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Abstract


We introduce an algorithm for combinatorial search on quantum computers that is ca-


pable of signi�cantly concentrating amplitude into solutions for some NP search problems,


on average. This is done by exploiting the same aspects of problem structure as used by


classical backtrack methods to avoid unproductive search choices. This quantum algorithm


is much more likely to �nd solutions than the simple direct use of quantum parallelism. Fur-


thermore, empirical evaluation on small problems shows this quantum algorithm displays


the same phase transition behavior, and at the same location, as seen in many previously


studied classical search methods. Speci�cally, di�cult problem instances are concentrated


near the abrupt change from underconstrained to overconstrained problems.


1. Introduction


Computation is ultimately a physical process (Landauer, 1991). That is, in practice the
range of physically realizable devices determines what is computable and the resources,
such as computer time, required to solve a given problem. Computing machines can exploit
a variety of physical processes and structures to provide distinct trade-o�s in resource
requirements. An example is the development of parallel computers with their trade-o� of
overall computation time against the number of processors employed. E�ective use of this
trade-o� can require algorithms that would be very ine�cient if implemented serially.


Another example is given by hypothetical quantum computers (DiVincenzo, 1995). They
o�er the potential of exploiting quantum parallelism to trade computation time against the
use of coherent interference among very many di�erent computational paths. However,
restrictions on physically realizable operations make this trade-o� di�cult to exploit for
search problems, resulting in algorithms essentially equivalent to the ine�cient method of
generate-and-test. Fortunately, recent work on factoring (Shor, 1994) shows that better
algorithms are possible. Here we continue this line of work by introducing a new quan-
tum algorithm for some particularly di�cult combinatorial search problems. While this
algorithm represents a substantial improvement for quantum computers, it is particularly
ine�cient as a classical search method, both in memory and time requirements.


When evaluating algorithms, computational complexity theory usually focuses on the
scaling behavior in the worst case. Of particular theoretical concern is whether the search
cost grows exponentially or polynomially. However, in many practical situations, typical
or average behavior is of more interest. This is especially true because many instances
of search problems are much easier to solve than is suggested by worst case analyses. In
fact, recent studies have revealed an important regularity in the class of search problems.
Speci�cally, for a wide variety of search methods, the hard instances are not only rare but
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also concentrated near abrupt transitions in problem behavior analogous to physical phase
transitions (Hogg, Huberman, & Williams, 1996). To exhibit this concentration of hard
instances a search algorithm must exploit the problem constraints to prune unproductive
search choices. Unfortunately, this is not easy to do within the range of allowable quantum
computational operations. It is thus of interest to see if these results generalize to quantum
search methods as well.


In this paper, the new algorithm is evaluated empirically to determine its average be-
havior. The algorithm is also shown to exhibit the phase transition, indicating it is indeed
managing to, in e�ect, prune unproductive search. This leaves for future work the analysis
of its worst case performance.


This paper is organized as follows. First we discuss combinatorial search problems
and the phase transitions where hard problem instances are concentrated. Second, after
a brief summary of quantum computing, the new quantum search algorithm is motivated
and described. In fact, there are a number of natural variants of the general algorithm.
Two of these are evaluated empirically to exhibit the generality of the phase transition and
their performance. Finally, some important caveats for the implementation of quantum
computers and open issues are presented.


2. Combinatorial Search


Combinatorial search is among the hardest of common computational problems: the solution
time can grow exponentially with the size of the problem (Garey & Johnson, 1979). Exam-
ples arise in scheduling, planning, circuit layout and machine vision, to name a few areas.
Many of these examples can be viewed as constraint satisfaction problems (CSPs) (Mack-
worth, 1992). Here we are given a set of n variables each of which can be assigned b possible
values. The problem is to �nd an assignment for each variable that together satisfy some
speci�ed constraints. For instance, consider the small scheduling problem of selecting one
of two periods in which to teach each of two classes that are taught by the same person.
We can regard each class as a variable and its time slot as its value, i.e., here n = b = 2.
The constraints are that the two classes are not assigned to be at the same time.


Fundamentally, the combinatorial search problem consists of �nding those combinations
of a discrete set of items that satisfy speci�ed requirements. The number of possible combi-
nations to consider grows very rapidly (e.g., exponentially or factorially) with the number
of items, leading to potentially lengthy solution times and severely limiting the feasible size
of such problems. For example, the number of possible assignments in a constraint problem
is bn, which grows exponentially with the problem size (given by the number of variables
n).


Because of the exponentially large number of possibilities it appears the time required
to solve such problems must grow exponentially, in the worst case. However for many such
problems it is easy to verify a solution is in fact correct. These problems form the well-
studied class of NP problems: informally we say they are hard to solve but easy to check.
One well-studied instance is graph coloring, where the variables represent nodes in a graph,
the values are colors for the nodes and the constraints are that each pair of nodes linked by an
edge in the graph must have di�erent colors. Another example is propositional satis�ability
(SAT), where the variables take on logical values of true or false, and the assignment must
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satisfy a speci�ed propositional formula involving the variables. Both these examples are
instances of particularly di�cult NP problems known as the class of NP-complete search
problems (Garey & Johnson, 1979).


2.1 Phase Transitions


Much of the theoretical work on NP search problems examines their worst case behavior.
Although these search problems can be very hard, in the worst case, there is a great deal
of individual variation in these problems and among di�erent search methods. A number
of recent studies of NP search problems have focused on regularities of the typical behav-
ior (Cheeseman, Kanefsky, & Taylor, 1991; Mitchell, Selman, & Levesque, 1992; Williams &
Hogg, 1994; Hogg et al., 1996; Hogg, 1994). This work has identi�ed a number of common
behaviors. Speci�cally, for large problems, a few parameters characterizing their structure
determine the relative di�culty for a wide variety of common search methods, on average.
Moreover, changes in these parameters give rise to transitions, becoming more abrupt for
larger problems, that are analogous to phase transitions in physical systems. In this case,
the transition is from underconstrained to overconstrained problems, with the hardest cases
concentrated in the transition region. One powerful result of this work is that this con-
centration of hard cases occurs at the same parameter values for a wide range of search
methods. That is, this behavior is a property of the problems rather than of the details of
the search algorithm.


This can be understood by viewing a search as making a series of choices until a solution
is found. The overall search will usually be relatively easy (i.e., require few steps) if either
there are many choices leading to solutions or else choices that do not lead to solutions
can be recognized quickly as such, so that unproductive search is avoided. Whether this
condition holds is in turn determined by how tightly constrained the problem is. When
there are few constraints almost all choices are good ones, leading quickly to a solution.
With many constraints, on the other hand, there are few good choices but the bad ones can
be recognized very quickly as violating some constraints so that not much time is wasted
considering them. In between these two cases are the hard problems: enough constraints
so good choices are rare but few enough that bad choices are usually recognized only with
a lot of additional search.


A more detailed analysis suggests a series of transitions (Hogg & Williams, 1994). With
very few constraints, the average search cost scales polynomially. As more constraints are
added, there is a transition to exponential scaling. The rate of growth of this exponential
increases until the transition region described above is reached. Beyond that point, with
its concentration of hard problems, the growth rate decreases. Eventually, for very highly
constrained problems, the search cost again grows only polynomially with size.


2.2 The Combinatorial Search Space


A general view of the combinatorial search problem is that it consists of N items1 and a
requirement to �nd a solution, i.e., a set of L<N items that satis�es speci�ed conditions or
constraints. These conditions in turn can be described as a collection of nogoods, i.e., sets


1. For CSPs, these items are all possible variable-value pairs.
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{1,4}
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Figure 1: Structure of the set lattice for a problem with four items. The subsets of f1; 2; 3; 4g
are grouped into levels by size and lines drawn between each set and its immediate
supersets and subsets. The bottom of the lattice, level 0, represents the single set
of size zero, the four points at level 1 represent the four singleton subsets, etc.


of items whose combination is inconsistent with the given conditions. In this context we
de�ne a good to be a set of items that is consistent with all the constraints of the problem.
We also say a set is complete if it has L items, while smaller sets are partial or incomplete.
Thus a solution is a complete good set. In addition, a partial solution is an incomplete good
set.


A key property that makes this set representation conceptually useful is that if a set is
nogood, so are all of its supersets. These sets, grouped by size and with each set linked to
its immediate supersets and subsets, form a lattice structure. This structure for N = 4 is
shown in Fig. 1. We say that the


Ni =


�
N


i


�
(1)


sets of size i are at level i in the lattice. As described below, the various paths through
the lattice from levels near the bottom up to solutions, at level L, can be used to create
quantum interference as the basis for a search algorithm.


As an example, consider a problem with N = 4 and L = 2, and suppose the constraints
eliminate items 1 and 3. Then we have the sets fg, f2g, and f4g as partial goods, while f1g
and f3g are partial nogoods. Among the 6 complete sets, only f2,4g is good as the others
are supersets of f1g or f3g and hence nogood.
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For the search problems studied here, the nogoods directly speci�ed by the problem
constraints will be small sets of items, e.g., of size two or three. On the other hand, the
number of items and the size of the solutions will grow with the problem size. This gives
a number of small nogoods, i.e., near the bottom of the lattice. Examples of such prob-
lems include binary constraint satisfaction, graph coloring and propositional satis�ability
mentioned above.


For CSPs, the items are just the possible variable-value pairs in the problem. Thus a
CSP with n variables and b values for each has N = nb items2. A solution consists of an
assignment to each variable that satis�es whatever constraints are given in the problem.
Thus a solution consists of a set of L = n items. In terms of the general framework for
combinatorial search these constraint satisfaction problems will also contain a number of
problem-independent necessary nogoods, namely those corresponding to giving the same


variable two di�erent values. There are n
�
b
2


�
such necessary nogoods. For a nontrivial


search we must have b�2, so we restrict our attention to the case where L�N=2. This
requirement is important in allowing the construction of the quantum search method de-
scribed below.


