

Journal of Artificial Intelligence Research 4 (1996) 365–396                                  Submitted 4/95; published 5/96


� 1996 AI Access Foundation and Morgan Kaufmann Publishers.  All rights reserved.


Adaptive Problem-Solving for Large-Scale 
Scheduling Problems: A Case Study


Jonathan Gratch
University of Southern California, Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292, USA


Steve Chien
Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, M/S 525–3660, Pasadena, CA, 91109–8099


GRATCH@ISI.EDU


STEVE.CHIEN@JPL.NASA.GOV


Abstract


Although most scheduling problems are NP-hard, domain specific techniques perform well in
practice but are quite expensive to construct.  In adaptive problem-solving, domain specific
knowledge is acquired automatically for a general problem solver with a flexible control architecture.
In this approach, a learning system explores a space of possible heuristic methods for one well-suited
to the eccentricities of the given domain and problem distribution.  In this article, we discuss an
application of the approach to scheduling satellite communications.  Using problem distributions
based on actual mission requirements, our approach identifies strategies that not only decrease the
amount of CPU time required to produce schedules, but also increase the percentage of problems that
are solvable within computational resource limitations.


1. Introduction


With the maturation of automated problem-solving research has come grudging abandonment of the
search for “the” domain-independent problem solver.  General problem-solving tasks like planning
and scheduling are provably intractable.  Although heuristic methods are effective in many practical
situations, an ever growing body of work demonstrates the narrowness of specific heuristic strategies
(e.g., Baker, 1994, Frost & Dechter, 1994, Kambhampati, Knoblock & Yang, 1995, Stone, Veloso
& Blythe, 1994, Yang & Murray, 1994).  Studies repeatedly show that a strategy that excels on one
task can perform abysmally on others.  These negative results do not entirely discredit
domain-independent approaches, but suggest that considerable effort and expertise is required to find
an acceptable combination of heuristic methods, a conjecture that is generally by published accounts
of real-world implementations (e.g., Wilkins, 1988).  The specificity of heuristic methods is
especially troubling when we consider that problem-solving tasks frequently change over time.
Thus, a heuristic problem solver may require expensive “tune-ups” as the character of the application
changes.


Adaptive problem solving is a general method for reducing the cost of developing and maintain-
ing effective heuristic problem solvers.  Rather than forcing a developer to choose a specific heuristic
strategy, an adaptive problem solver adjusts itself to the idiosyncrasies of an application.  This can
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be seen as a natural extension of the principle of least commitment (Sacerdoti, 1977).  When solving
a problem, one should not commit to a particular solution path until one has information to distinguish
that path from the alternatives.  Likewise, when faced with an entire distribution of problems, it
makes sense to avoid committing to a particular heuristic strategy until one can make an informed
decision on which strategy performs better on the distribution.  An adaptive problem solver embodies
a space of heuristic methods, and only settles on a particular combination of these methods after a
period of adaptation, during which the system automatically acquires information about the particu-
lar distribution of problems associated with the intended application.


In previous articles, Gratch and DeJong have presented a formal characterization of adaptive
problem solving and developed a general method for transforming a standard problem solver into an
adaptive one (Gratch & DeJong, 1992, Gratch & DeJong, 1996).  The primary purpose of this article
is twofold: to illustrate the efficacy of learning approaches for solving real-world problem solving
tasks, and to build empirical support for the the specific learning approach we advocate.  After re-
viewing the basic method, we describe its application to the development of a large-scale scheduling
system for the National Aeronautics and Space Administration (NASA).  We applied the adaptive
problem solving approach to a scheduling system developed by a separate research group, and with-
out knowledge of our adaptive techniques.  The scheduler included an expert-crafted scheduling
strategy to achieve efficient scheduling performance.  By automatically adapting this scheduling sys-
tem to the distribution of scheduling problems, the adaptive approach resulted in a significant im-
provement in scheduling performance over an expert strategy: the best adaptation found by machine
learning exhibited a seventy percent improvement in scheduling performance (the average learned
strategy resulted in a fifty percent improvement).


2. Adaptive Problem Solving


An adaptive problem solver defers the selection of a heuristic strategy until some information can
be gathered about their performance over the specific distribution of tasks.  The need for such an
approach is predicated on the claim that it is difficult to identify an effective heuristic strategy a
priori.  While this claim is by no means proven, there is considerable evidence that, at least for the
class of heuristics that have been proposed till now, no one collection of heuristic methods will
suffice.  For example, Kambhampati, Knoblock, and Yang (1995) illustrate how planning heuristics
embody design tradeoffs –– heuristics that reduce the size of search space typically increase the cost
at each node, and vice versa –– and that the desired tradeoff varies with different domains.  Similar
observations have been made in the context of constraint satisfaction problems (Baker, 1994, Frost
& Dechter, 1994).  This inherent difficulty in recognizing the worth (or lack of worth) of control
knowledge has been termed the utility problem (Minton, 1988) and has been studied extensively in
the machine learning community (Gratch & DeJong, 1992, Greiner & Jurisca, 1992, Holder, 1992,
Subramanian & Hunter, 1992).  In our case the utility problem is determining the worth of a heuristic
strategy for specific problem distribution.


2.1 Formulation of Adaptive problem solving


Before discussing approaches to adaptive problem solving, we formally state the common definition
of the task (as proposed by Gratch & DeJong, 1992, Greiner & Jurisca, 1992, Laird, 1992,
Subramanian & Hunter, 1992).  Adaptive problem solving requires a flexible problem solver,
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meaning the problem solver possesses control decisions that may be resolved in alternative ways.
Given a flexible problem solver, PS, with several control points, CP1...CPn (where each control point
CPi  corresponds to a particular control decision), and a set of alternative heuristic methods for each
control point, {Mi,1...Mi,k,},1 a control strategy defines a specific method for every control point (e.g.,
STRAT =  <M1,3,M2,6,M3,1,...>).  A control strategy determines the overall behavior of the problem
solver.  Let PSSTRAT be the problem solver operating under a particular control strategy.


The quality of a problem solving strategy is defined in terms of the decision-theoretic notion of
expected utility.  Let U(PSSTRAT, d), be a real valued utility function that is a measure of the goodness
of the behavior of the problem solver on a specific problem d.  More generally, expected utility can
be defined formally over a distribution of problems D:


ED[U(PSSTRAT)] ��
d�D


U(PSSTRAT,d)� probability(d)


The goal of adaptive problem solving can be expressed as:  given a problem distribution D, find some
control strategy in the space of possible strategies that maximizes the expected utility of the problem
solver.  For example, in the PRODIGY planning system (Minton, 1988), control points include:  how
to select an operator to use to achieve the goal; how to select variable bindings to instantiate the
operator; etc.  A method for the operator choice control point might be a set of control rules to
determine which operators to use to achieve various goals.  A strategy for PRODIGY would be a set
of control rules and default methods for every control point (e.g., one for operator choice, one for
binding choice, etc.).  Utility might be defined as a function of the time to construct a plan for a given
planning problem.


2.2 Approaches to Adaptive Problem Solving


Three potentially complementary approaches to adaptive problem solving have been discussed in the
literature.  The first, what we call a syntactic approach, is to preprocess a problem-solving domain
into a more efficient form, based solely on the domain’s syntactic structure.  For example, Etzioni’s
STATIC system analyzes a portion of a planing domain’s deductive closure to conjecture a set of search
control heuristics (Etzioni, 1990).  Dechter and Pearl  describe a class of constraint satisfaction
techniques that preprocess a general class of problems into a more efficient form (Dechter & Pearl,
1987).  More recent work has focused on recognizing those structural properties that influence the
effectiveness of different heuristic methods (Frost & Dechter, 1994, Kambhampati, Knoblock &
Yang. 1995, Stone, Veloso & Blythe, 1994).  The goal of this research is to provide a problem solver
with what is essentially a big lookup table, specifying which heuristic strategy to use based on some
easily recognizable syntactic features of a domain.  While this later approach seems promising, work
in this area is still preliminary and has focused primarily on artificial applications.  The disadvantage
of purely syntactic techniques is that that they ignore a potentially important source of information,
the distribution of problems.  Furthermore, current syntactic approaches to this problem are specific
to a particular, often unarticulated, utility function (usually problem-solving cost).  For example,
allowing the utility function to be a user specified parameter would require a significant and
problematic extension of these methods.


The second approach, which we call a generative approach, is to generate custom-made heuris-
tics in response to careful, automatic, analysis of past problem-solving attempts.  Generative ap-
1. Note that a method may consist of smaller elements so that a method may be a set of control rules or
a combination of heuristics.
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proaches consider not only the structure of the domain, but also structures that arise from the problem
solver interacting with specific problems from the domain.  This approach is exemplified by SOAR


(Laird, Rosenbloom & Newell, 1986) and PRODIGY/EBL (Minton, 1988).  These techniques analyze
past problem-solving traces and conjectures heuristic control rules in response to specific problem-
solving inefficiencies.  Such approaches can effectively exploit the idiosyncratic structure of a do-
main through this careful analysis.  The limitation of such approaches is that they have typically fo-
cused on generating heuristics in response to particular problems and have not well addressed the
issue of adapting to a distribution of problems2.  Furthermore, as with the syntactic approaches, thus
far they have been directed towards a specific utility function.


