, letting each bi be true iff Γ(i) ∈ B) cannot lead to a contradiction because
by Property 1, progression is truth-preserving.


It remains, then, to show that if Γ 6|=
B
f then progressing f through Γ according to B


must lead eventually to ⊥. The proof of this is by induction on the structure of f and as
usual the base case in which f is a literal (an atom, a negated atom or >, ⊥ or $) is trivial.


Case f = g ∧ h. Suppose Γ 6|=
B
f . Then either Γ 6|=


B
g or Γ 6|=


B
h, so by the induction


hypothesis either g or h progresses eventually to ⊥, and hence so does their conjunction.
Case f = g ∨ h. Suppose Γ 6|=


B
f . Then both Γ 6|=


B
g and Γ 6|=


B
h, so by the induction


hypothesis each of g and h progresses eventually to ⊥. Suppose without loss of generality
that g does not progress to ⊥ before h does. Then at some point g has progressed to some
formula g′ and f has progressed to g′ ∨⊥ which simplifies to g′. Since g′ also progresses to
⊥ eventually, so does f .


Case f = ©g. Suppose Γ 6|=
B
f . Let Γ = Γ0;∆ and let B′ = {γ|Γ0; γ ∈ B}. Then


∆ 6|=
B′ g, so by the induction hypothesis g progressed through ∆ according to B′ eventually


reaches ⊥. But The progression of f through Γ according to B is exactly the same after
the first step, so that too leads to ⊥.


Case f = gUh. Suppose Γ 6|=
B
f . Then there is some j such that (Γ, j) 6|=


B
g and for all


i ≤ j, (Γ, i) 6|=
B
h. We proceed by induction on j. In the base case j = 0, and both Γ 6|=


B
g


and Γ 6|=
B
h whence by the main induction hypothesis both g and h will eventually progress


to ⊥. Thus h∨ (g∧ f ′) progresses eventually to ⊥ for any f ′, and in particular for f ′ = ©f ,
establishing the base case. For the induction case, suppose Γ |=


B
g (and of course Γ 6|=


B
h).


Since f is equivalent to h∨ (g∧©f) and Γ 6|=
B
f , Γ 6|=


B
h and Γ |=


B
g, clearly Γ 6|=


B
©f . Where


∆ and B′ are as in the previous case, therefore, ∆ 6|=
B′ f and the failure occurs at stage j−1


of ∆. Therefore the hypothesis of the induction on j applies, and f progressed through ∆
according to B′ goes eventually to ⊥, and so f progressed through Γ according to B goes
similarly to ⊥. �


Theorem 3 Let S′ be the set of e-states in an equivalent MDP D′ for D = 〈S, s0, A,Pr, R〉.
D′ is minimal iff every e-state in S′ is reachable and S′ contains no two distinct e-states s′1
and s′2 with τ(s′1) = τ(s′2) and µ(s′1) = µ(s′2).


Proof: Proof is by construction of the canonical equivalent MDP Dc. Let the set of
finite prefixes of state sequences in D̃(s0) be partitioned into equivalence classes, where
Γ1(i) ≡ Γ2(j) iff Γ1i = Γ2j and for all ∆ ∈ S∗ such that Γ1(i);∆ ∈ D̃(s0), R(Γ1(i);∆) =
R(Γ2(j);∆). Let [Γ(i)] denote the equivalence class of Γ(i). Let E be the set of these
equivalence classes. Let A be the function that takes each [Γ(i)] in E to A(Γi). For each
Γ(i) and ∆(j) and for each a ∈ A([Γ(i)]), let T ([Γ(i)], a, [∆(j)]) be Pr(Γi, a, s) if [∆(j)] =
[Γ(i); 〈s〉]. Otherwise let T ([Γ(i)], a, [∆(j)]) = 0. Let R([Γ(i)]) be R(Γ(i)). Then note the
following four facts:


1. Each of the functions A, T and R is well-defined.


2. Dc = 〈E , [〈s0〉],A, T ,R〉 is an equivalent MDP for D with τ([Γ(i)]) = Γi.
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3. For any equivalent MDP D′′ of D there is a mapping from a subset of the states of
D′′ onto E .