Another example is given by a simple CSP consisting of n = 2 variables (v1 and v2)
each of which can take on one of b = 2 values (1 or 2) and the single constraint that the
two variables take on distinct values, i.e., v1 6= v2. Hence there are N = nb = 4 variable-
value pairs v1 = 1; v1 = 2; v2 = 1; v2 = 2 which we denote as items 1; 2; 3; 4 respectively.
The corresponding lattice is given in Fig. 1. What are the nogoods for this problem?
First there are those due to the explicit constraint that the two variables have distinct
values: fv1 = 1; v2 = 1g and fv1 = 2; v2 = 2g or f1; 3g and f2; 4g. In addition, there are
necessary nogoods implied by the requirement that a variable takes on a unique value so
that any set giving multiple assignments to the same variable is necessarily nogood, namely
fv1 = 1; v1 = 2g and fv2 = 1; v2 = 2g or f1; 2g and f3; 4g. Referring to Fig. 1, we see that
these four nogoods force all sets of size 3 and 4 to be nogood too. However, sets of size zero
and one are goods as are the remaining two sets of size two: f2; 3g and f1; 4g corresponding
to fv1 = 2; v2 = 1g and fv1 = 1; v2 = 2g which are the solutions to this problem.


Search methods use various strategies for examining the sets in this lattice. For instance,
methods such as simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), heuristic re-
pair (Minton, Johnston, Philips, & Laird, 1992) and GSAT (Selman, Levesque, & Mitchell,
1992) move among complete sets, attempting to �nd a solution by a series of small changes
to the sets. Generally these search techniques continue inde�nitely if the problem has no
solution and thus they can never show that a problem is insoluble. Such methods are called
incomplete. In these methods, the search is repeated, from di�erent initial conditions or
making di�erent random choices, until either a solution is found or some speci�ed limit on
the number of trials is reached. In the latter case, one cannot distinguish a problem with
no solution at all from just a series of unlucky choices for a soluble problem. Other search
techniques attempt to build solutions starting from smaller sets, often by a process of ex-
tending a consistent set until either a solution is found or no further consistent extensions
are possible. In the latter case the search backtracks to a previous decision point and tries


2. The lattice of sets can also represent problems where each variable can have a di�erent number of assigned
values.
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another possible extension until no further choices remain. By recording the pending choices
at each decision point, these backtrack methods can determine a problem is insoluble, i.e.,
they are complete or systematic search methods.


This description highlights two distinct aspects of the search procedure: a general
method for moving among sets, independent of any particular problem, and a testing pro-
cedure that checks sets for consistency with the particular problem's requirements. Often,
heuristics are used to make the search decisions depend on the problem structure hoping
to identify changes most likely to lead to a solution and avoid unproductive regions of the
search space. However, conceptually these aspects can be separated, as in the case of the
quantum search algorithm presented below.


3. Quantum Search Methods


This section briey describes the capabilities of quantum computers, why some straight-
forward attempts to exploit these capabilities for search are not particularly e�ective, then
motivates and describes a new search algorithm.


3.1 An Overview of Quantum Computers


The basic distinguishing feature of a quantum computer (Benio�, 1982; Bernstein & Vazi-
rani, 1993; Deutsch, 1985, 1989; Ekert & Jozsa, 1995; Feynman, 1986; Jozsa, 1992; Kimber,
1992; Lloyd, 1993; Shor, 1994; Svozil, 1995) is its ability to operate simultaneously on a
collection of classical states, thus potentially performing many operations in the time a clas-
sical computer would do just one. Alternatively, this quantum parallelism can be viewed as a
large parallel computer requiring no more hardware than that needed for a single processor.
On the other hand, the range of allowable operations is rather limited.


To describe this more concretely, we adopt the conventional ket notation from quantum
mechanics (Dirac, 1958, section 6) to denote various states3. That is, we use j�i to denote
the state of a computer described by �. At a low level of description, the state of a classical
computer is described by values of its bits. So for instance if it has n bits, then there
are N = 2n possible states for the machine, which can be associated with the numbers
s1 = 0; : : : ; sN = 2n � 1. We then say the computer is in state jsii when the values of its
bits correspond to the number i� 1. More commonly, a computer is described in terms of
higher level constructs formed from groups of bits, such as integers, character strings, sets
and addresses of variables in a program. For example, a state that could arise during a
search is jfv1 = 1; v2 = 1g; soln = Falsei corresponding to a set of assignments for variables
in a CSP and a value of false for the program variable soln, e.g., used to represent whether
a solution has been found. In these higher level descriptions, there will often be aspects of
the computer's state, e.g., stack pointers or values for various iteration counters, that are
not explicitly mentioned.


The states presented so far, where each bit or higher-level construct has a de�nite value,
apply both to classical and quantum computers. However, quantum computers have a
far richer set of possible states. Speci�cally, if js1i; : : : ; jsNi are the possible states for a


3. The ket notation is conceptually similar to the use of boldface to denote vectors and distinguish them
from scalars.


96







Quantum Computing and Phase Transitions in Combinatorial Search


classical computer, the possible states of the corresponding quantum computer are all linear
superpositions of these states, i.e., states of the form jsi = P


 ijsii where  i is a complex
number called the amplitude associated with the state jsii. The physical interpretation
of the amplitudes comes from the measurement process. When a measurement is made
on the quantum computer in state jsi, e.g., to determine the result of the computation
represented by a particular con�guration of the bits in a register, one of the possible classical
states is obtained. Speci�cally, the classical state jsii is obtained with probability j ij2.
Furthermore, the measurement process changes the state of the computer to exactly match
the result. That is, the measurement is said to collapse the original superposition to the
new superposition consisting of the single classical state (i.e., the amplitude of the returned
state is 1 and all other amplitudes are zero). This means repeated measurements will always
return the same result.


An important consequence of this interpretation results from the fact that probabilities
must sum to one. Thus the amplitudes of any superposition of states must satisfy the
normalization condition X


i


j ij2 = 1 (2)


Another consequence is that the full state of a quantum computer, i.e., the superposition,
is not itself an observable quantity. Nevertheless, by changing the amplitude associated
with di�erent classical states, operations on the superposition can a�ect the probability
with which various states are observed. This possibility is crucial for exploiting quantum
computation, and makes it potentially more powerful than probabilistic classical machines,
in which some choices in the program are made randomly.


These superpositions can also be viewed as vectors in a space whose basis is the individ-
ual classical states jsii and  i is the component of the vector along the ith basis element of
the space. Such a state vector can also be speci�ed by its components as  � ( 1; : : : ;  N)
when the basis is understood from context. The inner product of two such vectors is
� �  =


PN
i=1 �


�
i i where �


�
i denotes the complex conjugate of �i. In matrix notation, this


can also be written as �y where  is treated as a column vector and �y is a row vector
given by the transpose of � with all entries changed to their complex conjugate values. For
these vectors, the normalization condition amounts to requiring that  y = 1.


To complete this overview of quantum computers, it remains to describe how superpo-
sitions can be used within a program. In addition to the measurement process described
above, there are two types of operations that can be performed on a superposition of states.
The �rst type is to run classical programs on the machine, and the second allows for cre-
ating and manipulating the amplitudes of a superposition. In both these cases, the key
property of the superposition is its linearity: an operation on a superposition of states gives
the superposition of that operation acting on each of those states individually. As described
below, this property, combined with the normalization condition, greatly limits the range
of physically realizable operations.


In the �rst case, a quantum computer can perform a classical program provided it is
reversible, i.e., the �nal state contains enough information to recover the initial state. One
way to achieve this is to retain the initial input as part of the output. To illustrate the
linearity of operations, consider some reversible classical computation on these states, e.g.,
f(si) which produces a new state from a given input one. When applied to a superposition
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of states, the result is f(jsi) = P
 ijf(si)i. Why is reversibility required? Suppose the


procedure f is not reversible, i.e., it maps at least two distinct states to the same result.
For example, suppose f(s1) = f(s2) = s3. Then for the superposition jsi = 1p


2
(js1i+ js2i)


linearity requires that f(jsi) = 1p
2
(jf(s1)i+ jf(s2)i) giving


p
2js3i, a superposition that


violates the normalization condition. Thus this irreversible classical operation is not phys-
ically realizable on a superposition, i.e., it cannot be used with quantum parallelism.


In contrast to this use of computations on individual states, the second type of operation
modi�es the amplitude of various states within a superposition. That is, starting from jsi =P
 kjski the operation, denoted by U, creates a new superposition js0i = U jsi =P


 
0


j jsji.
Because the operations are linear with respect to superpositions, the new amplitudes can
be expressed in terms of the original ones by  0j =


P
k Ujk k, or in matrix notation by


 0 = U . That is, linearity means that an operation changing the amplitudes can be
represented as a matrix. To satisfy the normalization condition, Eq. 2, this matrix must be
such that ( 0)y 0 = 1. In terms of the matrix U this condition becomes4


1 = (U )y(U ) =  y
�
UyU


�
 (3)


which must hold for any initial state vector  with  y = 1. To see what this implies
about the matrix A � UyU , suppose  = êj = (: : : ; 0; 1; 0; : : :) is the jth unit vector,
corresponding to the superposition jsji where all amplitudes are zero except for  j = 1. In
this case  yA = Ajj which must equal one by Eq. 3. That is, the diagonal elements of
UyU must all be equal to one. For  = 1p


2
(êj + êk) with j 6= k,


 yA =
1


2
(êj + êk)A(êj + êk)


=
1


2
[Ajj +Akk + Ajk + Akj ]


(4)


This must equal one by Eq. 3, and we already know that the diagonal terms equal one. Thus
we conclude Ajk = �Akj . A similar argument using  = 1p


2
(êj + iêk), a superposition with


an imaginary value for the second amplitude, gives Ajk = Akj . Together these conditions
mean that A is the identity matrix, so UyU = I , i.e., the matrix U must be unitary to
operate on superpositions. Moreover, this condition is su�cient to make any initial state
satisfy Eq. 3. This shows how the restriction to linear unitary operations arises directly from
the linearity of quantum mechanics and Eq. 2, the normalization condition for probabilities.
The class of unitary matrices includes permutations, rotations and arbitrary phase changes
(i.e., diagonal matrices where each element on the diagonal is a complex number with
magnitude equal to one).


