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Abstract


Learning and reasoning are both aspects of what is considered to be intelligence. Their
studies within AI have been separated historically, learning being the topic of machine
learning and neural networks, and reasoning falling under classical (or symbolic) AI. How-
ever, learning and reasoning are in many ways interdependent. This paper discusses the
nature of some of these interdependencies and proposes a general framework called FLARE,
that combines inductive learning using prior knowledge together with reasoning in a propo-
sitional setting. Several examples that test the framework are presented, including classical
induction, many important reasoning protocols and two simple expert systems.


1. Introduction


Induction and deduction are both underlying processes in intelligent agents. Induction \in-
volves intellectual leaps from the particular to the general" (D'Ignazio & Wold, 1984). It
plays an important part in knowledge acquisition or learning. D'Ignazio and Wold (1984)
claim that indeed, \All the laws of nature were discovered by inductive reasoning." Deduc-
tion is a form of reasoning with and about acquired knowledge. It typically does not result
in the generation of new facts, rather it establishes cause-e�ect relationships between exist-
ing facts. Deduction may be applied forward by seeking the consequences of certain existing
hypotheses or backward to discover the necessary conditions for the achievement of certain
goals. Despite their di�erences, induction and deduction are strongly interrelated. The
ability to reason about a domain of knowledge is often based on rules about that domain,
that must be acquired somehow; and the ability to reason can often guide the acquisition
of new knowledge or learning.


Inductive learning has been the subject of much research leading to the design of a
variety of algorithms (e.g., Clark & Niblett, 1989; Michalski, 1983; Quinlan, 1986; Salzberg,
1991). In general, inductive learning systems generate classi�cation rules from examples.
Typically, the system is �rst presented a set of examples (objects, situations, etc.), also
known as a training set. Examples are usually expressed in the attribute-value language
and represent recorded instances of attribute-value pairs together with their corresponding
classi�cation. The system's goal is then to discover sets of su�cient critical features or rules
that properly classify the examples of the training set (convergence) and adequately extend
to previously unseen examples (generalization).


Though machines are still a far cry from matching human qualitative inductive leaps,
inductive learning systems have proven useful over a wide range of applications in medicine
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(breast cancer, hepatitis detection), banking (credit screening), defense (mine-rock dis-
crimination), botany (iris variety identi�cation, venomous mushroom detection) and others
(Murphy & Aha, 1992).


The study of deductive reasoning goes at least as far back as the early Greek philoso-
phers, such as Socrates and Aristotle. Its formalization has given rise to a variety of logics,
from propositional to �rst-order predicate logic to default logic to several non-monotonic
extensions. Many of these logics have been successfully implemented in arti�cial systems
(e.g., PROLOG, expert systems). They typically consist of a pre-encoded knowledge or rule
base, a given set of facts (identi�ed as either causes or consequences) and some inference
engine. The inference engine carries out the deductive process using the rules in the rule
base and the facts it is provided. Several of these systems have been successfully used in
various domains, such as medical diagnosis (Clancey & Shortli�e, 1984) and geology (Duda
& Reboh, 1984).


One of the greatest challenges of current deductive systems is knowledge acquisition,
that is, the construction of the rule base. Typically, the rule base is generated as domain
knowledge is extracted from human experts and carefully engineered into rules. Knowledge
acquisition is a tedious task that presents many di�culties both practically and theoretically.
If a su�ciently rich training set can be obtained, then inductive learning may be used
e�ectively to complement the traditional approach to knowledge acquisition. Indeed, a
system's knowledge base can be constructed from both rules encoded a priori and rules
generated inductively from examples. In other words, rules and examples need not be
mutually exclusive. The strong knowledge principle (Waterman, 1986) and early work on
bias (Mitchell, 1980) suggest the need for prior knowledge. Rules supplied a priori are one
simple form of prior knowledge that has been used successfully in several inductive systems
(e.g., Giraud-Carrier & Martinez, 1993; Ourston & Mooney, 1990). Similarly, proposals
have been made to enhance deductive systems with learning capabilities (e.g., Haas &
Hendrix, 1983; Rychener, 1983).


It is these authors' contention that the study of the interdependencies between learn-
ing and reasoning and the subsequent integration of induction and deduction into uni�ed
frameworks may lead to the development of more powerful models. This paper describes a
system, called FLARE (Framework for Learning And REasoning), that attempts to combine
inductive learning using prior knowledge together with reasoning. Induction and deduction
in FLARE are carried out within the con�nes of non-recursive, propositional logic. Learn-
ing is e�ected incrementally as the system continually adapts to new information. Prior
knowledge is given by a teacher in the form of rules. Within the context of a particular
inductive task, these rules may serve to produce useful learning biases. Simple defaults
combined with learning capabilities enable FLARE to exhibit reasoning that is normally
considered non-monotonic.


The paper is organized as follows. Section 2 presents FLARE and argues the validity of
the uni�ed framework. FLARE's representation language is described and the algorithms
employed in learning and reasoning are detailed. Section 3 reports experimental results
on classical datasets, a number of \well-designed" reasoning protocols and several other
applications, including two simple expert systems. Some of the limitations of the system
are also described. Section 4 discusses related work in induction and deduction. Finally,
section 5 concludes the paper by summarizing the results and discussing further research.
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2. FLARE - A Framework for Learning and Reasoning


In this section, FLARE's learning and reasoning mechanisms are detailed. A description
and discussion of FLARE's representation language are given �rst in Section 2.1, along
with some useful de�nitions and a simple, practical example that will serve as a running
example throughout the paper. Sections 2.2 to 2.5 then follow a top-down approach to the
description of FLARE.


2.1 FLARE's Representation Language


FLARE's representation language is an instance of the attribute-value language (AVL). In
FLARE, attributes may range over nominal domains and bounded linear domains, including
closed intervals of continuous numeric values. The basic elements of knowledge in AVL are
vectors de�ned over the cross-product of the domains of the attributes. The components of
a vector specify a value for each attribute. The following simple extension is made to AVL.
If A is an attribute and D is the domain of A, then A takes on values from D [ f?; ?g. The
special symbols ? and ? stand for don't-care and don't-know, respectively.


The semantics associated with ? and ? are di�erent. An attribute whose value is ? is
one that is known (or assumed) to be irrelevant in the current context, while an attribute
whose value is ? may be relevant but its actual value is currently unknown. The ? symbol
allows the encoding of rules, while the ? symbol accounts for missing attribute values in
real-world observations.


2.1.1 First-Order to Attribute-Value Translation


Since learning and reasoning tasks are often expressed in English with simple, direct coun-
terparts in the classical �rst-order logic language (FOL), it is necessary for FLARE to
translate FOL clauses into their AVL equivalent. AVL is clearly not as expressive as FOL,
so that FLARE has some inherent limitations. For the purposes of this discussion, let pred-
icates of the form p(x) and p(x; C) where C is a constant be called avl-predicates. Then,
the FOL clauses that can be translated into AVL are of two kinds:


1. ground facts: p(C) or :p(C) where C is a constant (e.g., block(A)).


2. simple implications: (8x)P (x)) q(x) where P (x) is a conjunction of avl-predicates
and q(x) is, without loss of generality, a single, possibly negated avl-predicate (e.g.,
block(x) ^ weight(x; heavy) ) :on table(x)).


All clauses involve at most one universally quanti�ed variable and are thus essentially non-
recursive, propositional clauses. Despite its restricted language, FLARE e�ectively handles
a signi�cant range of applications. Moreover, AVL accounts for simple, e�cient matching
mechanisms and lends itself naturally to many inductive learning problems as witnessed
by its use in many successful learning systems (Clark & Niblett, 1989; Michalski, 1983;
Quinlan, 1986).


FOL statements of the aforementioned forms are translated in a straightforward way
into an equivalent symbolic-valued AVL representation, as shown in Figure 1. A similar
transformation has been proposed in the context of ILP (D�zeroski, Muggleton, & Russell,
1993). Like FLARE, some ILP systems, such as LINUS (Lavra�c, D�zeroski, & Grobelnik,
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1. Attribute de�nition: For each avl-predicate, create a matching Boolean (for p(x)) or multi-valued
(for p(x;C)) attribute. If there are ground facts, create a multi-valued attribute, called label, whose
values are those of the constants.


2. Vector de�nition: For each implication, create a matching vector where attributes corresponding
to premise and conclusion have their appropriate value and all other attributes are set to ?. For
each ground fact, create a matching vector where the value of label is that of the constant and the
attribute corresponding to the predicate has its appropriate value. Tag the attribute corresponding
to the conclusion.


Figure 1: FOL to AVL Transformation


FOL AVL


Rep (b) Qua (b) Pac (b)
Republican(x)):Paci�st(x) 1 ? 0T
Quaker(x))Paci�st(x) ? 1 1T


Table 1: Nixon Diamond (Reiter & Griscuolo, 1981)


1991), �rst map ILP problems to propositional learning problems and then rely on attribute-
based learning.


The creation of attribute label in step 2 stems from the fact that ground facts of the form
p(C) can be rewritten as simple implications of the form label(x; C)) p(x). Notice how
the attributes whose values are ? in a vector correspond exactly to those predicates that do
not appear in the premise of the corresponding FOL clause. The attribute corresponding
to q(x) has di�erent usages. It functions as a conclusion during forward chaining and as a
target classi�cation during inductive learning. In some cases, it can also be used as a goal.
To avoid unnecessary confusion, the attribute corresponding to q(x) is simply referred to
as the target-attribute. The values of the target-attribute are subsequently tagged with the
subscript T . The translation from FOL to AVL is currently performed manually.


It is clear that as the number of predicates increases, so does the size of the vectors. Since
all vectors are of the same size and many of them may only have values set for a relatively
small number of their attributes, this may result in large memory requirements, as well as
in an increase of execution time of operations on vectors. When there are predicates that
qualify di�erent values of the same concept (e.g., red(x), yellow(x), for color), it is possible
to limit the size of the vectors by translating such predicates into a single multi-valued
attribute (e.g., color(x; V ), where V is a constant: red, yellow, etc.). This is particularly
useful for the conclusion part q(x) when it corresponds to a classi�cation for x.


Tables 1 through 4 contain four simple examples that demonstrate the transformation.
Each derived attribute in the AVL column is followed by its type (b for Boolean, m for
multi-valued). Table 1 shows the Nixon Diamond, a classical example of conicting de-
faults. Informally, the Nixon Diamond states that Republicans are typically not paci�st
but Quakers are typically paci�st. The conict then arises as one asserts that Nixon is both
a Republican and a Quaker. Table 2 contains assertions about animals and their ability to
y. It states that animals normally do not y, birds are typically ying animals and pen-
guins are birds that do not y. Table 3 shows statements regarding eyes and their �tness
for lenses. Finally, Table 4 contains some facts about a simple blocks world.
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FOL AVL


Ani (b) Bir (b) Pen (b) Fly (b)
Animal(x)):Fly(x) 1 ? ? 0T
Bird(x))Animal(x) 1T 1 ? ?


Bird(x))Fly(x) ? 1 ? 1T
Penguin(x))Bird(x) ? 1T 1 ?


Penguin(x)) :Fly(x) ? ? 1 0T


Table 2: Flying or Not Flying (Lifschitz, 1988)


FOL AVL


Tpr (m) Eye (m) Fit (b)
Tear-prod-rate(x,low))Eyes(x,dry) low dryT ?