The final approach we call the statistical approach.  These techniques explicitly reason about
performance of different heuristic strategies across the distribution of problems.  These are generally
statistical generate-and-test approaches that estimated the average performance of different heuris-
tics from a random set of training examples, and explore an explicit space of heuristics with greedy
search techniques.  Examples of such systems are COMPOSER (Gratch & DeJong, 1992), PALO (Grein-
er & Jurisca, 1992), and the statistical component of MULTI-TAC (Minton, 1993).  Similar approaches
have also been investigated in the operations research community (Yakowitz & Lugosi, 1990).  These
techniques are easy to use, apply to a variety of domains and utility functions, and can provide strong
statistical guarantees about their performance.  They are limited, however, as they are computational-
ly expensive, require many training examples to identify a strategy, and face problems with local
maxima.  Furthermore, they typically leave it to the user to conjecture the space of heuristic methods
(see Minton, 1993 for a notable exception).


In this article, we adopt the statistical approach to adaptive problem solving due to its generality
and ease of use.  In particular we use the COMPOSER technique for adaptive problem solving (Gratch
& DeJong, 1992, Gratch & DeJong, 1996), which is reviewed in the next section.  Our implementa-
tion incorporates some novel features to address the computational expense of the method.  Ideally,
however, an adaptive problem solver would incorporate some form of each of these methods.  To this
end we are investigating how to incorporate other methods of adaptation in our current research.


3. COMPOSER


COMPOSER embodies a statistical approach to adaptive problem solving.  To turn a problem solver into
an adaptive problem solver, the developer is required to specify a utility function, a representative
sample of training problems, and a space of possible heuristic strategies.  COMPOSER then adapts the
problem solver by exploring the space of heuristics via statistical hillclimbing search.  The search
space is defined in terms of a transformation generator which takes a strategy and generates a set of
transformations to it.  For example, one simple transformation generator just returns all single method
modifications to a given strategy.  Thus a transformation generator defines both a space of possible
heuristic strategies and the non-deterministic order in which this space may be searched.  COMPOSER’s
overall approach is one of generate and test hillclimbing.  Given an initial problem solver, the
transformation generator returns a set of possible transformations to its control strategy.  These are
statistically evaluated over the expected distribution of problems.  A transformation is adopted if it
2. While generative approaches can be trained on a problem distribution, learning typically occurs only
within the context of a single problem.  These systems will often learn knowledge which is helpful in a
particular problem but decreases utility overall, necessitating the use of utility analysis techniques.
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increases the expected performance of solving problems over that distribution.  The generator then
constructs a set of transformations to this new strategy and so on, climbing the gradient of expected
utility values.


Formally, COMPOSER takes an initial problem solver, PS0, and identifies a sequence of problem
solvers, PS0, PS1, ... where each subsequent PS has higher expected utility with probability 1−δ
(where δ > 0 is some user–specified constant).  The transformation generator, TG, is a function that
takes a problem solver and returns a set of candidate changes.  Apply(t, PS) is a function that takes
a transformation, t ∈ TG(PS) and a problem solver and returns a new problem solver that is the result
of transforming PS with t.  Let Uj (PS) denote the utility of PS on problem j.  The change in utility
that a transformation provides for the jth problem, called the incremental utility of a transformation,
is denoted by ∆Uj (t|PS).  This is the difference in utility between solving the problem with and with-
out the transformation.  COMPOSER finds a problem solver with high expected utility by identifying
transformations with positive expected incremental utility.  The expected incremental utility is esti-
mated by averaging a sample of randomly drawn incremental utility values.  Given a sample of n val-
ues, the average of that sample is denoted by ∆Un(t|PS).  The likely difference between the average
and the true expected incremental utility depends on the variance of the distribution, estimated from
a sample by the sample variance S2


n(t|PS), and the size of the sample, n.  COMPOSER provides a statisti-
cal technique for determining when sufficient examples have been gathered to decide, with error δ,
that the expected incremental utility of a transformation is positive or negative.  Because COMPOSER


presumes that the relevant distributions are normally distributed, COMPOSER requires at that each esti-
mate of incremental utility be based on a minimum number of samples n0 to be determined for each
application. The algorithm is summarized in Figure 1.


COMPOSER’s technique is applicable in cases where the following conditions apply:


1.  The control strategy space can be structured to facilitate hillclimbing search.  In general, the space
of such strategies is so large as to make exhaustive search intractable.  COMPOSER requires a
transformation generator that structures this space into a sequence of search steps, with relatively few
transformations at each step.  In Section 5.1 we discuss some techniques for incorporating domain
specific information into the structuring of the control strategy space.


2.  There is a large supply of representative training problems so that an adequate sampling of
problems can be used to estimate expected utility for various control strategies.


3.  Problems can be solved with a sufficiently low cost in resources so that estimating expected utility
is feasible.


4.  There is sufficient regularity in the domain such that the cost of learning a good strategy can be
amortized over the gains in solving many problems.


4. The Deep Space Network


The Deep Space Network (DSN) is a multi-national collection of ground-based radio antennas
responsible for maintaining communications with research satellites and deep space probes.  DSN
Operations is responsible for scheduling communications for a large and growing number of
spacecraft.  This already complex scheduling problem is becoming more challenging each year as
budgetary pressures limit the construction of new antennas.  As a result, DSN Operations has turned
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[1] PS := PSold;  T := TG(PS);    n := 0;  i:= 0;   α := Bound(δ,  |T|);


[2] While T ≠ ∅ and i < |examples| do


[5] ∀τ∈ Τ: Get ∆Ui (τ|PS)


significant:��
�


�
�
 � : n � n0 and


S2
n(�|PS)


��Un(�|PS)�
2 �


n
[Q(�)]2�


�


�


T :� T–�
 significant: �Un(�|PS) � 0�


If ��
 significant: �Un(�|PS) � 0 Then


PS� Apply(x 
 significant: �y 
 significant  ��Un(x|PS) � �Un(y|PS)�, PS)


T := TG(PS);   n := 0;    α := Bound(δ, |Τ|); step–taken :=TRUE;


[4] n := n+1; i := i+1;  step–taken := FALSE;


{Observe incremental utility values for ith problem}


{Discard trans. that decrease expeced utility}


{Adopt τ that most increases expected utility}


Return:  PS


Figure 1: The COMPOSER algorithm


[6]


[7]


[8]


[9]


[10]


Given:  PSold,  TG(⋅),  δ, examples, n0


Bound(�, |T|) :� �


|T|
Q(�) :� x  where 	


�


x


�1� 2�� �e–0.5y2
dy� �


2


{Collect all transformations that have reached  statistical significance.}


,


{Hillclimb as long as there is data and possible transformations}


[3] Repeat {Find next transformation}


[11] Until step–taken or T=∅  or i=|examples|;


increasingly towards intelligent scheduling techniques as a way of increasing the efficiency of
network utilization.  As part of this ongoing effort, the Jet Propulsion Laboratory (JPL) has been
given the responsibility of automating the scheduling of the 26-meter sub-net; a collection of
26-meter antennas at Goldstone, CA, Canberra, Australia and Madrid, Spain.


In this section we discuss the application of adaptive problem-solving techniques to the develop-
ment of a prototype system for automated scheduling of the 26-meter sub-net.  We first discuss the
development of the basic scheduling system and then discuss how adaptive problem solving en-
hanced the scheduler’s effectiveness.


4.1 The Scheduling Problem


Scheduling the DSN 26-meter subnet can be viewed as a large constraint satisfaction problem.  Each
satellite has a set of constraints, called project requirements, that define its communication needs.
A typical project specifies three generic requirements:  the minimum and maximum number of
communication events required in a fixed period of time; the minimum and maximum duration for
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these communication events;  and the minimum and maximum allowable gap between communica-
tion events. For example, Nimbus-7, a meteorological satellite, must have at least four 15-minute
communication slots per day, and these slots cannot be greater than five hours apart.  Project
requirements are determined by the project managers and tend to be invariant across the lifetime of
the spacecraft.


In addition to project requirements, there are constraints associated with the various antennas.
First, antennas are a limited resource – two satellites cannot communicate with a given antenna at
the same time.  Second, a satellite can only communicate with a given antenna at certain times, de-
pending on when its orbit brings it within view of the antenna.  Finally, antennas undergo routine
maintenance and cannot communicate with any satellite during these times.


Scheduling is done on a weekly basis.  A weekly scheduling problem is defined by three  ele-
ments: (1) the set of satellites to be scheduled, (2) the constraints associated with each satellite, and
(3) a set of time periods specifying all temporal intervals when a satellite can legally communicate
with an antenna for that week.  Each time period is a tuple specifying a satellite, a communication
time interval, and an antenna, where (1) the time interval must satisfy the communication duration
constraints for the satellite, (2) the satellite must be in view of the antenna during this interval.  Anten-
na maintenance is treated as a project with time periods and constraints.  Two time periods conflict
if they use the same antenna and overlap in temporal extent.  A valid schedule specifies a non-con-
flicting subset of all possible time periods where each project’s requirements are satisfied.


The automated scheduler must generate schedules quickly as scheduling problems are frequently
over-constrained (i.e., the project constraints combined with the allowable time periods produces a
set of constraints which is unsatisfiable).  When this occurs, DSN Operations must go through a com-
plex cycle of negotiating with project managers to reduce their requirements.  A goal of automated
scheduling is to provide a system with relatively quick response time so that a human user may inter-
act with the scheduler and perform “what if” reasoning to assist in this negotiation process.  Ultimate-
ly, the goal is to automate this negotiation process as well, which will place even greater demands
on scheduler response time (Chien & Gratch, 1994).  For these reasons, the focus of development
is upon heuristic techniques that do not necessarily uncover the optimal schedule, but rather produce
adequate schedules quickly.