Reversible classical programs, unitary operations on the superpositions and the mea-
surement process are the basic ingredients used to construct a program for a quantum
computer. As used in the search algorithm described below, such a program consists of
�rst preparing an initial superposition of states, operating on those states with a series
of unitary matrices in conjunction with a classical program to evaluate the consistency of


4. Uy is the transpose of U with all elements changed to their complex conjugates. That is
�
Uy
�
jk


= (Ukj)
�.
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various states with respect to the search requirements, and then making a measurement to
obtain a de�nite �nal answer. The amplitudes of the superposition just before the mea-
surement is made determine the probability of obtaining a solution. The overall structure
is a probabilistic Monte Carlo computation (Motwani & Raghavan, 1995) in which at each
trial there is some probability to get a solution, but no guarantee. This means the search
method is incomplete: it can �nd a solution if one exists but can never guarantee a solution
doesn't exist.


An alternate conceptual view of these quantum programs is provided by the path inte-
gral approach to quantum mechanics (Feynman, 1985). In this view, the �nal amplitude of
a given state is obtained by a weighted sum over all possible paths that produce that state.
In this way, the various possibilities involved in a computation can interfere with each
other, either constructively or destructively. This di�ers from the classical combination
of probabilities of di�erent ways to reach the same outcome (e.g., as used in probabilistic
algorithms): the probabilities are simply added, giving no possibility for interference. Inter-
ference is also seen in classical waves, such as with sound or ripples on the surface of water.
But these systems lack the capability of quantum parallelism. The various formulations of
quantum mechanics, involving operators, matrices or sums over paths are equivalent but
suggest di�erent intuitions about constructing possible quantum algorithms.


3.2 Example: A One-Bit Computer


A simple example of these ideas is given by a single bit. In this case there are two possible
classical states j0i and j1i corresponding to the values 0 and 1, respectively, for the bit. This
de�nes a two dimensional vector space of superpositions for a quantum bit. There are a
number of proposals for implementing quantum bits, i.e., devices whose quantum mechanical
properties can be controlled to produce desired superpositions of two classical values. One
example (DiVincenzo, 1995; Lloyd, 1995) is an atom whose ground state corresponds to the
value 0 and an excited state to the value 1. The use of lasers of appropriate frequencies can
switch such an atom between the two states or create superpositions of the two classical
states. This ability to manipulate quantum superpositions has been demonstrated in small
cases (Zhu, Kleiman, Li, Lu, Trentelman, & Gordon, 1995). Another possibility is through
the use of atomically precise manipulations (DiVincenzo, 1995) using a scanning tunneling
or atomic force microscope. This possibility of precise manipulation of chemical reactions
has also been demonstrated (Muller, Klein, Lee, Clarke, McEuen, & Schultz, 1995). There
are also a number of other proposals under investigation (Barenco, Deutsch, & Ekert, 1995;
Sleator & Weinfurter, 1995; Cirac & Zoller, 1995), including the possibility of multiple
simultaneous quantum operations (Margolus, 1990).


A simple computation on a quantum bit is the logical NOT operation, i.e., NOT(j0i) =
j1i and NOT(j1i) = j0i. This operator simply exchanges the state vector's components:


NOT


�
 0
 1


�
� NOT( 0j0i+  1j1i) =  0j1i+  1j0i �


�
 1
 0


�
(5)
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This operation can also be represented as multiplication by the permutation matrix


�
0 1
1 0


�
.


Another operator is given by the rotation matrix


U(�) =


�
cos � � sin �
sin � cos �


�
(6)


This can be used to create superpositions from single classical states, e.g.,


U


�
�


4


��
1


0


�
� U


�
�


4


�
j0i = 1p


2
(j0i+ j1i) � 1p


2


�
1


1


�
(7)


This rotation matrix can also be used to illustrate interference, an important way in
which quantum computers di�er from probabilistic classical algorithms. First, consider a
classical algorithm with two methods for generating random bits, R0 (producing a \0" with
probability 3=4) and R1 (producing a \0" with probability 1=4). Suppose a \0" represents
a failure (e.g., a probabilistic search that does not �nd a solution) while \1" represents a
success. Finally, let the classical algorithm consist of selecting one of these methods to use,
with probability p to pick R0. Then the overall probability to obtain a \0" as the �nal
result is just 3


4p+
1
4(1� p) or


Pclassical =
1


4
+
p


2
(8)


The best that can be done is to choose p = 0, giving a probability of 1=4 for failure.
A quantum analog of this simple calculation can be obtained from a rotation with � = �


3 .
Starting from the individual classical states this gives superpositions


U


�
�


3


��
1


0


�
=


1


2


 p
3


1


!


U


�
�


3


��
0


1


�
=


1


2


��1p
3


� (9)


which correspond to the generators R0 and R1 respectively, because of their respective
probabilities of 3=4 and 1=4 to produce a \0" when measured. Starting instead from a


superposition of the two classical states,
�
cos�
sin�


�
, corresponds to the step of the classical


algorithm where generator R0 is selected with probability p = cos2 �. The resulting state


after applying the rotation, U
�
�
3


�� cos�
sin�


�
, has probability


Pquantum =
1


4
+
cos2 �


2
�
p
3


4
sin (2�)


= Pclassical �
p
3


4
sin (2�)


(10)


to produce a \0" value. In this case the minimum value of the probability to obtain a
\0" is not 1=4 but in fact can be made to equal 0 with the choice � = �


3 . In this case the
amplitudes from the two original states exactly cancel each other, an example of destructive
interference.


As a �nal example, illustrating the limits of operations on superpositions, consider the
simple classical program that sets a bit to the value one. That is, SET(j0i) = j1i and
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SET(j1i) = j1i. This operation is not reversible: knowing the result does not determine the


original input. By linearity, SET
�


1p
2
(j0i+ j1i)


�
= 1p


2
(SET(j0i) + SET(j1i)), which in turn


is 1p
2
2j1i = p


2j1i. This state violates the normalization condition. Thus we see that this


classical operation is not physically realizable for a quantum computer. Similarly, another
common classical operation, making a copy of a bit, is also ruled out (Svozil, 1995), forming
the basis for quantum cryptography (Bennett, 1992).


3.3 Some Approaches to Search


A device consisting of n quantum bits allows for operations on superpositions of 2n classical
states. This ability to operate simultaneously on an exponentially large number of states
with just a linear number of bits is the basis for quantum parallelism. In particular, repeat-
ing the operation of Eq. 7 n times, each on a di�erent bit, gives a superposition with equal
amplitudes in 2n states.


At �rst sight quantum computers would seem to be ideal for combinatorial search prob-
lems that are in the class NP. In such problems, there is an e�cient procedure f(s) that takes
a potential solution set s and determines whether s is in fact a solution, but there are expo-
nentially many potential solutions, very few of which are in fact solutions. If s1; : : : ; sN are
the potential sets to consider, we can quickly form the superposition 1p


N
(js1i+ : : :+ jsN i)


and then simultaneously evaluate f(s) for all these states, resulting in a superposition of
the sets and their evaluation, i.e., 1p


N


P jsi; soln = f(si)i. Here jsi; soln = f(si)i represents
a classical search state considering the set si along with a variable soln whose value is true
or false according to the result of evaluating the consistency of the set with respect to the
problem requirements. At this point the quantum computer has, in a sense, evaluated all
possible sets and determined which are solutions. Unfortunately, if we make a measure-
ment of the system, we get each set with equal probability 1=N and so are very unlikely to
observe a solution. This is thus no better than the slow classical search method of random
generate-and-test where sets are randomly constructed and tested until a solution is found.
Alternatively, we can obtain a solution with high probability by repeating this operation
O(N) times, either serially (taking a long time) or with multiple copies of the device (requir-
ing a large amount of hardware or energy if, say, the computation is done by using multiple
photons). This shows a trade-o� between time and energy (or other physical resources),
conjectured to apply more generally to solving these search problems (Cerny, 1993), and
also seen in the trade-o� of time and number of processors in parallel computers.


To be useful for combinatorial search, we can't just evaluate the various sets but instead
must arrange for amplitude to be concentrated into the solution sets so as to greatly increase
the probability a solution will be observed. Ideally this would be done with a mapping that
gives constructive interference of amplitude in solutions and destructive interference in non-
solutions. Designing such maps is complicated by the fact that they must be linear unitary
operators as described above. Beyond this physical restriction, there is an algorithmic or
computational requirement: the mapping should be e�ciently computable (DiVincenzo &
Smolin, 1994). For example, the map cannot require a priori knowledge of the solutions
(otherwise constructing the map would require �rst doing the search). This computational
requirement is analogous to the restriction on search heuristics: to be useful, the heuristic
itself must not take a long time to compute. These requirements on the mapping trade o�
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against each other. Ideally one would like to �nd a way to satisfy them all so the map can
be computed in polynomial time and give, at worst, polynomially small probability to get a
solution if the problem is soluble. One approach is to arrange for constructive interference
in solutions while nonsolutions receive random contributions to their amplitude. While such
random contributions are not as e�ective as a complete destructive interference, they are
easier to construct and form the basis for a recent factoring algorithm (Shor, 1994) as well
as the method presented here.


Classical search algorithms can suggest ways to combine the use of superpositions with
interference. These include local repair styles of search where complete assignments are
modi�ed, and backtracking search, where solutions are built up incrementally. Using su-
perpositions, many possibilities could be simultaneously considered. However these search
methods have no a priori speci�cation of the number of steps required to reach a solution so
it is unclear how to determine when enough amplitude might be concentrated into solution
states to make a measurement worthwhile. Since the measurement process destroys the
superposition, it is not possible to resume the computation at the point where the measure-
ment was made if it does not produce a solution. A more subtle problem arises because
di�erent search choices lead to solutions in di�ering numbers of steps. Thus one would also
need to maintain any amplitude already in solution states while the search continues. This
is di�cult due to the requirement for reversible computations.