Eyes(x,dry)) :Fit(x) ? dry 0T


Table 3: Fitting Lenses


2.1.2 Examples vs. Precepts vs. Rules


Informally, the problem of supervised learning may be described as follows. Given (1) a set
of categories, (2) for each category, a set of instances of \objects" in that category and (3)
optional prior knowledge, produce a set of rules su�cient to place objects in their correct
category. In AVL, instances consist of sets of attribute-value pairs or vectors, describing
characteristics of the objects they represent, together with the object's category. In this
context, the category is a target-attribute.


An example is a vector in which all attributes are set to either ? or one of their possible
values. A rule is a vector in which some of the attributes have become ? as a result of
generalization during inductive learning. A precept is similar to a rule but, unlike a rule,
it is not induced from examples. Precepts are either given by a teacher or deduced from
general knowledge relevant to the domain under study. In the context of a given rule or
precept, the ? attributes have no e�ect on the value of the category. Precepts and rules
thus represent several examples. For instance, let p = (?; 1; 0; 0T) be a precept, where all
attributes range over the set f0,1,2g. Then p represents the three examples: (0; 1; 0; 0T),
(1; 1; 0; 0T) and (2; 1; 0; 0T).


The distinction between rules and precepts is limited to learning. In reasoning, all
vectors (including examples that do not generalize) are rules. In FLARE, rules are formed
by dropping conditions (Michalski, 1983), that is, under certain circumstances (see Section
2.4.2), one attribute is set to ?. Precepts, on the other hand, are rules encoded a priori.
They reect some high-level knowledge (or common sense) about the real-world. A precept
\suggests something advisory and not obligatory communicated typically through teaching"
(Webster's Dictionary).


2.1.3 Running Example


To illustrate the above de�nitions and algorithms of the following sections, a �nal example
of the transformation is constructed, based on the mediadv knowledge base (Harmon &
King, 1985). This purposely simple example will serve as a running example throughout
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FOL AVL


Lab (m) Blk (b) Hvy (b) OnT (b)
block(A) A 1T ? ?


block(B) B 1T ? ?


heavy(A) A ? 1T ?


heavy(B) B ? 1T ?


block(x) ^ heavy(x) ) on table(x) ? 1 1 1T
:on table(A) A ? ? 0T


Table 4: Simple Blocks World, adapted from (Lifschitz, 1988)


the paper. A discussion of the complete mediadv knowledge base is in Section 3.5. Here,
two conditions (i.e., instructional feedback and presentation modi�cation) are left out and
only a few of the original rules are used. Table 5 contains the informal English version
of the knowledge used (with reference to the rules of mediadv it was generated from when
applicable) and its corresponding translation into AVL vectors.


Let KB be the resulting set of vectors. The attributes are given in the order: situation,
stimulus-situation, response, appropriate-response, stimulus-duration, training-budget and
media. Note that all the attributes are nominal. The symbolic values used in the En-
glish statements are transformed into equivalent nominal values in the vectors. Hence, for
example, the �rst statement gives rise to a vector in which the attribute situation is set
to 0 (the corresponding nominal value of schematics for this attribute), and the target-
attribute stimulus-situation is set to 0 (the corresponding nominal value of symbolic for
this attribute).


The top goal is for the system to suggest the most e�ective media for training, based on
four conditions: situation, response, stimulus-duration, and training-budget. Note that the
attributes stimulus-situation and appropriate-response can be used as subgoals in reaching
the �nal conclusion. Vectors v13 to v17 are examples since all of the conditions have set
values. They are not part of the original mediadv knowledge base but are added to exercise
important features of the algorithms. As KB is given, all vectors of KB with condition
attributes set to ? are precepts rather than rules. For instance, v7 and v12 are precepts.
Then, the term rule applies to new generalizations, induced by FLARE from KB. For
instance, v08 (see Section 2.4.3) is a rule.


2.2 Algorithmic Overview


FLARE is a self-adaptive, incremental system. It uses domain knowledge and empirical
evidence to construct and maintain its knowledge base. FLARE's knowledge base is in-
terpreted as a \best so far" set of rules for coping with the current application. In that
sense, FLARE follows the scienti�c approach to theory formation/revision: available prior
knowledge and experience produce a \theory" that is updated or re�ned continually by new
evidence.


FLARE involves three main functions whose de�nitions and high-level algorithmic in-
teractions are given in Figure 2. The details of each function's implementation are given in
the following sections. An intuitive overview is presented here.
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English Statements Equivalent AVL Vectors


If situation = schematics (Rule3) v1 = 0 0T ? ? ? ? ?


Then stimulus-situation = symbolic
If situation = conversation (Rule4) v2 = 1 1T ? ? ? ? ?


Then stimulus-situation = verbal
If situation = photograph (Rule2) v3 = 2 2T ? ? ? ? ?


Then stimulus-situation = pictorial
If response = observing or (Rule5) v4 = ? ? 0 0T ? ? ?


response = thinking v5 = ? ? 1 0T ? ? ?


Then appropriate-response = covert
If response = emoting (Rule10) v6 = ? ? 2 1T ? ? ?


Then appropriate-response = a�ective
If stimulus-situation = verbal and (Rule13) v7 = ? 1 ? 0 0 ? 2T


appropriate-response = covert and
stimulus-duration = brief


Then media = lecture
If stimulus-situation = verbal or (Rule14) v8 = ? 1 ? 0 0 1 3T


stimulus-situation = symbolic or v9 = ? 0 ? 0 0 1 3T
stimulus-situation = pictorial and v10 = ? 2 ? 0 0 1 3T
appropriate-response = covert and
stimulus duration = brief and
training-budget = medium


Then media = lecture-with-slides
If stimulus-situation = verbal and (Rule16) v11 = ? 1 ? ? 0 ? 0T


stimulus-duration = brief pty = 1
Then media = role-play-w/verbal-feedback
If stimulus-situation = verbal and (Rule17) v12 = ? 1 ? 1 ? ? 1T


appropriate-response = a�ective pty = 3
Then media = role-play-w/video-feedback


If situation = conversation and v13 = 1 ? 0 ? 0 1 2T
response = observing or v14 = 1 ? 1 ? 0 1 2T
response = thinking and
stimulus-duration = brief and
training budget = medium


Then media = lecture
If situation = photograph and v15 = 2 ? 2 ? 1 0 0T


response = emoting and
stimulus-duration = persistent and
training-budget = small


Then media = role-play-w/verbal-feedback
If situation = photograph and v16 = 2 ? 2 ? 1 0 2T


response = emoting and
stimulus-duration = persistent and
training-budget = small


Then media = lecture
If situation = photograph and v17 = 2 ? 2 ? 1 0 0T


response = emoting and
stimulus-duration = persistent and
training-budget = small


Then media = role-play-w/verbal-feedback


Table 5: Simple KB Running Example
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DEFINITION


� Function: Generate-Precepts


{ Input: a set of general rules, a set of facts and one designated target-attribute.


{ Output: one or more precepts.


� Function: Reasoning


{ Input: the current knowledge base, a set of facts encoded in a vector v, one designated target-
attribute and optionally, the target value of the target-attribute.


{ Output: a vector v+ equal to v together with further facts deduced from v, including a derived
value for the target-attribute.


� Function: Adapting


{ Input: the current knowledge base, the vector v+ output by function Reasoning and the target
value of the target-attribute.


{ Output: updated knowledge base.


IMPLEMENTATION


1. Preprocessing: Perform Generate-Precepts


2. Main loop: For each vector presented to the system


(a) Perform Reasoning


(b) If there is a target value for the target-attribute, perform Adapting


Figure 2: FLARE - Algorithmic Overview


Conceptually, FLARE's execution consists of two phases. In the preprocessing phase,
FLARE uses prior knowledge in the form of general rules that may be viewed as encoding
\commonsense" knowledge. Using deduction from given facts, domain-speci�c precepts are
generated as an instantiation of the general knowledge to the domain at hand. Section 2.5
details the Generate-Precepts function. The need for generating and explicitly encoding
precepts as individual vectors in such a preprocessing phase arises because FLARE's induc-
tive mechanisms take place at the vector level. Thus, even though it is always possible to
deduce them from the general knowledge, precepts are most useful in induction when they
are made explicit.


In normal processing, FLARE executes an, at least conceptually, in�nite loop. Steps (a)
and (b) are executed every time new information (in the form of AVL vectors) is presented
to the system. In step (a), FLARE reasons from the \facts" provided by the input vector
and the rules found in the current knowledge base. Rule-based reasoning and similarity-
based reasoning are combined as discussed in Section 2.3 to derive a value for the target-
attribute, as well as other attributes along the forward chain to the conclusion. In step
(b), FLARE adapts its current knowledge base. Because FLARE is a supervised learner,
it can only adapt when a target value for the target-attribute is explicitly given as part of
the information presented. The combination of steps (a) and (b) is referred to as learning.
Section 2.4 details the Adapting function.
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Note that reasoning based upon available knowledge prior to adapting is plausible.
Even when available information is insu�cient and/or incomplete, humans often attempt
to make a tentative decision and get corrected if necessary. At any one time, the decision
made represents a kind of \best guess" given currently available information. The more
(correct) information becomes available, the more accurate decisions become.


2.3 FLARE's Reasoning


FLARE implements a simple form of rule-based reasoning combined with similarity-based
reasoning, similar to CONSYDERR (Sun, 1992). Sun has argued that such a combination
e�ectively decreases the system's susceptibility to brittleness (Sun, 1992). In particular, in
the absence of applicable rules or when information is incomplete, FLARE relies on simi-
larity with previously encountered situations to make useful predictions. Others have also
argued that analogy is a necessary condition for commonsense reasoning and the subsequent
overcoming of brittleness (Minsky & Riecken, 1994; Wollowski, 1994). Section 2.3.1 shows
how the notion of Clark's completion (1978) can be applied to inductively learned rules
and exploited by similarity-based reasoning to generate new rules. Sections 2.3.2 to 2.3.7
describe and illustrate FLARE's reasoning mechanisms.


2.3.1 Completion


Inductively learned rules of the form (8x)P (x) ) q(x), where P is a conjunction of avl-
predicates, are essentially classi�cation rules or de�nitions that establish relationships be-
tween features, captured by P (x), and concepts, expressed by q(x). In keeping with the
classical assumption that what is not known by a learning system is false by default, in-
ductively generated rules lend themselves naturally to the completion principle proposed
by Clark (1978). That is, classi�cation rules become \if and only if" statements, i.e.,
P (x) , q(x). Hence, under completion, if q(x) is known to be true, then it is possible to
conclude that P (x) is true.


Clearly, completion does not apply to all rules. Inductively learned rules are inherently
de�nitional as they essentially encode a concept's description in terms of a set of features.
Other rules, such as those relating concepts at the same relative cognitive level, are not
de�nitional. For example, given that birds are animals and that some x is an animal,
it does not follow that x is a bird. Note that, in addition to inductively learned rules,
de�nitions may be given to FLARE as prior knowledge.


The completion principle is particularly useful when it interacts with similarity-based
reasoning to generate new rules, as shown in the following derivation.


� Hypotheses:


1. (8x)P (x)) q(x), which may be completed.


2. (8x)P 0(x)) q0(x).


3. P \ P 0 6= ; (i.e., P and P 0 have some attributes in common).


4. q(x) is true.


