

Journal of Arti�cial Intelligence Research 4 (1996) 287{339 Submitted 1/96; published 5/96

Planning for Contingencies: A Decision-based Approach

Louise Pryor louisep@aisb.ed.ac.uk

Department of Arti�cial Intelligence, University of Edinburgh

80 South Bridge

Edinburgh EH1 1HN, Scotland

Gregg Collins collins@ils.nwu.edu

The Institute for the Learning Sciences, Northwestern University

1890 Maple Avenue

Evanston, IL 60201, USA

Abstract

A fundamental assumption made by classical AI planners is that there is no uncertainty

in the world: the planner has full knowledge of the conditions under which the plan will

be executed and the outcome of every action is fully predictable. These planners cannot

therefore construct contingency plans, i.e., plans in which di�erent actions are performed in

di�erent circumstances. In this paper we discuss some issues that arise in the representation

and construction of contingency plans and describe Cassandra, a partial-order contingency

planner. Cassandra uses explicit decision-steps that enable the agent executing the plan to

decide which plan branch to follow. The decision-steps in a plan result in subgoals to acquire

knowledge, which are planned for in the same way as any other subgoals. Cassandra thus

distinguishes the process of gathering information from the process of making decisions.

The explicit representation of decisions in Cassandra allows a coherent approach to the

problems of contingent planning, and provides a solid base for extensions such as the use

of di�erent decision-making procedures.

1. Introduction

Many plans that we use in our everyday lives specify ways of coping with various problems
that might arise during their execution. In other words, they incorporate contingency plans.
The contingencies involved in a plan are often made explicit when the plan is communicated
to another agent, e.g., \try taking Western Avenue, but if it's blocked use Ashland," or
\crank the lawnmower once or twice, and if it still doesn't start jiggle the spark plug." So-
called classical planners1 cannot construct plans of this sort, due primarily to their reliance
on three perfect knowledge assumptions:

1. The planner has full knowledge of the initial conditions in which the plan will be
executed, e.g., whether Western Avenue will be blocked;

2. All actions have fully predictable outcomes, e.g., cranking the lawnmower will de�n-
itely either work or not work;

1. This category includes systems such as strips (Fikes & Nilsson, 1971), hacker (Sussman, 1975), noah
(Sacerdoti, 1977) and molgen (Ste�k, 1981a, 1981b). Recent classical planners include tweak (Chap-
man, 1987), snlp (McAllester & Rosenblitt, 1991) and ucpop (Penberthy & Weld, 1992). The term is
due to Wilkins (1988).

c1996 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Pryor & Collins

3. All change in the world occurs through actions performed by the planner, e.g., nobody
else will use the car and empty its gas tank.

Under these assumptions the world is totally predictable; there is no need for contingency
plans.

The perfect knowledge assumptions are an idealization of the planning context that is in-
tended to simplify the planning process. They allow the development of planning algorithms
that have provable properties such as completeness and correctness. Unfortunately, there
are few domains in which they are realistic: mostly, the world is to some extent unpredict-
able. Relying on the perfect knowledge assumptions in an unpredictable world may prove
cost-e�ective if the planner's uncertainty about the domain is small, or if the cost of recov-
ering from a failure is low. In general, however, they may lead the planner to forgo options
that would have been available had potential problems been anticipated in advance. For
example, on the assumption that the weather will be sunny, as forecast, you may neglect to
take along an umbrella; if the forecast later turns out to be erroneous, it is then impossible
to use the umbrella to stay dry. When the cost of recovering from failure is high, failing to
prepare for possible problems in advance can be an expensive mistake. In order to avoid
mistakes of this sort, an autonomous agent in a complex domain must be able to make and
execute contingency plans.

Recently, we and a number of other researchers have begun investigating the possibility
of relaxing the perfect knowledge assumptions while staying close to the framework of
classical planning (Etzioni, Hanks, Weld, Draper, Lesh, & Williamson, 1992; Peot & Smith,
1992; Pryor & Collins, 1993; Draper, Hanks, & Weld, 1994a; Goldman & Boddy, 1994a).
Our work is embodied in Cassandra,2 a contingency planner whose plans have the following
features:

� They include speci�c decision steps to determine which of the possible courses of
action to pursue;

� Information gathering steps are distinct from decision-steps;

� The circumstances in which it is possible to perform an action are distinguished from
those in which it is necessary to perform it.

1.1 Issues for a Contingency Planner

A contingency planner must be able to construct plans that can be expected to succeed
despite unknown initial conditions and uncertain outcomes of nondeterministic actions. An
e�ective contingency planner must possess the following capabilities:

� It must be able to anticipate outcomes of nondeterministic actions;

� It must be able to recognize when an uncertain outcome threatens the achievement
of a goal;

� It must be able to make contingency plans for all possible outcomes of the various
sources of uncertainty that a�ect a given plan;

2. Cassandra was a Trojan prophet who was fated not to be believed when she accurately predicted future
disasters. An earlier version of Cassandra was described in (Pryor & Collins, 1993).

288

Planning for Contingencies: A Decision-based Approach

� It must be able to schedule sensing actions that detect the occurrence of a particular
contingency;

� It must produce plans that can be executed correctly regardless of which contingency
arises.

The design of Cassandra addresses these issues. However, there are several issues that
have not been addressed:

� We have not considered the problem of determining whether it is worth planning for
a particular outcome;

� Cassandra is not a probabilistic planner: it cannot make use of any information about
the likelihood or otherwise of any events;

� We have ignored the possibility of interleaving planning and execution (but see Sec-
tion 7.4);

� Cassandra does not handle exogenous events;

� The version of Cassandra described here cannot solve Moore's bomb in the toilet
problem (McDermott, 1987): it can only �nd plans that involve deciding between
courses of action that will succeed in di�erent contingencies (but see Section 6.5.5).

Cassandra assumes that all sources of uncertainty and all their possible outcomes are known,
and plans for all those that a�ect the achievement of its goals. It is �rmly in the classical
planning mold: its job is to construct plans that are guaranteed to achieve its goals. It does
not decide when to plan, or what to plan for. Moreover, although we believe that Cassandra
is sound and complete, it is not systematic. In addition, the current implementation is too
slow to be of practical use.

1.2 A Note on Terminology

The word conditional is used in a variety of senses in the literature. We avoid its use
altogether, except when describing the work of other authors who use it in specialized
senses: for example, the conditional actions and conditioning of Peot and Smith (1992).
We use the term contingency plan to refer to a plan that contains actions that may or may
not actually be executed, depending on the circumstances that hold at the time. We use
the term context-dependent to refer to action e�ects that depend on the context in which
the action is performed.

1.3 Outline

In this paper we present Cassandra, describe its algorithm in some detail, discuss the
approach it takes to some important issues in contingency planning, and show how it handles
a variety of example problems.

We start by describing the structure of Cassandra's plans. Section 2 describes how
Cassandra represents actions, including those with uncertain outcomes; explains the system

289

Pryor & Collins

of labels that allows the determination of which of the alternative courses of action in a
contingency plan should be pursued; and introduces the notion of explicit decision steps.

Section 3 briey describes the basic planning algorithm in the absence of uncertainty.
Section 4 explains how the algorithm is extended to handle uncertain outcomes of actions.
In particular, the structure of Cassandra's decisions is considered, as are the problems of
ensuring the soundness of the plan that is constructed. The resulting algorithm is described
in detail and its properties are discussed in Section 5.

In Section 6 we consider some issues that arise in contingency planning. Section 7
describes related work on planning under uncertainty. Finally, Section 8 summarizes the
contributions of this work and discusses its limitations.

2. Cassandra's Plan Representation

Cassandra's representation of contingency plans has three major components:

� An action representation that supports uncertain outcomes;

� A plan schema;

� A system of labels for keeping track of which elements of the plan are relevant in
which contingencies.

These components are described in the remainder of this section.

2.1 Action Representation

Cassandra's action representation is a modi�ed form of the strips operator (Fikes & Nils-
son, 1971). It consists of the preconditions for executing an action and the e�ects that may
become true as a result of executing it, as in the standard strips operator. The syntax is
the same as that used in ucpop (Penberthy & Weld, 1992). As in ucpop, action e�ects
are more complex than standard strips e�ects: they may have an associated set of sec-
ondary preconditions, which govern the occurrence of that e�ect (Pednault, 1988, 1991).
Secondary preconditions allow the representation of context-dependent e�ects of actions,
i.e., e�ects that depend upon the context in which the action is executed. The use of sec-
ondary preconditions is critical to Cassandra's ability to represent uncertain e�ects, and
hence nondeterministic actions, as we discuss in Section 2.1.1.

Figure 1 shows a simpli�ed operator schema for the action of making a selection from a
soft-drink machine (the e�ects describing how the \make another selection" indicator light
is turned o� are omitted). The operator describes two possible e�ects of carrying out the
action: the e�ect of acquiring a soda, which depends on the secondary precondition that a
soda of the selected type is available; and the e�ect of having the \make another selection"
indicator light come on, which depends on the secondary precondition that a soda of the
selected type is not available. Both e�ects depend upon the preconditions that money has
been entered into the machine and that the machine is plugged in.

2.1.1 Representing Uncertain Effects

An uncertain e�ect in Cassandra is a context-dependent e�ect with an unknown precondi-

tion, i.e., a precondition the planner can neither knowingly perceive nor deliberately a�ect.

290

Planning for Contingencies: A Decision-based Approach

Action: (make-selection ?machine ?selection)

Preconditions: (:and (money-entered ?machine)

(plugged-in ?machine))

E�ects: (:when (available ?machine ?selection) secondary precondition

:effect (:and (dispensed ?selection)

(:not (money-entered ?machine))))

(:when (:not (available ?machine ?selection)) secondary precondition

:effect (another-selection-indicator-on ?machine))

Figure 1: Simpli�ed representation of operating a vending machine

For example, a malfunctioning soft-drink machine may operate intermittently; if the plan-
ner is aware of the intermittent functioning, but unaware of the conditions that govern
this behavior, then the correct functioning of the device depends upon an unknown pre-
condition. From the point of view of the planner, the uncertain e�ect is nondeterministic;
the planner cannot tell in advance whether it will occur. Clearly, this de�nition is fun-
damentally subjective: another planner with better information might be able to specify
precisely the conditions under which the device functions properly, for example if it knew
how the internal mechanism of the machine worked. As another example, consider what
happens when a coin is tossed: in principle, given perfect knowledge of all the forces and
distances involved, it would be possible to predict the outcome. In practice, such knowledge
is unavailable and the e�ect of the action is uncertain. In principle, it would be possible
to specify the conditions that would lead to the coin landing tails up; in practice, these
conditions are unknown.

It is interesting to note here that in some circumstances it might be possible for a planner
to learn to predict outcomes that it had hitherto regarded as uncertain: for example, if it
learned how the soda machine worked. \Unknown" refers only to the current situation.
Our representation would facilitate such learning, which would simply involve learning new
secondary preconditions rather than a whole new action representation.

Unknown preconditions play the same syntactic role as normal preconditions within the
operator schema; they are represented by expressions formed using the pseudo-predicate
:unknown. An e�ect that has a secondary precondition of this type will occur only in
certain contexts which cannot be distinguished by the planner from the contexts in which
it will not occur.

Figure 2 depicts a simpli�ed example of an operator with an uncertain e�ect|it rep-
resents the action of operating a soft-drink machine that intermittently fails to dispense a
soda despite being operated correctly. This operator has two uncertain e�ects, one in which
the soda is dispensed, the other in which the soda is not dispensed.

Clearly, the uncertainty with respect to both these e�ects stems from a single under-
lying source, namely uncertainty about whether or not the machine will malfunction. In
e�ect, the two unknown preconditions in the operator represent alternative results of this
underlying source of uncertainty. This relationship is reected in the two arguments to

291

Pryor & Collins

Action: (enter-selection ?machine)

Preconditions: (:and (money-entered ?machine)

(plugged-in ?machine))

E�ects: (:when (:and (available ?machine ?selection)

(:unknown ?ok T))

:effect (dispensed ?selection)) uncertain e�ect

(:when (:and (available ?machine ?selection)

(:unknown ?ok F))

:effect (:not (dispensed ?selection))) uncertain e�ect

(:when (available ?machine ?selection)

:effect (:not (money-entered ?machine)))

(:when (:not (available ?machine ?selection))

:effect (another-selection-indicator-on ?machine))

Figure 2: Operating a faulty soft-drink machine

the :unknown pseudo-predicate, the �rst of which designates the source of uncertainty with
which it is associated, and the second of which designates the particular outcome of the
uncertainty that it represents. The possible contexts are e�ectively partitioned into a set
of equivalence classes, with each context in the same class producing the same outcome
of the uncertainty. The outcome is then used to label the equivalence class. A condition
of the form (:unknown ?class outcome) will be true if the actual context is in the class
designated by outcome.

Notice that each instantiation of the operator will introduce a new source of uncertainty,
which means that the �rst argument to the unknown precondition must be represented as
a variable in the operator schema. Cassandra binds this variable to a unique identi�er (i.e.,
a skolem constant) when the operator is instantiated.

In Cassandra's representation it is assumed that di�erent sources of uncertainty are
independent of each other. No source of uncertainty can be linked to uncertain outcomes
in more than one operator, but a single operator may introduce any number of sources of
uncertainty, each of which may have any number of outcomes. Each source of uncertainty
has an exhaustive set of mutually exclusive outcomes, each with a unique name.