While it may be fruitful to investigate these approaches further, the quantum method
proposed below is based instead on a breadth-�rst search that incrementally builds up all
solutions. Classically, such methods maintain a list of goods of a given size. At each step,
the list is updated to include all goods with one additional variable. Thus at step i, the list
consists of sets of size i which are used to create the new list of sets of size i+1. For a CSP
with n variables, i ranges from 0 to n � 1, and after completing these n steps the list will
contain all solutions to the problem. Classically, this is not a useful method for �nding a
single solution because the list of partial assignments grows exponentially with the number
of steps taken. A quantum computer, on the other hand, can handle such lists readily as
superpositions. In the method described below, the superposition at step i consists of all
sets of size i, not just consistent ones, i.e., the sets at level i in the lattice. There is no
question of when to make the �nal measurement because the computation requires exactly
n steps. Moreover, there is an opportunity to use interference to concentrate amplitude
toward goods. This is done by changing the phase of amplitudes corresponding to nogoods
encountered while moving through the lattice.


As with the division of search methods into a general strategy (e.g., backtrack) and
problem speci�c choices, the quantum mapping described below has a general matrix that
corresponds to exploring all possible changes to the partial sets, and a separate, particularly
simple, matrix that incorporates information on the problem speci�c constraints. More
complex maps are certainly possible, but this simple decomposition is easier to design and
describe. With this decomposition, the di�cult part of the quantummapping is independent
of the details of the constraints in a particular problem. This suggests the possibility of
implementing a special purpose quantum device to perform the general mapping. The
constraints of a speci�c problem are used only to adjust phases as described below, a
comparatively simple operation.
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For constraint satisfaction problems, a simple alternative representation to the full lattice
structure is to use partial assignments only, i.e., sets of variable-value pairs that have no
variable more than once. At �rst sight this might seem better in that it removes from
consideration the necessary nogoods and hence increases the proportion of complete sets
that are solutions. However, in this case the number of sets as a function of level in the lattice
decreases before reaching the solution level, precluding the simple form of a unitary mapping
described below for the quantum search algorithm. Another representation that avoids this
problem is to consider assignments in only a single order for the variables (selected randomly
or through the use of heuristics). This version of the set lattice has been previously used
in theoretical analyses of phase transitions in search (Williams & Hogg, 1994). This may
be useful to explore further for the quantum search, but is unlikely to be as e�ective. This
is because in a �xed ordering some sets will become nogood only at the last few steps,
resulting is less opportunity for interference based on nogoods to focus on solutions.


3.4 Motivation


To motivate the mapping described below, we consider an idealized version. It shows why
paths through the lattice tend to interfere destructively for nonsolution states, provided the
constraints are small.


The idealized map simply maps each set in the lattice equally to its supersets at the next
level, while introducing random phases for sets found to be nogood. For this discussion we
are concerned with the relative amplitude in solutions and nogoods so we ignore the overall
normalization. Thus for instance, withN = 6, the state jf1; 2gi will map to an unnormalized
superposition of its four supersets of size 3, namely the state jf1; 2; 3gi+ : : :+ jf1; 2; 6gi.


With this mapping, a good at level j will receive equal contribution from each of its j
subsets at the prior level. Starting with amplitude of 1 at level 0 then gives an amplitude
of j! for goods at level j. In particular, L! for solutions.


How does this compare with contribution to nogoods, on average? This will depend on
how many of the subsets are nogoods also. A simple case for comparison is when all sets
in the lattice are nogood (starting with those at level k given by the size of the constraints,
e.g., k = 2 for problems with binary constraints). Let rj be the expected value of the
magnitude of the amplitude for sets at level j. Each set at level k will have rk = k! (and a
zero phase) because all smaller subsets will be goods. A set s at level j>k will be a sum of
j contributions from (nogood) subsets, giving a total contribution of


 (s) =
jX


m=1


 (sm)e
i�m (11)


where the sm are the subsets of s of size j � 1 and the phases �m are randomly selected.
The  (sm) have expected magnitude rj�1 and some phase that can be combined with �m
to give a new random phase �m. Ignoring the variation in the magnitude of the amplitudes
at each level this gives


rj = rj�1


*
jX


m=1


ei�m


+
= rj�1


p
j (12)
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because the sum of j random phases is equivalent to an unbiased random walk (Karlin &
Taylor, 1975) with j unit steps which has expected net distance of


p
j. Thus rj = rk


p
j!=k!


or rj =
p
j!k! for j>k.


This crude argument gives a rough estimate of the relative probabilities for solutions
compared to complete nogoods. Suppose there is only one solution. Then its relative
probability is L!2. The nogoods have relative probability (NL � 1)r2L � NLL!k! with NL


given by Eq. 1. An interesting scaling regime is L = N=b with �xed b, corresponding to a
variety of well-studied constraint satisfaction problems. This gives


ln


 
Psoln
Pnogood


!
= ln


�
L!


NLk!


�
� N


b
lnN + O(N) (13)


This goes to in�nity as problems get large so the enhancement of solutions is more than
enough to compensate for their rareness among sets at the solution level.


The main limitation of this argument is assuming that all subsets of a nogood are also
nogood. For many nogoods, this will not be the case, resulting in less opportunity for
cancellation of phases. The worst situation in this respect is when most subsets are goods.
This could be because the constraints are large, i.e., they don't rule out states until many
items are included. Even with small constraints, this could happen occasionally due to a
poor ordering choice for adding items to the sets, hence suggesting that a lattice restricted to
assignments in a single order will be much less e�ective in canceling amplitude in nogoods.
For the problems considered here, with small constraints, a large nogood cannot have too
many good subsets because to be nogood means a small subset violates a (small) constraint
and hence most subsets obtained by removing one element will still contain that bad subset
giving a nogood. In fact, some numerical experiments (with the class of unstructured
problems described below) show that this mapping is very e�ective in canceling amplitude
in the nogoods. Thus the assumptions made in this simpli�ed argument seem to provide
the correct intuitive description of the behavior.


Still the assumption of many nogood subsets underlying the above argument does sug-
gest the extreme cancellation derived above will least apply when the problem has many
large partial solutions. This gives a simple explanation for the di�culty encountered with
the full map described below at the phase transition point: this transition is associated with
problems with relatively many large partial solutions but few complete solutions. Hence we
can expect relatively less cancellation of at least some nogoods at the solution level and a
lower overall probability to �nd a solution.


This discussion suggests why a mapping of sets to supersets along with random phases
introduced at each inconsistent set can greatly decrease the contribution to nogoods at
the solution level. However, this mapping itself is not physically realizable because it is
not unitary. For example, the mapping from level 1 to 2 with N = 3 takes the states
jf1gi; jf2gi; jf3gi to jf1; 2gi; jf1; 3gi; jf2; 3gi with the matrix


M =


0
@ 1 1 0
1 0 1
0 1 1


1
A (14)


Here, the �rst column means the state jf1gi contributes equally to jf1; 2gi and jf1; 3gi, its
supersets, and gives no contribution to jf2; 3gi. We see immediately that the columns of
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this matrix are not orthogonal, though they can be easily normalized by dividing the entries
by


p
2. More generally, this mapping takes each set at level i to the N�i sets with one more


element. The corresponding matrix M has one column for each i{set and one row for each
(i+1)-set. In each column there will be exactly N� i 1's (corresponding to the supersets of
the given i{set) and the remaining entries will be 0. Two columns will have at most a single
nonzero value in common (and only when the two corresponding i{sets have all but one of
their values in common: this is the only way they can share a superset in common). This
means that as N gets large, the columns of this matrix are almost orthogonal (provided
i<N=2, the case of interest here). This fact is used below to obtain a unitary matrix that
is fairly close to M.


3.5 A Search Algorithm


The general idea of the mapping introduced here is to move as much amplitude as possible to
supersets (just as in classical breadth-�rst search, increments to partial sets give supersets).
This is combined with a problem speci�c adjustment of phases based on testing partial
states for consistency (this corresponds to a diagonal matrix and thus is particularly simple
in that it does not require any mixing of the amplitudes of di�erent states). The speci�c
methods used are described in this section.


3.5.1 The Problem-Independent Mapping


To take advantage of the potential cancellation of amplitude in nogoods described above
we need a unitary mapping whose behavior is similar to the ideal mapping to supersets.
There are two general ways to adjust the ideal mapping of sets to supersets (mixtures of
these two approaches are possible as well). First, we can keep some amplitude at the same
level of the lattice instead of moving all the amplitude up to the next level. This allows
using the ideal map described above (with suitable normalization) and so gives excellent
discrimination between solutions and nonsolutions, but unfortunately not much amplitude
reaches solution level. This is not surprising: the use of random phases cancel the amplitude
in nogoods but this doesn't add anything to solutions (because solutions are not a superset
of any nogood and hence cannot receive any amplitude from them). Hence at best, even
when all nogoods cancel completely, the amplitude in solutions will be no more than their
relative number among complete sets, i.e., very small. Thus the random phases prevent
much amplitude moving to nogoods high in the lattice, but instead of contributing to
solutions this amplitude simply remains at lower levels of the lattice. Hence we have no
better chance than random selection of �nding a solution (but, when a solution is not found,
instead of getting a nogood at the solution level, we are now likely to get a smaller set in
the lattice). Thus we must arrange for amplitude taken from nogoods to contribute instead
to the goods. This requires the map to take amplitude to sets other than just supersets, at
least to some extent.