� Derivation:


1. q(x) from hypothesis 4.
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2. P (x) from completion applied to hypothesis 1.


3. q0(x) from similarity-based reasoning using hypotheses 2 and 3.


A new implication between concepts, namely q(x) ) q0(x), is thus generated. Though
FLARE is capable of deriving q0(x) from q(x), it does not actually store the new implication
in its knowledge base.


The following example adapted from (Collins & Michalski, 1989) illustrates the use of
the above derivation. Assume that the system has learned a description of the Chaco area in
terms of a set G of geographical conditions (i.e., G(x))area(x; theChaco)). Furthermore,
assume that the system knows a rule that encodes a set of conditions C su�cient for the
raising of cattle (i.e., C(x))raise(x; cattle)) and C is such that C and G share a number of
conditions. If the system is now told that the area of interest is the Chaco, it �rst deduces by
completion that the conditions in G are met and then, by taking advantage of the similarity
between G and C, the system concludes that cattle may be raised in the Chaco. Note that
the level of con�dence in the conclusion depends upon the amount of similarity.


In FLARE, the representation is extended and a de�nition indicator is tagged to those
statements that may be completed (i.e., prior de�nitions, inductively learned classi�cations).
Note that, though somewhat cumbersome, this extension is needed since FLARE does
not physically separate concepts and the features used to describe them. CONSYDERR
on the other hand provides natural support for the dichotomy. FLARE's representation
makes learning more readily applicable and preserves consistency with previously developed
models. At this point, the issue of achieving both the dichotomy and easy learning remains
open.


2.3.2 FLARE's Reasoning Function


Deduction in FLARE is applied forward. Hence, facts must be provided so as to initiate
reasoning. These facts are coded into a vector in which attributes whose values are known
are accordingly set, while all other attributes are ? (i.e., don't-know). One attribute is
designated as the target-attribute and, if known, its value is also provided. FLARE then
uses the rules of its knowledge base and the facts to derive a value for the target-attribute.
The Reasoning function is shown in Figure 3. Note that in this discussion, the current
knowledge base is assumed to be non-empty. If the knowledge base is empty, the system
cannot deduce anything other than ?.


Step (1) applies completion �rst. FLARE �nds all asserted (i.e., neither ? nor ?) at-
tributes of v that are target-attributes of de�nitions in the current knowledge base. If any
such attribute is found, and for all of them, completion is applied by \copying" into v all
asserted attributes of the corresponding de�nitions that are ? in v. The following two issues
must be addressed by FLARE in implementing completion.


1. Since some attributes may be involved in the de�nitions of more than one target-
attribute or concept, it follows that there may be more than one values to be copied
into a given attribute when completing these de�nitions.


2. Since FLARE's concepts and rules consist of sets of vectors, where each vector is a
conjunction and all the vectors sharing the same target-attribute form a disjunction,
it follows that some de�nitions may be disjunctive as well.
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DEFINITION


� Input: the current knowledge base, a set of facts encoded by a vector v, one designated target-attribute
and optionally, the target value of the target-attribute.


� Output: a vector v+ equal to v together with further facts deduced from v, including a value for the
target-attribute.


IMPLEMENTATION


1. Completion: For each asserted attribute a of v other than the target-attribute, if a is the target-
attribute of a de�nition d and their values are equal, then copy all asserted attributes of d that are ?
in v, into v.


2. Forward chaining: If v's target-attribute has not been asserted


(a) Repeat until no new attribute of v has been asserted


i. Let w = v.
(* create a temporary copy of v *)


ii. For each non-asserted attribute a of v other than the target-attribute, if a rule can be
applied to v to assert a, then apply it by asserting a in w.
(* based on v, assert all possible attributes (other than the target-attribute) in w *)


iii. Let v = w.
(* copy result back into v for next level of inference *)


(b) If a rule can be applied to assert v's target-attribute, then apply it. Otherwise, perform
similarity-based assertion.


Figure 3: Function Reasoning


The current implementation resolves these two issues as follows. In the �rst case, potential
conicts are resolved simply by giving precedence to the �rst copy made (which depends
upon the order in which asserted attributes are processed). In the second case, FLARE
simply chooses one of the de�ning conjunctions at random and applies completion to it.
Other mechanisms (e.g., apply to all, select a winner based on some criteria, etc.) are the
topic of further research.


Completion causes further information (in the form of asserted attributes) to be gained,
thus improving the chance of reaching a goal. Indeed, the purpose of step (1) is two-fold.
First, completion allows the system to reach goals that are not otherwise achievable by
existing rules. Second, even if the top goal is not achieved directly by completion, further
reasoning to achieve it is enhanced as described in Section 2.3.1.


When the target-attribute has not been asserted by completion, step (2) pursues the
reasoning process using forward chaining. As mentioned above, v has a single target-
attribute, corresponding to the �nal goal to achieve. However, at any given time, any
one of the (yet) non-asserted1 attributes of v may be designated as a subgoal that may


1. These are either ? or ?. They are ? when precepts and rules with di�ering premises and conclusions are
used. In such cases, it is not clear until reasoning whether they are true don't-cares or only don't-knows.


157







Giraud-Carrier & Martinez


be useful (or necessary) in reaching the �nal conclusion. Step (2)(a) is the heart of the
reasoning process. Each execution of step (2)(a)(ii) corresponds to the achievement of all
possible subgoals at a given depth in the inference process. Each iteration uses knowledge
acquired in the previous iteration to attempt to derive more new conclusions using existing
rules. Step (2)(b) concludes the reasoning phase by asserting the target-attribute.


Notice that the target-attribute is always asserted, either by rule application or similarity-
based assertion. Hence, FLARE always reaches a conclusion. In the worst case, when there
is no information about the target-attribute in the current knowledge base, the value de-
rived for the conclusion must clearly be ?. In all other cases, the validity and accuracy of
the derived conclusion depend upon available information. The accuracy or con�dence level
may be computed in a variety of ways from information about static priorities, dynamic
priorities, covers and counters (see Section 2.4).


The two complementary mechanisms used in asserting the target-attribute (i.e., rule
application and similarity-based assertion) are described in the next two sections. They
apply sequentially. If a rule exists that can be applied, then it is applied. Otherwise,
similarity-based reasoning takes e�ect.


Finally, note that information regarding the way the goal is achieved could be displayed
by FLARE for the purpose of human examination and inspection. Currently, FLARE is
non-interactive, that is, it cannot query a user for the values of missing attributes that may
help improve the accuracy of its result.


2.3.3 Rule Application


Let val(a; x) denote the value of attribute a in vector x. In the state of knowledge repre-
sented by a vector v, a rule may be applied if it covers v. A vector x is said to cover a
vector y if and only if:


1. x and y have the same target-attribute and


2. for all remaining attributes a of x, either val(a; x) = ? or val(a; x) = val(a; y).


For example, in KB, v11 covers v7 and v8 but v11 does not cover v9 or v12. Ignoring attributes
whose value is ?, the second condition states that the set of remaining attribute-value pairs
of x is a proper subset of the set of remaining attribute-value pairs of y. Intuitively, x covers
y if y satis�es all of the premises of x.


To accommodate real-valued attributes, the notion of equality is slightly extended.
Given that the probability of two real values being equal is extremely small, the cover
relation, because of condition 2, would essentially never hold. The following extension,
borrowed from ILA (Giraud-Carrier & Martinez, 1995), is suggested. Two linear values x1
and x2 are equal if and only if jx1� x2j � �, for some � > 0. Hence, the vector (?, 1.2, 3.52,
?, 0T ) covers the vector (2, 1.3, 3.48, ?, 0T ) if � = 0:5. In the current implementation, � is
some fraction of the range of possible values of each attribute.


2.3.4 Similarity-Based Assertion


The notion of similarity in FLARE is captured by a non-symmetric distance function de�ned
over (n-dimensional) vectors. If vector x is stored in the knowledge base and vector y is
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presented to the system to reason about, then the distance from x to y is given by:


D(x; y) =


nX


i=1


d(xi; yi)


num asserted(x)


where, if x+i ; y
+
i denote values of attribute i other than ? and ?,


d(?; yi) = 0
d(?; yi) = 0:5
d(x+i ; ?) = 0:5
d(x+i ; ?) = 0:5
d(x+i ; y


+
i ) = (x+i 6= y+i ) if attribute i is nominal


d(x+i ; y
+
i ) =


jx+i � y+i j


range(i)
if attribute i is linear


such that range(i) is the range of values of attribute i and num asserted(x) is the number
of attributes that are not ? in x. The above equations for d are consistent with the semantics
of ? and ? de�ned in Section 2.1.


D(x; y) is meaningful only if x and y have the same target-attribute and the target-
attribute is left out of the computation. For example, D(v11; v8) = 0, D(v13; v14) = 1=4,
D(v7; v16) = 2=3, D(v16; v7) = 5=8 and D(v1; v4) is unde�ned. A detailed discussion of
and justi�cation for the de�nition of D are found elsewhere (Giraud-Carrier & Martinez,
1994a). Since every ordered set is in one-to-one correspondence with a subset of the natural
numbers, D is well de�ned. To eliminate the e�ects of statistical outliers on range(i),
the dataset must be ridden of vectors whose attributes have such irregular values. D is
an extension of the similarity function de�ned for IBL (Aha, Kibler, & Albert, 1991),
to inductive learning algorithms that use and/or create general rules. D applies to both
nominal and linear domains, and relies on the corresponding notion of distance between
values. In particular, D handles continuous values directly, without need for discretization.
Currently, D treats each attribute equally. Existing methods assigning weights to each
attribute-wise distance (Salzberg, 1991; Stan�ll & Waltz, 1986; Wettschereck & Dietterich,
1994) may be incorporated in D.


Similarity-based assertion consists of asserting the target-attribute of a vector v to the
value of that attribute in v's closest match given by D. Note that (since D is not symmetric)
x covers y if and only if D(x; y) = 0. Hence, since 0 is the minimum of the distance function,
D can be used to apply both reasoning mechanisms with the correct order (i.e., rules �rst,
similarity next), by computing the distance from all the rules in the current knowledge base
to v and simply selecting the rule that minimizes D. As it is possible that more than one
rule minimizes D, a priority scheme is devised to choose a winner. This conict resolution
procedure which relies partially on FLARE's ability to learn is outlined in Section 2.3.5.


2.3.5 Conflict Resolution


Along with each vector, FLARE also stores the following information:


� a static priority value (static priority),


159







Giraud-Carrier & Martinez


� a dynamic priority value (dynamic priority) and


� the number of vectors covered (num covers).


The value of static priority is set to 0 by default but may be changed by a teacher to any
other value a priori (e.g., v11 and v12 inKB). Static priorities provide a means whereby rules
may be prioritized according to some externally provided information or meta-knowledge.


The value of dynamic priority is initialized to 0. Its value is not changed by a teacher,
however, but evolves over time and is intended to resolve conicting defaults extensionally.
Conicting defaults, such as the Nixon Diamond of Table 1 may be encoded a priori as
precepts or induced from examples. In either case, they are identi�ed in the reasoning
phase as FLARE discovers two rules that apply equally well to the input vector. Formally,
two rules R and S are in conict over a vector v if all of the following conditions hold.