4.2 The LR-26 Scheduler


LR-26 is a heuristic scheduling approach to DSN scheduling being developed at the Jet Propulsion
Laboratory (Bell & Gratch, 1993).3  LR-26 is based on a 0–1 integer linear programming formulation
of the scheduling problem (Taha, 1982).  Scheduling is cast as the problem of finding an assignment
to integer variables that maximizes the value of some objective function subject to a set of linear
constraints.  In particular, time periods are treated as 0-1 integer variables: 0 (or OUT) if the time
period is excluded from the schedule;  1 (or IN) if it is included.  The objective is to maximize the
number of time periods in the schedule and the solution must satisfy the project requirements and
antenna constraints (expressed as sets of linear inequalities).  A typical scheduling problem under this
formulation has 700 variables and 1300 constraints.


In operations research, integer programs are solved by a variety of techniques including branch-
and-bound search, the gomory method (Kwak & Schniederjans, 1987), and Lagrangian relaxation
3. LR-26 stands for the Lagrangian Relaxation approach to scheduling the 26-meter sub-net.
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(Fisher, 1981).  In artificial intelligence such problems are generally solved by constraint propagation
search techniques (e.g., Dechter, 1992, Mackworth, 1992).  To address the complexity of the schedul-
ing problem LR-26 uses a hybrid approach that combines Lagrangian relaxation with constraint propa-
gation search.  Lagrangian relaxation is a divide-and-conquer method which, given a decomposition
of the scheduling problem into a set of easier sub-problems, coerces the sub-problems to be solved
in such a way that they frequently result in a global solution.  One specifies a problem decomposition
by identifying a subset of problem constraints that, if removed, result in one or more independent and
computationally easy sub-problems.4  These problematic constraints are “relaxed,” meaning they no
longer act as constraints but instead are added to the objective function in such a way that (1) there
is incentive to satisfying these relaxed constraints when solving the sub-problems and, (2) the best
solution to the relaxed problem, if it satisfies all relaxed constraints, is guaranteed to be the best solu-
tion to the original problem.  Furthermore, this relaxed objective function is parameterized by a set
of weights (one for each relaxed constraint).  By systematically changing these weights (thereby
modulating the incentives for satisfying relaxed constraints) a global solution can often be found.
Even if this weight search does not produce a global solution, it can make the solution to the sub-prob-
lems sufficiently close to a global solution that a global solution can be discovered with substantially
reduced constraint propagation search.


In the DSN domain, the scheduling problem is decomposed by scheduling each antenna indepen-
dently.  Specifically, the constraints associated with the complete problem can be divided into two
groups: those that refer to a single antenna, and those that mention multiple antennas.  The later are
relaxed and the resulting single-antenna sub-problems can be solved in time linear in the number of
time periods associated with that antenna (see below).  LR-26 solves the complete problem by first
trying to coerce a global solution by performing a search in the space of weights and then, if that fails
to produce a solution, resorting to constraint propagation search in the space of possible schedules.


4.2.1 SCHEDULES


We now describe the formalization of the problem.  Let P be a set of projects, A a set of antennas,
M = {0,..,10080}, and V be an enumeration, V={0, 1, *}, denoting whether a time period is excluded
from the schedule (0), included (1), or uncommitted.  Note that P, A, and M, are specified in advance
and V is to be determined by the scheduler and is initially always uncommitted. Let S ⊆  P×A×M×M×V
denote the set of possible time periods for a week, where a given time period specifies a project,
antenna and the start and end of the communication event, respectively.  For a given s ∈  S, we define
project(s), antenna(s), start(s), end(s), and value(s) to denote the corresponding elements of s. We
also define length(s) = end(s) – start(s) to simplify some subsequent notation.


A ground schedule is an assignment of 0 (excluded) or 1 (included) to each time period in S.  This
can be seen as the application to S of some function G that maps each element of S to 0 or 1.  We denote
this by SG.  A partial schedule refers to a schedule with only a subset of its time periods committed,
which we denote via some mapping function M that maps elements of S to 0, 1, or *.  A partial sched-
ule corresponds to a set of possible ground schedules (i.e., those that result from forcing each uncom-
mitted time period either in or out of the schedule).  We denote this by SM.  We define a particular
partial schedule S0 to denote the completely uncommitted partial schedule (with all time periods as-
signed a value of *).


4. A problem consists of independent sub-problems it the global objective function can be maximized
by finding some maximal solution for each sub-problem in isolation.
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4.2.2 CONSTRAINTS


The scheduler must identify some ground schedule that satisfies a set of project and antenna
constraints, which we now formalize.


Project Requirements.  Each project pn ∈  P has associated with it a set of constraints called project
requirements.  All constraints are processed and translated into simple linear inequalities over
elements of S.  The complete set of project requirements, denoted PR, is the union of the requirements
from each individual projects.  Each requirement can be expressed as integer linear inequality:


prj � PR��
si�S


ai,j � value(si) � bj  or �
si�S


ai,j � value(si) � bj


where ai  represents a weighting factor indicating the degree to which the ith time period (if included)
contributes to satisfying a particular requirement.  For example, the requirement that a project, p,
must have at least 100 minutes of communication time in a week is expressed:


�
s�S


[ I(project(s) � p) � length(s)] � value(s) � 100.


Where I(project(s)) equals one if s belongs to that project; otherwise zero.  Note that time periods with
zero weight play no role and are not explicitly mentioned in the actual constraint representation.


Constraints on the length of individual time periods are represented similarly:


length(s) � 15


For efficiency, however, time periods which do not satisfy these unary inequalities are simply
eliminated from S in a preprocessing step.5


Antenna Constraints.  Each of the three antennas has the constraint that no two projects can use the
antenna at the same time.  This can be translated into a set of linear inequalities ACa,for each antenna
a as follows:


ACa = {si  + sj  ≤ 1 | si  ≠ sj  ∧ antenna(si )=antenna(sj )=a ∧  
[start(si )..end(si )]∩[start(sj )..end(sj )] ≠ ∅ }


4.2.3 PROBLEM FORMULATION


The scheduling objective used by LR-26 is to find some ground schedule, denoted by S*, that
maximizes the number of time periods in the schedule subject to the project and antenna constraints:6


Problem: DSN


Find: S*� arg max
SG�s0
�ZG � �


s�Sg


value(s)�
Subject to: AC1∪ AC2∪ AC3∪ PR


5. Note that this is an inherent limitation in the formalization as the scheduler cannot entertain variable
length communication events – communication events must be discretized into a finite set of fixed length
intervals.







GRATCH & CHIEN


374


where ZG is the value of the objective function for some ground schedule and “arg max” denotes the
argument that leads to the maximum.


With Lagrangian relaxation, certain constraints are folded into the objective function in a stan-
dardized fashion.  The intuition is to add some factor into the objective function that is negative iff
the relaxed constraint is unsatisfied.  If a constraint is of the form Σaisi ≥b, then u[Σaisi–b] is added
to the objective function, where u is a non-negative weighting factor.  Likewise, if the constraint is
of the form Σaisi ≤b, then u[b–Σaisi ] is added.  In LR-26, only project requirements are relaxed:


Problem: DSN(u)
Find: (2)


arg max
SG�S0

	




ZG(u) � ZG��


PR�


uj�
�


�
�


si�SG


aij � value(si)� bj�
�


�
��


PR�


uj�
�


�
bj– �


si�SG


aij � value(si)�
�


�
�
�


�


S*(u) =


Subject to: AC1∪ AC2∪ AC3


where Zs(u) is the relaxed objective function and u is a vector of non-negative weights of length |PR|
(one for each relaxed constraint).  Note that this defines a space of relaxed solutions that depend on
the weight vector u.  Let Z* denote the value of the optimal solution of the original problem
(Definition 1), and let Z*(u) denote value of the optimal solution to the relaxed problem (Definition
2) for a particular weight vector u.  For any weight vector u, Z*(u) can be shown to be an upper bound
on the value of Z*.  Thus, if a relaxed solution satisfies all of the original problem constraints, it is
guaranteed to be the optimal solution to the original problem.  Lagrangian relaxation proceeds by
incrementally tightening this upper bound (by adjusting the weight vector) in the hope of identifying
a global solution.  A global solution cannot always be identified in this manner, so a complete
scheduler must combine Lagrangian relaxation with some form of search.


4.2.4 SEARCH


If a solution cannot be found through weight adjustment, LR–26 resorts to basic refinement search
(Kambhampati, Knoblock & Yang, 1995) (or split-and-prune search (Dechter & Pearl, 1987)) in the
space of partial schedules.  In this search paradigm a partial schedule is recursively refined (split) into
a set of more specific partial schedules.  In the context of the DSN scheduling problem, refinement
corresponds to forcing uncommitted time periods in or out of the schedule.  A partial schedule would
be pruned if all of its ground schedules violate the constraints.  The scheduler is applied recursively
to each refined partial schedule until some satisfactory ground schedule is found or all schedules are
pruned.