The second way to �x the nonunitary ideal map is to move amplitude also to non-
supersets. This can move all amplitude to the solution level. It allows some canceled
amplitude from nogoods to go to goods, but also vice versa, resulting in less e�ective
concentration into solutions. This can be done with a unitary matrix as close as possible
to the nonunitary ideal map to supersets, and that also has a relatively simple form. The
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general question here is given k linearly independent vectors in m dimensional space, with
k�m, �nd k orthonormal vectors in the space as close as possible to the k original ones.
Restricting attention to the subspace de�ned by the original vectors, this can be obtained5


using the singular value decomposition (Golub & Loan, 1983) (SVD) of the matrix M
whose columns are the k given vectors. Speci�cally, this decomposition is M = Ay�B,
where � is a diagonal matrix containing the singular values of M and both Ay and B
have orthonormal columns. For a real matrix M, the matrices of the decomposition are
also real-valued. The matrix U = AyB has orthonormal columns and is the closest set
of orthogonal vectors according to the Frobenius matrix norm. That is, this choice for U
minimizes jU �M j2 �P


rs jUrs �Mrsj2 among all unitary matrices. This construction fails
if k>m since an m{dimensional space cannot have more than m orthogonal vectors. Hence
we restrict consideration to mappings in the lattice at those levels i where level i+1 has at
least as many sets as level i, i.e., Ni�Ni+1. Obtaining a solution requires mapping up to
level L so, from Eq. 1, this restricts consideration to problems where L�dN=2e.


For example, the mapping from level 1 to 2 with N = 3 given in Eq. 14 has the singular
value decomposition M = Ay�B with this decomposition given explicitly as


Ay�B =


0
BB@


1p
3


� 1p
2


1p
6


1p
3


1p
2


1p
6


1p
3


0 �
q


2
3


1
CCA
0
@ 2 0 0
0 1 0
0 0 1


1
A
0
BB@


1p
3


1p
3


1p
3


0 � 1p
2


1p
2q


2
3 � 1p


6
� 1p


6


1
CCA (15)


The closest unitary matrix is then


U = AyB =
1


3


0
@ 2 2 �1


2 �1 2
�1 2 2


1
A (16)


While this gives a set of orthonormal vectors close to the original map, one might
be concerned about the requirement to compute the SVD of exponentially large matrices.
Fortunately, however, the resulting matrices have a particularly simple structure in that the
entries depend only on the overlap between the sets. Thus we can write the matrix elements
in the form Ur� = ajr\�j (r is an (i+1)-subset, � is an i-subset). The overlap jr \ �j ranges
from i when � � r to 0 when there is no overlap. Thus instead of exponentially many
distinct values, there are only i + 1, a linear number. This can be exploited to give a
simpler method for evaluating the entries of the matrix as follows.


We can get expressions for the a values for a given N and i since the resulting column
vectors are orthonormal. Restricting attention to real values, this gives


1 =
�
UyU


�
��


=
iX


k=0


nka
2
k (17)


where


nk =


�
i


k


��
N � i


i+ 1� k


�
(18)


5. I thank J. Gilbert for pointing out this technique, as a variant of the orthogonal Procrustes prob-
lem (Golub & Loan, 1983).
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is the number of ways to pick r with the speci�ed overlap. For the o�-diagonal terms,
suppose j� \ �j = p<i then, for real values of the matrix elements,


0 =
�
UyU


�
��


=
iX


j;k=0


n
(p)
jk ajak (19)


where


n
(p)
jk =


X
x


�
i� p


k � x


��
p


x


��
i� p


j � x


��
N � 2i+ p


i+ 1� j � k + x


�
(20)


is the number of sets r with the required overlaps with � and �, i.e., jr \ �j = k�i and
jr \ �j = j�i. In this sum, x is the number of items the set r has in common with both
� and �. Together these give i+ 1 equations for the values of a0; : : : ; ai, which are readily
solved numerically6. There are multiple solutions for this system of quadratic equations,
each representing a possible unitary mapping. But there is a unique one closest to the
ideal mapping to supersets, as given by the SVD. It is this solution we use for the quantum
search algorithm7, although it is possible some other solution, in conjunction with various
choices of phases, performs better. Note that the number of values and equations grows
only linearly with the level in the lattice, even though the number of sets at each level grows
exponentially. When necessary to distinguish the values at di�erent levels in the lattice, we


use a
(i)
k to mean the value of ak for the mapping from level i to i+ 1.


The example of Eq. 14, with N = 3 and i = 1, has 1 = a20 + 2a21 for Eq. 17 and
0 = 2a0a1 + a21 for Eq. 19. The solution of these unitarity conditions closest to Eq. 14 is
a0 = �1


3 ; a1 =
2
3 corresponding to Eq. 16.


A normalized version of the ideal map has a
(i)
i = 1p


ni
= 1p


N�i and all other values equal


to zero. The actual values for a
(i)
k are fairly close to this (con�rming that the ideal map is


close to orthogonal already), and alternate in sign. To illustrate their behavior, it is useful


to consider the scaled values b
(i)
k � (�1)ka(i)i�k


p
ni�k , with ni�k evaluated using Eq. 18. The


behavior of these values for N = 10 is shown in Fig. 2. Note that b
(i)
0 is close to one, and


decreases slightly as higher levels in the lattice (i.e., larger i values) are considered: the
ideal mapping is closer to orthogonal at low levels in the lattice.


Despite the simple values for the example of Eq. 16, the ak values in general do not
appear to have a simple closed form expression. This is suggested by obtaining exact solu-
tions to Eqs. 17 and 19 using the Mathematica symbolic algebra program (Wolfram, 1991).
In most cases this gives complicated expressions involving nested roots. Since such expres-
sions could simplify, the ak values were also checked for being close to rational numbers and
whether they are roots of single variable polynomials of low degree8. Neither simpli�cation
was found to apply.


Finally we should note that this mapping only describes how the sets at level i are
mapped to the next level. The full quantum system will also perform some mapping on the


6. High precision values were obtained from the FindRoot function of Mathematica.


7. The values are given in Online Appendix 1.


8. Using the Mathematica function Rationalize and the package NumberTheory`Recognize`.
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Figure 2: Behavior of b
(i)
k vs. k on a log scale for N = 10. The three curves show the values


for i = 4 (black), 3 (dashed) and 2 (gray).


remaining sets in the lattice. By changing the map at each step, most of the other sets can
simply be left unchanged, but there will need to be a map of the sets at level i + 1 other
than the identity mapping to be orthogonal to the map from level i. Any orthogonal set
mapping partly back to level i and partly remaining in sets at level i+1 will be suitable for
this: in our application there is no amplitude at level i+1 when the map is used and hence
it doesn't matter what mapping is used. However, the choice of this part of the overall
mapping remains a degree of freedom that could perhaps be exploited to minimize errors
introduced by external noise.


3.5.2 Phases for Nogoods


In addition to the general mapping from one level to the next, there is the problem-speci�c
aspect of the algorithm, namely the choice of phases for the nogood sets at each level.
In the ideal case described above, random phases were given to each nogood, resulting in
a great deal of cancellation for nogoods at the solution level. While this is a reasonable
choice for the unitary mapping, other policies are possible as well. For example, one could
simply invert the phase of each nogood9 (i.e., multiply its amplitude by -1). This choice
doesn't work well for the idealized map to supersets only but, as shown below, is helpful
for the unitary map. It can be motivated by considering the coe�cients shown in Fig. 2.
Speci�cally, when a nogood is encountered for the �rst time on a path through the lattice,
we would like to cancel phase to its supersets but at the same time enhance amplitude in


other sets likely to lead to solutions. Because a
(i)
i�1 is negative, inverting the phase will tend


to add to sets that di�er by one element from the nogood. At least some of these will avoid
violating the small constraint that produced this nogood set, and hence may contribute
eventually to sets that do lead to solutions.


Moreover, one could use information on the sets at the next level to decide what to
do with the phase: as currently described, the computation makes no use of testing the


9. I thank J. Lamping for suggesting this.
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consistency of sets at the solution level itself, and hence is completely ine�ective for problems
where the test requires the complete set. Perhaps better would be to mark a state as nogood
if it has no consistent extensions with one more item (this is simple to check since the number
of extensions grows only linearly with problem size). Another possibility is for the phase
to be adjusted based on how many constraints are violated, which could be particularly
appropriate for partial constraint satisfaction problems (Freuder & Wallace, 1992) or other
optimization searches.


3.5.3 Summary


The search algorithm starts by evenly dividing amplitude among the goods at a low level
K of the lattice. A convenient choice for binary CSPs is to start at level K = 2, where the
number of sets is proportional to N2. Then for each level from K to L� 1, we adjust the
phases of the states depending on whether they are good or nogood and map to the next


level. Thus if  
(j)
� represents the amplitude of the set � at level j, we have


 (j+1)
r =


X
�


Ur��� 
(j)
� =


X
k


a
(j)
k


X
jr\�j=k


�� 
(j)
� (21)


where �� is the phase assigned to the set � after testing whether it is nogood, and the �nal
inner sum is over all sets � that have k items in common with r. That is, �� = 1 when �
is a good set. For nogoods, �� = �1 when using the phase inversion method, and �� = ei�


with � uniformly selected from [0; 2�) when using the random phase method. Finally we
measure the state, obtaining a complete set. This set will be a solution with probability


psoln =
X
s


��� (L)
s


���2 (22)


with the sum over solution sets, depending on the particular problem and method for
selecting the phases.


What computational resources are required for this algorithm? The storage requirements
are quite modest: N bits can produce a superposition of 2N states, enough to represent
all the possible sets in the lattice structure. Since each trial of this algorithm gives a
solution only with probability psoln, on average it will need to be repeated 1=psoln times
to �nd a solution. The cost of each trial consists of the time required to construct the
initial superposition and then evaluate the mapping on each step from the level K to the
solution level L, a total of L � K<N=2 mappings. Because the initial state consists of


sets of size K, there are only a polynomial number of them (i.e., O
�
NK


�
) and hence the


cost to construct the initial superposition will be relatively modest. The mapping from
one level to the next will need to be produced by a series of more elementary operations
that can be directly implemented in physical devices. Determining the required number
of such operations remains an open question, though the particularly simple structure of
the matrices should not require involved computations and should also be able to exploit
special purpose hardware. At any rate, this mapping is independent of the structure of
the problem and its cost does not a�ect the relative costs of di�erent problem structures.
Finally, determining the phases to use for the nogood sets involves testing the sets against
the constraints, a relatively rapid operation for NP search problems. Thus to examine how
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the cost of this search algorithm depends on problem structure, the key quantity is the
behavior of psoln.