1. D(R; v) = D(S; v) = 0


2. R and S have the same speci�city


3. R and S have the same static priority


4. R and S have di�erent target-attribute's value


5. R and S overlap (i.e., the sets of all possible vectors each of them covers intersect)


Two vectors are said to be concordant if they have the same target-attribute and the target-
attribute's value is the same in both vectors. When reasoning about vector v and coming
upon conicting defaults, FLARE simply increments by 1 the value of dynamic priority of
the default that is concordant with v. If none of the defaults are concordant with v, then
no change is made. The value of dynamic priority reects the number of times a particular
default has been supported by evidence drawn from the environment. It is thus evidence,
rather than meta-knowledge, that is responsible for the emerging ordering of defaults under
dynamic priority. Note that a target value must be given for the target-attribute for the
above update to take place so that dynamic priority is a result of the combination of learning
and reasoning. Notice also that dynamic priority evolves over time so that the system's
response changes based on accumulated evidence.


The value of num covers is also a result of the combination of learning and reasoning.
It records the number of other vectors seen by the system so far that are concordant with
and covered by the vector. It is a kind of con�dence level for that vector, as it essentially
counts the number of times the rule represented by the vector is con�rmed by empirical
evidence.


When more than one rule minimizes D (i.e., can be selected for application), a winner
is chosen according to the following priority scheme, where each subsequent condition is
invoked if a tie exists at the previous level.


1. Most speci�c


2. Highest static priority


3. Highest dynamic priority
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4. Greatest cover


Speci�city is de�ned as the number of attributes, other than the target-attribute, whose
value is not ?. A vector x is more speci�c than a vector y if speci�city(x)> speci�city(y).
For example, in KB, v7 has speci�city 3, v8 has speci�city 4 and v13 has speci�city 4, so
that v8 and v13 are more speci�c than v7.


Giving priority �rst to the most speci�c vector allows FLARE to handle exceptions and
cancellation of inheritance. Using static priorities next makes it possible to handle conict-
ing defaults as de�ned by a teacher, while dynamic priorities account for epistemological
inconsistencies that may be resolved over time as more information becomes available in
support of one belief or the other. Finally, selecting the vector with greatest cover allows
evidence gathered from experience to guide a �nal selection. Note that the current scheme
gives precedence to teacher-provided information. Other ordering schemes can easily be
de�ned. For example, static priorities could be given as a simple form of initial bias and
evidence gathered through learning (e.g., dynamic priority and cover) could be used to
con�rm or modify these priorities.


2.3.6 Illustration


Consider KB and assume the vector v = (1; ?; 1; ?; 0; 0; ?T) is input to the reasoning func-
tion. Execution proceeds as follows. Step (1) is essentially skipped as none of the attributes
of v meet the looping condition. Then, there are only two loops through the forward chain
before the target-attribute is set.


Execution Trace
(1) (a) Let w = v


(b) (i) Designate the second attribute as a �rst subgoal
(ii) Apply rule v2: result is w = (1; 1; 1; ?; 0; 0; ?T)
(i) Designate the fourth attribute as second subgoal
(ii) Apply rule v5: result is w = (1; 1; 1; 0; 0; 0; ?T)


(c) Let v = w
(2) Two conicting rules exist: D(v7; v) = D(v11; v) = 0


Apply v7 (more speci�c): result is v = (1; 1; 1; 0; 0; 0; 2T)


2.3.7 Approximate Reasoning


Notice that, in forward chaining, the assertion of attributes that are subgoals does not
involve similarity-based assertion but results from rule application only. As a result, the
accuracy of the �nal goal is increased but the ability to perform approximate reasoning is
reduced. It is possible to relax this restriction thus potentially achieving more subgoals but
reducing the con�dence in the �nal result. For example, the condition in step (2)(a)(ii)
could be modi�ed to allow not only rules (which are perfect matches, i.e., D = 0) but also
matches deemed to be \close enough." The measure of closeness can be implemented via a
threshold value TD, placed on D. That is, the current condition is replaced with:


� Let D0 = distance to closest match


� If D0 = 0 perform rule application
Else if D0 � TD perform similarity-based assertion
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The value of TD then o�ers a simple mechanism to increase the level of approximate reason-
ing. This is particularly useful for cases such as the Chaco example (Section 2.3.1), where,
after completion, most of the reasoning is based on the amount of similarity between con-
cepts. Notice that the above condition is functionally equivalent to the current one when
TD = 0.


2.4 FLARE's Learning


This section addresses the construction of FLARE's knowledge base through incremental,
supervised learning. FLARE learns by continually adapting to the information it receives.
Indeed, training vectors are assumed to become available one at a time, over time and, as is
inherent in nature, some vectors may be noisy while others may be encountered more than
once. Moreover, FLARE extends inductive learning from examples with prior knowledge
in the form of precepts. Sections 2.4.1 to 2.4.3 describe and illustrate FLARE's learning
mechanisms and Section 2.4.4 highlights some of the advantages of combining extension and
intension in learning.


2.4.1 FLARE's Adapting Function


Over time, FLARE is presented with a sequence of examples and precepts that are used to
update its current knowledge base. The set of all examples, rules and precepts that share
the same target-attribute can be viewed as a partial function mapping instances into the
goal-space. In this context, an example maps a single instance to a value in the goal-space,
while precepts and rules are hyperplanes that map all of their points or corresponding
instances to the same value in the goal-space.


Learning then follows a form of nearest-hyperplane learning. As mentioned in Section
2.2, it consists of �rst applying the reasoning scheme, and then making further adjustments
to the current knowledge base to reect the newly acquired information. The reason the
algorithm is said to be nearest-hyperplane is that the reasoning phase essentially identi�es a
closest match for the input vector. This closest match is either a rule (i.e., true hyperplane)
or a stored example (i.e., point or degenerated hyperplane).


The prior application of reasoning allows the system to predict the value of the target-
attribute based on information in the current knowledge base. Also, if there are missing
attributes in the input vector and the knowledge base contains rules that can be applied
to assert these attributes, the rules are applied so that as many of the missing attributes
as possible are asserted before the �nal goal is predicted. Hence, the accuracy of the
prediction is increased and generalization is potentially enhanced, thus enabling FLARE to
more e�ectively adapt its knowledge base.


The system starts with an empty knowledge base. It then adapts to each new vector v,
where v is either a precept or an example. If v is the �rst vector, then there is no closest
match and v is automatically stored in the current knowledge base. In that sense, the
�rst learned vector represents yet another bias for the learning system. If v is not the �rst
vector, then reasoning takes place producing v+. A closest match, say m, is also found and
the knowledge base adapts itself based on the relationship between v+ and m, as shown in
Figure 4. Note that m is closest given the current available information and can, indeed,
be \far" from v+. Hence, the order in which training takes place impacts the outcome.
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DEFINITION


� Input: the current knowledge base, the vector v+ output by function Reasoning and the target value
of the target-attribute.


� Output: updated knowledge base.


IMPLEMENTATION


1. Let m be the vector of the current knowledge base such that D(m;v+) is smallest (i.e., m is v+'s
closest match in the current knowledge base).


2. If all the attributes have equal values in v+ and m, then add 1 to m.counters[v+.target-attribute's
value]
(* if m is identical to or the prototype of v+, then: do not store v+, update m's counters *)


3. Else if m covers v+ and m and v+ are concordant, then add 1 to m.num covers
(* if m subsumes or is a generalization of v+, then: do not store v+, increase m's con�dence *)


4. Else if v+ covers m and m and v+ are concordant, then add 1 to v+.num covers, delete m from the
knowledge base and add v to the knowledge base
(* if v+ subsumes or is a generalization of m, then: replace m by v+, increase v+'s con�dence *)


5. Else if v+ and m can produce a generalization, then
(* if there is a possibility of generalization *)


� If v+ is more speci�c than m and m has more than one non ? attribute, then drop the condition
in m and set m.static priority to maxfm.static priority, v+.static priorityg
(* if m is more general than v+ and dropping condition is possible, then: do not store v+, drop
condition in m, update static priority *)


� Else if v+ has more than one non ? attribute, then drop the condition in v+, set v.static priority
to maxfm.static priority, v+.static priorityg, set v+.num covers to m.num covers, delete m


from the knowledge base and add v+ to the knowledge base
(* if v+ is more general than m and dropping condition is possible, then: drop condition in v+,
replace m by v+, update parameters *)


� Else add v+ to the knowledge base
(* if dropping condition is impossible, then: store v+ in knowledge base *)


6. Else add v+ to the knowledge base
(* default case: store v+ in the knowledge base *)


Figure 4: Function Adapting


The array counters contains an entry for each possible value of the target-attribute
and is also stored with each vector. All the counters are initialized to 0, except the one
corresponding to the vector's target-attribute value which is initialized to 1. The counters
evolve over time and are used to handle noise. For any vector p in the current knowledge
base, exactly one counter value is incremented (by 1) each time a new vector is presented,
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whose attributes' values are all equal to those of p. The value incremented corresponds to
the new vector's target-attribute value. The counter value that is highest represents the
statistically \most probable" target-attribute value. In e�ect, the target-attribute value of
a vector is always the one with highest count. Note that this value may change over time,
as new information becomes available.


Because a best match is �rst identi�ed, changes to the knowledge base are localized and
are guided by the kinds of possible relationships between v+ and m. These relationships
are summarized below.


� v+ is equal to m (i.e., noise or duplicates) or


� v+ is subsumed by m (i.e., v+ is a special case of m) or


� v+ subsumes m (i.e., v+ is a general case of m) or


� v+ and m can produce a generalization or


� all other cases (e.g., v+ is an exception to m, v+ and m are too far apart, etc.)


In the �rst case, v+ (or its prototype m) is already in the knowledge base and only the
counters need to be updated. Note that the extension of the notion of equality discussed in
Section 2.3.3 enables this part of the algorithm, in conjunction with the counters, to produce
some generalization for linear attributes. In e�ect, the vector retained in the knowledge base
acts as a \prototype," and its target-attribute's value is the one most probable among its
�-close neighbors. In the second case, there is no need to store v+ as the current knowledge
base has su�cient information to correctly predict v+'s target value. In the third case, v+


is stored and m removed as v+ is more general than m and thus accounts for it. The fourth
case captures the possibility of generalization by dropping conditions (see Section 2.4.2 for
details). If generalization takes place, only one of v+ or m is generalized and stored. The
values of static priority and num covers are also reset so that the generalization inherits the
maximum static priority value and the current value of num covers. Finally, in the �fth
case, v+ must be added as the current knowledge base either does not produce the correct
target value for v+ (e.g., exceptions) or is not deemed reliable enough to properly account
for v+.


Notice that the adaptation phase takes place regardless of the target value predicted
by the reasoning phase. A possible alternative would be to adapt only if the predicted
target value di�ers from the actual target value. It has been found empirically, however,
that too much useful information is lost with this approach due to the incrementality of
the system and its sensitivity to ordering. A possibly viable alternative would make use of
memory. Vectors currently accounted for could be saved in memory and presented later to
the system. This may be done a few times over some period of learning time until either
the vectors must be stored in the knowledge base (due to changes in the knowledge base)
or they are discarded as the system has gained enough con�dence in its ability to account
for them.


2.4.2 Generalization


Two vectors that have the same target-attribute's value can produce a generalization when
the following �ve conditions hold.
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1. They di�er in the value of exactly one of their attributes.