Each refinement is further refined by propagating the local consequence of new commitment.
After a variable is set to a particular value, each individual constraint which references that variable
is analyzed to determine which time period would be forced in or out of the schedule as a result of
the assignment.  LR–26 performs only partial constraint propagation, because complete propagation
is computationally expensive.  Specifically, if constraint C1 references time periods s2, s4 and s5, and


6. This might correspond to a desire to maintain maximum downlink flexibility.
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s2 is assigned a value, LR–26 analyzes C1 to see if the new assignment determines the value of s4 and/
or s5.  If, for example, s4 is constrained to take on a particular value, this triggers analysis of all
constraints which contain s4.  This can be viewed as performing arc–consistency (Dechter, 1992).
During the constraint propagation it may be possible to show that the refinement contains no valid
ground schedule.  In this case the partial schedule may be pruned from the search.


LR-26 augments this basic refinement search with Lagrangian relaxation to heuristically reduce
the combinatorics of the problem.  The difficulty with refinement search is that it may have to perform
considerable (and poorly directed) search through a tree of refinements to identify a single satisficing
solution.  If an optimal solution is sought, every leaf of this search tree must be examined.7  In con-
trast, by searching through the space of relaxed solutions to a partial schedule, one can sometimes
identify the best schedule without any refinement search.  Even when this is not possible, Lagrangian
relaxation heuristically identifies a small set of problematic constraints, focusing the subsequent re-
finement search.  Thus, by performing some search in the space of relaxed solutions at each step, the
augmented search method can significantly reduce both the depth and breadth of refinement search.


The augmented procedure works to the extent that it can efficiently solve relaxed solutions, ideal-
ly allowing the algorithm to explore several points in the space of weight vectors in each step of the
refinement search.  LR-26 solves relaxed problems in linear time, O(|AC1∪ AC2∪ AC3|).  To see this,
note that each time period appears on exactly one antenna.  Thus, Zs(u) can be broken into the sum
of three objective functions, each containing only the time periods associated with a particular anten-
na.  Furthermore, the relaxed objective function can be re–expressed as the weighted sum of each of
the time periods on that antenna, and the unrelaxed constraints are simple pair–wise exclusion
constraints between individual time periods.  Combine this with the fact that time periods are partially
ordered by their start time and the problem simplifies to identifying some non–exclusive sequence
of time periods with the maximum cumulative weight.  This is easily formulated and solved as a dy-
namic programming problem (see Bell & Gratch, 1993 for more details).


The augmented refinement search performed by LR-26 is summarized in Figure 2


4.2.5 PERFORMANCE TRADEOFFS


Perhaps the most difficult decisions in constructing the scheduler involve how to flesh out the details
of steps 1,2, 3, and 4.  The constraint satisfaction and operations research literatures have proposed
many heuristic methods for these steps.  Unfortunately, due to their heuristic nature, it is not clear
what combination of methods best suits this scheduling problem.  The power of a heuristic method
depends on subtle factors that are difficult to assess in advance.  Additionally, when considering
multiple methods, one has to consider interactions between methods.


In LR-26 a key interaction arises in the tradeoff between the amount of weight vector search vs.
refinement search performed by the scheduler (as determined by Step 2).  At each step in the refine-
ment search, the scheduler has the opportunity to search in the space of relaxed solutions.  Spending
more effort in this weight search can reduce the amount of subsequent refinement search.  But at some
point the savings in reduced refinement search may be overwhelmed by the cost of performing the


7. Partial schedules may also be pruned, as in branch-and-bound search, if they can be shown to contain
lower value solutions that other partial schedules.  In practice LR-26 is run in a satisficing mode, meaning
that search terminates as soon as a ground schedule is found (not necessarily optimal) that satisfies all of
the problem constraints.







GRATCH & CHIEN


376


LR-26 Scheduler
Agenda := {S0};
While Agenda ≠ ∅  


(1) Select some partial schedule S ∈ Agenda;  Agenda:=Agenda–{ S}
(2) Weight search for some S*(u) ∈ S;


IF S*(u) satisfies the project requirements (PR) Then
Return S*(u);


Else
(3) Select constraint c ∈ PR not satisfied by S*(u);
(4) Refine S into {Si},  such that each SG ∈ Si satisfies c 


                                           and ∪ { Si}  = S;
Perform constraint propagation on each Si


Agenda := Agenda∪ { Si};


Figure 2:  The basic LR-26 refinement search method.


weight search.  This is a classic example of the utility problem, and it is difficult to see how best to
resolve the tradeoff without intimate knowledge of the form and distribution of scheduling problems.


Another important issue for improving scheduling efficiency is the choice of heuristic methods for
controlling the direction of refinement search (as determined by steps 1, 3, and 4).  Often these
methods are stated as general principles (e.g., “first instantiate variables that maximally constrain the
rest of the search space”, Dechter, 1992, p. 277) and there may be many ways to realize them in a
particular scheduler and domain.  Furthermore, there are almost certainly interactions between
methods used at different control points that make it difficult to construct a good overall strategy.


These tradeoffs conspire to make manual development and evaluation of heuristics a tedious, un-
certain, and time consuming task that requires significant knowledge about the domain and schedul-
er.  In the case of LR-26, its initial control strategy was identified by hand, requiring a significant cycle
of trial-and-error evaluation by the developer over a small number of artificial problems.  Even with
this effort, the resulting scheduler is still expensive to use, motivating us to try adaptive techniques.


5. Adaptive Problem Solving for The Deep Space Network


We developed an adaptive version of the scheduler, Adaptive LR-26, in an attempt to improve its
performance.8  Rather than committing on a particular combination of heuristic strategies, Adaptive
LR-26 embodies an adaptive problem solving solution.  The scheduler is provided a variety of heuristic
methods, and, after a period of adaptation, settles on a particular combination of heuristics that suits
the actual distribution of scheduling problems for this domain.


To perform adaptive problem solving, we must formally specify three things: a transformation
generator that defines the space of legal heuristic control strategies; a utility function that captures
our preferences over strategies in the control grammar; and a representative sample of training prob-
lems.  We describe each of these elements as they relate to the DSN scheduling problem.


5.1 Transformation Generator


The description of LR-26 in Figure 2 highlights four points of non-determinism with respect to how
the scheduler performs its refinement search.  To fully instantiate the scheduler we must specify: a
8. This system has also been referred to by the name DSN-COMPOSER (Gratch, Chien & DeJong, 1993).
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way of ordering elements on the agenda, a weight search method, a method for selecting a constraint,
and a method for generating a spanning set of refinements that satisfy the constraint.  The alternative
ways for resolving these four decisions are specified by a control grammar, which we now describe.
The grammar defines the space of legal search control strategies available to the adaptive problem
solver.


5.1.1 SELECT SOME PARTIAL SCHEDULE


The first decision in the refinement search is to choose some partial schedule from the agenda.  This
selection policy defines the character of the search.  Maintaining the agenda as a stack implements
depth-first search.  Sorting the agenda by some value function implements a best-first search.  In
Adaptive LR-26 we restrict the space of methods to variants of depth-first search.  Each time a set of
refinements is created (Decision 4), they are added to the front of the agenda.  Search always proceeds
by expanding the first partial schedule on the agenda.  Heuristics act by ordering refinements before
they are added to the agenda.  The grammar specifies several ordering heuristics, sometimes called
value ordering heuristics, or look–ahead schemes in the constraint propagation literature (Dechter,
1992, Mackworth, 1992).  As these methods are entertained during refinement construction, their
detailed description is delayed until that section.


Look-ahead schemes decide how to refine partial schedules.  Look-back schemes handle the re-
verse decision of what to do whenever the scheduler encounters a dead end and must backtrack to
another partial schedule.  Standard depth-first search performs chronological backtracking, backing
up to the most recent decision.  The constraint satisfaction literature has explored several heuristic
alternatives to this simple strategy, including backjumping (Gaschnig, 1979), backmarking (Haralick
& Elliott, 1980), dynamic backtracking (Ginsberg, 1993), and dependency-directed backtracking
(Stallman & Sussman, 1977) (see Backer & Baker, 1994, and Frost and Dechter, 1994, for a recent
evaluation of these methods).  We are currently investigating look-back schemes for the control
grammar but they will not be discussed in this article.


5.1.2 SEARCH FOR SOME RELAXED SOLUTION


The next dimension of flexibility is in weight-adjusting methods to search the space of possible
relaxed solutions for a given partial schedule.  The general goal of the weight search is to find a
relaxed solution that is closest to the true solution in the sense that as many constraints are satisfied
as possible.  This can be achieved by minimizing the value of Z*(u) with respect to u.  The most
popular method of searching this space is called subgradient-optimization (Fisher, 1981).  This is a
standard optimization method that repeatedly changes the current u in the direction that most
decreases Z*(u).  Thus at step i, ui+1  = ui  + tidi  where ti  is a step size and di   is a directional vector
in the weight space.  The method is expensive but it is guaranteed to converge to the minimum Z*(u)
under certain conditions (Held & Karp, 1970).  A less expensive technique, but without the
convergence guarantee, is to consider only one weight at a time when finding an improving direction.
Thus ui+1  = ui  + tidi  where di  is a directional vector with zeroes in all but one location.  This method
is called dual-descent.  In both of these methods, weights are adjusted until there is no change in the
relaxed solution: S*(ui ) = S*(ui+1 ).