3.6 An Example of Quantum Search


To illustrate the algorithm's operation and behavior, consider the small case of N = 3 with
the map starting from level K = 0 and going up to level L = 2. Suppose that f3g and
its supersets are the only nogoods. We begin with all amplitude in the empty set, i.e.,
with the state j;i. The map from level 0 to 1 gives equal amplitude to all singleton sets,
producing 1p


3
(jf1gi+ jf2gi+ jf3gi). We then introduce a phase for the nogood set, giving


1p
3


�
jf1gi+ jf2gi+ ei� jf3gi


�
. Finally we use Eq. 16 to map this to the sets at level 2, giving


the �nal state


1


3
p
3


��
4� ei�


�
jf1; 2gi+


�
1 + 2ei�


�
jf1; 3gi+


�
1 + 2ei�


�
jf2; 3gi


�
(23)


At this level, only set f1,2g is good, i.e., a solution. Note that the algorithm does not make
any use of testing the states at the solution level for consistency.


The probability to obtain a solution when the �nal measurement is made is determined
by the amplitude of the solution set, so in this case Eq. 22 becomes


psoln =


���� 1


3
p
3


�
4� ei�


�����2 = 1


27
(17� 8 cos �) (24)


From this we can see the e�ect of di�erent methods for selecting the phase for nogoods.
If the phase is selected randomly, psoln = 17


27 = 0:63 because the average value of cos � is
zero. Inverting the phase of the nogood, i.e., using � = �, gives psoln = 25


27 = 0:93. These
probabilities compare with the 1/3 chance of selecting a solution by random choice. In
this case, the optimal choice of phase is the same as that obtained by simple inversion.
However this is not true in general: picking phases optimally will require knowledge about
the solutions and hence is not a feasible mapping. Note also that even the optimal choice
of phase doesn't guarantee a solution is found.


4. Average Behavior of the Algorithm


In this section, the behavior of the quantum algorithm is evaluated for two classes of combi-
natorial search problems. The �rst class, of unstructured problems, is used to examine the
phase transition in a particularly simple context using both random and inverted phases
for nogoods. The second class, random propositional satis�ability (SAT), evaluates the
robustness of the algorithm for problems with particular structure.


For classical simulation of this algorithm we explicitly compute the amplitude of all sets
in the lattice up to the solution level and the mapping between levels. Unfortunately, this
results in an exponential slowdown compared to the quantum implementation and severely
limits the feasible size of these classical simulations. Moreover, determining the expected
behavior of the random phase method requires repeating the search a number of times on
each problem (10 tries in the experiments reported here). This further limits the feasible
problem size.
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As a simple check on the numerical errors of the calculation, we recorded the total
normalization in all sets at the solution level. With double precision calculations on a Sun
Sparc10, for the experiments reported here typically the norm was 1 to within a few times
10�11. As an indication of the execution time with unoptimized C++ code, a single trial
for a problem with N = 14 and 16, with L = N=2, required about 70 and 1000 seconds,
respectively. This uses a direct evaluation of the map from one level to the next as given
by Eq. 21. A substantial reduction in compute time is possible by exploiting the simple
structure of this mapping to give a recursive evaluation10. Some additional improvement
is possible by exploiting the fact that all amplitudes are real when using the method that
inverts phases of nogoods. This reduced the execution time to about 1 and 6 seconds per
trial for N of 14 and 16, respectively.


4.1 Unstructured Problems


To examine the typical behavior of this quantum search algorithm with respect to problem
structure, we need a suitable class of problems. This is particularly important for average
case analyses since one could inadvertently select a class of search problems dominated by
easy cases. Fortunately the observed concentration of hard cases near phase transitions
provides a method to generate hard test cases.


The phase transition behavior has been seen in a variety of search problem classes.
Here we select a particularly simple class of problems by supposing the constraints specify
nogoods randomly at level 2 in the lattice. This corresponds to binary constraint satisfaction
problems (Prosser, 1996; Smith & Dyer, 1996), but ignores the detailed structure of the
nogoods imposed by the requirement that variables have a unique assignment. By ignoring
this additional structure, we are able to test a wider range of the number of speci�ed nogoods
for the problems than would be the case by considering only constraint satisfaction problems.
This lack of additional structure is also likely to make the asymptotic behavior more readily
apparent at the small problem sizes that are feasible with a classical simulation.


Furthermore, since the quantum search algorithm is appropriate only for soluble prob-
lems, we restrict attention to random problems with a solution. These could be obtained
by randomly generating problems and rejecting any that have no solution (as determined
using a complete classical search method). However, for overconstrained problems the sol-
uble ones become quite rare and di�cult to �nd by this method. Instead, we generate
problems with a prespeci�ed solution. That is, when randomly selecting nogoods to add
to a problem, we do not pick any nogoods that are subsets of a prespeci�ed solution set.
This always produces problems with at least one solution. Although these problems tend
to be a bit easier than randomly selected soluble problems, they nevertheless exhibit the
same concentration of hard problems and at about the same location as general random
problems (Cheeseman et al., 1991; Williams & Hogg, 1994). The quantum search is started
at level 2 in the lattice.


10. I thank S. Vavasis for suggesting this improvement in the classical simulation of the algorithm.
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Figure 3: The solid curves show the classical backtrack search cost for randomly generated
problems with a prespeci�ed solution as a function of � = m=N for N = 10
(gray) and 20 (black) and L = N=2. Here m is the number of nogoods selected at
level 2 of the search lattice. The cost is the average number of backtrack steps,
starting from the empty set, required to �nd the �rst solution to the problem,
averaged over 1000 problems. The error bars indicate the standard deviation of
this estimate of the average value, and in most cases are smaller than the size
of the plotted points. For comparison, the dashed curves show the probability
for having a solution in randomly generated problems with the speci�ed � value,
ranging from 1 at the left to 0 at the right.


4.1.1 Theory


For this class of problems, the phase transition behavior is illustrated in Fig. 3. Speci�cally,
this shows the cost to solve the problem with a simple chronological backtrack search. The
cost is given in terms of the number of search nodes considered until a solution is found.
The minimum cost, for a search that proceeds directly to a solution with no backtrack is
L + 1. The parameter distinguishing underconstrained from overconstrained problems is
the ratio � of the number of nogoods m at level 2 given by the constraints to the number
of items N.


Even for these relatively small problems, a peak in the average search cost is evident.
Moreover, this peak is near the transition region where random problems11 change from
mostly soluble to mostly insoluble. A simple, but approximate, theoretical value for the
location of the transition is given by the point where the expected number of solutions is
equal to one (Smith & Dyer, 1996; Williams & Hogg, 1994). Applying this to the class of
problems considered here is straightforward. Speci�cally, there are NL complete sets for the
problem, as given by Eq. 1. A particular set s of size L will be good, i.e., a solution, only
if none of the nogoods selected for the problem are a subset of s. Hence the probability it


11. That is, problems generated by random selection of nogoods without regard for whether they have a
solution.
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will be a solution is given by


�L =
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2
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�
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� (25)


because there are
�
N
2


�
sets of size 2 from which to choose the m nogoods speci�ed directly


by the constraints. The average number of solutions is then just Nsoln = NL�L. If we set
m = �N and L = N=b, for large N this becomes


lnNsoln � N


�
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�
1


b


�
+ � ln


�
1� 1
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��
(26)


where h(x) � �x ln x� (1� x) ln (1� x). The predicted transition point12 is then given by


�crit =
h(1=b)


� ln (1� 1=b2)
(27)


which is �crit = 2:41 for the case considered here (i.e., b = 2). This closely matches
the location of the peak in the search cost for problems with prespeci�ed solution, as
shown in Fig. 3, but is about 20% larger than the location of the step in solubility13.
Furthermore, the theory predicts there is a regime of polynomial average cost for su�ciently
few constraints (Hogg & Williams, 1994). This is determined by the condition that the
expected number of goods at each level in the lattice is monotonically increasing. Repeating
the above argument for smaller levels in the lattice, we �nd that this condition holds up to


�poly =
b2 � 1


2b
ln(b� 1) (28)


which is �poly = 0 for b = 2.
While these estimates are only approximate, they do indicate that the class of random


soluble problems de�ned here behaves qualitatively and quantitatively the same with respect
to the transition behavior as a variety of other, perhaps more realistic, problem classes. This
close correspondence with the theory (derived for the limit of large problems), suggests that
we are observing the correct transition behavior even with these relatively small problems.
Moreover the above approximate theoretical argument suggests that the average cost of
general classical search methods scales exponentially with the size of the problem over the
full range of �>0. Thus this provides a good test case for the average behavior of the
quantum algorithm. As a �nal observation, it is important to obtain a su�cient number of
samples, especially near the transition region. This is because there is considerable variation
in problems near the transition, speci�cally a highly skewed distribution in the number of
solutions. In this region, most problems have few solutions but a few have extremely many:
enough in fact to give a substantial contribution to the average number of solutions even
though such problems are quite rare.


12. This di�ers slightly from the results for problems with more speci�ed structure on the nogoods, such as
explicitly removing the necessary nogoods from consideration (Smith & Dyer, 1996; Williams & Hogg,
1994).


13. This is a particularly large error for this theory: it does better for problems with larger constraints or
more allowed values per variable.
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Figure 4: Expected number of trials hT i to �nd a solution vs. � for random problems with
prespeci�ed solution with binary constraints, using random phases for nogoods.
The solid curve is for N = 10, with 100 samples per point. The gray curve is for
N = 20 with 10 samples per point (but additional samples were used around the
peak). The error bars indicate the standard error in the estimate of hT i.


4.1.2 Phase Transition


To see how problem structure a�ects this search algorithm, we evaluate psoln, the probability
to �nd a solution for problems with di�erent structures, ranging from underconstrained to
overconstrained. Low values for this probability indicate relatively harder problems. The
expected number of repetitions of the search required to �nd a solution is then given by
T = 1=psoln. The results are shown in Figs. 4 and 5 for di�erent ways of introducing
phases for nogood sets. We see the general easy-hard-easy pattern in both cases. Another
common feature of phase transitions is an increased variance around the transition region.
The quantum search has this property as well, as shown in Fig. 6.