2.1.2 Representing Other Sources of Uncertainty

A key element of Cassandra's design is the use of a single format to represent all sources
of uncertainty that a�ect planning. In particular, all uncertainty is assumed to be manifest
in uncertain e�ects of planning operators, as outlined above. Uncertainty about initial
conditions can be handled within this format by treating initial conditions as though they
were the e�ects of a phantom \start step" action. This treatment of initial conditions,
which was initially developed for reasons unrelated to the problem of representing uncertain
outcomes, is common to the snlp family of planners to which Cassandra belongs.

Cassandra's formulation ignores uncertainty that might stem from outside interference
during the execution of the agent's plans, except inasmuch as it can be represented as

292

Planning for Contingencies: A Decision-based Approach

incomplete knowledge of initial conditions. This is, of course, a limitation of classical
planners in general; all change in the world is assumed to be caused directly by the actions
of the agent.

2.2 Basic Plan Representation

Cassandra's plan representation is an extension of that used in ucpop (Penberthy & Weld,
1992) and snlp (McAllester & Rosenblitt, 1991; Barrett, Soderland, &Weld, 1991), which is
in turn derived from the representation used in nonlin (Tate, 1977). A plan is represented
as a schema with the following components:

� A set of steps;

� A set of anticipated e�ects of those steps;

� A set of links relating e�ects to the steps that produce and consume them (a step
consumes an e�ect when it requires that e�ect to achieve one of its preconditions).
Note that links in e�ect denote protection intervals, i.e., intervals over which particular
conditions must remain true in order for the plan to work properly.

� A set of variable bindings instantiating the operator schema;

� A partial ordering on the steps;

� A set of open conditions, i.e., unestablished goals;

� A set of unsafe links, i.e., links the conditions of which could be falsi�ed by other
e�ects in the plan.

A plan is complete when it contains no open conditions and no unsafe links.

2.3 Representing Contingencies

A contingency plan is intended to achieve its goal regardless of which of the foreseeable
contingencies associated with it actually arise during execution. To construct a valid con-
tingency plan, the planner must be able to enumerate these contingencies. The set of
foreseeable contingencies can be computed from the sources of uncertainty that are associ-
ated with the plan. In e�ect, a contingency is one possible set of outcomes for all relevant
sources of uncertainty.

2.3.1 Contingency Labels

Keeping track of whether a plan achieves its goal in every contingency is a somewhat
complex process. Cassandra, like cnlp, uses a system of labels to accomplish the necessary
bookkeeping (Peot & Smith, 1992). Each goal, step, and e�ect in Cassandra's plan is labeled
to indicate the contingencies in which that element participates:

� Goals are labeled to indicate the contingencies in which they must be achieved;

� E�ects are labeled to indicate the contingencies in which they are expected to occur,
i.e., the contingencies in which the goals they satisfy arise;

293

Pryor & Collins

� Steps are labeled to indicate the contingencies in which they must be performed, i.e.,
the union of the contingencies in which any of their e�ects are expected to occur.

The preconditions of each e�ect become new goals, the labels of which correspond to the
labels on the e�ect that give rise to them.

In general, it is assumed that a particular step could be executed in any contingency,
albeit possibly to no purpose. However, it is sometimes necessary to rule a particular step
out of a particular contingency as a means of preventing its interference with the plan for
that contingency. For example, consider a plan to achieve the goal of having a coin heads
up, the �rst action of which is to toss the coin (see Section 4.2.3 for a detailed discussion of
this plan). In one contingency the coin lands heads up, and no further actions are required.
In another contingency, the coin lands tails up and must be turned over in order for the goal
to be achieved. It is clear, however, that the turning over action must not be performed
in the �rst contingency: doing so would mean that the goal of having the coin heads up is
not achieved. In Cassandra, ruling steps out is accomplished by associating negative labels
with plan steps to indicate those contingencies in which the steps are not to be executed.
Peot and Smith (1992) call this process conditioning .

In addition, every step that depends, directly or indirectly, on a particular outcome of
a given source of uncertainty is ruled out of every contingency that involves an alternative
outcome of that source of uncertainty. We discuss the reason for this restriction in more
detail below.

Cassandra's labeling system thus provides very clear guidance to the agent executing
the plan, which simply performs those steps whose positive labels reect the actual circum-
stances that hold at execution. Steps with neither positive nor negative labels involving the
current contingency will not a�ect the goals, but are not guaranteed to be executable. In
contrast, the agent executing a plan produced by cnlp is guided by the reason labels at-
tached to steps. In cnlp's plans, an action need only be executed if at least one of the goals
represented in its reason labels is feasible. The agent must therefore have some method of
deciding which of the top-level goals are feasible. We assume this can be done by comparing
the context labels of each top-level goal (which are labeled because they are represented
as dummy actions) with the circumstances that actually hold. Cassandra's method is thus
simpler: the agent simply uses the positive labels of the plan steps instead of using the
labels attached to a step to indicate those goals whose context labels must be analyzed.

The general principles of label propagation in Cassandra are:

� Positive labels, which denote that the plan element concerned contributes to goal
achievement in that contingency, propagate along causal links from subgoals to the
plan elements that establish them;

� Negative labels, which denote that the plan element concerned would prevent goal
achievement in that contingency, propagate along causal links from e�ects to the plan
elements that they establish.

The details are given in Section 5.1.4.

294

Planning for Contingencies: A Decision-based Approach

Drive to
Western at
Belmont

On Western

On Belmont

On Western Check
traffic on
Western

know
traffic
status Decide

Take Western
to Evanston

Take Belmont
to Ashland

On Ashland Take Ashland
to Evanston

KEY

Link condition

Alternative
control flow

Figure 3: A plan that includes a decision-step

2.3.2 Representing Decisions

Planning can be seen as the process of deciding what to do in advance of when it is done
(Collins, 1987). The need for contingency plans arises when the necessary decisions cannot
be made in advance because of missing information (see Section 6.4). If the decisions cannot
be made in advance, they must be made when the plan is executed. The agent executing
a contingency plan must at some point decide which of the possible courses of action to
pursue, in other words which branch to take.

Previous work has in e�ect assumed that the agent will execute those steps that are
consistent with the contingency that actually holds (Warren, 1976; Peot & Smith, 1992).
However, the determination of which steps are consistent cannot (by de�nition) be made in
advance; in order to know which contingency holds during execution, the agent executing
the plan must in general gather information on which the decision can be based. To ensure
a viable plan, the planner must be able to guarantee that the steps required to gather
information do not conict with those required to carry out the rest of the plan. Therefore,
the planner must in general be able to include information gathering steps, as well as any
other steps that support decision making, in the plan it is constructing. Cassandra achieves
this by representing decisions explicitly as plan steps. The preconditions of these decision-
steps include goals to be in possession of information relevant to making the decision; the
scheduling of actions to obtain information is thus handled by the normal planning process.

For instance, consider the contingency plan alluded to above: \try taking Western Av-

enue, but if it's blocked use Ashland ." During the execution of such a plan, the agent must
at some point decide which branch of the plan to execute. The decision-step in this case
would have the precondition of knowing whether Western Avenue is blocked or not, which
would cause the planner to schedule an information-gathering action to check the tra�c
status on Western. This operation might in turn have the precondition of being on West-
ern, which can be achieved by traveling to the junction of Western and Belmont. After
the decision is taken, the agent can either take Western up to Evanston or continue along
Belmont to Ashland.

Assuming the goal of the plan is to be in Evanston, the �nal plan might be as depicted in
Figure 3. Note that control ow after a decision is represented by heavy lines. Solid lines in
the diagram represent links, with the action at the tail of the link achieving a precondition

295

Pryor & Collins

of the action at the head of the link. In this plan, the agent will take Western to Evanston
in one contingency, and will take Belmont to Ashland and then Ashland to Evanston in the
other.3

Notice that in order to determine the appropriate precondition for a given decision-step,
the planner must have some way of determining exactly what it will need to know in order
to make the decision at execution time. This somewhat complex determination depends in
part on how the decision-making process is to be carried out. In Cassandra, decisions are
modeled as the evaluation of a set of condition-action rules of the form:

if condition1 then contingency1
if condition2 then contingency2

. . .
if conditionn then contingencyn

Each possible outcome of a given uncertainty gives rise to a decision rule; the condition
of this decision-rule speci�es a set of e�ects that the agent should test in order to determine
whether to execute the contingency plan for that outcome. For example, the decision-rules
for the driving plan example would look like this:

if Western Avenue is blocked then execute contingency using Ashland

if Western Avenue is not blocked then execute contingency using Western

Cassandra's derivation of inference rules in decisions is explained in detail in Section 4.

The preconditions for a decision-step are goals to know the truth values of the conditions
in the decision-rules: they are thus knowledge goals (McCarthy & Hayes, 1969; Pryor, 1995)
(see Section 6.4). These goals are treated in the same way as are the preconditions of any
other step. Cassandra thus requires no other special provisions to allow the construction of
information-gathering plans.

The explicit representation of decision-steps provides a basis for supporting alternative
decision procedures. While Cassandra's basic model of the decision procedure is quite
simple, more complex decision procedures can be supported within the same framework (one
such procedure is described in Section 6.5.5). For example, the model could be changed to a
di�erential-diagnosis procedure. The representation of decision procedures as templates in
the same way that actions are represented as templates would allow the planner to choose
between alternative methods of making a decision in the same way as it can choose between
alternative methods of achieving a subgoal. An even better approach might be to formulate
an explicit goal to make a correct decision, and allow the system to construct a plan to
achieve that goal using inferential operators. However, this would in e�ect require that
the goals for these operators be stated in a meta-language describing the preconditions and
results of operators. We have not yet addressed this possibility in any detail.

Cassandra's separation of the gathering of information from the making of decisions
allows one information-gathering step to serve several decisions. This allows the exible use
of information-gathering actions; there is no e�ective di�erence between such actions and
any other action that may appear in a plan.

3. Appendix A shows the plans that Cassandra constructs for all the examples described in this paper.
This plan is in Section A.1.

296

Planning for Contingencies: A Decision-based Approach

New step Add to the plan a new step that has an e�ect that will establish the open condition. Add the
step preconditions and the secondary preconditions of the e�ect as open conditions. The open condition
becomes a completed link.

Reuse step Make the open condition into a complete link from an e�ect of an existing plan step. Add the
secondary preconditions of the e�ect as open conditions.

Figure 4: Resolving open conditions

3. Planning Without Contingencies

In this section we briey review the basic planning algorithm on which Cassandra is based.
It follows closely that used in ucpop (Penberthy & Weld, 1992), which is in turn based on
snlp (McAllester & Rosenblitt, 1991). The principal di�erence between ucpop and snlp
is the use of secondary preconditions (see Collins & Pryor, 1992).

Cassandra does not attempt to construct a contingency plan until it encounters an
uncertainty. Up until this point, it constructs a plan in much the same manner as other
planners in the snlp family. In fact, if no uncertainty is ever introduced into the plan,
Cassandra will e�ectively function just as ucpop would under the same circumstances.
Planning proceeds through the alternation of two processes: resolving open conditions and
protecting unsafe links. Each of these processes involves a choice of methods, and may
therefore give rise to several alternative ways to extend the current plan. All possible
extensions are constructed, and a best-�rst search algorithm guides the planner's exploration
of the space of partial plans.

The initial plan consists of two steps: the start step, with no preconditions and with
the initial conditions as e�ects, and the goal step, with the goal conditions as preconditions
and with no e�ects. The planner attempts to modify its initial plan until it is complete:
i.e., until there are no open conditions and no unsafe links.

3.1 Resolving Open Conditions

The planning process is driven by the need to satisfy open conditions, which are initially
simply the input goals. In the course of planning to satisfy an open condition, new subgoals
may be generated; these are then added to the set of open conditions. The planner can
establish an open condition in one of two ways: by introducing a new step into the plan, or
by reusing an existing step by making use of one of its e�ects (see Figure 4). The secondary
preconditions of the e�ect that establishes the condition become open conditions. If a new
step is added, the preconditions of the step become open conditions as well. Finally, each
time an open condition is established, a link is added to the plan to protect the newly
established condition.

One way of establishing a condition is simply to notice that the condition is true in the
initial state. Because the initial conditions are treated as the results of the start operator,
which is always a part of the plan, this method can be treated as establishment by reusing
an existing step; indeed, this simpli�cation is the motivation for representing the initial
conditions in this way.

297

Pryor & Collins

A link establishing the condition Cond is unsafe if there is an e�ect Eff in the plan (other than the e�ect
SourceEff that establishes Cond and the (possible) e�ect GoalEff that is either established or disabled by the
link) with the following properties:

Uni�cation One of the postconditions in Eff can possibly unify with either Cond or its negation;

Ordering The step that produces Eff can, according to the partial order, occur both before the step that
produces GoalEff and after the step that produces SourceEff.

An unsafe link may be resolved in one of three ways:

Ordering Modify the ordering of the steps in the plan to ensure that the step producing Eff occurs either
before the step that produces SourceEff or after the step that produces GoalEff;

Separation Modify the variable bindings of the plan to ensure that the threatening e�ect Eff cannot in fact
unify with the threatened condition Cond;

Preservation Introduce a new open condition in the plan to disable Eff. This new open condition is the
negation of one of Eff's secondary preconditions.

Figure 5: Unsafe links

3.2 Protecting Unsafe Links

Whenever an open condition is established, links in the plan may be jeopardized either
because a new step threatens an existing link, or because a new link is threatened by an
existing step. The situations in which a link is unsafe are shown in Figure 5. In general, a
link is considered unsafe if there is an e�ect in the plan that could possibly interfere with
the condition established by that link.