While better relaxed solutions will create greater reduction in the amount of subsequent refine-
ment search, it is unclear just where the tradeoff between these two search spaces lies.  Perhaps it is
unnecessary to spend much time improving relaxed schedules.  Thus a more radical, and extremely
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efficient, approach is to settle for the first relaxed solution found. We call this the first-solution meth-
od. A more moderate approach is to perform careful weight search at the beginning of the refinement
search (where there is much to be gained by reducing the subsequent refinement search) and to per-
form the more restricted first-solution search when deeper in the refinement search tree. The trun-
cated-dual-descent method performs dual-descent at the initial refinement search node and then uses
the first-solution method for the rest of the refinement search.


The control grammar includes four methods for performing weight space search (Figure 3).


2a: Subgradient-optimization 2c: Truncated-dual-descent
2b: Dual-descent 2d: First-solution


Figure 3:  Weight Search Methods


5.1.3 SELECT SOME CONSTRAINT


If the scheduler cannot find a relaxed solution that solves the original problem, it must break the
current partial schedule into a set of refinements and explore them non-deterministically.  In Adaptive
LR-26, the task of creating refinements is broken into two decisions:  selecting an unsatisfied
constraint (Decision 3), and creating refinements that make progress towards satisfying the selected
constraint (Decision 4).  Lagrangian relaxation simplifies the first decision by identifying a small
subset of constraints that appear problematic.  However, this still leaves the problem of choosing one
constraint in this subset on which to base the subsequent refinement.


The common wisdom in the search community is to choose a constraint that maximally
constrains the rest of the search space, the idea being to minimize the size of the subsequent refine-
ment search and to allow rapid pruning if the partial schedule is unsatisfiable.  Therefore, our control
grammar incorporates several alternative heuristic methods for locally assessing this factor.  Given
that the common wisdom is only a heuristic, we include a small number of methods that violate this
intuition.  All of these methods are functions that look at the local constraint graph topology and re-
turn a value for each constraint.  Constraints can then be ranked by their value and the highest value
constraint chosen.  The control grammar implements both a primary and secondary sort for
constraints.  Constraints that have the same primary value are ordered by their secondary value.


For the sake of simplicity we only discuss measures for constraints of the form Σas ≥ b.  (Analo-
gous measures are defined for other forms.)  We first define measures on time periods.  Measures on
constraints are functions of the measures of the time periods that participate in the constraint.


Measures on Time Periods.  An unforced time period is one that is neither in or out of the schedule
(value(s)=*).  The conflictedness of an unforced time period s (with respect to a current partial
schedule) is the number of other unforced time periods that will be forced out if s is forced into the
schedule (because they participate in an antenna constraint with s).  If a time period is already forced
out of the current partial schedule, it does not count toward s’s conflictedness.  Forcing a time period
with high conflictedness into the schedule will result in many constraint propagations, which reduces
the number of ground schedules in the refinement.


The gain of an unforced time period s (with respect to a current partial schedule) is the number
of unsatisfied project constraints that s participates in.  Preferring time periods with high gain will
make progress towards satisfying many project constraints simultaneously.
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The loss of an unforced time period s (with respect to a current partial schedule) is a combination
of gain and conflictedness.  Loss is the sum of the gain of each unforced time period that will be forced
out if s is forced into the schedule.  Time period with high loss are best avoided as they prevent prog-
ress towards satisfying many project constraints.


To illustrate these measures, consider the simplified scheduling problem in Figure 4.


A1 A2


P2P1


A1:  s1 + s3 ≤ 1


A2:  s2 + s4 ≤ 1


P1:  s1 + s2 + s3 ≥ 2


P2:  s2 + s3 + s4 ≥ 2


Project Requirements


Antenna Constraints


Figure 4:  A simplified DSN scheduling problem based on four time periods.  There
are two project constraints, and two antenna constraints.  For example, P1 signifies that
at least two of the first three time periods must appear in the schedule, and A1 signifies
that either s1 or s3 may appear in the schedule, but not both.  In the solution, only s2
and s3 appear in the schedule.


s1 s2 s3 s4


With respect to the initial partial schedule (with none of the time periods forced either in or out)
the conflictedness of s2 is one, because it appears in just one antenna constraint (A2). If subsequently,
s4 is forced out, then the conflictedness of s2 drops to zero, as conflictedness is only computed over
unforced time periods.  The initial gain of s2 is two, as it appears in both project constraints.  Its gain
drops to one if s3 and s4 are then forced into the schedule, as P2 becomes satisfied.  The initial loss
of s2 is the sum of the gain of all time periods conflicting with it (s4).  The gain of s4 is one (it appears
in P2) so that the loss of s2 is one.


Measures on Constraints.  Constraint measures (with respect to a partial schedule) can be defined
as functions of the measures of the unforced time periods that participate in a constraint.  The
functions max, min, and total have been defined.  Thus, total-conflictedness is the sum of the
conflictedness of all unforced time periods mentioned in a constraint, while max-gain is the
maximum of the gains of the unforced time periods.  Thus, for the constraints defined above, the
initial total-conflictedness of P1 is the conflictedness of s1, s2 and s3, 1 + 1 + 1 = 3.  The initial
max–gain of constraint P1 is the maximum of the gains of s1, s2, and s3 or max{1,2,2} = 2.


We also define two other constraint measures.  The unforced-periods of a constraint (with respect
to a partial schedule) is simply the number of unforced time periods that are mentioned in the
constraint.  Preferring a constraint with a small number of unforced time periods restricts the number
of refinements that must be considered, as refinements consider combinations of time periods to force
into the schedule in order to satisfy the constraint.  Thus, the initial unforced-periods of P1 is three
(s1, s2, and s3).
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The satisfaction-distance of a constraint (with respect to a partial schedule) is a heuristic measure
the number of time periods that must be forced in order to satisfy the constraint.  The measure is heu-
ristic because it does not account for the dependencies between time periods imposed by antenna
constraints. The initial satisfaction-distance of P1 is two because two time periods must be forced in
before the constraint can be satisfied.


Given these constraint measures, constraints can be ordered by some measure of their worth.  For
example we may prefer constraints with high total conflictedness, denoted as prefer-total-conflicted-
ness.  Not all possible combinations seem meaningful so the control grammar for Adaptive LR-26 im-
plements nine constraint ordering heuristics (Figure 5).


3a: Prefer-max-gain 3f: Penalize-total-conflictedness
3b: Prefer-total-gain 3g: Prefer-min-conflictedness
3c: Penalize-max-loss 3h: Penalize-unforced-periods
3d: Penalize-max-conflictedness 3i: Penalize-satisfaction-distance
3e: Prefer-total-conflictedness


Figure 5:  Constraint Selection Methods


5.1.4 REFINE PARTIAL SCHEDULE


Given a selected constraint, the scheduler must create a set of refinements that make progress towards
satisfying it.  If the constraint is of the form Σas ≥ b then some time periods on the left-hand-side must
be forced into the schedule if the constraint is to be satisfied.  Thus, refinements are constructed by
identifying a set of ways to force time periods in or out of the partial schedule s such that the
refinements form a spanning set: ∪ { Si} = S.  These refinements are then ordered and added to the
agenda.  Again, for simplicity we restrict discussion to constraints of form Σas ≥ b.


The Basic Refinement Method.  The basic method for refining a partial schedule is to take each
unforced time period mentioned in the constraint and create a refinement with the time period vj
forced into the schedule.  Thus, for the constraints defined above, there would be three refinements
to constraint P1, one with s1 forced in: one with s2 forced in, and one with s3 forced in.


Each refinement is further refined by performing constraint propagation (arc consistency) to de-
termine some local consequences of this new restriction.  Thus, every time period that conflicts with
vj  is forced out of the refined partial schedule, which in turn may force other time periods to be in-
cluded, and so forth.  By this process, some refinements may be recognized as inconsistent (contain
no ground solutions) and are pruned from the search space (for efficiency, constraint propagation is
only performed when partial schedules are removed from the agenda).


Once the set of refinements has been created, they are ordered by a value ordering heuristic before
being placed on the agenda.  As with constraint ordering heuristics, there is a common wisdom for
creating value ordering heuristics: prefer refinements that maximized the number of future options
available for future assignments (Dechter & Pearl, 1987, Haralick & Elliott, 1980).  The control
grammar implements several heuristic methods using measures on the time periods that created the
refinement.  For example, one way to keep options available is to prefer forcing in a time period with
minimal conflictedness.  As the common wisdom is only heuristic, we also incorporate a method that
violates it.  The control grammar includes five value ordering heuristics that are derived from the
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measures on time periods (Figure 6), where the last method, arbitrary, just uses the ordering of the
time periods as they appear in the constraint. 


1a: Prefer-gain 1d: Prefer-conflictedness
1b: Penalize-loss 1e: Arbitrary
1c: Penalize-conflictedness


Figure 6:  Value Ordering Methods


The Systematic Refinement Method.  The basic refinement method has one unfortunate property
that may limit its effectiveness.  The search resulting from this refinement method is unsystematic
in the sense of McAllester and Rosenblitt (1991).  This means that there is some redundancy in the
set of refinements: Si∩Sj≠∅ .  Unsystematic search is inefficient in that the total size of the refinement
search space will be greater than if a systematic (non-redundant) refinement method is used.  This
may or may not be a disadvantage in practice as scheduling complexity is driven by the size of the
search space actually explored (the effective search space) rather than its total size.  Nevertheless,
there is good reason to suspect that a systematic method will lead to smaller effective search spaces.