4.1.3 Scaling


An important question in the behavior of this search method is how its average performance
scales with problem size. To examine this question, we consider the scaling with �xed �.
This is shown in Figs. 7 and 8 for algorithms using random and inverted phases for nogoods,
respectively. To help identify the likely scaling, we show the same results on both a log plot
(where straight lines correspond to exponential scaling) and a log-log plot (where straight
lines correspond to power-law or polynomial scaling).


It is di�cult to make de�nite conclusions from these results for two reasons. First, the
variation in behavior of di�erent problems gives a statistical uncertainty to the estimates of
the average values, particularly for the larger sizes where fewer samples are available. The
standard errors in the estimates of the averages are indicated by the error bars in the �gures
(though in most cases, the errors are smaller than the size of the plotted points). Second, the
scaling behavior could change as larger cases are considered. With these caveats in mind,
the �gures suggest that psoln remains nearly constant for underconstrained problems, even
though the fraction of complete sets that are solutions is decreasing exponentially. This
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Figure 5: Expected number of trials hT i to �nd a solution vs. � for random problems with
prespeci�ed solution with binary constraints, using inverted phases for nogoods.
The solid curve is for N = 10, with 1000 samples per point. The gray curve is
for N = 20 with 100 samples per point (but additional samples were used around
the peak). The error bars indicate the standard error in the estimate of hT i.
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Figure 6: Standard deviation in the number of trials to �nd a solution for N = 20 as a
function of �. The black curve is for random phases assigned to nogoods, and the
gray one for inverting phases.
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Figure 7: Scaling of the probability to �nd a solution using the random phase method, for
� of 1 (solid), 2 (dashed), 3 (gray) and 4 (dashed gray). This is shown on log and
log-log scales (left and right plots, respectively).
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Figure 8: Scaling of the probability to �nd a solution using the phase inversion method, for
� of 1 (solid), 2 (dashed), 3 (gray) and 4 (dashed gray). This is shown on log and
log-log scales (left and right plots, respectively).


behavior is also seen in the overlap of the curves for small � in Figs. 4 and 5. For problems
with more constraints, psoln appears to decrease polynomially with the size of the problem,
i.e., the curves are closer to linear in the log-log plots than in the log plots. This in con�rmed
quantitatively by making a least squares �t to the values and seeing that the residuals of the
�t to a power-law are smaller than those for an exponential �t. An interesting observation
in comparing the two phase choices is that the scaling is qualitatively similar, even though
the phase inversion method performs better. This suggests the detailed values of the phase
choices are not critical to the scaling behavior, and in particular high precision evaluation
of the phases is not required. Finally we should note that this illustration of the average
scaling leaves open the behavior for the worst case instances.


For the underconstrained cases in Figs. 7 and 8 there is a small additional di�erence
between cases with an even and odd number of variables. This is due to oscillations in the
amplitude in goods at each level of the lattice, and is discussed more fully in the context of
SAT problems below.
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Figure 9: Scaling of the ratio of the probability to �nd a solution using the quantum al-
gorithm to the probability to �nd a solution by random selection at the solution
level, using the phase inversion method, for � of 1 (solid), 2 (dashed), 3 (gray)
and 4 (dashed gray). The curves are close to linear on this log scale indicating ex-
ponential improvement over the direct selection from among complete sets, with
a higher enhancement for problems with more constraints.
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Figure 10: Comparison of scaling of probability to �nd a solution with the quantum algo-
rithm using the phase inversion method (dashed curve) and by random selection
at the solution level (solid curve) for � = 2.


Another scaling comparison is to see how much this algorithm enhances the probability
to �nd a solution beyond the simple quantum algorithm of evaluating all the complete sets
and then making a measurement. As shown in Fig. 9, this quantum algorithm appears to
give an exponential improvement in the concentration of amplitude into solutions. A more
explicit view of this di�erence in behavior is shown in Fig. 10 for � = 2. In this �gure, the
dashed curve shows the behavior of psoln for the phase inversion method, and is identical
to the � = 2 curve of Fig. 8.
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4.2 Random 3SAT


These experiments leave open the question of how additional problem structure might a�ect
the scaling behaviors. While the universality of the phase transition behavior in other search
methods suggests that the average behavior of this algorithm will also be the same for a
wide range of problems, it is useful to check this empirically. To this end the algorithm was
applied to the satis�ability (SAT) problem. This constraint satisfaction problem consists of
a propositional formula with n variables and the requirement to �nd an assignment (true
or false) to each variable that makes the formula true. Thus there are b = 2 assignments
for each variable and N = 2n possible variable-value pairs. We consider the well-studied
NP-complete 3SAT problem where the formula is a conjunction of c clauses, each of which
is a disjunction of 3 (possibly negated) variables.


The SAT problem is readily represented by nogoods in the lattice of sets (Williams &
Hogg, 1994). As described in Sec. 2.2, there will be n necessary nogoods, each of size 2. In
addition, each distinct clause in the proposition gives a single nogood of size 3. This case
is thus of additional interest in having speci�ed nogoods of two sizes. For evaluating the
quantum algorithm, we start at level 3 in the lattice. Thus the smallest case for which the
phase choices will inuence the result is for n = 5.


We generate random problems with a given number of clauses by selecting that number
of di�erent nogoods of size 3 from among those sets not already excluded by the neces-
sary nogoods14. For random 3SAT, the hard problems are concentrated near the transi-
tion (Mitchell et al., 1992) at c = 4:2n. Finally, from among these randomly generated
problems, we use only those that do in fact have a solution15. Using randomly selected
soluble problems results in somewhat harder problems than using a prespeci�ed solution.
Like other studies that need to examine many goods and nogoods in the lattice (Schrag &
Crawford, 1996), these results are restricted to much smaller problems than in most studies
of random SAT. Consequently, the transition region is rather spread out. Furthermore,
the additional structure of the necessary nogoods and the larger size of the constraints,
compared with the previous class of problems, makes it more likely that larger problems
will be required to see the asymptotic scaling behavior. However, at least some asymptotic
behaviors have been observed (Crawford & Auton, 1993) to persist quite accurately even
for problems as small as n = 3, so some indication of the scaling behavior is not out of the
question for the small problems considered here.


4.2.1 Phase Transition


The behavior of the algorithm as a function of the ratio of clauses to variables is shown
in Fig. 11 using the phase inversion method. This shows the phase transition behavior.
Comparing to Fig. 5, this also shows the class of random 3SAT problems is harder, on
average, for the quantum algorithm than the class of unstructured problems.


14. This di�ers slightly from other studies of random 3SAT in not allowing duplicate clauses in the propo-
sitional formula.


15. For the values of c=n and small problems examined here, there are enough soluble instances randomly
generated that there is no need to rely on a prespeci�ed solution to e�ciently �nd soluble test problems.
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Figure 11: Average number of tries to �nd a solution with the quantum search algorithm
for random 3SAT as a function of c=n, using the phase inversion method. The
curves correspond to n = 5 (black) and n = 10 (gray).
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Figure 12: Scaling of the probability to �nd a solution, using the phase inversion method,
as a function of the number of variables for random 3SAT problems. The curves
correspond to di�erent clause to variable ratios: 2 (dashed), 4 (solid), 6 (gray)
and 8 (gray, dashed). This is shown on log and log-log scales (left and right
plots, respectively).


4.2.2 Scaling


The scaling of the probability to �nd a solution is shown in Fig. 12 using the phase inver-
sion method. More limited experiments with the random phase method showed the same
behavior as seen with the unstructured class of problems: somewhat worse performance but
similar scaling behavior. The results here are less clear-cut than those of Fig. 8. For c=n = 2
the results are consistent with either polynomial or exponential scaling. For problems with
more constraints, exponential scaling is a somewhat better �t.


In addition to the general scaling trend, there is also a noticeable di�erence in behavior
between cases with an even and odd number of variables. This is due to the behavior of the
amplitude at each step in the lattice. Instead of a monotonic decrease in the concentration of
amplitude into goods, there is an oscillatory behavior in which amplitude alternates between
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Figure 13: Probability in goods (i.e., consistent sets) as a function of level in the lattice for
3SAT problems with no constraints. This shows the behavior for n equal to 9
(gray dashed), 10 (black dashed), 11 (gray) and 12 (black). For each problem,
the �nal probability at level n is the probability a solution is obtained with the
quantum algorithm.


dispersing and being focused into goods at di�erent levels. An extreme example of this
behavior is shown in Fig. 13 for 3SAT problems with no constraints, i.e., c = 0. Speci�cally,


at level i this shows
P


s


��� (i)
s


���2 where the sum is over all sets s at level i in the lattice that are


consistent, which, for these problems with no constraints, are all assignments to i variables.
This is the probability that a good would be found if the algorithm were terminated at
level i and gives an indication of how well the algorithm concentrates amplitude among
consistent states. In this case, the expanded search space of the quantum algorithm results
in slightly worse performance than random selection from among complete assignments
(all of which are solutions in this case). Each search starts with all amplitude in goods
at level 3. Then the total probability in goods alternately decreases and increases as the
map proceeds up to the solution level. Cases with an even number of variables (the black
curves in the �gure) end on a step that decreases the probability in goods, resulting in
relatively lower performance compared to the odd variable cases (gray curves). Although
this might suggest an improvement for the even n cases by starting in level 2 rather than
level 3, in fact this turns out not to be the case: starting in level 2 gives essentially the
same behavior for the upper levels as starting the search from level 3 of the lattice due to
one oscillation at intermediate levels that takes 2 steps to complete. Increasing the value of
c=n, i.e., examining SAT problems with constraints, reduces the extent of the oscillations,
particularly in higher levels of the lattice, and eventually results in monotonic decrease
in probability as the search moves up the lattice. Nevertheless, for problems with a few
constraints the existence of these oscillations gives rise to the observed di�erence in behavior
between cases with an even and odd number of variables. These oscillations are also seen
for underconstrained cases of unstructured problems in Figs. 7 and 8.