There are three general methods of protecting a threatened link (see Figure 5). First,
ordering can be used to constrain the threatening action to occur either before the beginning
or after the end of the threatened link. Second, the threatening e�ect and the threatened
link can be separated by imposing constraints on the variables involved so that the e�ect
cannot be uni�ed with the established condition. Third, the link can be preserved by
generating a new subgoal to disable the e�ect that threatens the link.

4. Contingency Planning

Cassandra proceeds as described in the previous section until either the plan is completed
or an uncertainty is introduced. This section describes how uncertainties are introduced
and how they are handled.

As an example of a plan involving an uncertainty, let us consider a version of Moore's
classic \bomb in the toilet" problem (McDermott, 1987), in which the goal is bomb is

disarmed , and the initial conditions are bomb in package1 or bomb in package2 . The
uncertainty in this case lies in the initial conditions: depending on the outcome of the
uncertainty, the start operator can either have the e�ect that the bomb is in package1 or
the e�ect that the bomb is in package2 .

4.1 Contingencies

Uncertainty is introduced into a plan when an open condition in the plan is achieved by
an uncertain e�ect, i.e., an e�ect with an unknown precondition. In the bomb-in-the-toilet

298

Planning for Contingencies: A Decision-based Approach

Move
package1

Package
at toilet

Dunk
package1 Bomb

disarmed
End

Bomb in
package1

KEY

Link

Link with
uncertain
effect

condition

condition

Start

Figure 6: The introduction of uncertainty into a plan

example, for instance, Cassandra may achieve the condition bomb is disarmed by selecting
the dunk operator, which has the preconditions the package is at the toilet , and the bomb is

in the package. The condition the bomb is in the package can be established by identifying
it with the bomb is in package1 , which is an e�ect of the start operator. However, this
condition is uncertain, as can be determined by noting that it has an unknown precondition.
Cassandra will attempt to deal with this uncertainty by introducing a new contingency (or
new contingencies) into the plan. The state of the plan just after the introduction of the
uncertainty is illustrated in Figure 6.

4.1.1 Introducing Contingencies

Cassandra notices an uncertainty when its current plan becomes dependent upon a par-
ticular outcome of that uncertainty through the use of an uncertain e�ect, i.e., an e�ect
with an unknown precondition that speci�es an outcome of that uncertainty. The plan
that Cassandra has built up to that point is in e�ect a plan branch for that outcome.
Since branches must also be constructed for all other possible outcomes of the uncertainty,
Cassandra makes a copy of its overall goal for each possible outcome of the uncertainty,
each copy carrying a label indicating the outcome of the uncertainty in which it must be
achieved. It thus e�ectively splits the plan into a set of branches, one for each possible
outcome of the uncertainty.4

In planning for these otherwise identical goals, Cassandra must make certain that no
element of the branch for the goal for one outcome relies on a di�erent outcome of the same
uncertainty. In other words, no goal, nor any of its subgoals, may be achieved by any e�ect
that depends, directly or indirectly, on any outcome of the uncertainty other than the one in
the goal's label. As described above, Cassandra achieves this by using a system of negative
labels indicating contingencies from which particular plan elements must be excluded.

4. An alternative method would be to split the plan into two branches, regardless of the number of outcomes.
In this case, one branch would be associated with a given outcome of the uncertainty, while the other
would be associated with all other possible outcomes of that uncertainty. This is e�ectively how sensp
operates (Etzioni et al., 1992).

299

Pryor & Collins

Move
package1

Start

Move
package2

Package1
at toilet

Package2

at toilet

Dunk
package1

Dunk
package2

Bombdisarmed

Bomb
disarmed

EndBomb inpackage2

Bomb in
package1

I KEY

Link

Link with
uncertain
effect

condition

condition

Element label classes
I

II

III

IV

In package1 contingency

In package1 contingency
Out of package2 contingency

In package2 contingency
Out of package1 contingency

In package2 contingency

II

III

IV

Figure 7: A contingency plan to disarm a bomb

In the bomb-in-the-toilet example, when the plan is made dependent upon the uncertain
outcome bomb in package1 , a new copy of the top level goal bomb is disarmed is added to
the set of open conditions. The new copy is given a label indicating that it belongs to
contingency in which the bomb is in package2 .5 The existing top level goal and all its
subgoals are labeled to indicate that they belong to the contingency in which the bomb
is in package1 . The e�ect bomb in package1 , the action dunk package1 , and all e�ects of
the action dunk package1 are be labeled to indicate that they cannot play a role in the
contingency in which the bomb is in package2 .

Notice that the action move package1 , although it plays a role in the plan in the con-
tingency in which the bomb is in package1 , does not in fact depend upon the bomb being
in package1 . It could in principle be made part of the plan for disarming the bomb in the
contingency in which the bomb is in package2 , were it to prove useful for anything. This is
indicated by the fact that it has no negative label for for the package2 contingency.

When Cassandra attempts to achieve the new open condition bomb is disarmed , it may
choose the dunk operator once again (notice that it is prohibited from using any e�ects of
the existing dunk operator). This new instance of the dunk operator in turn gives rise to a
subgoal to have the bomb be in the package that is dunked. This can only be achieved by
identi�cation with the e�ect bomb in package2 . The plan thus constructed is depicted in
Figure 7 (the decision-step has been omitted for clarity) and is listed in Section A.2.

4.1.2 Uncertainties with Multiple Outcomes

Although the algorithm we have described can deal with uncertainties having any number
of possible outcomes, we have so far discussed only examples with two possible outcomes.
In fact, two-outcome uncertainties su�ce to describe the majority of problems that we have

5. Note that we are describing the contingency in this way for clarity of exposition. The actual label is
constructed as described in Section 2.3.1.

300

Planning for Contingencies: A Decision-based Approach

Start

Package at location1

Decide

Drive ?car
to location1

Robot at

location1

Pickup
package

A KEY

Link condition

Alternative
control flow

conditionLink with
uncertain
effect

Incomplete
portion of
plan

B

Figure 8: A partial plan to pick up a package

considered. Indeed, technically, any situation could be described in terms of some number
of two-outcome uncertainties. However, it is not hard to think of situations that might
naturally be represented in terms of a source of uncertainty with more than two outcomes.
For example, suppose the planner were interested in getting hold of a particular object in
a situation in which the object were known to be in one of three places. In such a case,
the start pseudo-operator would naturally be represented as having three uncertain e�ects
(one for each possible location of the object) all associated with alternative outcomes of a
single source of uncertainty. Cassandra's plan for acquiring the object would then involve
three contingencies, one for each possible location.

4.1.3 Multiple Sources of Uncertainty

A plan may involve two or more sources of uncertainty, in which case the plan will have
more than one set of branches. For example, suppose Cassandra is given the goal of picking
up a package that is at one of two locations, and that one of two cars will be available
for it to use. If the uncertainty regarding the location of the package is encountered �rst
during the construction of the plan, Cassandra will respond by building a plan involving
two contingencies, one for each location. Call these contingencies A and B (see Figure 8
and Section A.3).

At some point during the construction of the plan for contingency A, Cassandra will
encounter the uncertainty concerning which car will be available and will make the current
plan dependent upon one particular outcome of that uncertainty. Since this new source of
uncertainty arises in the context of planning for contingency A, contingency A is in e�ect
bifurcated into two contingencies: A1, in which the package is at location 1 and car 1 is

301

Pryor & Collins

Start

Package at location1

Decide

Robot at
location1

Pickup
package

B

A

KEY

Link condition

Alternative
control flow

conditionLink with
uncertain
effect

Incomplete
portion of
plan

Package at location1

Robot at

location1

Pickup
package

Drive car1
to location1

car1 available

Drive car2
to location1

car2 available

Decide 2
1

Figure 9: A plan with two sources of uncertainty

available; and A2, in which the package is at location 1 and car 2 is available). Cassandra
must replace all existing contingency A labels with contingency A1 labels. It must then
introduce a new copy of the top-level goal labeled with contingency A2.

Note that Cassandra must plan from scratch to achieve the top-level goal in contingency
A2, in spite of the fact that it already has a viable plan for the goal in contingency A1.
This is necessary because situations may be encountered in which the only successful plans
involve using di�erent methods to achieve the goal in the two contingencies. For example,
extreme di�erences between the two cars might necessitate di�erent plans for driving them
(e.g., in a more detailed representation of the situation than we have presented here, such
di�erences might a�ect the routes on which the cars could be driven or the places in which
they could be parked). Cassandra must therefore consider all possible ways to achieve the
goal in contingency A2 in the search for a completion of the plan. If the particular car used
does not in fact a�ect the driving plan, then one path through the search space will result
in isomorphic contingency plans for A1 and A2 (see Figure 9 and Section A.4).

The same reasoning applies to the extension of the plan to deal with contingency B.
It cannot be assumed a priori that the plan for contingency B will in any way resemble
the plan constructed for contingency A. An interesting consequence of this is that the

302

Planning for Contingencies: A Decision-based Approach

uncertainty concerning the availability of the cars does not necessarily arise in a given plan
for contingency B. For example, if the location of the package in contingency B were close
enough that the agent could get there without using a car, the �nal plan might have only
three contingencies: A1 (location 1 with car 1), A2 (location 1 with car 2), and B (location
2, on foot).

Cassandra may, of course, produce an extension of the plan in which a car is to be used
in contingency B as well, in which case it will again encounter the uncertainty associated
with the location of the car, and will proceed to bifurcate contingency B just as was done
previously for contingency A. In the limit, the plan will involve one contingency for every
member of the cross product of the possible outcomes of the relevant uncertainties. However,
it is important to note that not every member of the cross-product set must appear as a
contingency, since, as we have shown, some uncertainties may arise only given particular
outcomes of other uncertainties.

4.2 Decision-steps

When Cassandra encounters a new source of uncertainty it adds a decision-step to the plan
to represent the act of determining which path through the plan should be followed during
execution. The following ordering constraints are added to the plan at the same time:

� The decision-step must occur after the step with which the uncertainty is associated;

� The decision-step must occur before any step with a precondition whose achievement
depends on a particular outcome of the uncertainty.

4.2.1 Formulating Decision-rules

For a decision-step to be operational, there must be an e�ective procedure by which the
agent executing the plan can determine which decision to make. In Cassandra, the action
of deciding which contingency to execute is modeled as the evaluation of a set of condition-
action rules of the form:

If condition1 then contingency1
If condition2 then contingency2
If condition3 then contingency3

. . .

Cassandra annotates each decision-step in a plan with the set of rules that will be used
to make that decision. The executing agent can then make the decision by evaluating these
rules when it comes to the decision-step in the course of executing the plan. In order to
evaluate a decision-rule, the executing agent must be able to determine whether the rule's
antecedent holds. The preconditions for the decision-step must thus include goals to know
the current status of each condition that appears as an antecedent of a rule in this condition.
The preconditions of a decision-step become open conditions in the plan in the same way
as do the preconditions of any other step.

As the intended e�ect of evaluating the decision-rules is to choose the appropriate con-
tingency given the outcome of a particular uncertainty, the conditions should be diagnostic
of particular outcomes of the uncertainty. The executing agent cannot, of course, directly

303

Pryor & Collins

determine the outcome of an uncertainty, so it must infer it from the presence or absence
of e�ects that depend upon that outcome.

The most straightforward approach to constructing the antecedent conditions of a
decision-rule would be to analyze the plan operators to identify all the e�ects that could
be expected to result from a given outcome of the uncertainty, and make the condition be
the conjunction of these e�ects. However, this turns out to be overkill. In fact, it is only
necessary to check for those e�ects of a given outcome of an uncertainty that are actually

used to establish preconditions in the contingency associated with that outcome. In other
words, it is necessary only to verify that the contingency plan can, in fact, succeed. This has
the interesting consequence that the executing agent might, in principle, end up selecting a
contingency plan even though the outcome of the uncertainty were not the one with which
that plan was associated. Notice that this would not cause a problem in the execution of
the plan, since it would only occur if all the conditions for the plan's success were met. In
fact, as we shall see, Cassandra depends on this e�ect in certain circumstances.

The antecedent condition of the decision-rule is thus a conjunction of all the direct e�ects
of a particular outcome that are used to establish preconditions in the contingency plan
for that outcome. Decision-rules are constructed incrementally as the plan is elaborated.
We discuss Cassandra's construction of these rules in more detail in Section 4.2.3 below.
The approach we have used in formulating Cassandra's decision-rules is consistent with
Morgenstern's observation that an agent can execute a plan if it can \make sure" that all
the events in the plan are executable (Morgenstern, 1987).

4.2.2 Adding a Decision-rule in our Example

In the bomb-in-the-toilet example, Cassandra will introduce a decision-step to determine
whether or not the bomb is in package1 . As the uncertainty is in the initial conditions,
the decision will be constrained to occur after the start step. It must also occur before
either of the dunk actions, since these depend upon particular outcomes of the uncertainty.
The decide step will have a precondition to know whether the bomb is in package1 . If
there are actions available that would allow it to determine this|X-raying the box, for
example|Cassandra will achieve this precondition with one of those actions, and decide on
that basis which branch of the plan to execute.

4.2.3 How Cassandra Constructs Decision-rules

At the point in the planning process at which Cassandra constructs a decision-rule, only
one precondition in the plan is known to depend upon a particular outcome of the uncer-
tainty that gave rise to the decision: namely, the one that led to Cassandra discovering
the uncertainty in the �rst place. The decision-rule set that Cassandra initially builds thus
looks like this:

If e�ect1 then contingency1
If T then contingency2
If T then contingency3
. . .