4. D′ satisfies the condition that every e-state in S′ is reachable and S′ contains no two
distinct e-states s′1 and s′2 with τ(s′1) = τ(s′2) and µ(s′1) = µ(s′2) iff Dc is isomorphic
to D′.


What fact 1 above amounts to is that if Γ1(i) ≡ Γ2(j) then it does not matter which of
the two sequences is used to define A, T and R of their equivalence class. In the cases of
A and T this is simply that Γ1i = Γ2j . In the case of R, it is the special case ∆ = 〈Γ1i〉 of
the equality of rewards over extensions.


Fact 2 is a matter of checking that the four conditions of Definition 1 hold. Of these,
conditions 1 (τ([s0]) = s0) and 2 (A([Γ(i)]) = A(Γi)) hold trivially by the construction.
Condition 4 says that for any feasible state sequence Γ ∈ D̃(s0), we haveR([Γ(i)]) = R(Γ(i))
for all i. This also is given in the construction. Condition 3 states:


For all s1, s2 ∈ S, if there is a ∈ A(s1) such that Pr(s1, a, s2) > 0, then for all
Γ(i) ∈ D̃(s0) such that Γi = s1, there exists a unique [∆(j)] ∈ E , ∆j = s2, such
that for all a ∈ A([Γ(i)]), T ([Γ(i)], a, [∆[j]]) = Pr(s1, a, s2).


Suppose Pr(s1, α, s2) > 0, Γ(i) ∈ D̃(s0) and Γi = s1. Then the required ∆(j) is Γ(i); 〈s2〉,
and of course A([Γ(i)]) = A(Γi), so the required condition reads:


[Γ(i); 〈s2〉] is the unique element X of E with τ(X) = s2 such that for all a ∈
A(Γi), T ([Γ(i)], a,X) = Pr(s1, a, s2).


To establish existence, we need that if a ∈ A(Γi) then T ([Γ(i)], a, [Γ(i); 〈s2〉]) = Pr(Γi, a, s2),
which is immediate from the definition of T above. To establish uniqueness, suppose that
τ(X) = s2 and T ([Γ(i)], a,X) = Pr(s1, a, s2) for all actions a ∈ A(Γi). Since Pr(s1, α, s2) >
0, the transition probability from [Γ(i)] to X is nonzero for some action, so by the definition
of T , X can only be [Γ(i); 〈s2〉].


Fact 3 is readily observed. Let M be any equivalent MDP for D. For any states s1
and s2 of D, and any state X of M such that τ(X) = s1 there is at most one state Y
of M with τ(Y ) = s2 such that some action a ∈ A(s1) gives a nonzero probability of
transition from X to Y . This follows from the uniqueness part of condition 3 of Definition 1
together with the fact that the transition function is a probability distribution (sums to 1).
Therefore for any given finite state sequence Γ(i) there is at most one state of M reached
from the start state of M by following Γ(i). Therefore M induces an equivalence relation
≈M on S∗: Γ(i) ≈M ∆(j) iff they lead to the same state of M (the sequences which are not
feasible in M may all be regarded as equivalent under ≈M ). Each reachable state of M has
associated with it a nonempty equivalence class of finite sequences of states of D. Working
through the definitions, we may observe that ≈M is a sub-relation of ≡ (if Γ(i) ≈M ∆(j)
then Γ(i) ≡ ∆(j)). Hence the function that takes the equivalence class under ≈M of each
feasible sequence Γ(i) to [Γ(i)] induces a mapping h (an epimorphism in fact) from the
reachable subset of states of M onto E .


To establish Fact 4, it must be shown that in the case of D′ the mapping can be
reversed, or that each equivalence class [Γ(i)] in Dc corresponds to exactly one element of
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D′. Suppose not (for contradiction). Then there exist sequences Γ1(i) and Γ2(j) in D̃(s0)
such that Γ1(i) ≡ Γ2(j) but on following the two sequences from s′0 we arrive at two different
elements s′1 and s′2 of D′ with τ(s′1) = Γ1i = Γ2j = τ(s′2) but with µ(s′1) 6= µ(s′2). Therefore
there exists a sequence ∆(k) ∈ D̃(s) such that R(Γ1(i − 1);∆(k)) 6= R(Γ2(j − 1);∆(k)).
But this contradicts the condition for Γ1(i) ≡ Γ2(j). �


Theorem 3 follows immediately from facts 1–4.