While Fig. 13 shows that the oscillatory behavior decreases for larger problems, it also
suggests there may be more appropriate choices of the phases. Speci�cally, it may be
possible to obtain a greater concentration of amplitude into solutions by allowing more
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Figure 14: Scaling of the ratio of the probability to �nd a solution using the quantum
algorithm to the probability to �nd a solution by random selection at the solution
level as a function of the number of variables for random 3SAT problems with
clause to variable ratio equal to 4. The solid and dashed curves correspond
to using the phase inversion and random phase methods, respectively. The
black curves compare to random selection among complete sets, while the gray
compare to selection only from among complete assignments. The curves are
close to linear on this log scale indicating exponential improvement over the
direct selection from among complete sets.


dispersion into nogoods at intermediate levels of the lattice or using an initial condition
with some amplitude in nogoods. If so, this would represent a new policy for selecting the
phases that takes into account the problem-independent structure of the necessary nogoods.
This would be somewhat analogous to focusing light with a lens: paths in many directions
are modi�ed by the lens to cause a convergence to a single point.


More de�nite results are obtained for the improvement over random selection. Speci�-
cally, Fig. 14 shows an exponential improvement for both the phase inversion and random
phase methods, corresponding to the behavior for unstructured problems in Fig. 9. Similar
improvement is seen for other values of c=n as well: as in Fig. 9 the more highly constrained
problems give larger improvements. A more stringent comparison is with random selection
from among complete assignments (i.e., each variable given a single value) rather than from
among all complete sets of variable-value pairs. This is also shown in Fig. 14, appearing to
grow exponentially as well. This is particularly signi�cant because the quantum algorithm
uses a larger search space containing the necessary nogoods. Another view of this com-
parison is given in Fig. 15, showing the probabilities to �nd a solution with the quantum
search and random selection from among complete assignments. We conclude from these
results that the additional structure of necessary nogoods and constraints of di�erent sizes
is qualitatively similar to that for unstructured random problems but a detailed comparison
of the scaling behaviors requires examining larger problem sizes.
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Figure 15: Comparison of scaling of probability to �nd a solution with the quantum algo-
rithm using the phase inversion method (solid curve) and by random selection
from among complete assignments (gray curve) for c=n = 4.


5. Discussion


In summary, we have introduced a quantum search algorithm and evaluated its average
behavior on a range of small search problems. It appears to increase the amplitude into
solution states exponentially compared to evaluating and measuring a quantum superpo-
sition of potential solutions directly. Moreover, this method exhibits the same transition
behavior, with its associated concentration of hard problems, as seen with many classical
search methods. It thus extends the range of methods to which this phenomenon applies.
More importantly, this indicates the algorithm is e�ectively exploiting the same structure
of search problems as, say, classical backtrack methods, to prune unproductive search direc-
tions. It is thus a major improvement over the simple applications of quantum computing
to search problems that behave essentially the same as classical generate-and-test, a method
that completely ignores the possibility of pruning and hence doesn't exhibit the phase tran-
sition.


The transition behavior is readily understood because problems near the transition point
have many large partial goods that do not lead to solutions (Williams & Hogg, 1994). Thus
there will be a relatively high proportion of paths through the lattice that appear good for
quite a while but eventually give deadends. A choice of phases based on detecting nogoods
will not be able to work on these paths until near the solution level and hence give less
chance to cancel out or move amplitude to those paths that do in fact lead to solutions.
Hence problems with many large partial goods are likely to prove relatively di�cult for any
quantum algorithms that operate by distinguishing goods from nogoods of various sizes.


There remain many open questions. In the algorithm, the division between a problem{
independent mapping through the lattice and a simple problem-speci�c adjustment to
phases allows for a range of policies for selecting the phases. It would be useful to under-
stand the e�ect of di�erent policies in the hope of improving the concentration of amplitude
into solutions. For example, the use of phases has two distinct jobs: �rst, to keep ampli-
tude moving up along good sets rather than di�using out to nogoods, and second, when
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a deadend is reached (i.e., a good set that has no good supersets) to send the amplitude
at this deadend to a promising region of the search space, possibly very far from where
the deadend occurred. These goals, of keeping amplitude concentrated on the one hand
and sending it away on the other, are to some extent contradictory. Thus it may prove
worthwhile to consider di�erent phase choice policies for these two situations. Furthermore,
the mapping through the lattice is motivated by classical methods that incrementally build
solutions by moving from sets to supersets in the lattice. Instead of using unitary maps
at each step that are as close as possible to this classical behavior, other approaches could
allow more signi�cant spreading of the amplitude at intermediate levels in the lattice and
only concentrate it into solutions in the last few steps. It may prove fruitful to consider an-
other type of mapping based on local repair methods moving among neighbors of complete
sets. In this case, sets are evaluated based on the number of constraints they violate so an
appropriate phase selection policy could depend on this number, rather than just whether
the set is inconsistent or not. These possibilities may also suggest new probabilistic classical
algorithms that might be competitive with existing heuristic search methods.


As a new example of a search method exhibiting the transition behavior, this work
raises the same issues as prior studies of this phenomenon. For instance, to what extent
does this behavior apply to more realistic classes of problems, such as those with clustering
inherent in situations involving localized interactions (Hogg, 1996). This will be di�cult
to check empirically due to the limitation to small problems that are feasible for a classical
simulation of this algorithm. However the observation that this behavior persists for many
classes of problems with other search methods suggests it will be widely applicable. It is
also of interest to see if other phase transition phenomena appear in these quantum search
algorithms, such as observed in optimization searches (Cheeseman et al., 1991; Pemberton
& Zhang, 1996; Zhang & Korf, 1996; Gent & Walsh, 1995). There may also be transitions
unique to quantum algorithms, for example in the required coherence time or sensitivity to
environmental noise.


For the speci�c instances of the algorithm presented here, there are also some remaining
issues. An important one is the cost of the mapping from one level to the next in terms
of more basic operations that might be realized in hardware, although the simple structure
of the matrices involved suggest this should not be too costly. The scaling behavior of the
algorithm for larger cases is also of interest, which can perhaps be approached by examining
the asymptotic nature of the matrix coe�cients of Eqs. 17 and 19.


An important practical question is the physical implementation of quantum comput-
ers in general (Barenco et al., 1995; Sleator & Weinfurter, 1995; Cirac & Zoller, 1995),
and the requirements imposed by the algorithm described here. Any implementation of
a quantum computer will need to deal with two important di�culties (Landauer, 1994).
First, there will be defects in the construction of the device. Thus even if an ideal design
exactly produces the desired mapping, occasional manufacturing defects and environmental
noise will introduce errors. We thus need to understand the sensitivity of the algorithm's
behavior to errors in the mappings. Here the main di�culty is likely to be in the problem-
independent mapping from one level of the lattice to the next, since the choice of phases in
the problem-speci�c part doesn't require high precision. In this context we should note that
standard error correction methods cannot be used with quantum computers in light of the
requirement that all operations are reversible. We also need to address the extent to which
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such errors can be minimized in the �rst place, thus placing less severe requirements on the
algorithm. Particularly relevant in this respect is the possibility of drastically reducing de-
fects in manufactured devices by atomically precise control of the hardware (Drexler, 1992;
Eigler & Schweizer, 1990; Muller et al., 1995; Shen, Wang, Abeln, Tucker, Lyding, Avouris,
& Walkup, 1995). There are also uniquely quantum mechanical approaches to controlling
errors (Berthiaume, Deutsch, & Jozsa, 1994) based on partial measurements of the state.
This work could substantially extend the range of ideal quantum algorithms that will be
possible to implement.


The second major di�culty with constructing quantum computers is maintaining coher-
ence of the superposition of states long enough to complete the computation. Environmental
noise gradually couples to the state of the device, reducing the coherence and eventually
limiting the time over which a superposition can perform useful computations (Unruh, 1995;
Chuang, Laamme, Shor, & Zurek, 1995). In e�ect, the coupling to the environment can be
viewed as performing a measurement on the quantum system, destroying the superposition
of states. This problem is particularly severe for proposed universal quantum computers
that need to maintain superpositions for arbitrarily long times. In the method presented
here, the number of steps is known in advance and could be implemented as a special pur-
pose search device (for problems of a given size) rather than as a program running on a
universal computer. Thus a given achievable coherence time would translate into a limit
on feasible problem size. To the extent that this limit can be made larger than feasible for
alternative classical search methods, the quantum search could be useful.


The open question of greatest theoretical interest is whether this algorithm or simple
variants of it can concentrate amplitude into solutions su�ciently to give a polynomial,
rather than exponential, decrease in the probability to �nd a solution of any NP search
problem with small constraints. This is especially interesting since this class of problems
includes many well-studied NP-complete problems such as graph coloring and propositional
satis�ability. Even if this is not so in the worst case, it may be so on average for some
classes of otherwise di�cult real-world problems. While it is by no means clear to what
extent quantum coherence provides more powerful computational behavior than classical
machines, a recent proposal for rapid factoring (Shor, 1994) is an encouraging indication of
its capabilities.


A more subtle question along these lines is how the average scaling behaves away from
the transition region of hard problems. In particular, can such quantum algorithms expand
the range of the polynomially scaling problems seen for highly underconstrained or overcon-
strained instances? If so, this would provide a class of problems of intermediate di�culty
for which the quantum search is exponentially faster than classical methods, on average.
This highlights the importance of broadening theoretical discussions of quantum algorithms
to include typical or average behaviors in addition to worst case analyses. More generally,
are there any di�erences in the phase transition behaviors or their location compared with
the usual classical methods? These questions, involving the precise location of transition
points, are not currently well understood even for classical search algorithms. Thus a com-
parison with the behavior of this quantum algorithm may help shed light on the nature of
the various phase transitions that seem to be associated with the intrinsic structure of the
search problems rather than with speci�c search algorithms.
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