During the construction of the plan, Cassandra must modify this initial rule set each time an
e�ect depending directly on the source of uncertainty is used to establish an open condition

304

Planning for Contingencies: A Decision-based Approach

Action: (toss-coin ?coin)

Preconditions: (holding ?agent ?coin)

E�ects: (:when (:unknown ?U H)

:effect (:and (flat ?coin) uncertain e�ect

(heads ?coin)))

(:when (:unknown ?U T)

:effect (:and (flat ?coin) uncertain e�ect

(tails ?coin)))

(:when (:unknown ?U E)

:effect (on-edge ?coin))) uncertain e�ect

Figure 10: Representing the action of tossing a coin

in the plan. In particular, Cassandra must determine the contingency in which that open
condition resides, and conjoin the e�ect with the existing antecedent of the decision-rule for
that contingency.

Consider, for example, what happens when a coin is tossed. We might say that in theory
there are three possible outcomes of this action: the coin can land at with heads up; at
with tails up; or on its edge (Figure 10). Suppose Cassandra is given a goal to have the
coin be at. This can be established by using the at-heads e�ect of tossing it. Since this is
an uncertain e�ect, Cassandra introduces two new contingencies into the plan, one for the
outcome in which the coin lands tails up, and another for the outcome in which it lands on
its edge.

The introduction of these contingencies mandates the introduction of a decision-step
whose initial rule set looks like this:6

If (flat coin) then [U1: H] rule for heads up

If T then [U1: T] rule for tails up

If T then [U1: E] rule for edge

At the same time, a new open condition (know-if (flat coin)) is introduced as a precon-
dition of the decision-step, and new goal conditions are introduced that must be achieved in
contingencies [U1: T] and [U1: E]. Cassandra next establishes the goal condition in con-
tingency [U1: T] using the at-tails e�ect of the toss step. The decision-rules associated
with the tails up contingency are thus modi�ed as follows:

If (flat coin) then [U1: H] rule for heads up
If (flat coin) then [U1: T] rule for tails up

If T then [U1: E] rule for edge

Finally, the goal condition is established in contingency [U1:E] by introducing a new
step, tip, into the plan. A precondition of the tip step is that the coin be on its edge, which
is established by the on-edge e�ect of the toss action. Since this e�ect depends directly

6. Assuming that ?U, the variable representing the source of uncertainty, is instantiated to U1.

305

Pryor & Collins

upon the uncertainty U1, the decision-rule for the edge contingency is modi�ed to include
this condition:

If (flat coin) then [U1: H] rule for heads up

If (flat coin) then [U1: T] rule for tails up

If (on-edge coin) then [U1: E] rule for edge

Since the plan is complete, this is the �nal set of decision-rules (see Section A.5). Notice
that these rules do not discriminate the heads-up outcome from the tails-up outcome. In
fact, either outcome will do, so there is no reason to make this discrimination. Which plan
is executed in either of these conditions depends solely upon the order in which the agent
that is executing the plan chooses to evaluate the decision-rules.7

A somewhat more complex problem arises if we give Cassandra the goal of having the
coin be flat and heads-up. In this case both e�ects can be established using the toss

action. This will again lead to the introduction of two new contingencies into the plan, one
for when the coin lands tails up, and one for when it lands on edge. Although Cassandra
could establish (flat coin) in the tails-up case, it would fail to complete the plan,
because the coin would not be heads-up. However, the turn-over action can be used,
leaving the coin flat and heads-up given that it was flat and tails-up to begin with.
At this point the decision-rules are as follows:

If (and (flat coin) (heads-up coin)) then [U1: H] rule for heads up

If (and (flat coin) (tails-up coin)) then [U1: T] rule for tails up

If T then [U1: E] rule for edge

Cassandra must then plan for the goal in the outcome in which the coin lands on its
edge. Both these e�ects can be established as a result of the tip action. However, the
result heads-up is an uncertain e�ect of the tip action, since the coin might just as easily
land tails up. Cassandra must therefore add another new contingency for when the coin
lands tails up after being tipped. In this instance, the goal can be established by using
the turn-over action, and the tails-up precondition of this action can be established by
the uncertain result of the tip action. The �nal decision-rule set for the �rst decision is as
follows:

If (and (flat coin) (heads-up coin)) then [U1: H] rule for heads up
If (and (flat coin) (tails-up coin)) then [U1: T] rule for tails up

If (on-edge coin) then [U1: E] rule for edge

If the on-edge contingency is pursued, another decision, stemming from the uncertain
result of tip, must be added to the plan. If we name the second source of uncertainty U2,
the rules for this decision are:

If (heads-up coin) then [U2: H]

If (tails-up coin) then [U2: T]

The plan is depicted in Figure 11 and shown in Section A.6.

7. An obvious extension to Cassandra would be the construction of a post-processor that spots decision-rules
that do not discriminate between particular sets of outcomes, and prunes the plan to remove superuous
contingencies. Note that it cannot be determined until the plan is complete whether such a condition
pertains.

306

Planning for Contingencies: A Decision-based Approach

Toss
coin End

Turn coin
over

Tip
coin

Turn coin
over

flat

heads

flat

heads

Decide
heads

flat

Decide

tails

flat

he
ad

s

KEY

Link
condition

condition
Link with uncertain effect

Alternative control flow

Incomplete portion of plan

tails

edge

Figure 11: A plan with two decisions

KEY

Link condition

Alternative
control flow

Start
lock intact

Kick door lock broken

Decide

Open
door

door o
pen

Pick
lock

Open
door

door
unlocked

End

door open

Figure 12: Opening a door

4.2.4 Decision-rules and Unsafe Links

The fact that Cassandra allows decision-rules that do not fully di�erentiate between out-
comes of an uncertainty raises a somewhat subtle issue. Consider the partial plan for
opening a locked door shown in Figure 12. The action of kicking a door has, let us say,
two possible outcomes, one in which the lock is broken and one in which the agent's foot is
broken. A plan for the contingency in which the lock is broken is simply to open the door.
A plan for the alternative contingency is to pick the lock and then open the door.

Since the second plan does not depend causally on any outcome of the uncertainty (the
agent's foot does not have to be broken in order for it to pick the lock and open the door),
the decision-rules based on the above discussion would be:

307

Pryor & Collins

If (lock-broken) then [O: L] rule for lock broken

If T then [O: F] rule for foot broken

Notice that in this case the pick action depends on the lock being intact, while the
kick action may have the e�ect that the lock is no longer intact. In other words, the kick
action potentially clobbers the precondition of pick. However, the planner can arguably
ignore this clobbering, because the two actions belong to di�erent contingencies. This is
valid, though, only if the structure of the decision-rules guarantees that the agent will not
choose to execute the contingency involving pick when the outcome of kick is that the
lock is broken. The decision-rules above clearly do not enforce this. The solution in such a
case is to augment the decision-rule for the contingency in which the lock is not broken to
test whether the lock is in fact intact. This results in the following decision-rules (the plan
is shown in Section A.7):

If (lock-broken) then [O: L] rule for lock broken

If (not (lock-broken)) then [O: F] rule for foot broken

Cassandra augments decision-rules in this way whenever a direct e�ect of an uncertainty
could clobber a link in a di�erent contingency.

5. A Contingency Planning Algorithm

In this section we give the details of Cassandra's algorithm. Its properties are considered
in Section 6.

5.1 Plan Elements

A plan consists of steps, e�ects, links (some of which may be unsafe), open conditions,
variable bindings, a partial ordering, and contingency labels. A plan is complete when
there are no open conditions and no unsafe links.

5.1.1 Steps and Effects

A plan step Step represents an action. It may have enabling preconditions. It has at least
one e�ect Eff. It is the instantiation of an operator.

A plan step may be a decision-step Decide. A decision-step has enabling preconditions
of the form (know-if Cond) for a condition Cond. Decide also has a set of decision-rules.

An e�ect Eff represents some results of an action. It is attached to a step Step, repres-
enting that action. It may have secondary preconditions. It has at least one postcondition
Cond, a condition that becomes true as the result of executing Step when the secondary
preconditions hold.

5.1.2 Links and Open Conditions

A link represents a causal dependency in the plan, specifying how a condition Cond is estab-
lished by an e�ect Eff, which has Cond as a postcondition. Eff has secondary preconditions
SecPre and is a result of step Step. The link supports the step SupStep or e�ect SupEff
through the condition Cond which is one of:

308

Planning for Contingencies: A Decision-based Approach

� An enabling precondition of SupStep;

� A secondary precondition of an e�ect SupEff that is a result of SupStep;

� The negation of a secondary precondition of an e�ect that is a result of SupStep, thus
preserving a link.

A link is unsafe in a contingency Conting in which it is required if there is an e�ect
ClobberEff with postcondition ClobberCond (the clobbering condition) resulting from step
ClobberStep such that:

� Either ClobberCond can unify with Cond;
Or Cond is of the form (know-if KnowCond) and ClobberCond can unify with KnowCond;

� Step ClobberStep can occur between steps Step and SupStep;

� E�ect ClobberEff can occur in contingency Conting.

An open condition (an unachieved subgoal) is represented in Cassandra as an incomplete
link, i.e., a link missing the information about the e�ect that establishes it.

5.1.3 Bindings and Orderings

Plan bindings (codesignation constraints) specify the relationships between variables and
constants. The following relationships are possible:

� Two variables may codesignate;

� A variable may designate a constant;

� A variable may be constrained not to designate a constant;

� Two variables may constrained not to codesignate.

An ordering constrains the order of two steps with respect to each other, so that step
S1 must precede step S2 (S1 < S2).

5.1.4 Contingency Labels

Every step, e�ect and open condition in a partial plan has two sets of contingency labels

attached to it. In the interests of brevity, we also refer to the labels of a link; in this case,
we mean the labels of the step or e�ect that the link establishes.

Each contingency label has two parts: a symbol representing the source of uncertainty,
and a symbol representing a possible outcome of that source of uncertainty. Positive con-

tingency labels denote the circumstances in which a plan element must or will necessarily
occur; negative contingency labels denote the circumstances in which a plan element cannot
or must not occur.

Contingency labels must be propagated through the plan. In general, positive contin-
gency labels are propagated from goals to the e�ects that establish them, while negative
contingency labels are propagated from steps to the e�ects that result from them. The
details are as follows:

309

Pryor & Collins

Plan(PartList)
1. Choose a partial plan Plan from PartList;

2. If Plan is complete, then �nish;

3. If there is an unsafe link Unsafe:

Do resolve(Plan, Unsafe) and add the resulting plans to PartList;

Return to step 1;

4. If there is an open condition Open:

Do establish(Plan, Open) and add the resulting plans to PartList;

Return to step 1.

Figure 13: Top level planning algorithm

� A step inherits the positive labels of the e�ects that result from it;

� A step inherits the negative labels of the e�ects that establish its enabling precondi-
tions;

� An e�ect inherits the positive labels of the steps whose enabling preconditions it
establishes;

� An e�ect inherits the positive labels of the e�ects whose secondary preconditions it
establishes;

� An e�ect inherits the negative labels of the step from which it results;

� An e�ect inherits the negative labels of the e�ects that establish its secondary pre-
conditions;

� An open condition inherits the positive labels of the step or e�ect that it is required
to establish.

Cassandra's system of label propagation is based on that of cnlp but is more complex.
Indeed, it is rather more complex than we would like. This complexity is mandated by the
need to deal with operators that involve multiple context-dependent e�ects, which has the
result that a step and its e�ects do not necessarily share the same labels.

5.2 Algorithm

The planning process starts by constructing a partial plan consisting of two steps:

� An initial step with no preconditions and with the initial conditions as its e�ects;

� A goal step with no e�ects and with the goal conditions as its enabling preconditions.

This plan is added to the (initially empty) list of partial plans PartList. Planning then
proceeds as shown in Figure 13.

It now remains to describe how threats to unsafe links are resolved and how open
conditions are established.

310

Planning for Contingencies: A Decision-based Approach

Resolve(Plan, Unsafe)

1. Initialize a list NewPlans;

2. If the uni�cation of the clobbering condition ClobberCond with the condition Cond established by the link
Unsafe involves adding codesignation constraints to the bindings of Plan:

Make each possible modi�cation to the bindings of Plan that ensures that ClobberCond cannot
unify with Cond;

Add each resulting partial plan to NewPlans;

3. If the clobbering step ClobberStep can precede the step Step that establishes Unsafe:

Add an ordering to ensure that ClobberStep precedes Step;

Add the resulting partial plan to NewPlans;

4. If the step SupStep supported by Unsafe can precede ClobberStep:

Add an ordering to ensure that SupStep precedes ClobberStep;

Add the resulting partial plan to NewPlans;

5. Prevent the clobbering e�ect ClobberEff from occurring in each contingency Conting in which the link
Unsafe is unsafe:

Do one of:

(a) Add the negation of the secondary preconditions of ClobberEff as an open condition with
positive contingency label Conting;

(b) Add Conting to the negative contingency labels of ClobberStep;
(c) Add Conting to the negative contingency labels of the e�ect SupEff or step SupStep that

Unsafe supports;

If appropriate modify the relevant decision-rule as discussed in Section 4.2.4;

Add orderings to ensure that step ClobberStep occurs between steps Step and SupStep;

Propagate labels as appropriate;

Add each resulting partial plan to NewPlans;

6. Return NewPlans.

Figure 14: Resolving threats

5.2.1 Resolving Threats to Unsafe Links

Figure 14 shows how threats are resolved. The methods shown in steps 2, 3, and 4 are
standard methods found in snlp and ucpop; they are often termed separation, demotion,
and promotion respectively. We say that the methods in step 5 disable the threat. The
methods in steps 5a and 5b ensure that the threatening e�ect does not occur in a given
contingency. The method in step 5a is a modi�cation of a standard method found in ucpop
and other planners that use secondary preconditions. Essentially, the idea is to prevent
an e�ect from occurring by ensuring that the context in which it occurs cannot hold. The
method in 5b prevents an e�ect from occurring in a contingency by forbidding the execution
of the step that produces it. The method in step 5c notes that the established step or e�ect
cannot occur in a given contingency. If any of these techniques result in inconsistent labeling
of any plan element (so that, for example, it cannot occur in every contingency in which
it is required) the resulting partial plan is abandoned, as it represents a dead end in the
search space.