2. The attribute on which they di�er is nominal.


3. They are concordant.


4. The number of their attributes not equal to ? di�er by at most 1.


5. At least one of them has more than one non ? attribute.


Generalization then consists of setting to ? the attribute on which the two vectors di�er, in
the vector that is most general, as long as that vector has more than one non ? attribute.
For example, vectors v8 and v9 of KB satisfy the above conditions and would generalize to
produce a vector, say v8+9 = (?; ?; ?; 0; 0; 1; 3T). The value of 1 in the fourth condition is
based upon empirical evidence.


Choosing the most general vector maximizes generalization and the condition on the
number of non ? attributes guarantees that no rule is generated that would cover every other
vector. This version of the dropping-the-condition rule (Michalski, 1983) is only applied to
nominal attributes as it makes little sense for linear (especially real-valued) domains. For
linear attributes, generalization is achieved through the artifact due to the extended notion
of equality discussed above.


Let v and w be two vectors representing n and m � n examples, respectively. Further-
more, let v0 be the generalization obtained from v and w by dropping a p-valued attribute
in v. Then v0 represents pn examples. Since v and w represent at most 2n examples, gen-
eralization causes at least (p � 2)n new examples to be represented. As p increases, this
value also increases and, for large values of p, could lead to over generalization as only two
values of a given attribute su�ce to predict the outcome of all values in the current context.
However, such potential over generalizations are partially o�set by the system's ability to
identify, retain and give precedence to exceptions.


There are still drawbacks to FLARE's generalization scheme. Given a set of vectors
of the form vi = SxiTk where S is �xed, T is the target-attribute and xi 6= xj for all
i 6= j, any pair of concordant (i.e., same k) vectors satisfy the generalization condition, yet
only the �rst such pair will generalize. All other vectors then become either subsumed by
this generalization or exceptions to it. If most are exceptions, this leads to the storage of
more vectors than needed, especially for large domains where various subsets of values give
rise to di�erent target-attribute's values. Moreover, the outcome depends upon ordering
of the vectors. Also, if there exists conicts involving one (or more) value of x, then the
system will end up giving unfounded precedence to the exceptions (being more speci�c) and,
again, these depend on the ordering. Support for internal disjunction or a more complex
generalization scheme may help alleviate some of these problems. They are the topic of
future research.


2.4.3 Illustration


This section shows the evolution of FLARE's knowledge base as the vectors of KB (see
Section 2.1.3) are presented to it as inputs. It highlights several interesting features of
both reasoning and adaptation. Let KB0 denote the current knowledge base of FLARE. As
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discussed above, FLARE starts with KB0 = ;. Each vector is presented to FLARE in the
order in which it appears in KB.


1. Presentation of v1. KB0 = ;. v1 is simply added to KB0.


2. Presentation of v2. KB0 = fv1g. v1 is the closest match. v1 and v2 are not concordant,
so v2 is added to KB0.


3. Presentation of v3. KB0 = fv1; v2g. Same as above with either v1 or v2. So v3 is
added to KB0.


4. Presentation of v4. KB0 = fv1; v2; v3g. No winner can be found since none of the
vectors in KB0 have the same target-attribute as v4. So v4 is added toKB0. While the
earlier KB0 had information about a single concept (i.e., stimulus-situation), the new
KB0 now provides FLARE with knowledge about a new concept, namely appropriate-
response. By \partitioning" vectors along their target-attribute, FLARE naturally
supports multiple concept learning.


5. Presentation of v5. KB0 = fv1; v2; v3; v4g. v4 is the only (and hence closest) match
since none of the other vectors in KB0 have the same target-attribute as v5. v4 and
v5 satisfy conditions 1-4 for generalization but violate condition 5, so v5 is added to
KB0.


6. Presentation of v6. KB0 = fv1; v2; v3; v4; v5g. Similar to step 3 with v4 and v5. So v6
is added to KB0.


7. Presentation of v7. KB0 = fv1; v2; v3; v4; v5; v6g. Note that v7 is a precept. No winner
can be found since none of the vectors in KB0 have the same target-attribute as v7.
So v7 is added to KB0. A third concept, namely media, is now available.


8. Presentation of v8. KB0 = fv1; v2; v3; v4; v5; v6; v7g. v7 is the only (and hence closest)
match since none of the other vectors in KB0 have the same target-attribute as v8.
v8 is an exception to v7 since v7 covers v8 but they are not concordant. Hence, v8 is
added to KB0. Though v7 suggests to use lecture as a media, the added condition on
training-budget found in v8 causes that suggestion to change to lecture with slides.


9. Presentation of v9. KB0 = fv1; v2; v3; v4; v5; v6; v7; v8g. Only v7 and v8 may compete.
D(v7; v9) = 1=3 and D(v8; v9) = 1=4. Hence, v8 wins. v8 and v9 satisfy all �ve
conditions for generalization. The second attribute is dropped (i.e., replaced by ?)
in either one, say v8, to produce v08 = (?; ?; ?; 0; 0; 0; 3T). v


0
8 is added to KB0. All of


the attributes in v8 and v9 have the same value, except for stimulus-situation. This is
su�cient for FLARE to hypothesize that the value of stimulus-situation is not critical
and the attribute may thus be ignored. In other words, FLARE decides that the value
of stimulus-situation is not needed when predicting lecture with slides.


10. Presentation of v10. KB0 = fv1; v2; v3; v4; v5; v6; v7; v
0
8g. Only v7 and v08 may compete.


D(v7; v10) = 1=3 and D(v08; v10) = 0. Hence, v08 wins. v08 covers v10 and they are
concordant, so FLARE adds 1 to num covers(v08). v10 need not be added to KB0. v10
is one of the many special cases now handled by the new generalization v08.
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11. Presentation of v11. KB0 = fv1; v2; v3; v4; v5; v6; v7; v
0
8g. Notice that v11 is also a


precept, so that precepts may be given at any time during learning. Only v7 and
v08 may compete. D(v7; v11) = 1=6 and D(v08; v11) = 1=3. Hence, v7 wins. Neither
one covers the other; they are not equal; they cannot produce generalization (violate
condition 3). Thus, v11 is added to KB0. Note that v11 has a static priority of 1.


12. Presentation of v12. KB0 = fv1; v2; v3; v4; v5; v6; v7; v
0
8; v11g. v7, v


0
8 and v11 compete.


D(v7; v12) = 1=2, D(v08; v12) = 2=3 and D(v11; v12) = 1=4. Hence, v11 wins. Neither
one covers the other; they are not equal; they cannot produce generalization (violate
condition 3). Thus, v12 is added to KB0. Note that v12 has a static priority of 3.
Since v11 and v12 overlap, precedence would be given to v12 in case of a conict.


13. Presentation of v13. KB0 = fv1; v2; v3; v4; v5; v6; v7; v
0
8; v11; v12g. In this case, some


non-asserted attributes of v13 may be asserted through reasoning, before the target-
attribute. Rules v2 and v4 are applied to assert the second and fourth attributes
respectively. The result is v013 = (1; 1; 0; 0; 0; 1; 2T). v7, v


0
8, v11 and v12 compete to


assert the target-attribute. D(v7; v
0
13) = 0, D(v08; v


0
13) = 0, D(v11; v


0
13) = 0, and


D(v12; v013) = 1=2. Both v7 and v08 win over v11 since they are more speci�c. However,
v7 and v08 have the same speci�city. In fact, they satisfy all �ve conditions that
identify them as conicting defaults in the current context. Hence, FLARE adds 1
to dynamic priority(v7) since v7 and v013 are concordant. Reasoning then proceeds,
giving precedence to v7. Since v7 covers v


0
13 and they are concordant, v013 need not be


added to KB0.


14. Presentation of v14. KB0 = fv1; v2; v3; v4; v5; v6; v7; v
0
8; v11; v12g. Some non-asserted


attributes of v14 may be asserted through reasoning, before the target-attribute. Rules
v2 and v5 are applied to assert the second and fourth attributes respectively. The result
is v014 = (1; 1; 1; 0; 0; 1; 2T). The rest is identical to step 13. Now, dynamic priority(v7)
= 2 and v014 is not added to KB0.


15. Presentation of v15. KB0 = fv1; v2; v3; v4; v5; v6; v7; v
0
8; v11; v12g. Some non-asserted


attributes of v15 may be asserted through reasoning, before the target-attribute. Rules
v3 and v6 are applied to assert the second and fourth attributes respectively. The result
is v015 = (2; 2; 2; 1; 1; 0; 0T). v7, v


0
8, v11 and v12 compete to assert the target-attribute.


D(v7; v
0
15) = 1, D(v08; v


0
15) = 1, D(v11; v


0
15) = 1, and D(v12; v


0
15) = 1=2. Hence,


v12 wins. Neither one covers the other; they are not equal; they cannot produce
generalization (violate condition 3). Thus, v015 is added to KB0.


16. Presentation of v16 and v17. KB0 = fv1; v2; v3; v4; v5; v6; v7; v
0
8; v11; v12; v


0
15g. Both


are equal to v015. Neither v16 nor v17 need be added to KB0 but the appropriate
counter values are incremented in v015. The result is counters[0] = 2, counters[1] =
0, counters[2] = 1 and counters[3] = 0. Thus, the target-attribute's value of v015 is
currently 0.


The resulting KB0, after processing KB is shown in Figure 5. The variables p, c and dp
stand for static priority, cover number and dynamic priority, respectively. At an intuitive
level, FLARE has used both learning and reasoning mechanisms to deal withKB. Induction


167







Giraud-Carrier & Martinez


v1 = 0 0T ? ? ? ? ? (p = c = dp = 0)
v2 = 1 1T ? ? ? ? ? (p = c = dp = 0)
v3 = 2 2T ? ? ? ? ? (p = c = dp = 0)
v4 = ? ? 0 0T ? ? ? (p = c = dp = 0)
v5 = ? ? 1 0T ? ? ? (p = c = dp = 0)
v6 = ? ? 2 1T ? ? ? (p = c = dp = 0)
v7 = ? 1 ? 0 0 ? 2T (p = c = 0; dp = 2)
v0


8
= ? ? ? 0 0 1 3T (p = 0; c = 1; dp = 0)


v11 = ? 1 ? ? 0 ? 0T (p = 1; c = dp = 0)
v12 = ? 1 ? 1 ? ? 1T (p = 3; c = dp = 0)
v0


15
= 2 2 2 1 1 0 0T (p = c = dp = 0)


Figure 5: KB0


(on vectors v8; v9; v10) has allowed the system to decide that the stimulus-situation was
irrelevant in predicting the use of lecture-with-slides. Deduction from the empirical evidence
provided by vectors v13 and v14 has caused FLARE to break the \tie" between rules v7 and v08
in favor of v7. Prior knowledge relative to vectors v11 and v12 was encoded as static priorities,
thus giving precedence to v12 in case of conicts. Hence, if the vector v = (1; ?; 0:?; 0; 1; ?T)
is presented to FLARE after KB0 is acquired, the second and fourth attributes are �rst
asserted as previously discussed to produce v0 = (1; 1; 0; 0; 0; 1; ?T). Then, v7, v08 and v11
compete. v7 and v08 win due to speci�city. v7 and v08 also have same static priorities but
v7 wins due to dynamic priority and the result is (1; 1; 0; 0; 0; 1; 2T). Now, if the vector
(1; ?; 2; ?; 0; 0; ?T) is presented, a similar situation arises between v11 and v12. The conict
is resolved with static priorities.