Theorem 4 Let D′ be the translation of D as in Definition 5. D′ is a blind minimal
equivalent MDP for D.


Proof: Reachability of all the e-states is obvious, as they are constructed only when
reached. Each e-state is a pair 〈s, φ〉 where s is a state of D and φ is a reward function
specification. In fact, s = τ(〈s, φ〉) and φ determines a distribution of rewards over all
continuations of the sequences that reach 〈s, φ〉. That is, for all ∆ in S∗ such that ∆0 = s,
the reward for ∆ is


∑
(f :r)∈φ{r | ∆ ∈ Bf}. If D′ is not blind minimal, then there exist


distinct e-states 〈s, φ〉 and 〈s, φ′〉 for which this sum is the same for all ∆. But this makes
φ and φ′ semantically equivalent, contradicting the supposition that they are distinct.


�


Appendix C. Random Problem Domains


Random problem domains are produced by first creating a random action specification
defining the domain dynamics. Some of the experiments we conducted20 also involved
producing, in a second step, a random reward specification that had desired properties in
relation to the generated dynamics.


The random generation of the domain dynamics takes as parameters the number n
of propositions in the domain and the number of actions to be produced, and starts by
assigning some effects to each action such that each proposition is affected by exactly one
action. For example, if we have 5 actions and 14 propositions, the first 4 actions may affect
3 propositions each, the 5th one only 2, and the affected propositions are all different. Once
each action has some initial effects, we continue to add more effects one at a time, until a
sufficient proportion of the state space is reachable – see “proportion reachable” parameter
below. Each additional effect is generated by picking up a random action and a random
proposition, and producing a random decision diagram according to the “uncertainty” and
“structure” parameters below:


The Uncertainty parameter is the probability of a non zero/one value as a leaf node. An
uncertainty of 1 will result in all leaf nodes having random values from a uniform
distribution. An uncertainty of 0 will result in all leaf nodes having values 0 or 1 with
an equal probability.


The Structure (or influence) parameter is the probability of a decision diagram containing
a particular proposition. So an influence of 1 will result in all decision diagrams


20. None of those are included in this paper, however.
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including all propositions (and very unlikely to have significant structure), while 0
will result in decision diagrams that do not depend on the values of propositions.


The Proportion Reachable parameter is a lower bound on the proportion of the entire 2n


state space that is reachable from the start state. The algorithm adds behaviour until
this lower bound is reached. A value of 1 will result in the algorithm running until
the actions are sufficient to allow the entire state space to be reachable.


A reward specification can be produced with regard to the generated dynamics such that
a specified number of the rewards are reachable and a specified number are unreachable.
First, a decision diagram is produced to represent which states are reachable and which
are not, given the domain dynamics. Next, a random path is taken from the root of this
decision diagram to a true terminal if we are generating an attainable reward, or a false
terminal if we are producing an unattainable reward. The propositions encountered on this
path, both negated and not, form a conjunction that is the reward formula. This process
is repeated until the desired number of reachable and unreachable rewards are obtained.
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Thiébaux, S., Kabanza, F., & Slaney, J. (2002b). A model-checking approach to decision-
theoretic planning with non-Markovian rewards. In Proc. ECAI Workshop on Model-
Checking in Artificial Intelligence (MoChArt-02), pp. 101–108.


Vardi, M. (2003). Automated verification = graph, logic, and automata. In Proc. Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pp. 603–606. Invited
paper.


Wolper, P. (1987). On the relation of programs and computations to models of temporal
logic. In Proc. Temporal Logic in Specification, LNCS 398, pp. 75–123.


Younes, H. L. S., & Littman, M. (2004). PPDDL1.0: An extension to PDDL for expressing
planning domains with probabilistic effects. Tech. rep. CMU-CS-04-167, School of
Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania.


Younes, H. L. S., Littman, M., Weissmann, D., & Asmuth, J. (2005). The first probabilistic
track of the International Planning Competition. In Journal of Artificial Intelligence
Research, Vol. 24, pp. 851–887.


Younes, H., & Simmons, R. G. (2004). Policy generation for continuous-time stochastic
domains with concurrency. In Proc. International Conference on Automated Planning
and Scheduling (ICAPS), pp. 325–333.


74