311

Pryor & Collins

5.2.2 Establishing Open Conditions

Figure 15 shows the procedure used. Procedure EstablishPre shows the methods of adding
a new step and reusing an existing step; they are essentially the methods used in ucpop
extended to reect the need to check and propagate contingency labels.

Procedure EstablishUnk shows methods of adding a new decision and reusing an existing
decision that are speci�c to Cassandra. The issues involved were discussed in Section 4.2.

6. Issues in Contingency Planning

Cassandra is a partial order planner directly descended from ucpop, which is sound, com-
plete, and systematic|all plans produced by ucpop are guaranteed to achieve their goals,
if there is a plan then ucpop will �nd it, and ucpop never revisits a partial plan. In this
section we discuss these properties and related issues in the context of contingency planning.

6.1 Soundness

Ucpop's soundness depends on the perfect knowledge assumptions discussed in Section 1.
In particular, ucpop's plans are sound if the initial conditions are fully speci�ed, and if
all possible e�ects of actions are speci�ed in the operators that represent them. If no
uncertainties are involved in the plan, Cassandra is equivalent to ucpop and therefore
constructs sound plans.

If uncertainties are involved in the plan, it can no longer be assumed that the initial
conditions and e�ects of actions are fully speci�ed. Indeed, the uncertainties arise because
these assumptions are violated. However, the assumptions can be adapted to account for
the presence of uncertainty: it would be possible, for example, to insist that all possible
initial conditions and action e�ects are speci�ed. In Cassandra's representation, this means
that every source of uncertainty must be speci�ed through the use of unknown secondary
preconditions, and every possible outcome of each source of uncertainty must be speci�ed.

We conjecture that Cassandra is sound under these conditions. The proof would follow
because the procedure for adding in new goals whenever a new source of uncertainty is
encountered ensures that every goal is achieved in every possible outcome of the uncertainty.

6.2 Completeness

We conjecture that Cassandra is complete in the limited sense that, if there is a sound plan
of the form that it can construct, then Cassandra will �nd it. We believe that this is a simple
extension of ucpop's completeness. If there are no uncertainties involved, Cassandra will
always �nd a plan in the same way as ucpop. The introduction of a source of uncertainty
into a plan leads to the addition of new contingent goals. Cassandra will �nd a plan for
each of these new goals in the appropriate contingency. Thus, if the goal can indeed be
achieved in every contingency, Cassandra will �nd a plan that achieves it, as long as there
is a way of determining which contingency holds.

For example, the plan to disarm a bomb that we described in Section 4.1 relies on there
being a method of determining which package the bomb is in. In McDermott's presentation
of this example, the two packages are indistinguishable, and the point of the example is to
illustrate that there is nonetheless a plan that will succeed in disarming the bomb, namely,

312

Planning for Contingencies: A Decision-based Approach

Establish(Plan, Open)

1. If the open condition is not of type :unknown do EstablishPre(Plan, Open) and return the resulting list
of plans;

2. If the open condition is of type :unknown with source of uncertainty Uncertainty and outcome Outcome
do EstablishUnk(Plan, Open, Uncertainty, Outcome) and return the resulting list of plans.

EstablishPre(Plan, Open)

1. Initialize list NewPlans;

2. For each e�ect Eff resulting from a step Step in Plan

If Eff can occur in every contingency in which Open must be established
and if Eff can precede the step SupStep that Open is required to support
and if there is a postcondition EffCond of Eff that can unify with condition Cond that Open is required
to establish:

Complete the link Open by using Eff as the establishing e�ect;

Add the resulting partial plan to NewPlans;

3. For each operator with an e�ect Eff with a postcondition EffCond that can unify with Cond:

Instantiate a new step Step;

Complete the link Open by using Eff as the establishing e�ect;

Add the enabling preconditions of Step as open conditions;

Add the resulting partial plan to NewPlans;

4. For each plan in NewPlans:

Add an ordering to ensure that Step precedes SupStep;

Add the bindings necessary to ensure that EffCond uni�es with Cond;

Add the secondary preconditions SecPre of Eff as open conditions;

Propagate labels as appropriate;

5. Return NewPlans.

EstablishUnk(Plan, Open, Uncertainty, Outcome)

1. Initialize list NewCPlans;

2. If Uncertainty is a new source of uncertainty in the plan:

Add a new decision-step DecStep for uncertainty Uncertainty;

Add new top-level goals as open conditions with the appropriate labels;

Add the resulting partial plan to NewCPlans;

3. If Uncertainty is an existing source of uncertainty in the plan:

Find an existing decision-step DecStep for uncertainty Uncertainty;

Add the resulting partial plan to NewCPlans;

4. For each plan in NewCPlans:

Modify the decision-rule in DecStep for Outcome to include Cond as an antecedent;

Add (know-if Cond) as an open condition required to establish DecStep;

Add orderings to ensure that DecStep precedes SupStep;

Propagate labels as appropriate;

5. Return NewCPlans.

Figure 15: Establishing open conditions

313

Pryor & Collins

dunking both packages (McDermott, 1987). The algorithm described in the previous section
cannot �nd a plan in this situation because it is impossible to achieve the preconditions of
the decision-step that determines which package to dunk. In Section 6.5.5 we discuss this
example in more detail and describe a simple extension to Cassandra that allows the correct
plan (to dunk both packages) to be found.

Ucpop's completeness, like its soundness, depends on the perfect knowledge assump-
tions we discussed in Section 1. Cassandra's completeness depends on three extensions to
these assumptions:

� All sources of uncertainty are speci�ed;

� The speci�ed outcomes are exhaustive;

� There are actions available that allow the determination of the outcome of any uncer-
tainty, even if only indirectly.

Unfortunately, these conditions are necessary but not su�cient. Cassandra can only
�nd plans if the actions that it uses to determine the contingency do not interfere with
the achievement of the goal. For instance, there might be a dropping action available that
would detonate any bomb inside the package that was dropped. This is certainly an action
that allows the determination of the outcome of the uncertainty, but there is no sound plan
that makes use of it.

In order to have a useful notion of Cassandra's completeness, we must therefore spe-
cify the form of the plans that it can construct. This problem is common to proving the
completeness of any planner: for example, we do not claim that snlp, say, is incomplete
because it cannot �nd a plan for the bomb-in-the-toilet problem. We say instead that there
is no valid plan of the form that it can construct. It is fairly simple to specify the form
of the plans that snlp can construct: they consist of partially ordered sequences of steps,
all of which are to be executed. The introduction of contingencies makes the description
of Cassandra's plans rather more complex; we have yet to formalize a description, but are
actively working in that direction. Informally, Cassandra can only construct plans that for
every source of uncertainty include a step to decide on one of the relevant plan branches.
The extension of Cassandra that solves the bomb-in-the-toilet problem can do so because
it can construct plans that do not meet this criterion.

6.3 Systematicity

Ucpop is systematic: it will never visit the same partial plan twice while searching. Cas-
sandra, as described in this paper, is not systematic; it may visit some partial plans in the
search space more than once. Consider again the plan to disarm a bomb that we discussed
in Section 4.1. In this plan, there are two di�erent ways of establishing the goal to disarm
the bomb: by dunking package1 , and by dunking package2 . Cassandra can initially choose
either way of establishing the goal, leading in each case to the introduction of a contingency
and the necessity of replanning to achieve the goal in the other contingency. Both search
paths arrive at the same �nal plan, so the search is not systematic.

Cassandra could be made systematic by insisting on handling the contingencies only
in a certain order, the search path that uses the other order being treated as a dead end.

314

Planning for Contingencies: A Decision-based Approach

However, this extension has not been added as there is currently some debate as to the
desirability of systematicity. For example, Langley (1992) argues that a non-systematic
search method, iterative sampling, is often better than a systematic method, depth-�rst
search, for problems which have multiple solutions and deep solution paths. Peot and
Smith (1992) observe that the performance of a non-systematic version of snlp was better
than that of the original systematic version. They ascribed this behavior to the fact that
exploring duplicate plans consumed less overhead than did ensuring systematicity.

6.4 Knowledge Goals

An agent executing contingency plans must be able to acquire information about the actual
state of the world so that it can determine which of the possible courses of action to pursue.
A system that constructs contingency plans must be able to plan for this information
acquisition: in general, the acquisition process may be arbitrarily complex (Pryor & Collins,
1991).

An early and inuential discussion of goals to possess knowledge about the world was
that by McCarthy and Hayes (1969). Since then, various theories have been developed to
account for them (e.g., Moore, 1985; Haas, 1986; Morgenstern, 1987; Steel, 1995). The
common thread in all this work is that knowledge goals arise from the need to specify the
actions that are to be performed; in other words, from the need to make actions opera-

tional . Work in this area has on the whole concentrated on being able to describe and
represent knowledge goals, and has largely ignored the issues involved in building planners
that construct plans containing them.

The structure of Cassandra is based on the notion that knowledge goals arise out of
the need to make decisions as to the actions to be performed (Pryor, 1995). In our view,
planning is the process of deciding what to do in advance of when it is done (Collins,
1987). In a world conforming to the perfect knowledge assumptions of classical planning
this is always possible because the world is totally predictable, and plans therefore need
contain no knowledge goals. However, when those assumptions are relaxed it may not be
possible to make all decisions in advance if the information necessary to make them is not
available to the planner. The information may be unavailable either because of the planner's
limited knowledge of the world or because the events that will nondeterministically cause
the conditions that a�ect the decisions have not yet occurred. In both cases it may be
possible for the planner to determine that a decision must be made even though it cannot
at that time actually make it. In this case the planner can defer the decision: plan to make
it in the future, when the necessary information will be available. Part of the plan is then
to acquire the information; the plan thus contains knowledge goals.

Cassandra's use of \unknown" preconditions to indicate nondeterminism is thus a crucial
part of its mechanism. In Cassandra, knowledge goals arise as the result of deferring de-
cisions. These deferred decisions are represented explicitly in its plans, and themselves arise
directly from the incompleteness of Cassandra's knowledge of the world, whether through
the e�ects of nondeterministic actions or through incompletely speci�ed initial conditions.
Both these forms of uncertainty are handled in the same way: once Cassandra has re-
cognized the need to defer a decision, the reason for its deferral is not important except
inasmuch as it results from incomplete knowledge of the world.

315

Pryor & Collins

The view of knowledge goals as arising from deferred decisions is basically consistent
with the view that they are needed in order to make actions operational, but di�ers from the
traditional view in that knowledge goals are not directly preconditions of physical actions,
but are instead preconditions of actions that make decisions. For example, McCarthy and
Hayes consider the problem of a combination safe: it is commonly held that the action of
opening the safe has a precondition to know the combination. In Cassandra, however, the
goal of knowing the combination would arise as a subgoal of deciding which plan branch to
follow, where there would be a branch for each possible combination.8 The branches would
arise because of Cassandra's incomplete knowledge of the world: the initial conditions in
which the plan will be executed are not fully speci�ed.

Cassandra uses a variant of the syntactic approach proposed by Haas (1986) to represent
knowledge goals, limiting knowledge goals to the form know-if(fact). This turns out to be
adequate if, as we assume, all possible outcomes of any given uncertainty are known. In
general, the representation used by Cassandra, based on the strips representation of add
and delete lists, is less powerful than the logics proposed by either Morgenstern or Haas.

6.5 Miscellaneous Issues in Contingency Planning

Cassandra's approach raises a number of questions concerning the desired behavior of a
contingency planner, many of which do not have obvious answers. In this section we briey
consider a few of the issues raised.

6.5.1 Dependence on Outcomes and Superfluous Contingencies

The fact that a contingency plan assumes a particular outcome of an uncertainty means only
that it cannot depend upon a di�erent outcome of that uncertainty. Cassandra does not
enforce any constraint that the plan must causally depend upon the outcome that it assumes.
For instance, in the example described in Section 2.3.2, the plan to take Ashland does not
actually depend on Western being blocked; it could be executed successfully regardless of
the level of tra�c on Western.

This observation raises an interesting question: If a plan for a contingency turns out
not to depend on any outcome of the uncertainty that gave rise to it, would this not
obviate the need for plans for alternative contingencies? For instance, in our example, it
might seem sensible to execute the plan to use Ashland regardless of whether Western is
blocked. It might thus seem that the planner should edit the plan in some way so as to
eliminate apparently superuous contingencies. However, it can easily be shown that a
version of the plan that does not involve dependence on any outcome of the uncertainty
will be generated elsewhere in the search space. In the example, this would mean that the
planner would in fact consider a plan that simply involved taking Ashland. If the search
heuristics penalize plans involving contingencies appropriately this other plan should be
preferred to the contingency plan, all other things being equal.

8. This raises the obvious question as to whether planning in advance for every possibility is a sensible
thing to do. See Section 7.4 for a discussion of this issue.