2.4.4 Extensionality and Intensionality


As it is able to use prior knowledge in the form of precepts together with raw examples,
FLARE e�ectively combines the intensional approach (based on features, expressed here
by precepts) and the extensional approach (based on instances, expressed by examples) to
learning and reasoning. With this combination, FLARE can resolve conicting defaults,
such as the Nixon Diamond (Reiter & Griscuolo, 1981), by either being told explicitly
which default prevails (e.g., religious conviction is more important than political a�liation)
or by computing relative dynamic priorities (see Section 2.3.5) from examples of Republican-
Quakers.


Most inductive learning systems are purely extensional, while most reasoning systems are
purely intensional. It is therefore these authors' contention that, if induction and deduction
are to be integrated, then a combination of the two approaches is desirable. It is also clear
that the combination increases exibility. On the one hand, extensionality accounts for the
system's ability to adapt to its current environment, i.e., to be more autonomous. On the
other hand, intensionality provides a mechanism by which the system can be taught and
thus does not have to unnecessarily su�er from poor or atypical learning environments.


In the context of reasoning, precepts provide a useful medium to encode certain �rst-
order language statements (e.g., the rule base of an expert system) that can, in turn, be
learned by FLARE (in the usual way) and later be used for reasoning purposes.
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DEFINITION


� Input: a set of general rules, a set of facts and one designated target-attribute


� Output: one or more precepts


IMPLEMENTATION


1. Learning general knowledge: Perform Learning on the set of general rules.


2. Reason from facts: Perform Reasoning with a vector encoding the given facts and the designated
target-attribute.


Figure 6: Function Generate-Precepts


2.5 FLARE's Automatic Generation of Precepts


Section 2.1.2 introduced the notion of precepts as generalized AVL vectors in which some of
the attributes have the special value ? (i.e., don't-care). Precepts may be encoded directly
by a teacher or deduced automatically from general knowledge. FLARE provides a simple
(o�-line) mechanism for the automatic generation of precepts in the preprocessing phase
described in Section 2.2.


FLARE uses prior knowledge in the form of general rules that may be viewed as encoding
\commonsense" knowledge involving some of the attributes of the application domain. With
the appropriate setting for deduction, FLARE can then generate domain-speci�c precepts
that can be used as biases for inductive learning or for further reasoning about the speci�c
domain to which they apply.


Consider the example in Table 3 from Section 2.1.1. Assume that the system is to
inductively learn rules regarding the suitability of lenses for patients from a set of examples
whose attributes include the patient's tear-production rate (tpr). The statements in Table
3 capture general knowledge about eyes. Informally, they state that:


1. Low tear-production rate causes dryness of the eyes.


2. Dry eyes are not �t for lenses.


When provided with the fact that the target-attribute of the system has to do with �tting
lenses, the general knowledge may be used to produce a domain-dependent precept that
states that, if a patient has low tear-production rate, then he/she should not be �tted lenses.
The precept, in turn, provides a useful bias to the system during further induction from
examples.


The process of generating precepts described above is essentially one of acquiring the
general knowledge (or rules) and reasoning from it as described in Figure 6. When general
rules are available, the function Generate-Precepts is always invoked prior to any other work
by FLARE.


The function Generate-Precepts actually makes use of the other functions of FLARE. In
step (1), it constructs a knowledge base from the general rules using learning as described
in Section 2.4. In step (2), it reasons, as described in Section 2.3, using the acquired
knowledge and facts enabling the general knowledge to be applied to the domain. The
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facts are encoded as a vector in which attributes found in the general knowledge are set to
appropriate values and all others set to ?. Since precepts are mostly used as learning biases,
the designated target-attribute is typically the target concept of an inductive application.
In the lenses example of Table 3, the appropriate setting is obtained by creating a vector
such that attribute Tpr is set to low and attribute Fit is designated as the target-attribute.
Having incorporated the two rules in its knowledge base in step (1), FLARE would then
easily deduce a precept of the form: if Tpr is low then Fit is false, independent of any other
don't-care conditions.


Though the function Generate-Precepts is automated, the setting of the relevant at-
tributes and interpretation of the result rely on a teacher. More automatic mechanisms
may be considered, where the system could try any combination of a learning problem's
attributes values to instantiate general knowledge. Then, any such instantiation that causes
the target-attribute to become asserted is a potential precept. However, that process would
be exponential and most of it would probably not lead to any useful conclusion.


3. Experimental Results and Demonstrations


A set of classical commonsense benchmark problems has been proposed by Lifschitz (1988)
and the UCI repository (Murphy & Aha, 1992) contains many useful training sets for
inductive learning. This section reports results obtained with FLARE on several of these
datasets. Results on a number of other uses of the framework, including two expert systems,
are also presented. Finally, some of the limitations of the system are described.


One artifact of the implementation is that, since variables cannot be added dynamically,
all attributes must be de�ned a priori. All attributes that do not appear in rules, examples
or precepts are set to don't-care. This is consistent with the semantics of don't-care and does
not interfere with the algorithm since the distance D essentially treats learned don't-cares
as neutral values.


3.1 Inductive Learning and Prior Knowledge


In order to test the predictive accuracy of FLARE, the standard training set/test set ap-
proach is used. The value of v's target-attribute is provided but it is not used during
reasoning. Rather, the system reasons based on its current knowledge base and all of the
asserted attributes of v. When reasoning is completed, the \computed" target value is
compared with the \actual" target value.


Several datasets from the UCI repository (Murphy & Aha, 1992) were chosen. They
represent a wide variety of situations, as shown in Table 6. The column labelled \Size"
indicates the total number of examples in the dataset. The column labelled \Attributes"
records the number and type (L for linear, N for nominal) of all the attributes, other than
the target (or output) attribute. The column labelled \Output" shows the number of output
classes.


FLARE's results were gathered for each of the above applications, using 10-way cross-
validation. Each dataset is randomly broken into 10 sets of approximately equal size. Then,
in each turn, one of the sets is used for testing, while the remaining 9 are used for learning.
This process is repeated 10 times, one for each test set, so that every item of data is in the
test set once and only once. Because FLARE's outcome is dependent upon the ordering of
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Application Size Attributes Output


lenses 24 4N 3


voting-84 435 16N 2


tic-tac-toe 958 9N 2


hepatitis 155 6L&13N 2


zoo 90 16N 7


iris 150 4L 3


soybean-small 47 4L&31N 4


segmentation 420 19L 7


glass 214 9L 7


breast-cancer 699 9L 2


sonar 208 60L 2


Table 6: Selected Applications


Application PA IR ID3 CN2 BP


lenses 79.0 .43 65.0 83.3 76.7


voting-84 92.9 .63 95.4 93.8 96.0


tic-tac-toe 81.5 1.0 85.6 98.0 96.6


hepatitis 80.0 .94 77.9 76.1 -


zoo 97.4 .36 97.8 93.3 97.8


iris 94.0 .13 94.0 93.3 97.3


soybean-small 100 .98 98.0 100 100


segmentation 94.0 .99 96.9 94.1 -


glass 71.8 .22 67.7 62.7 38.0


breast-cancer 96.6 .47 95.1 95.1 99.7


sonar 83.8 .77 77.4 44.3 -


Averages 88.3 .63 86.4 84.9 87.8


Table 7: FLARE: Induction


data during learning, each turn was repeated 10 times with a new random ordering of the
training set. The predictive accuracy for a given turn is the average of the 10 corresponding
trials and the predictive accuracy for the dataset is the average of the 10 turns.


Results are shown in Table 7. The �rst number (PA) represents predictive accuracy
(in %) on the test set after training and the second number (IR) is the inductive ratio,
de�ned as the ratio of the size (in number of rules) of the �nal knowledge base to the
number of instances used in learning. IR is another measure of the generalization power of
FLARE, as well as an indication of FLARE's memory requirements. Results of PA with ID3
(Quinlan, 1986), ordered CN2 (Clark & Niblett, 1989) and Backpropagation (Rumelhart &
McClelland, 1986) are also included for comparison. They were also obtained using 10-way
cross-validation and are as reported by Zarndt (1995).


For the set of selected applications, FLARE's performance in generalization compares
favorably with that of ID3, CN2 and Backpropagation, as well as with that of other inductive
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Application no prec. w/prec.


lenses 79.0 - .43 80.5 - .33


voting-84 92.9 - .63 94.5 - .25


tic-tac-toe 81.5 - 1.0 88.5 - .72


hepatitis 80.0 - .94 81.2 - .68


zoo 97.4 - .36 97.4 - .32


Averages 86.2 - .67 88.4 - .46


Table 8: FLARE: Induction with Prior Knowledge


learning algorithms (e.g., see Aha et al., 1991; Wettschereck & Dietterich, 1994; Zarndt,
1995). In addition, the knowledge base maintained by FLARE is generally signi�cantly
smaller than the set of all training vectors.


The �rst �ve applications were further selected to illustrate the e�ect of prior knowledge
on predictive accuracy and inductive ratio. For each application, the above experimental
procedure is repeated but the set of training examples is now augmented by precepts given
a priori (i.e., before the training set is presented). Results are reported in Table 8. Each
column shows both PA and IR. Here, the precepts are obtained from domain knowledge
provided with the application (voting-84) or generated from the authors common sense (zoo,
lenses, hepatitis, tic-tac-toe). They serve as learning biases. The results with precepts show
an average increase of 2.6% in predictive accuracy and a decrease of 31.3% of the inductive
ratio. The decrease in IR demonstrates that prior knowledge allows pruning of parts of the
input space during learning. Indeed, starting with the same number of training vectors,
FLARE ends up with a knowledge base containing about one-third less vectors than when
precepts are not used. Hence, precepts not only increase generalization performance, they
also reduce memory requirements.


The lenses application was also used to demonstrate how precepts may be generated
automatically by deducing domain-dependent information from general knowledge, as dis-
cussed in Section 2.5. The example of Table 3 from Section 2.1.1 was implemented (as
described in Section 2.5) and a precept stating that, if the Tpr attribute is set to low, then
lenses should not be prescribed was generated. That precept was, in turn, used prior to
performing inductive learning as described above.


The process of inductive learning with automatically generated prior knowledge is two-
phase, where both phases perform the same operations on di�erent pieces of information. In
the �rst phase, general knowledge expressed as rules (and translated into AVL) is learned by
FLARE. Then FLARE reasons based on some instantiation that links the general knowledge
to the current domain. The result of this reasoning phase is one (or more) precept containing
domain-dependent information. In the second phase, FLARE learns from the generated
precepts and any other available examples. The result is a set of inductively generated
rules.


3.2 Classical Reasoning Protocols


Several problems from the set of Benchmark Problems for Formal Nonmonotonic Reasoning
(Lifschitz, 1988), were presented to FLARE. The problems were �rst translated into their
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corresponding AVL representation. FLARE is able to properly incorporate the premises
and correctly derive the expected conclusions for the following classes of problems from
(Lifschitz, 1988):


� A1 - basic default reasoning.