A systematic refinement method chooses a time period that helps satisfy the selected constraint
and then forms a spanning set of two refinements:  one with the time period forced in and one with
the time period forced out.  These refinements are guaranteed to be non-overlapping.  The systematic
method incorporated in the control grammar uses the value ordering heuristic to choose which un-
forced time period to use.  The two refinements are ordered based on which makes immediate prog-
ress towards satisfying the constraint (e.g., s=1 is first for constraints of form Σas ≥ b).  The control
grammar includes both the basic and systematic refinement methods (Figure 7).


4a: Basic-Refinement 4b: Systematic-Refinement


Figure 7:  Refinement Methods


For the problem specified in Figure 4, when systematically refining constraint P1, one would use
the value ordering method to select among time periods s1, s2, and s3.  If s2 were selected, two refine-
ments would be proposed, one with s2 forced in and one with s2 forced out.


The control grammar is summarized in Figure 8.  The original expert control strategy developed
for LR-26 is a particular point in the control space defined by the grammar:  the value ordering method
is arbitrary (1e); the weight search is by dual-descent (2b); the primary constraint ordering is penal-
ize-unforced-periods (3h); there is no secondary constraint ordering, thus this is the same as the pri-
mary ordering; and the basic refinement method is used (4a).


5.1.5 META-CONTROL KNOWLEDGE


The constraint grammar defines a space of close to three thousand possible control strategies.  The
quality of a strategy must be assessed with respect to a distribution of problems, therefore it is
prohibitively expensive to exhaustively explore the control space:  taking a significant number of
examples (say fifty) on each of the strategies at a cost of 5 CPU minutes per problem would require
approximately 450 CPU days of effort.
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CONTROL STRATEGY := VALUE ORDERING ∧
WEIGHT SEARCH METHOD ∧
PRIMARY CONSTRAINT ORDERING   ∧
SECONDARY CONSTRAINT ORDERING  ∧  
REFINEMENT METHOD


VALUE ORDERING := {1a, 1b, 1c, 1d,1e}
WEIGHT SEARCH METHOD := {2a, 2b, 2c, 2d}
PRIMARY CONSTRAINT ORDERING    := {3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i}
SECONDARY CONSTRAINT ORDERING := {3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i}
REFINEMENT METHOD := {4a, 4b}


Figure 8:  Control grammar for Adaptive LR-26


COMPOSER requires a transformation generator to specify alternative strategies, which are ex-
plored via hillclimbing search.  In this case, the obvious way to proceed is to consider all single meth-
od changes to a given control strategy.  However the cost of searching the strategy space and quality
of the final solution depend to a large extent on how hillclimbing proceeds, and the obvious way need
not be the best.  In Adaptive LR-26, we augment the control grammar with some domain-specific
knowledge to help organize the search.  Such knowledge includes, for example, our prior expectation
that certain control decisions would interact, and the likely importance of the different control deci-
sions.  The intent of this “meta-control knowledge” is to reduce the branching factor in the control
strategy search and improve the expected utility of the locally optimal solution found.  This approach
led to a layered search through the strategy space.  Each control decision is assigned to a level.  The
control grammar is search by evaluating all combinations of methods at a single level, adopting the
best combinations, and then moving onto the next level.  The organization is shown below:


    Level 0: {Weight search method}
    Level 1: {Refinement method}
    Level 2: {Secondary constraint ordering, Value ordering}
    Level 3: {Primary constraint ordering}


The weight search and refinement control points are separate, as they seem relatively independent
from the other control points, in terms of their effect on the overall strategy. While there is clearly
some interaction between weight search, refinement construction, and the other control points, a
good selection of methods for pricing and alternative construction should perform well across all
ordering heuristics.  The primary constraint ordering method is relegated to the last level because
some effort was made in optimizing this decision in the expert strategy for LR-26, and we believed that
it was unlikely the default strategy could be improved.


Given this transformation generator, Adaptive LR-26 performs hillclimbing across these levels.
It first entertains weight adjustment methods, then alternative construction methods, then combina-
tions of secondary constraint sort and child sort methods, and finally primary constraint sort methods.
Each choice is made given the previously adopted  methods.


This layered search can be viewed as the consequence of asserting certain types of relations be-
tween control points.  Independence relations indicate cases in which the utility of methods for one
control point is roughly independent of the methods used at other control points.  Dominance rela-
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tions indicate that the changes in utility from changing methods for one control point are much larger
than the changes in utility for another control point.  Finally, inconsistency relations indicate when
a method M1 for control point X is inconsistent with method M2 for control point Y.  This means that
any strategy using these methods for these control points need not be considered.


5.2 EXPECTED UTILITY


As previously mentioned, a chief design requirement for LR-26 is that the scheduler produce solutions
(or prove that none exist) efficiently.  This behavioral preference can be expressed by a utility
function related to the computational effort required to solve a problem.  As the effort to produce a
schedule increases, the utility of the scheduler on that problem should decrease.  In this paper, we
characterize this preference by defining utility as the negative of the CPU time required by the
scheduler on a problem.  Thus, Adaptive LR-26 tunes itself to strategies that minimize the average time
to generate a schedule (or prove that one does not exist).  Other utility functions could be entertained.
In fact, more recent research has focused on measures of schedule quality (Chien & Gratch, 1994).


5.3 Problem Distribution


Adaptive LR-26 needs a representative sample of training examples for its adaptation phase.
Unfortunately, DSN Operations has only recently begun to maintain a database of scheduling
problems in a machine readable format.  While this will ultimately allow the scheduler to tune itself
to the actual problem distribution, only a small body of actual problems was available at the time of
this evaluation.  Therefore, we resorted to other means to create a reasonable problem distribution.


We constructed an augmented set of training problems by syntactic manipulation of the set of real
problems.  Recall that each scheduling problem is composed of two components: a set of project re-
quirements, and a set of time periods.  Only the time periods change across scheduling problems, so
we can organize the real problems into a set of tuples, one for each project, containing the weekly
blocks of time periods associated with it (one entry for each week the project is scheduled).  The set
of augmented scheduling problems is constructed by taking the cross product of these tuples.  Thus,
a weekly scheduling problem is defined by combining one weeks worth of time periods from each
project (time periods for different projects may be drawn from different weeks), as well as the project
requirements for each.  This simple procedure defines set of 6600 potential scheduling problems.


Two concerns led us to use only a subset of these augmented problems.  First,  a significant per-
centage of augmented problems appeared much harder to solve (or prove unsatisfiable) than any of
the real problems (on almost half of the constructed problems the scheduler did not terminate, even
with large resource bounds).  That such “hard” problems exist is not unexpected as scheduling is NP-
hard, however, their frequency in the augmented sample seems disproportionately high.  Second, the
existence of these hard problems raises a secondary issue of how best to terminate search.  The stan-
dard approach is to impose some arbitrary resource bound and to declare a problem unsatisfiable if
no solution is found within this bound.  Unfortunately this raises the issue of what sized bound is most
reasonable.  We could have resolved this by adding the resource bound to the control grammar, how-
ever, at this point in the project we settled for a simpler approach.  We address this and the previous
concern by excluding from the augmented problem distribution those problems that seem “funda-
mentally intractable.”  What this means in practice is that we exclude problems that could not be
solved by any of a large set of heuristic methods within a five minute resource bound, the determina-
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tion of which is discussed in Appendix A.  This results in a reduced set of about three thousand sched-
uling problems.


The use of a resource bound can be problematic for evaluating the power of a learning technique.
As noted by Segre, Elkan, and Russell (1991), a learning system that greatly improves problem solv-
ing performance under a given resource bound may perform quite differently under a different re-
source bound.  Some researchers suggest statistical analysis methods for assessing the significance
of this factor (e.g., see Etzioni and Etzioni, 1994).  In this study, however, we do not address the issue
of how results might change given different resource bounds.  We note that COMPOSER’s statistical
properties suggest that problem solving performance should be no worse after learning, whatever the
resource bound, but the performance improvement many vary considerably.  To give at least some
insight into the generality of adaptive problem solving, we include a secondary set of evaluations
based on all 6600 augmented problems (including fundamentally “intractable” ones).


6. Empirical Evaluation


We conjecture that Adaptive LR–26 will improve the performance of the basic scheduler.  This can
be broken down into two separate claims.  First, we claim that the modifications suggested above
contain useful transformations (it is possible to improve the scheduler).  Second, we claim that
Adaptive LR–26 should identify these transformations (and avoid harmful ones) with the requested
level of probability.  The first claim is solely based on our intuitions; the second supported by the
statistical theory that underlies the COMPOSER approach.  The usefulness of COMPOSER depends on
its ability to COMPOSER can go beyond simply improving performance and identifying strategies that
rank highly when judged with respect to the whole space of possible strategies.  A third claim,
therefore, is that Adaptive LR-26 will find better strategies than if we simply picked the best of a large
number of randomly selected strategies.  Besides testing these three claims, we are also interested
in three secondary questions: how quickly does the technique improve expected utility (e.g., how
many examples are required to make statistical inferences?); can Adaptive LR-26 improve the number
problems solved (or proved unsatisfiable) within the resource bound; and how sensitive is the
effectiveness of adaptive problem solving to changes in the distribution of problems.