316

Planning for Contingencies: A Decision-based Approach

6.5.2 One-sided Contingencies

The preceding discussion notwithstanding, a plan involving no contingencies is not always
superior to a plan involving a contingency. This is why a planner might in fact construct a
plan like the Western/Ashland one. To take a more clear-cut example, suppose Pat needs
$50 to bet on a horse. She might try to borrow the $50 from Chris, but the outcome of this
action is uncertain|Chris might refuse. Alternatively, she could rob a convenience store.
While the robbery plan would (we shall stipulate) involve no uncertainties, it is a bad plan
for other reasons. It would be better to �rst try to borrow $50 from Chris, and then, if that
fails, rob the convenience store. Cassandra could generate this plan. In order to make it
prefer the plan to the contingency-free alternative, however, its search metric would have to
take into account the estimated costs of various actions, and to perform something akin to
an expected value computation. (See, for example, Feldman & Sproull, 1977; Haddawy &
Hanks, 1992, for discussions of decision-theoretic measures applied to planning.) In order to
execute the plan properly, it would also be necessary for it to have some way of knowing that
the borrowing plan should be preferred to the robbery plan if it were possible to execute
either of them.

6.5.3 Identical Branches

It is possible that a single plan could work just as well for several di�erent outcomes of
an uncertainty. For instance, suppose the action of asking Chris for $50 has three possible
outcomes: either Pat gets the money and Chris is happy (at having had the opportunity
to do a favor); or Pat gets the money and Chris is unhappy (at having been obliged to do
a favor); or Pat does not get the money at all. If Pat constructs a plan in which she tries
to borrow $50 from Chris to bet on a horse, then, assuming that this plan does not depend
upon Chris's happiness (which it might, for example, if Pat needed to get a ride to the track
from Chris), the plan will work for either the \get money + Chris happy" outcome or the
\get money + Chris unhappy" outcome.

Cassandra could �nd such a plan, but would in e�ect have to �nd it twice|once for
each outcome of the uncertainty|and it would still require a decision-step to discriminate
between those outcomes. This is ine�cient in two ways: the extra search time required
to �nd what is essentially the same plan twice is wasted, and e�ort is put into making an
unnecessary decision. We are looking into ways to avoid the former problem. The latter
could be solved by a post-processor that would \merge" identical contingency plans, but
we have not implemented this technique.

6.5.4 Branch Merging

It is possible to construct a plan in which branches split and then reunite. For instance,
consider the Western/Ashland plan once again. The context in which the goal to get to
Evanston arises might be an obligation to deliver a toast at a dinner to be held in an
Evanston restaurant. The contingency due to uncertainty about tra�c on Western Avenue
would in this case seem to a�ect only the portion of the plan concerned with getting to
Evanston; it probably has little bearing on the wording of the toast, the choice of wine, and
so on. The most natural way to frame this plan might thus be to assume that regardless of

317

Pryor & Collins

which contingency is carried out, the planner will eventually arrive at a certain location in
Evanston, and from that point a single plan will be developed to achieve the �nal goal.

Constructing the plan in this way would result in a more compact plan description, and
might thus reduce the e�ort needed to construct the plan by avoiding, for example, the
construction of multiple copies of the same subplan. We are considering methods by which
branch re-merging might be achieved, but all the methods we have considered so far seem
to complicate the planning process considerably.

6.5.5 Fail-safe Planning

As we discussed in Section 6.2, Cassandra's operation relies on being able to determine,
even if only indirectly, the outcome of any uncertainty. However, this may not always be
possible, and it is not a necessary precondition for the existence of a viable plan. In the
bomb-in-the-toilet problem, for example, there is a valid plan that Cassandra cannot �nd:
to dunk both packages.

This suggests a method for constructing plans in the face of uncertainty when the
outcome of the uncertainty cannot be determined|what one might call fail-safe plans.
Whenever uncertainty arises it is in principle possible that there might be a non-contingent
plan that would achieve the goal whatever the outcome of the uncertainty. To �nd such
a plan, the planner must construct a version of the contingency plan in which all actions
in the contingency branches arising from the uncertainty will be executed unconditionally.
Cassandra has been extended in just such a way, by adding a new type of decision, one
to execute all branches in parallel (Collins & Pryor, 1995). A plan containing such a
decision is only sound if none of the actions that must be performed to achieve the goal
in one contingency interfere with any of the actions that must be performed in any other
contingency, and the ability to perform the actions is independent of the outcome of the
uncertainty. These conditions clearly hold for the bomb-in-the-toilet problem.

Cassandra can reason about this possibility because its labeling scheme distinguishes
those actions that must not be performed in a given contingency from those that need not
be performed. It is possible to execute all branches only if the actions in each branch may
be performed (but need not) in all the other branches.

When a parallel decision is added to the plan in the extended version of Cassandra, new
goals are added in the usual way but the labeling is handled di�erently. The branches are
not separated, so that Cassandra can no longer reason that the causal links in one branch
will not be a�ected by actions in another branch.

6.5.6 Contingent Failure

Cassandra can produce a plan only if it is possible to achieve the goal of the plan in all
possible contingencies. Often, however, the goal cannot in fact be achieved in some outcome
of the underlying uncertainty. Consider, for instance, Peot and Smith's example of trying to
get to a ski resort by car, when the only road leading to the resort is either clear or blocked
by snowdrifts (Peot & Smith, 1992). If the road is clear, then the goal can be achieved, but
if it is blocked, all plans are doomed to failure.

No planner can be expected to recognize the impossibility of achieving a goal in the
general case (Chapman, 1987). However, a possible approach is suggested by Peot and

318

Planning for Contingencies: A Decision-based Approach

Smith. We could introduce an alternative method of resolving open goal conditions: simply
assume that the goal in question fails.

This is an undesirable method of resolving open goal conditions if the subgoal is in fact
achievable, so in theory plans involving contingent failure should be considered only after
the planner has failed to �nd a plan in which all goals are achieved. This is sometimes
possible, but in general the problem of determining whether there is a successful plan is
undecidable. There may always be partial plans that do not involve goal failure but that
cannot be completed. For example, as a partial plan is modi�ed it may become more
and more complex, the resolution of each open condition involving the introduction of more
unachieved subgoals. In this case, plans involving contingent failure will never be considered
unless they are ranked above some plans that do not involve contingent failure. In order to
be generally useful, the approach must be weakened: instead of considering goal failure only
after all other avenues of attack have failed, apply a high �xed penalty to plans involving
failed goals. The aim would be to �x the penalty high enough that contingent failure would
only apply in genuine cases of goals being unachievable. However, this would of necessity
be a heuristic approach and completeness would be lost.

7. Related Work

Cassandra is constructed using ucpop (Penberthy & Weld, 1992) as a platform. Ucpop
is a partial order planner that handles actions with context-dependent e�ects and univer-
sally quanti�ed preconditions and e�ects. Ucpop is an extension of snlp (Barrett et al.,
1991; McAllester & Rosenblitt, 1991) that uses a subset of Pednault's adl representation
(Pednault, 1989).

An early contingency planner was Warren's warplan-c (1976). Contingency planning
was more or less abandoned between the mid seventies and the early nineties,9 until sensp
(Etzioni et al., 1992) and cnlp (Peot & Smith, 1992). Both sensp and cnlp are members
of the snlp family: sensp is, like Cassandra, based on ucpop, and cnlp is based directly
on snlp. C-buridan (Draper et al., 1994a; Draper, Hanks, & Weld, 1994b), a probabilistic
contingency planner, is based on the probabilistic planner buridan (Kushmerick, Hanks,
& Weld, 1995) (which is itself based on snlp) and on cnlp. Plinth (Goldman & Boddy,
1994a, 1994b) is a total-order planner based on McDermott's Pedestal (1991), and is
strongly inuenced by cnlp in its treatment of contingency plans.

Warplan-c, unlike the other planners considered here, did not use a strips-based
action representation, but was based on predicate calculus. It could handle actions that
had just two possible outcomes, and did not merge the resulting plan branches.

Sensp also di�ers from the other planners considered here. It represents uncertainty
through the use of run-time variables, distinguished from ordinary variables by being treated
as constants whose values are not yet known. In sensp plan branches arise from the
introduction of information-gathering steps that bind the run-time variables. Sensp handles
plan branching by constructing separate plans that each achieve the goal in a particular
contingency. It then combines the separate plans at a later stage, keeping the branches
totally separate. Sensp thus considers contingency branches separately, rather than in

9. Neither noah (Sacerdoti, 1977) nor Interplan (Tate, 1975) explicitly addressed issues of uncertainty,
although both tackled problems involving it (Collins & Pryor, 1995).

319

Pryor & Collins

parallel. Actions that achieve knowledge goals may not have preconditions in sensp: this
restriction is required in order to maintain completeness.

Not surprisingly, Cassandra, cnlp, and c-buridan, and to a lesser extent Plinth, are
in many respects very similar. All except Plinth use the basic snlp algorithm, and all use
extended strips representations. Cassandra di�ers from cnlp and Plinth principally in
the way that uncertainty is represented (Section 7.1); this di�erence has important implic-
ations for the handling of knowledge goals (Section 7.2). The principal di�erence between
Cassandra and c-buridan lies in the latter's use of probabilities (Section 7.3).

Contingency planning is only one approach to the problem of planning under uncer-
tainty. The aim of contingency planning is to construct a single plan that will succeed
in all circumstances: it is essentially an extension of classical planning. There are other
approaches to planning under uncertainty that do not share this aim: probabilistic planners
aim to construct plans that have a high probability of succeeding (Section 7.3); systems that
interleave planning and execution do not attempt to plan fully in advance (Section 7.4).
In both these approaches it is possible to address the problem of determining which con-
tingencies should be planned for, which is not currently possible in Cassandra. A third
approach is that of reactive planning, in which behavior is controlled by a set of reaction
rules (Section 7.5).

7.1 The Representation of Uncertainty

In cnlp and Plinth, uncertainty is represented through a combination of uncertain out-
comes of nondeterministic actions and the e�ects of observing those outcomes. A three-
valued logic is used: a postcondition of an action may be true, false, or unknown. For
example, the action of tossing a coin might have the postcondition unk(side-up ?x). Spe-
cial conditional actions, each of which has an unknown precondition and several mutually
exclusive sets of postconditions, are then used to observe the results of the nondetermin-
istic actions. In the example, the operator to observe the results of tossing a coin might
have the precondition unk(side-up ?x) with three possible outcomes: (side-up heads),
(side-up tails), and (side-up edge).

Cnlp thus spreads the representation of uncertainty over both the action whose exe-
cution produces the uncertainty and the action that observes the result. A consequence of
this is that cnlp cannot use the same observation action to observe the results of di�erent
actions. For example, it would require di�erent actions to observe the results of tossing a
coin (which has three possible outcomes) and tipping a coin that had landed on its edge
(which has two possible outcomes).

In Plinth, the notion of a conditional action is extended to cover any action (not only
observation actions) that has nondeterministic e�ects on the planner's world model . For
example, in an image-processing domain an operator to remove noise from an image may
or may not succeed. However, its outcome is evident as soon as it has been applied, and no
special observation action is required.

In cnlp and Plinth, information-gathering actions are included in a plan whenever an
action with uncertain e�ects occurs. This is necessary because the uncertainty is actually
represented in the information-gathering action rather than in the action that actually

320

Planning for Contingencies: A Decision-based Approach

produces the uncertainty. Knowledge goals are thus not represented explicitly in these two
systems.

The representation used in cnlp and Plinth arises out of the desire to use a \single
model of the world, representing the planner's state of knowledge, rather than a more
complex formalization including both epistemic and ground formulas" (Goldman & Boddy,
1994b). An operator therefore represents only the e�ects that the execution of the under-
lying action has on the planner's knowledge of the world, and not the e�ects that it has on
the actual state of the world. It is, of course, important to represent how actions a�ect the
planner's world model, but we believe that it is also important to represent how they a�ect
the world. After all, the purpose of reasoning about actions is to achieve goals in the world,
not just in the planner's world model. In particular, after the execution of a nondetermin-
istic action its actual e�ects, although they may indeed be unknown to the planner, have
occurred and cannot now be altered. Cassandra's representation reects this: indeed, Cas-
sandra can reason about the possible e�ects without scheduling observation actions. This
means that an extension of Cassandra can, for example, solve the original bomb-in-the-
toilet problem, in which there are no possible actions that will resolve the uncertainty as
to which package contains the bomb: the bomb's state is not represented in the planner's
world model at any stage between the beginning, when it is known to be armed, and the
end, when both packages have been dunked and it is known to be safe.

A further implication of this method of representing uncertainty is the di�culty of
representing actions whose uncertain e�ects cannot be determined through the execution
of a single action. Consider, for example, a malfunctioning soda machine that has one
indicator that lights when it cannot make change, and another that lights when it has run
out of the product requested. Suppoe that, when it is functioning correctly, these two
indicators will not light simultaneously. If it malfunctions, it must be kicked to make it
work. Observing either light on its own is not enough to determine which uncertain e�ect
(working properly or malfunctioning) has occurred.

7.2 Knowledge Goals

The method of representing uncertainty in cnlp and Plinth has important implications
for how knowledge goals are handled in their plans.

The acquisition of information is a planning task like any other (Pryor & Collins, 1991,
1992; Pryor, 1994). In general, the sequence of actions required to achieve a given knowledge
goal may be arbitrarily complex. For example, an action to observe a tossed coin might
require that the observer is in the appropriate location; in other cases, there might be
several di�erent possible methods of information gathering, some involving perception, some
involving reasoning, and some a combination. A contingency planner, some of whose plans
will necessarily involve the achievement of knowledge goals, must therefore be able to plan
fully generally for information gathering.