� A2 - default reasoning with irrelevant information


� A3 - default reasoning with several defaults


� A5 - default reasoning in an open domain


� A9 - priority between defaults


� B1 - linear inheritance (top-down)


� B2 - tree-structured inheritance


� B3 - one-step multiple inheritance


� B4 - multiple inheritance


Problem A4 involves a disabled default and problems A6 through A8 deal with unknown
exceptions. Such problems cannot be represented in FLARE. Problems A10 and A11 deal
with instances of defaults and reasoning about priority. Though not directly representable in
FLARE, they are e�ectively solved via the use of static (A10) or dynamic (A11) priorities.
The other classes of problems de�ned by Lifschitz (1988) (i.e., reasoning about actions,
uniqueness of names and autoepistemic reasoning) are beyond the current scope of FLARE.


Note that, in order to work properly, some of the above problems require added pro-
cessing. In particular, problems A1, A2, A3 and A5 involve both classes of objects and
particular instances of these classes. Problem A1, for example, is given as follows: blocks
A and B are heavy, heavy blocks are normally located on the table, A is not on the table.
Translating to AVL gives: A 1T ?, B 1T ?, ? 1 1T and A ? 0T , where the �rst attribute is
a multi-valued attribute representing the objects in the universe and the second and third
attributes are Boolean, encoding the predicate heavy and ontable respectively. Now, if A
? ?T is shown, A 1 ?T will be derived from the �rst vector and will then match both ?


1 1T and A ? 0T exactly. It seems reasonable that priority should be given to the later
since it involves A (an instance) explicitly. To solve this problem, vectors involving explicit
references to instances of objects have their static priority set to 1 while all other vectors
have their static priority set to 0. This is, of course, an artifact of encoding. An alternative
is to write all facts relative to a given instance as a de�nition whose target-attribute is the
instance value. Then completion would guarantee the correct outcome.


The above problems are characteristics of important forms of human patterns of reason-
ing. However, they are arti�cial as they have been manufactured explicitly with the intent
of isolating one salient feature of nonmonotonic reasoning, independent of all others. To
further investigate the properties of FLARE and the combination of learning and reasoning,
other more \real-world" applications must be designed and experimented with. Section 3.5
presents such preliminary applications. The next two sections present simple applications
that further exercise FLARE's ability to learn incrementally and to combine learning with
reasoning in useful ways.
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3.3 The Nixon Diamond


The Nixon Diamond (Reiter & Griscuolo, 1981), reproduced as Table 1 in Section 2.1.1, is
important as a prototype of a class of interesting problems involving conicting defaults. It
is used here to demonstrate FLARE's mechanisms to handle such conicts both intensionally
and extensionally.


FLARE's static priorities o�er a simple way of resolving the Nixon Diamond intension-
ally, based on some externally provided information (e.g., religious convictions supersede
political a�liations). In that case, both defaults are given along with an appropriate static
priority.


Another alternative consists of providing the defaults without any priority. This cor-
responds to a possibly more natural situation where the system really is in a don't-know
state when it comes to deciding on Nixon's dispositions. Yet, such don't-know states are
uncomfortable and it is the authors' contention that any kind of information that may allow
a decision to be made should be used. Hence, a simple epistemological approach is adopted,
where the conict arises due to beliefs rather than facts. In this case, it is possible to
attempt to resolve the conict by observing instances of Republican-Quaker. The relative
number of paci�sts and non-paci�sts can then serve as evidence to lean towards one decision
or the other. In other words, it is the system's observation of what seems most common in
its environment that creates its belief. This is not unlike the way humans deal with many
similar situations.


A �nal approach, which combines inductive learning and reasoning, consists of not
providing the system with any default. Rather, examples of Republicans, Quakers and
Republican-Quakers are shown and the system automatically comes up with both the de-
faults (through induction) and their relative priorities.


All three of these experiments were run with FLARE and the results are as expected.
In the third case, the actual knowledge base depends upon the ordering. It consists of one
vector for Republicans that are not Quakers or one vector for Quakers that are not Republi-
cans, one default vector for Quakers or Republicans and one vector for Republican-Quakers.
The target value of the vector for Republican-Quakers is not had via dynamic priority but
via the counters. Functionally, however, the result is identical.


3.4 Do Birds Typically Fly?


Incremental learning is one of FLARE's important features. With incrementality, the system
is self-adaptive in the sense that its current knowledge base is representative of its experience
with its environment so far. And the knowledge base can be continually updated as new
information becomes available. To exercise incrementality a simple example of bottom-up
inheritance involving birds was designed.


The application has four attributes, two of which correspond to Ostrich and Bird. The
other two are other (undetermined) attributes of birds (e.g., Feather). The target-attribute
is Boolean and characterizes the ability to y. At �rst, the system is exposed mostly to
ostrich-birds (maybe the experiment is started in Australia). When asked whether birds
typically y (i.e., only the Bird attribute is asserted and all other inputs are don't-know),
FLARE concludes that birds do not y, which is consistent with its current experience with
the \world." However, as more new instances of ying birds (i.e., other than ostriches and
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penguins) are encountered, FLARE adapts its knowledge and when asked again, concludes
that birds y. Correct knowledge about ostrich-birds is also preserved. That is, if the
system is shown an ostrich, it will still conclude that the ostrich does not y.


Of course, a precept may also be given to the system at any given time, stating that
birds typically y. The idea is that FLARE o�ers both options naturally. The system may
be taught so as not to su�er from poor or atypical learning environments (e.g., Australia for
birds' ying ability prediction), or it may be left to adapt to its environment. As research
on autonomous agents continues, this later ability becomes important.


Note that the above example also illustrates one of FLARE's limitations. The system
either concludes that birds do y or that they do not. There is no mechanism for represent-
ing a middle ground in such a way that FLARE could reason about it at the meta-level.
Decisions made in the presence of conicts are also \crisp" as demonstrated by the simple,
rigid conict resolution mechanism discussed in Section 2.3.5. Even though, the system may
be able to produce more fuzzy-like results by associating each decision with a con�dence
level, it would still not be able to reason about these at the meta-level.


3.5 Learning Expert Systems


In order to better assess FLARE's reasoning mechanisms, two expert system knowledge
bases are used. One is called mediadv (Harmon & King, 1985) and is intended to help
designers or committees choose the most appropriate media to deliver a training program.
It consists of 20 rules with chains of inference of length 2 at most. The other is called health
(Sawyer & Foster, 1986) and is intended to predict the longevity of patients based on a
variety of factors (e.g., weight, personality, etc.). It is much larger as it contains 77 rules
and more complex as it involves longer chains of inference. Five rules were left out as one
is redundant (i.e., rule 17 is identical to rule 14) and four are only needed in the interactive
setting in which the original system is described. Hence, only 72 rules are considered.


Both sets of rules were translated into AVL. The 20 rules of mediadv produce 99 vectors
and the 72 rules of health produce 72 vectors. The number of vectors for mediadv is much
larger than the original number of rules because many of the rules contain internal disjunc-
tions. In AVL, a new vector must be constructed for each possible combination arising from
the disjunctions. For example, the rule: If ((A=1 or A=2 or A=5) and (B=2.9 or B=7.8))
then C, gives rise to 6 vectors corresponding to the equivalent set of rules: If ((A=1) and
(B=2.9)) then C, If ((A=1) and (B=7.8)) then C, If ((A=2) and (B=2.9)) then C, etc.


The sets of vectors corresponding to the original knowledge bases are not encoded into
FLARE. Rather, they are presented to the system to be learned. Hence, some generalization
may take place. In fact, the �nal number of vectors (after learning) in mediadv is only 71,
while in health it is 65.


The mediadv example is clearly very simple and presents little interest in terms of
deduction. However, its purpose here is to show how the system's current knowledge base
may be updated through learning. Of particular interest is the case of conicts that arise
because two or more rules may apply to a given situation, while implying di�erent goal
values. In mediadv, such a conict exists between rules 13 and 14 and between rules 16 and
17. Rules 13 and 14 are used as illustration. Let X be some �xed conjunction of conditions
not shown. Then:
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� rule 13: if (X) and (training budget = small or training budget = medium) then
media to consider = lecture


� rule 14: if (X) and (training budget = medium) then media to consider = lecture-
with-slides


It is clear that, in some cases, these rules conict. The important issue is that it is di�-
cult to avoid such occurrences in large knowledge bases elicited from experts. As FLARE
supports learning, it is possible, however, to look at various (historical) situations where
training budget was medium and check which media was used then. This information can,
in turn, be used to give precedence to one rule over the other. Moreover, this precedence
need not be �xed after so many examples have been considered. Indeed, it may evolve over
time and even change radically depending on circumstances.


An example, using several additional instances of [(X) and (training budget = medium)]
together with a target value for media to consider, was implemented. The instances used
caused the value of dynamic priority of rule 13 to be greater than that of rule 14, thus
e�ectively giving (evidential) precedence to rule 13.


Our experiments with the health knowledge base demonstrate FLARE's ability to per-
form deduction. The experiments conducted involve chains of inference of reasonable lengths
and are fairly intuitive. Results are summarized in Table 9. The �rst column contains the
list of attributes used in the knowledge base. Then, each pair (setting, result) of columns
represents an experiment in reasoning with the knowledge base. The setting column con-
tains the data FLARE starts with. Unknown conditions (or attributes) are initialized as
don't-knows (i.e., ?). The result column shows the state of knowledge after reasoning. Each
derived piece of information is italicized and subscripted by the depth of inference at which
it was derived.


Starting with the facts in the setting column, FLARE successively infers new conclusions
until it reaches a value for the top goal, longevity. Details of the inference process are given
for the �rst setting only. They are easily extended to the other settings. The �rst setting
corresponds to an average adult female of Asian race, with little vices or excesses and a
reasonable diet. FLARE �rst infers that:


� Her relative weight is normal (absolute weight < 110 lbs and small frame).


� Her personality type is A, as she is aggressive.


� Her blood pressure is average (normal fat and salt intake).


� Her base longevity is average, namely 67 (range is 48-84).


� Her chances of living longer (i.e., add years to base-longevity) are good.


And then, based on this added information, infers that her risk is actually high and though
the chances of living longer are good, the actual value added to base-longevity is 0 (i.e.,
factor = none). Finally, as one would have expected, the woman's longevity is predicted to
be average (i.e., 67).


The other settings further illustrate FLARE's ability to perform forward chaining. The
second setting corresponds to a very unhealthy older male whose longevity is accordingly
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setting 1 result 1 setting 2 result 2 setting 3 result 3


rel. weight ? normal1 ? obese1 ? normal1
val ? yes2 ? ? ? yes2
heart-dis-risk ? ? ? > average1 ? average1
hddanger ? ? ? ? ? low2


start yes yes yes yes yes yes
age 25-55 25-55 >55 >55 <25 <25
gender F F M M F F
base-longevity ? 671 ? 601 ? 721
weight <110 <110 >170 >170 110-170 110-170
frame small small small small large large
cholesterol ? ? high high low low
fat intake normal normal high high normal normal
salt intake normal normal high high normal normal
blood-pressure ? average1 ? > average1 ? average1
calcium ? ? ? ? normal normal
osteoporo-risk ? ? ? ? ? average1
smoker no no yes yes no no
outlook ? ? ? bleak2 ? fair3
race asian asian caucasian caucasian caucasian caucasian
origin ? ? medit. medit. n-amer. n-amer.
risk ? high2 ? high2 unknown unknown
personality aggressive aggressive aggressive aggressive docile docile
person. type ? type a1 ? type a1 ? type b1
alcohol cons. moderate moderate excessive excessive none none
add ? good1 ? poor1 ? fair1
factor ? none3 ? minus 123 ? plus 124
longevity ? 674 ? 484 ? 845


Table 9: Health Knowledge Base


predicted to be low and the third setting describes a young healthy female whose life is
expectedly predicted to be quite long. Note that though the results may seem impressive,
the experiments are only \anecdotal."