6.1 Methodology


Our evaluation is influenced by the stochastic nature of adaptive problem solving.  During adaptation,
Adaptive LR-26 is guided by a random selection of training examples according to the problem
distribution.  As a result of this random factor, the system will exhibit different behavior on different
runs of the system.  On some runs the system may learn high utility strategies; on other runs the
random examples may poorly represent the distribution and the system may adopt transformations
with negative utility.  Thus, our evaluation is directed at assessing the expected performance of the
adaptive scheduler by averaging results over multiple experimental trials.


For these experiments, the scheduler is allowed to adapt to 300 scheduling problems drawn ran-
domly from the problem distribution described above.  The expected utility of all learned strategies
is assessed on an independent test set of 1000 test examples drawn randomly from the complete set
of three thousand.  The adaptation rate is assessed by recording the strategy learned by Adaptive LR-26


after every 20 examples.  Thus we can see the result of learning with only twenty examples, only forty
examples, etc.  We measure the statistical error of the technique (the probability of adopting a trans-
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Figure 9.  Learning curve showing performance as a function of the number of training examples
and table of experimental results.
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formation with negative incremental utility) by performing eighty runs of the system on eighty dis-
tinct training sets drawn randomly from the problem distribution. We measure the distributional sen-
sitivity of the technique by evaluating the adaptive scheduler on a second distribution of problems.
Recall that we purposely excluded inherently difficult scheduling problems from the augmented set
of problems.  If added, these excluded problems should make adaptation more difficult as no strategy
is likely to provide a noticeable improvement within the five minute resource bound. The second
evaluation includes these difficult problems


A third evaluation assesses the relative quality of the strategies identified by Adaptive LR-26 when
compared with other strategies in the strategy space.  This is inferred by comparing the expected util-
ity of the learned strategies with several strategies drawn randomly from the space.  This also pro-
vides an opportunity to assess the quality of the expert strategy, and thus give a sense of how challeng-
ing it is to improve it.


COMPOSER, the statistical component of the adaptive scheduler, has two parameters that govern
its behavior.  The parameter δ specifies the acceptable level of statistical error (this is the chance that
the technique will adopt a bad transformation or reject a good one).  In Adaptive LR-26, this is set to
a standard value of 5%.  COMPOSER bases each statistical inferences on a minimum of n0 examples.
In Adaptive LR-26, n0 is set to the empirically determined value of fifteen.


6.2 Overall Results –– DSN DISTRIBUTION


Figure 9 summarizes the results of adaptive problem solving over the constructed DSN problem
distribution.  The results support the two primary claims.  First, the system learned search control
strategies that yielded a significant improvement in performance.  Adaptive problem solving reduced
the average time to solve a problem (or prove it unsatisfiable) from 80 to 40 seconds (a 50%
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improvement).  Second, the observed statistical error fell well within the predicted bound. Of the 370
transformations adopted across the eighty trials, only 3% decreased expected utility.


Due to the stochastic nature of the adaptive scheduler, different strategies were learned on differ-
ent trials.  All learned strategies produced at least some improvement in performance.  The best of
these strategies required only 24 seconds on average to solve a problem (an improvement of 70%).
The fastest adaptations occurred early in the adaptation phase and performance improvements de-
creased steadily throughout.  It took an average of 62 examples to adopt each transformation. Adap-
tive LR-26 showed some improvement over the non-adaptive scheduler in terms of the number of
problems that could be solved (or proven unsatisfiable) within the resource bound.  LR-26 was unable
to solve 21% of the scheduling problems within the resource bound.  One adaptive strategy substan-
tially reduced this number to 3%.


An analysis of the learned strategies is revealing.  Most of the performance improvement (about
one half) can be traced to modifications in LR-26’s weight search method.  The rest of the improve-
ments are divided equally among changes to the heuristics for value ordering, constraint selection,
and refinement.  As expected, changes to the primary constraint ordering only degraded performance.
The top three strategies are illustrated in Figure 10.


Value ordering: penalize-conflictedness (1c)
Weight search: first-solution (2d)
Primary constraint ordering: penalize-unforced-periods (3h)
Secondary constraint ordering: prefer-total-conflictedness (3e)
Refinement method: systematic-refinement (4b)


Value ordering: prefer-gain (1a)
Weight search: first-solution (2d)
Primary constraint ordering: penalize-unforced-periods (3h)
Secondary constraint ordering: prefer-total-conflictedness (3e)
Refinement method: systematic-refinement (4b)


Value ordering: penalize-conflictedness (1c)
Weight search: first-solution (2d)
Primary constraint ordering: penalize-unforced-periods (3h)
Secondary constraint ordering: penalize-satisfaction-distance (3i)
Refinement method: systematic-refinement (4b)


1)


2)


3)


Figure 10:  The three highest utility strategies learned by Adaptive LR-26.


For the weight search, all of the learned strategies used the first-solution method (2d).  It seems
that, at least in this domain and problem distribution, the reduction in refinement search space that
results from better relaxed solutions is more than offset by the additional cost of the weight search.
The scheduler did, however, benefit from the reduction in size that results from a systematic refine-
ment method.
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Figure 11.  Learning curves and table of experimental results showing performance over
the augmented distribution (including “intractable” problems).
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More interestingly, Adaptive LR-26 seems to have “rediscovered” the common wisdom in heuris-
tic constraint-satisfaction search.  When exploring new refinements, it is often suggested to chose
the least constrained value of the most constrained constraint.  The best learned strategies follow this
advice while the worst strategies violate it.  In the best strategy, the time period with lowest con-
flictedness is least constraining (in the sense that it will tend to produce the least constraint propaga-
tions) and thus produces the least commitments on the resulting partial schedule.  By this same argu-
ment, the constraint with the highest total conflicted will tend to be the hardest to satisfy.  


6.3 Overall Results –– FULL AUGMENTED DISTRIBUTION


Figure 11 summarizes the results for the augmented distribution.  As expected, this distribution
proved more challenging for adaptive problem solving.  Nevertheless, modest performance
improvements were still possible, lending support to our claimed generality of the adaptive problem
solving approach.  Learned strategies reduced the average solution time from 156 to 146 seconds (an
6% improvement).  The best learned strategies required 133 seconds on average to solve a problem
(an improvement of 15%).  The observed statistical accuracy did not significantly differ from the
theoretically predicted bound, although it was slightly higher than expected:  of 397 transformations
were adopted across the trials, 6% produced a decrease in expected utility.  The introduction of the
difficult problems resulted in higher variance in the distribution of incremental utility values and this
is reflected in a higher sample complexity: an average of 118 examples to adopt each transformation.
Some improvement was noted on the supposedly intractable problems.  One strategy learned by
Adaptive LR-26 increased the number of problems that could be processed within the resource bound
from 51% to 57%.


One interesting result of this evaluation is that, unlike the previous evaluation, the best learned
strategies use truncated-dual-descent as their weight search method (the strategies were similar along
other control dimensions).  This illustrates how even modest changes to the distribution of problems
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can influence the design tradeoffs associated with a problem solver: in this case, changing the tradeoff
between weight and refinement search.


6.4 Quality of Learned strategies


The third claim is that, in practice, COMPOSER can identify strategies that rank highly when judged
with respect to the whole strategy space.  A secondary question is how well does the expert strategy
perform.  The improvements of Adaptive LR-26 are of little significance if the expert strategy
performs worse than most strategies in the space.  Alternatively, if the expert strategy is extremely
good, its improvement is compelling.


As a way of assessing these claims we estimate the probability of selecting a high utility strategy
given that we choose it randomly from one of three strategy spaces:  the space of all possible strategies
(expressible in the transformation grammar), the space of strategies produced by Adaptive LR-26, and
the trivial space containing only the expert strategy.  This corresponds to the problem of estimating
a probability density function (p.d.f.) for each space:  a p.d.f., f(x), associated with a random variable
gives the probability that an instance of the variable has value x.  More specifically we want to esti-
mate the density functions, fs(u), which is the probability of randomly selecting a strategy from space
s that has expected utility u.


We use a non-parametric density estimation technique called the kernel method to estimate fs(u)
(as in Smyth, 1993).  To estimate the density function of the whole space, we randomly selected and
tested thirty strategies.  All of the learned strategies are used to estimate the density of the learned
space.  (In both cases, five percent of the data was withheld to estimate the bandwidth parameter used
by the kernel method.)  The p.d.f. associated with the single expert strategy is estimated using a nor-
mal model fit to the 1000 test examples from the previous evaluation.


6.4.1 DSN DISTRIBUTION


Figure 12 illustrates the results for the DSN distribution.  In this evaluation the learned strategies
significantly outperformed the randomly selected strategies.  Thus, one would have to select and test
many strategies at random before finding one of comparable expected utility to one found by
Adaptive LR-26.  The results also indicate that the expert strategy is already a good strategy (as
indicated by the relative positions of the peaks for the expert and random strategy distributions),
indicating that the improvement due to Adaptive LR-26 is significant and non-trivial.


The results provide additional insight into Adaptive LR-26’s learning behavior.  That the p.d.f for
the learned strategies contains several peaks, graphically illustrates that different local maxima exist
for this problem.  Thus, there may be benefit in running the system multiple times and choosing the
best strategy.  It also suggests that techniques designed to avoid local maxima would be beneficial.