The confusion between the source of uncertainty and the observation of uncertain results
limits the ways in which knowledge goals can be achieved in cnlp and Plinth: they must
be achieved through the special observation actions that specify the uncertain outcomes.
This is a result of their representation in terms of the planner's world model, which means
that they do not represent the e�ects of actions (except to ag them as unknown) until

321

Pryor & Collins

the planner has observed them (or otherwise incorporated them into its world model). In
their discussion of this issue Goldman and Boddy (1994b) explicitly exclude knowledge
goals from consideration. As they point out, planning under uncertainty requires that a
distinction be made between the actual state of the world and the planner's knowledge
of it. In order to plan e�ectively for knowledge goals, both must be represented. This is
done in Cassandra by separating the representation of uncertainty from the representation
of information-gathering. If an e�ect results deterministically from an action, Cassandra
reasons that there is no need to observe it, and it forms part of the world model. An
uncertain e�ect, on the other hand, is not incorporated unconditionally into Cassandra's
world model; it is noted as being possibly true, and (if necessary) Cassandra sets up a
subgoal to determine whether it is indeed true.

Sensp, which uses the uwl representation for goals and actions, has three di�erent
kinds of precondition that can be used to represent information goals either alone or in
combination (Etzioni et al., 1992). As well as satisfy preconditions, which may be achieved
through actions or through observation, uwl has hands-off preconditions indicating that
the value of propositions must not be changed in order to achieve the subgoal, and find-out

preconditions. The latter are in some ways similar to preconditions for know-if propositions
in Cassandra. A precondition such as (find-out (P . v)) tells the planner to ascertain
whether or not P has truth value v. Under certain circumstances this type of precondition
may be achieved by an action that changes the value of P. Knowledge goals may thus be
represented by find-out preconditions or satisfy preconditions (often used in conjunction
with hands-off preconditions). Etzioni et al. argue that knowledge goals should only be
achieved through actions that change the value of the proposition in question when that
change is required for another purpose in the plan. We believe that this is an unnecessary
limitation, and that in some circumstances enforcement actions may be the best way of
achieving knowledge goals.

7.3 Probabilistic and Decision-theoretic Planning

When constructing plans, Cassandra recognizes the presence of uncertainty but not its
extent. Other planners speci�cally address issues of probability: for example, buridan
constructs plans whose probability of achieving the goal is above a given threshold (Kush-
merick et al., 1995); and Drips uses the utility of the di�erent possible outcome of various
plans to choose the one with the highest expected utility (Haddawy & Suwandi, 1994).
Neither buridan nor drips constructs contingency plans, i.e., plans that involve alternat-
ive courses of action to be performed in di�erent circumstances. C-buridan, which is based
on buridan, constructs contingency plans that are likely to succeed (Draper et al., 1994b,
1994a). It represents an extension of cnlp in the direction of decision-theoretic planning.

Probabilistic planners use information about the probabilities of the possible uncertain
outcomes to construct plans that are likely to succeed. Cassandra, on the other hand, cannot
use such information and constructs plans that are guaranteed to succeed. Probabilistic
planning, because it relies on explicit probabilities, is both more and less powerful than
the deterministic contingency planning performed by Cassandra. Cassandra cannot use
information about probabilities but it can construct plans in circumstances in which no
such information is available. For example, in order to solve the bomb-in-the-toilet problem,

322

Planning for Contingencies: A Decision-based Approach

c-buridan would have to have some information, or at least make an assumption, about
the probabilities of the bomb being in each package. Whatever assumptions are made might
turn out to be wrong, thus invalidating the basis of the plan.

We believe that it would be possible to build a probabilistic planner using ideas from both
c-buridan and Cassandra. Because of the explicit representation of decisions in Cassandra,
such a planner would provide an excellent opportunity for investigating the use of di�erent
decision procedures. C-buridan relies on having full knowledge of all the probabilities at
the time that it constructs its plans. This knowledge, like any other, may not be available
until the plan is executed. It would be relatively simple to add decision procedures to
Cassandra's decision representation that depend on information about probabilities, e.g.,
to follow a particular course of action if the probability of a given outcome exceeds a
certain value. The introduction of such decision procedures might, of course, result in the
introduction of knowledge goals to determine probabilities, possibly leading eventually to a
system that would construct plans to perform empirical studies to determine probabilities.

A problem associated with contingency planning is that of branch merging, i.e., the
determination of whether two steps in separate branches can be treated as the same step.
C-buridan performs full merging: this is an e�ect of the probabilistic algorithm on which
it is based. Adding this capability to Cassandra is an area of future work. A major
problem encountered when considering branch merging is how to identify the variables in the
di�erent branches with each other: c-buridan's representations do not include variables,
so the problem does not arise. This may cause di�culties in the adaptation of c-buridan's
merging mechanism for Cassandra's use.

An advantage of combining probabilistic planning and contingency planning is the res-
ulting ability to judge whether it is worth planning for a given contingency. One of the
limitations of Cassandra in its present form is the requirement that every possible contin-
gency be planned for. In complex situations this makes the resulting plans cumbersome.
Moreover, Cassandra's performance deteriorates with the number of distinct branches in
the plan. The cost of determining that the presence of a particular branch would not signi-
�cantly change the probability of the plan's success might well be much less than the cost
of constructing that branch. This is an interesting issue to be considered in the future.

7.4 Interleaving Planning and Execution

Although Cassandra's plans may include sensing actions, with the course of action that
will actually be executed depending on the results of those actions, Cassandra does not
interleave planning with execution. Plans are fully speci�ed before they are executed. In
some circumstances this is clearly very ine�cient. Consider, for example, how Cassandra
constructs a plan to open a combination safe (see Section 6.4). It requires prior knowledge
of all possible combinations, and then constructs a plan with a branch for each combination.

An obvious alternative would be to construct a plan that was fully speci�ed up to
the information-gathering step, execute the plan to that stage and, once the information
has been gathered, construct the rest of the plan.10 This could be done in Cassandra by
introducing another type of decision procedure, that of planning to achieve the goal, and
assuming that it would always be possible to �nd a plan to achieve the goal. This is a strong

10. See Section 8.2 for further discussion of this issue and an alternative approach.

323

Pryor & Collins

assumption, but would certainly be valid in cases such as the problem of opening a safe.
This is an area of future work. Interleaving planning and execution in this way would have
the advantage that it would not be necessary to plan for contingencies that do not actually
arise. It would however lose some of the advantages of planning in advance. For example,
possible interference between actions performed before and after the information gathering
might be missed, leading the planner to �nd suboptimal plans. Indeed, as sensing actions
may in general change the world, executing them before full construction of a viable plan
might have the unfortunate result of making the achievement of the goal impossible.

Planners that interleave planning and execution include ipem (Ambros-Ingerson & Steel,
1988), xii (Golden, Etzioni, & Weld, 1994) and Sage (Knoblock, 1995). All three use the
same basic interleaving technique: only when no further planning is possible are steps
executed. They thus do not set out to decide in advance exactly when further planning will
be necessary, and their plans do not include explicit provision for further planning. The
e�ects of di�erent interleaving strategies were investigated in the design of bump (Olawsky
& Gini, 1990). In the Continue Elsewhere strategy as much preplanning as possible was
performed; in the Stop and Execute strategy, goals de�ned in terms of sensor readings
were executed as soon as they were encountered. It was found that neither strategy had a
clear advantage over the other, in that both strategies sometimes produced plans that were
suboptimal or that might fail.

7.5 Reactive Planning

A di�erent approach to the problem of planning under uncertainty is taken in the reactive
planning paradigm. In this approach, no speci�c sequence of actions is planned in advance.
Just as for contingency planning, the planner is given a set of initial conditions and a goal.
However, instead of producing a plan with branches, it produces a set of condition-action
rules: for example, universal plans (Schoppers, 1987) or Situated Control Rules (SCRs)
(Drummond, 1989).

In theory, a reactive planning system can handle exogenous events as well as uncertain
e�ects and unknown initial conditions: it is possible to provide a reaction rule for every
possible situation that may be encountered, whether or not the circumstances that would
lead to it can be envisaged. In contrast, a contingency planner such as Cassandra cannot
handle exogenous events as it cannot predict them. Cassandra and other contingency plan-
ners focus their planning e�ort on circumstances that are predicted to be possible (or likely,
in the case of a probabilistic contingency planner such as c-buridan).

It would be possible to represent Cassandra's contingency plans as sets of condition-
action rules, by using the causal links and preconditions to specify the conditions in which
each action should be performed. However, more reasoning is required at execution time
to use reaction rules than is required to execute a contingency plan. Instead of simply
executing the next step in the plan, reasoning only at branch points, the use of reaction
rules requires the evaluation of conditions on every cycle in order to select the relevant rule.

8. Discussion

We have described Cassandra, a partial-order contingency planner that can represent uncer-
tain outcomes and construct contingency plans for those outcomes. The design of Cassandra

324

Planning for Contingencies: A Decision-based Approach

is based on a coherent view of the issues arising in planning under uncertainty. It recognizes
that, in an uncertain world, a distinction must be drawn between the actual state of the
world and the planner's model of it; it instantiates an intuitively natural account of why
knowledge goals exist and how they arise; and it bases its treatment of plan branching on
the requirements of the agent that will execute the plan. As a result, Cassandra explicitly
plans to gather information and allows information-gathering actions to be fully general.
The coherence of its design provides a solid base for more advanced capabilities such as the
use of varying decision-making procedures.

8.1 Contributions

The principal contribution of this work lies in the explicit representation of decision steps
and the implications this has for the handling of knowledge goals. Cassandra is, we believe,
the �rst planner in which decisions are represented as explicit actions in the plans that it
constructs. Cassandra's knowledge goals arise speci�cally from the need to decide between
alternative courses of action, as preconditions of the decision actions. Cassandra is thus
consistent with the view that planning is the process of making decisions in advance. In
this view, contingency plans are plans that defer some decisions until the information on
which they are based will be available (Pryor, 1995). Di�erent plan branches correspond to
di�erent decision outcomes.

Through its use of explicit decision steps, Cassandra distinguishes between sensing or
information-gathering actions on the one hand, and decision making on the other. One
important reason for making this distinction is that a decision may depend on more than
one piece of information, each available through performing di�erent actions. In addition,
separating information-gathering from decision-making provides a basis for introducing al-
ternative methods for making decisions. For example, the extension to Cassandra described
in Section 6.5.5 introduces a type of decision that directs the executing agent to perform
all branches resulting from a given source of uncertainty, which allows the construction of
plans that can succeed in situations in which there is no way of telling what the actual out-
come is (e.g., the bomb-in-the-toilet problem). We believe that the explicit representation
of di�erent methods for making decisions is an important direction for future research.

Because knowledge goals arise as preconditions of decisions in Cassandra, the need to
know whether a particular plan branch will work is distinguished from the need to know the
actual outcome of an uncertainty. Cassandra does not plan to determine outcomes unless
they are relevant to the achievement or otherwise of its goals. Moreover, Cassandra does not
treat knowledge goals as special cases: plans to achieve them may be as complex as plans
to achieve any other goals. As well as planning to achieve knowledge goals that arise as
preconditions of decisions, Cassandra can also produce plans for top-level knowledge goals.

Two other features of Cassandra are worth noting: the exibility a�orded by its labeling
scheme; and the potential for learning and adaptation a�orded by its representation of
uncertainty.

Cassandra's labeling scheme, although complex, allows the agent executing the plan
to distinguish between three classes of action: those that must be executed in a given
contingency; those that must not; and those whose execution will not a�ect the achievement

325

Pryor & Collins

of the goal in that contingency.11 This feature paves the way for the extension described
above that allows Cassandra to build plans requiring the execution of all branches resulting
from a source of uncertainty.

Cassandra's representation makes no assumptions as to the intrinsic nature of uncer-
tainty. An unknown precondition simply denotes that the information as to what context
will produce a particular e�ect from an action is not available to the planner. It may be
that this information is in principle unknowable (in domains involving quantum e�ects, for
example); it is much more likely that the uncertainty results from the limitations of the
planner or of the information available to it. In general, an agent operating in a real-world
domain will be much more e�ective if it can learn to improve its performance and adapt to
changing conditions. The use of unknown preconditions to represent uncertainty means that
in some circumstances it would be relatively simple to incorporate the results of such learn-
ing and adaptation into the planner's domain knowledge. For example, the planner might
discover how to predict certain outcomes: it could then change the unknown preconditions
into ones reecting the new knowledge. If, on the other hand, it discovered that predicted
e�ects were consistently failing to occur, it could change the relevant preconditions into
unknown ones.

8.2 Limitations

Cassandra is one of an increasing number of planners that aim to extend the techniques of
classical planning to more realistic domains. Cassandra is designed to operate in domains
in which two of the three principal constraints observed by classical planners are relaxed:
namely, we allow non-deterministic actions and incomplete knowledge of the initial condi-
tions. Cassandra is, however, subject to the third constraint, that changes do not take place
except as a result of actions speci�ed in the plan. This clearly limits its e�ectiveness in
many real-world domains. Moreover, there are limits on the extent of the nondeterminism
and incompleteness of knowledge that are handled. Cassandra's plans will not necessarily
achieve their goals if sources of uncertainty are ignored, or if all possible outcomes are not
speci�ed.

Cassandra cannot make use of information about how likely particular outcomes are,
unlike probabilistic or decision-theoretic planners; it cannot plan to interleave planning and
execution; and it does not provide reaction rules for all possible circumstances. It can only
solve problems for which there are valid plans involving ways of discriminating between
possible outcomes; the algorithm given here cannot solve the original version of the bomb-
in-the-toilet problem, although the extension described in Section 6.5.5 can do so (Collins
& Pryor, 1995).

The algorithm described in this paper has two major practical limitations: �rst, the
plans it produces are often more complex than necessary; and second, the time taken to
produce plans precludes its use on all except simple problems.