Note that as in classical expert systems, the identi�cation of a closest match during rea-
soning could be used to extend FLARE so that it may query the user for missing information
as well as justify both the queries and the decisions made.


3.6 Limitations


The above applications serve to demonstrate that FLARE holds promise. However, FLARE
has many important limitations, several of which were mentioned throughout the paper.
Some of them are summarized here.


FLARE's use of AVL as a representation language limits its applicability to relatively
simple problems. Induction and deduction are carried out within the con�nes of non-
recursive, propositional logic. Such a restriction makes the combination of learning and
reasoning more accessible since much research has taken place within this context. However,
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�rst-order predicate logic seems a minimum requirement for any system claiming reasoning
abilities.


Although FLARE produces good results, the applications it was tested on are relatively
simple. For example, many of the databases in the UCI repository have low complexity
and relatively unsophisticated learning methods perform well on them. This explains why
FLARE's extremely coarse generalization scheme seems su�cient to attain reasonable pre-
dictive accuracy. Similarly, the reasoning problems presented are somewhat straightforward.
It follows that simple mechanisms such as static priorities and other counting devices used
by FLARE are su�cient.


FLARE does not have any meta-level abilities. The system is unable to reason about
its own knowledge and is subsequently unable to produce meaningful middle ground solu-
tions. Yet, work on Cyc (Guha & Lenat, 1994) strongly suggests that meta-knowledge is
indispensable in carrying out uncertain reasoning.


It is clear that FLARE only \scratches the surface" of the problem of e�ectively and
e�ciently combining induction and deduction. Work on ILP (Muggleton, 1992) may shed
some light on the issue of bringing systems like FLARE to a �rst-order logic level.


4. Related Work


FLARE follows in the tradition of PDL2 (Giraud-Carrier & Martinez, 1994b) and ILA
(Giraud-Carrier & Martinez, 1995), as it attempts to combine inductive learning using
prior knowledge together with reasoning. Unlike PDL2 and ILA whose prior knowledge
must be pre-encoded and whose reasoning power is limited to classi�cation (i.e. 1-step for-
ward inferences only), FLARE supports the automatic generation of precepts and forward
chaining to any arbitrary depth. Whereas PDL2's actual operation tends to decouple learn-
ing and reasoning (i.e., the system essentially uses distinct mechanisms to perform either
one), ILA implements an inherently more incremental approach by combining them into a
2-phase algorithm that always reasons �rst and then adapts accordingly. FLARE further
extends ILA by providing a natural transformation from constrained �rst-order clauses to
attribute-value vectors and a more accurate characterization of conicting defaults.


In attempting to construct an uni�ed framework for learning and reasoning, FLARE
follows a synergistic approach, similar (at least in concept) to that taken in SOAR (Laird,
Newell, & Rosenbloom, 1987) and NARS (Wang, 1993) for example. There are also a
variety of inductive learning models and reasoning systems that bear similarity with the
corresponding components of FLARE. Some of them are discussed here.


Induction in FLARE is carried out much the same way as in NGE (Salzberg, 1991).
However, because generalization is e�ected only by setting some attribute(s) to don't-care,
the produced generalizations or generalized exemplars (Salzberg, 1991), are hyperplanes,
rather than hyperrectangles, in the input space. Hence, FLARE implements a nearest-
hyperplane learning algorithm. FLARE also uses static and dynamic priorities to break
ties between equidistant generalizations. Moreover, where it was shown that overlapping
hyperrectangles may hinder performance (Wettschereck & Dietterich, 1994), FLARE allows
overlapping hyperplanes for purposes of dealing with conicting defaults.


In the case that no generalizations are constructed from the training examples, FLARE
degenerates into a restricted form of MBR (Stan�ll & Waltz, 1986). The distance metric


178







An Integrated Framework for Learning and Reasoning


used is similar to IBL's metric (Aha et al., 1991) but it also handles don't-care attributes
(which are non-existent in instance-based learners) and treats missing attributes somewhat
di�erently. Where IBL considers missing attributes to be complete mismatches, FLARE
chooses a more middle-ground approach that may better capture the inherent notion of
missing or \don't-know" attributes.


Learning in FLARE contrasts with algorithms such as CN2 (Clark & Niblett, 1989),
where all training examples must be available a priori. Rather, FLARE follows an incre-
mental approach similar to that argued by Elman (1991), except that it is the knowledge
itself that is evolved, rather than the system's structure. Moreover, learning in FLARE
can be e�ected continually. Any time an example or a precept is presented and its target
output is known, FLARE can adapt.


Prior knowledge may take a variety of forms, some of which are discussed by Mitchell
(1980) and Buntine (1990). The form most relevant to FLARE consists of domain-speci�c
inference rules, either pre-encoded or deduced from more general rules. Systems that explic-
itly combine inductive learning with this kind of prior knowledge include PDLA (Giraud-
Carrier & Martinez, 1993), ScNets (Hall & Romaniuk, 1990), ASOCS (Martinez, 1986) and
ILP (Muggleton, 1992; Muggleton & De Raedt, 1994). ScNets are hybrid symbolic, connec-
tionist models that aim at providing an alternative to knowledge acquisition from experts.
Known rules may be pre-encoded and new rules can be learned inductively from examples.
The representation lends itself to rule generation but the constructed networks are complex
and generalization does not appear trivial. ASOCS and PDLA are dynamic, self-organizing
networks that learn, incrementally, from both examples and rules. In ASOCS, order mat-
ters and conicts are simply solved by giving priority to the most recent rules. PDLA is
less order-dependent and provides evidence-driven mechanisms for the handling of conicts.
As in ScNets, prior knowledge in ASOCS and PDLA takes the form of explicitly encoded,
domain-speci�c rules. FLARE's approach is more exible. Because the system can reason,
domain-speci�c rules (or precepts) can be deduced automatically from more general rules.
ILP models o�er the same exibility. At the intersection of logic programming and induc-
tive learning, ILP takes advantage of the full expressiveness of �rst-order predicate logic to
learn �rst-order theories from background theories and examples. FLARE's representation
language, though capable of handling both nominal and linear (including continuous and
numerical) data, is only as expressive as non-recursive, propositional clauses. However, in
this simpler setting, FLARE supports evidential reasoning and the prioritization of rules.


FLARE's use of rules and similarity in reasoning is similar to CONSYDERR's (Sun,
1992). However, CONSYDERR is strictly concerned with a connectionist approach to con-
cept representation and commonsense reasoning. The resulting model is elegant. It consists
of a two-level architecture that naturally captures the dichotomy between concepts and the
features used to describe them. However, it does not address the problem of learning (how
such a skill could be incorporated is also unclear) and is currently limited to reasoning from
concepts. FLARE's representation is not as elegant but the model can e�ectively reason
from concepts or from features. CONSYDERR deals only with Boolean features and a
concept's representation is limited to a single conjunction of features. FLARE's concepts
generally consist of several conjunctions of features, each representing partial and com-
plementary de�nitions of the concept. Also, since the domain of features is not restricted,
FLARE uses a more general distance metric than CONSYDERR's similarity measure based
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on feature overlap. However, FLARE currently has no mechanisms for individual weighting
of features, which may cause performance degradation and increased memory requirements
in the presence of a large number of irrelevant features.


FLARE's ability to evolve its knowledge base over time is similar to that found in
theory-re�nement systems such as RTLS (Ginsberg, 1990), EITHER (Ourston & Mooney,
1990, 1994) and KBANN (Towell, Shavlik, & Noordewier, 1990; Towell & Shavlik, 1994).
RTLS implements a 3-phase algorithm for re�nement. It �rst reduces the current theory
to a form suitable for inductive learning, then performs learning and, �nally, retranslates
the result into a new theory. This process is potentially costly. In FLARE, the language
of the theory is the same as the language of induction, that is, the theory is always in
reduced form. Though the language is not as rich, it allows revision to take place e�ciently
for each new example, incrementally. EITHER is similar to FLARE as it assumes an
approximate theory and allows correction of both overly-general and overly-speci�c rules.
The mechanisms for revision are di�erent. EITHER may add/remove antecedents and rules,
while FLARE may remove antecedents and add rules and exceptions. EITHER currently
only handles Boolean attributes, while FLARE has no such restriction. However, EITHER
uses both explanation-based learning and inductive learning in revision, while FLARE is
strictly inductive. KBANN, like EITHER, only deals with propositional, non-recursive
Horn clauses. Prior knowledge is expressed identically to FLARE's pre-encoded precepts
(i.e., domain-speci�c inference rules in the form of Prolog-like clauses). KBANN translates
the given knowledge base into an equivalent arti�cial neural network (ANN) and may then
perturb it and learn using the backpropagation algorithm. In FLARE, there is no ANN;
the knowledge base is simply stored as individual rules. Overall, FLARE provides a slightly
more general and synergistic approach. New evidence is constantly used to revise the current
state of knowledge. There are currently no mechanisms in FLARE to deal explicitly with
fuzzy rules. However, several mechanisms exist to handle inconsistencies and conicts.
FLARE always makes a decision based on available evidence. A con�dence level can also
be produced to characterize the \goodness" of the decision.


FLARE's limited handling of non-monotonicity di�ers from the approach taken in logic.
Non-monotonic logics typically extend �rst-order predicate logic through added \machin-
ery," such as circumscription (McCarthy, 1980), semi-normal defaults (Reiter & Griscuolo,
1981) or hierarchical theories (Konolige, 1988), while essentially preserving consistency.
FLARE's approach consists of tolerating inconsistencies in the knowledge base but provid-
ing reasoning mechanisms that ensure that no inconsistent conclusions are ever reached.
It essentially consists of using normal defaults for inheritance and an external criterion for
cancellation (Vilain, Koton, & Chase, 1990). The current criterion relies mostly on a simple
counting argument (for dynamic priorities and covers). Though this approach has proven
su�cient for the simple propositional examples described here, it is likely to break down on
more sophisticated examples and domains.


5. Conclusion


This paper highlights some of the interdependencies between learning and reasoning and
details a system, called FLARE, that combines inductive learning using prior knowledge
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together with reasoning within the con�nes of non-recursive, propositional logic. Several
important positive conclusions may be drawn from the results of this research. In particular,


� Performance in induction is improved in terms of both memory requirement and
generalization when prior knowledge is used.


� Induction from examples can be used to e�ectively resolve conicting defaults exten-
sionally.


� Combining rule-based and similarity-based reasoning provides a useful means of per-
forming approximate reasoning and tends to reduce brittleness.


� Induction o�ers a valuable complement to classical knowledge acquisition techniques
from experts.


Experiments with FLARE on a variety of applications demonstrate promise. However,
much work still remains to be done to achieve a more complete and meaningful integration
of learning and reasoning. Areas of future work include the following:


� Designing mechanisms to use reasoning to guide learning.


� Attempting to overcome (or appropriately use) the order-dependency.


� Providing support for internal disjunction.


� Improving the use of inductively learned rules in reasoning (the support is available
but the induction may not produce useful rules).


� Possibly incorporating backward chaining.


� Translating the system's knowledge base back from AVL to FOL.


� Further experimenting with larger applications.


� Extending the language to �rst-order.
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