6.4.2 FULL AUGMENTED DISTRIBUTION


Figure 13 illustrates the results for the full augmented distribution.  The results are similar to the DSN
distribution: the learned strategies again outperformed the expert strategy which in turn again
outperformed the randomly selected strategies.  The data shows that the expert strategy is
significantly better than randomly selected strategies.  Together, these two evaluations support the
claim that Adaptive LR-26 is selecting high performance strategies.  Even though the expert strategy
is quite good when compared with the complete strategy space, the adaptive algorithm is able to
improve the expected problem solving performance.
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Figure 12:  The DSN Distribution.  The graph shows the probability of obtaining a
strategy of a particular utility, given that it is chosen from (1) the set of all strategies,
(2) the set of learned strategies, or (3) the expert strategy.
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Figure 13:  The Full augmented distribution.  The graph shows the probability of ob-
taining a strategy of a particular utility, given that it is chosen from (1) the set of all
strategies, (2) the set of learned strategies, or (3) the expert strategy.
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7. Future Work


The results of applying an adaptive approach to deep space network scheduling are very promising.
We hope to build on this success in a number of ways.  We discuss these directions as they relate to
the three basic approaches to adaptive problem solving:  syntactic, generative, and statistical.


7.1 Syntactic Approaches


Syntactic approaches attempt to identify control strategies by analyzing the structure of the domain
and problem solver.  In LR-26, our use of meta-control knowledge can be seen as a syntactic approach;
although unlike most syntactic approaches that attempt to identify a specific combination of heuristic
methods, the meta-knowledge (dominance and indifference relations) acts as constraints that only
partially determine a strategy.  An advantage of this weakening of the syntactic approach is that it
lends itself to a natural and complementary interaction with statistical approaches:  structural
information restricts the space of reasonable strategies, which is then explored by statistical
techniques.  An important question concerning such knowledge is to what extent does it contribute
to the success of our evaluations, and, more interestingly, how could such information be derived
automatically from a structural analysis of the domain and problem solver.  We are currently
performing a series of experiments to address the former question.  A step towards the resolving the
second question would be to evaluate in the context of LR-26 some of the structural relationships
suggested by recent work in this area (Frost & Dechter, 1994, Stone, Veloso & Blythe, 1994).


7.2 Generative Approaches


Adaptive LR-26 uses a non-generative approach to conjecturing heuristics.  Our experience in the
scheduling domain indicates that the performance of adaptive problem solving is inextricably tied
to the transformations it is given and the expense of processing examples.  Just as an inductive
learning technique relies on good attributes, if COMPOSER is to be effective, there must exist good
methods for the control points that make up a strategy.  Generative approaches could improve the
effectiveness of Adaptive LR-26.  Generative approaches dynamically construct heuristic methods in
response to observed problem-solving inefficiencies.  The advantage of waiting until inefficiencies
are observed is twofold.  First, the exploration of the strategy space can be much more focused by
only conjecturing heuristics relevant to the observed complications.  Second, the conjectured
heuristics can be tailored much more specifically to the characteristics of these observed
complications.


Our previous application of COMPOSER achieved greater performance improvements than Adap-
tive LR-26, in part because it exploited a generative technique to construct heuristics (Gratch & De-
Jong, 1992).  Ongoing research is directed towards incorporating generative methods into Adaptive
LR-26.  Some preliminary work analyzes problem-solving traces to induce good heuristic methods.
The constraint and value ordering metrics discussed in Section 5.1.3 are used to characterize each
search node. This information is then fed to a decision-tree algorithm, which tries to induce effective
heuristic methods.  These generated methods can then be evaluated statistically.


7.3 Statistical Approaches


Finally there are directions of future work devoted towards enhancing the power of the basic
statistical approach, both for Adaptive LR-26 in particular, and for statistical approaches in general.
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For the scheduler, there are two important considerations: enhancing the control grammar and
exploring a wider class of utility functions.  Several methods could be added to the control grammar.
For example, an informal analysis of the empirical evaluations suggests that the scheduler could
benefit from a look-back scheme such as backjumping (Gaschnig, 1979) or backmarking (Haralick
& Elliott, 1980).  We would also like to investigate the adaptive problem solving methodology on
a richer variety of scheduling approaches, besides integer programming.  Among these would be
more powerful bottleneck centered techniques (Biefeld & Cooper, 1991), constraint-based
techniques (Smith & Cheng, 1993), opportunistic techniques (Sadeh, 1994), reactive techniques
(Smith, 1994) and more powerful backtracking techniques (Xiong, Sadeh & Sycara, 1992).  


The current evaluation of the scheduler focused on problem solving time as a utility metric, but
future work will consider how to improve other aspects of the schedulers capabilities.  For example,
by choosing another utility function we could guide Adaptive LR-26 towards influencing other aspects
of LR-26’s behavior such as: increasing the amount of flexibility in the generated schedules, increas-
ing the robustness of generated schedules, maximizing the number of satisfied project constraints,
or reducing the implementation cost of generated schedules.  These alternative utility functions are
of great significance in that they provide much greater leverage in impacting actual operations.  For
example, finding heuristics which will reduce DSN schedule implementation costs by 3% would
have a much greater impact than reducing the automated scheduler response time by 3%.  Some pre-
liminary work has focused on improving schedule quality (Chien & Gratch, 1994).


More generally, there are several ways to improve the statistical approach embodied by COMPOS-
ER.  Statistical approaches involve two processes, estimating the utility of transformations and ex-
ploring the space of strategies.  The process of estimating expected utilities can be enhanced by more
efficient statistical methods (Chien, Gratch & Burl, 1995, Moore & Lee, 1994, Nelson & Matejcik,
1995), alternative statistical decision requirements (Chien, Gratch & Burl, 1995) and more complex
statistical models that weaken the assumption of normality (Smyth & Mellstrom, 1992).  The process
of exploring the strategy space can be improved both in terms of its efficiency and susceptibility to
local maxima.  Moore and Lee propose a method called schemata search to help reduce the combina-
torics of the search.  Problems with local maxima can be mitigated, albeit expensively, by considering
all k-wise combinations of heuristics (as in MULTI-TAC) or level 2 of Adaptive LR-26’s search), or by
standard numerical optimization approaches such as repeating the hillclimbing search several times
from different start points.


One final issue is the expense in processing training examples.  In the LR-26 domain this cost
grows linearly with the number of candidates at each hillclimbing step.  While this is not bad from
a complexity standpoint, it is a pragmatic concern.  There have been a few proposals to reduce the
expense in gathering statistics.  In previous work (Gratch & DeJong, 1992) we exploited properties
of the transformations to gather statistics from a single solution attempt.  That system required that
the heuristic methods only act by pruning refinements that are guaranteed unsatisfiable.  Greiner and
Jurisica (1992) discuss a similar technique that eliminates this restriction by providing upper and low-
er bounds on the incremental utility of transformations.  Unfortunately, neither of these approaches
could be applied to LR-26 so devising methods to reduce the processing cost is an important direction
for future work.
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8. Conclusions


Although many scheduling problems are intractable, for actual sets of constraints and problem
distributions, heuristic solutions can provide acceptable performance.  A frequent difficulty is that
determining appropriate heuristic methods for a given problem class and distribution is a challenging
process that draws upon deep knowledge of the domain and the problem solver used.  Furthermore,
if the problem distribution changes some time in the future, one must manually re-evaluate the
effectiveness of the heuristics.


Adaptive problem solving is a general approach for reducing this developmental burden.  This
paper has described the application of adaptive problem solving, using the LR–26 scheduling system
and the COMPOSER machine learning system, to automatically learn effective scheduling heuristics
for Deep Space Network communications scheduling.  By demonstrating the application of these
techniques to a real-world application problem, this paper has makes several contributions.  First, it
provides an example of how a wide range of heuristics can be integrated into a flexible problem-solv-
ing architecture –– providing an adaptive problem-solving system with a rich control space to search.
Second, it demonstrates that the difficulties of local maxima and large search spaces entailed by the
rich control space can be tractably explored.  Third, the successful application of the COMPOSER statis-
tical techniques demonstrates the real-world applicability of the statistical assumptions underlying
the COMPOSER approach.  Fourth, and most significantly, this paper demonstrates the viability of
adaptive problem solving.  The strategies learned by the adaptive problem solving significantly out-
performed the best human expert derived solution.


Appendix A. Determination of the Resource bound


A good CPU bound to characterize “intractable” problems should have the characteristic that
increasing the bound should have little effect on the proportion of problems solvable.   In order to
determine the resource bound to define “intractable” DSN scheduling problems we empirically
evaluated how likely LR–26 was to be able to solve a problem with various resource bounds.
Informally, we experimented to find a bound of 5 CPU minutes.  We then formally verified this bound
by taking those problems not solvable within the resource bound of 5 CPU minutes, allowing LR–26


an additional CPU hour to attempt to solve the problem, and observing how this affected solution rate.
As expected, even allocating significant more CPU time, LR–26 was not able to solve many more
problems.  Figure 14 below shows the cumulative percentage of problems solved; from those not
solvable within the 5 minute CPU bound.  This curve shows that even with another CPU hour (per
problem!), only about 12% of the problems became solvable.  This graph also shows the 95%
confidence intervals for this cumulative curve.  In light of these results, the fact that one learned
strategy was able to increase by 18% the percentage of problems solvable within the resource bound
is even more impressive.  In effect, learning this strategy has a greater impact than allocating another
CPU hour per problem.
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Figure 14:  Given that a problem cannot be solved in five minutes, show the probability
that it can be solved in up to an hour more time (with 95% confidence intervals).
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