The complexity of Cassandra's plans results from the necessity of planning for every
contingency and from the lack of branch merging. For example, suppose you had to open a
combination safe so that you could obtain the money to pay for an evening out. Cassandra's

11. Not all agents can make use of this information, as there is no guarantee that the third type of step will
actually be executable.

326

Planning for Contingencies: A Decision-based Approach

plan for the goal of enjoying an evening out would have one branch for each possible safe
combination. Each branch would start o� with the actions to open the safe, which are
di�erent for each combination, and would continue with the actions of going to a restaurant
and then to the movies, say, which would be identical in each branch. A simpler plan would
merge the separate branches after the safe had been opened. The consideration of methods
for branch merging is an area of future work (see Sections 6.5.4 and 7.3).

In some circumstances, such as in this example, plan complexity could be reduced
through the use of run-time variables, which were introduced in ipem (Ambros-Ingerson
& Steel, 1988) and used in sensp (Etzioni et al., 1992) (see Section 7). When the only
uncertainty is in the value that an action parameter takes (which is the case when opening
a combination safe) it would be possible to use a run-time variable to represent that para-
meter, obviating the need for separate plan branches. Implementing this strategy would
require e�ective methods for determining when the e�ects of uncertainty are limited to
parameter values. In general, this notion indicates a possible approach to the problem of
branch merging: that of taking a least commitment approach to variable binding, in the
same way that a least commitment approach is taken to step ordering in a partial order
planner. This would then allow the concept of \conditional" variable binding: a variable
binding could be labeled as being required or forbidden in a given contingency.

We have not analyzed the complexity of Cassandra's algorithm, but we believe it to
be exponential. This is because of the e�ect of multiple plan branches, whose presence
not only increases the number of steps in a plan but also increases the number of potential
interactions and the number of ways of resolving them. Certainly, our subjective impression
is that Cassandra runs even more slowly than other planners in the snlp family. E�ective
domain-independent search control heuristics are di�cult to �nd, and in many of the (toy)
domains in which we have used Cassandra even problem-speci�c heuristics are hard to come
by.

8.3 Conclusion

Cassandra is a planning system based �rmly in the classical planning paradigm. Many of
its strengths and weaknesses are those of other classical planning systems. For example, we
believe that under certain circumstances its plans will be valid and that it is guaranteed
to �nd a valid plan if one exists. However, the techniques it uses are valid only in limited
circumstances, and its computational complexity is such as to make direct scaling up unlikely
to be feasible.

In our view, the principal strengths of Cassandra arise from the explicit representation of
decisions in its plans. We have shown how this use of decisions provides a natural account
of how knowledge goals arise during the planning process. We have also sketched how
decisions can be used as the basis of extensions that provide added functionality. A new
type of decision allows fail-safe plans, which can provide a method of solving problems such
as the bomb-in-the-toilet problem (Section 6.5.5); and another type of decision may provide
an e�ective method of interleaving planning and execution (Section 7.4).

We believe that the use of explicit decision procedures will enable the extension of the
range of applicability of techniques of classical planning. In general, the idea of constructing
a single plan that will succeed in all circumstances is, we feel, unlikely to be productive:

327

Pryor & Collins

the real world is complex and uncertain enough that trying to predict its behavior in detail
is simply impossible. However, the use of decision procedures that, for example, involve
probabilistic techniques or interleave planning and execution, appears likely to provide a
exible framework that, although inevitably sacri�cing completeness and correctness, will
provide a basis for e�ective, practical planning in the real world.

Appendix A. Cassandra's Plans

This appendix shows the plans constructed by Cassandra for the examples in the body of the
paper. Each plan consists of initial conditions, plan steps and goals. The initial conditions
are shown at the top of the plan. Those that are unknown are shown as depending on
a particular contingency. The plan steps are shown next. Each is shown with a number
denoting its order in the plan. The numbers in parentheses show the order in which the
steps were added to the plan. To the right of each step are its contingency labels. For
brevity, the individual e�ects of each step are always omitted and the links that establish
the step's enabling and secondary preconditions are often omitted.

Finally, at the bottom of the plan come the goal conditions. The goal is stated �rst,
then each contingency goal is shown with the links that establish it. As usual, contingency
labels are to the right.

A.1 A Plan to Get to Evanston

This is the plan shown in Figure 3 and discussed in Section 2.3.2. Note the decision-step
with a single active decision-rule. This is the situation discussed in the comments on one-
sided contingencies in Section 6.5: the route using Western is quicker when it is clear, while
the Ashland route is slower but always possible.

Initial: When [TRAFFIC0S: GOOD] (NOT (TRAFFIC-BAD))

When [TRAFFIC0S: BAD] (TRAFFIC-BAD)

(AND (AT START) (ROAD WESTERN) (ROAD BELMONT) (ROAD ASHLAND))

Step 1 (4): (GO-TO-WESTERN-AT-BELMONT) YES: [TRAFFIC0S: GOOD BAD]

(AND (NOT (AT START)) (ON WESTERN) (ON BELMONT))

0 -> (AT START)

Step 2 (3): (CHECK-TRAFFIC-ON-WESTERN)

(KNOW-IF (TRAFFIC-BAD))

1 -> (ON WESTERN)

Step 3 (2): (DECIDE TRAFFIC0S)

(and (NOT (TRAFFIC-BAD))

T) => [TRAFFIC0S: GOOD]

(and T) => [TRAFFIC0S: BAD]

2 -> (KNOW-IF (TRAFFIC-BAD))

Step 4 (6): (TAKE-BELMONT) YES: [TRAFFIC0S: BAD]

NO : [TRAFFIC0S: GOOD]

(AND (NOT (ON WESTERN)) (ON ASHLAND))

1 -> (ON BELMONT)

328

Planning for Contingencies: A Decision-based Approach

Step 5 (5): (TAKE-ASHLAND) YES: [TRAFFIC0S: BAD]

NO : [TRAFFIC0S: GOOD]

(AT EVANSTON)

4 -> (ON ASHLAND) NO : [TRAFFIC0S: GOOD]

Step 6 (1): (TAKE-WESTERN) YES: [TRAFFIC0S: GOOD]

NO : [TRAFFIC0S: BAD]

(AT EVANSTON)

1 -> (ON WESTERN) NO : [TRAFFIC0S: BAD]

0 -> (NOT (TRAFFIC-BAD)) NO : [TRAFFIC0S: BAD]

Goal: (AT EVANSTON)

GOAL YES: [TRAFFIC0S: BAD]

5 -> (AT EVANSTON) NO : [TRAFFIC0S: GOOD]

GOAL YES: [TRAFFIC0S: GOOD]

6 -> (AT EVANSTON) NO : [TRAFFIC0S: BAD]

Complete!

A.2 Disarming a Bomb

This is the plan shown in Figures 6 and 7 and discussed in Section 4.1.1. Note that both
moving steps and both dunking steps are always possible, but each is only necessary in one
outcome of the uncertainty. A fail-safe plan (see Section 6.2) is therefore possible.

Initial: When [UNK0S: O2] (CONTAINS PACKAGE-2 BOMB)

When [UNK0S: O1] (CONTAINS PACKAGE-1 BOMB)

(AND (AT PACKAGE-1 RUG) (AT PACKAGE-2 RUG))

Step 1 (5): (X-RAY PACKAGE-2)

(KNOW-IF (CONTAINS PACKAGE-2 BOMB))

Step 2 (3): (X-RAY PACKAGE-1)

(KNOW-IF (CONTAINS PACKAGE-1 BOMB))

Step 3 (2): (DECIDE UNK0S)

(and (CONTAINS PACKAGE-2 BOMB)

T) => [UNK0S: O2]

(and (CONTAINS PACKAGE-1 BOMB)

T) => [UNK0S: O1]

1 -> (KNOW-IF (CONTAINS PACKAGE-2 BOMB))

2 -> (KNOW-IF (CONTAINS PACKAGE-1 BOMB))

Step 4 (7): (MOVE RUG TOILET PACKAGE-1) YES: [UNK0S: O1]

(AND (NOT (AT PACKAGE-1 RUG)) (AT PACKAGE-1 TOILET))

0 -> (AT PACKAGE-1 RUG)

Step 5 (6): (MOVE RUG TOILET PACKAGE-2) YES: [UNK0S: O2]

(AND (NOT (AT PACKAGE-2 RUG)) (AT PACKAGE-2 TOILET))

0 -> (AT PACKAGE-2 RUG)

Step 6 (4): (DUNK PACKAGE-2) YES: [UNK0S: O2]

(WET PACKAGE-2)

329

Pryor & Collins

5 -> (AT PACKAGE-2 TOILET)

(DISARMED BOMB)

0 -> (CONTAINS PACKAGE-2 BOMB) NO : [UNK0S: O1]

Step 7 (1): (DUNK PACKAGE-1) YES: [UNK0S: O1]

(WET PACKAGE-1)

4 -> (AT PACKAGE-1 TOILET)

(DISARMED BOMB)

0 -> (CONTAINS PACKAGE-1 BOMB) NO : [UNK0S: O2]

Goal: (DISARMED BOMB)

GOAL YES: [UNK0S: O2]

6 -> (DISARMED BOMB) NO : [UNK0S: O1]

GOAL YES: [UNK0S: O1]

7 -> (DISARMED BOMB) NO : [UNK0S: O2]

Complete!

A.3 Fetching a Package

The plan in Figure 8, discussed in Section 4.1.3, involves just one source of uncertainty and
hence contains just one decision-step. There are two possible ways of achieving the goal,
one for each outcome of the uncertainty.

Initial: (AVAILABLE CAR-1)

When [LOC0S: B] (PACKAGE-AT LOCATION-2)

When [LOC0S: A] (PACKAGE-AT LOCATION-1)

(AND (IS-CAR CAR-1) (IS-CAR CAR-2) (LOCATION LOCATION-1)

(LOCATION LOCATION-2))

Step 1 (2): (ASK-ABOUT-PACKAGE)

(KNOW-IF (PACKAGE-AT LOCATION-2))

0 -> (LOCATION LOCATION-2)

(KNOW-IF (PACKAGE-AT LOCATION-1))

0 -> (LOCATION LOCATION-1)

Step 2 (1): (DECIDE LOC0S)

(and (PACKAGE-AT LOCATION-2)

T) => [LOC0S: B]

(and (PACKAGE-AT LOCATION-1)

T) => [LOC0S: A]

1 -> (KNOW-IF (PACKAGE-AT LOCATION-2))

1 -> (KNOW-IF (PACKAGE-AT LOCATION-1))

Step 3 (4): (DRIVE CAR-1 LOCATION-1) YES: [LOC0S: A]

(AT LOCATION-1)

0 -> (AVAILABLE CAR-1)

Step 4 (3): (DRIVE CAR-1 LOCATION-2) YES: [LOC0S: B]

(AT LOCATION-2)

0 -> (AVAILABLE CAR-1)

Goal: (AND (AT ?LOC) (PACKAGE-AT ?LOC))

330

Planning for Contingencies: A Decision-based Approach

GOAL YES: [LOC0S: B]

4 -> (AT LOCATION-2)

0 -> (PACKAGE-AT LOCATION-2) NO : [LOC0S: A]

GOAL YES: [LOC0S: A]

3 -> (AT LOCATION-1)

0 -> (PACKAGE-AT LOCATION-1) NO : [LOC0S: B]

Complete!

A.4 Fetching Another Package

The plan in Figure 9, discussed in Section 4.1.3, has two sources of uncertainty and two
decision-steps. There are four possible ways of achieving the goal, one for each combination
of the outcomes of the two sources of uncertainty.

Initial: When [CAR0S: C2] (AVAILABLE CAR-2)

When [CAR0S: C1] (AVAILABLE CAR-1)

When [LOC0S: B] (PACKAGE-AT LOCATION-2)

When [LOC0S: A] (PACKAGE-AT LOCATION-1)

(AND (IS-CAR CAR-1) (IS-CAR CAR-2) (LOCATION LOCATION-1)

(LOCATION LOCATION-2))

Step 1 (5): (ASK-ABOUT-CAR) YES: [LOC0S: A B]

(KNOW-IF (AVAILABLE CAR-2))

0 -> (IS-CAR CAR-2)

(KNOW-IF (AVAILABLE CAR-1))

0 -> (IS-CAR CAR-1)

Step 2 (4): (DECIDE CAR0S) YES: [LOC0S: A B]

(and (AVAILABLE CAR-2)

T) => [CAR0S: C2]

(and (AVAILABLE CAR-1)

T) => [CAR0S: C1]

1 -> (KNOW-IF (AVAILABLE CAR-2))

1 -> (KNOW-IF (AVAILABLE CAR-1))

Step 3 (2): (ASK-ABOUT-PACKAGE) YES: [CAR0S: C2 C1]

(KNOW-IF (PACKAGE-AT LOCATION-2))

0 -> (LOCATION LOCATION-2)

(KNOW-IF (PACKAGE-AT LOCATION-1))

0 -> (LOCATION LOCATION-1)

Step 4 (1): (DECIDE LOC0S) YES: [CAR0S: C2 C1]

(and (PACKAGE-AT LOCATION-2)

T) => [LOC0S: B]

(and (PACKAGE-AT LOCATION-1)

T) => [LOC0S: A]

3 -> (KNOW-IF (PACKAGE-AT LOCATION-2))

3 -> (KNOW-IF (PACKAGE-AT LOCATION-1))

Step 5 (8): (DRIVE CAR-2 LOCATION-1) YES: [LOC0S: A][CAR0S: C2]

331

Pryor & Collins

NO : [CAR0S: C1]

(AT LOCATION-1)

0 -> (AVAILABLE CAR-2) NO : [CAR0S: C1]

Step 6 (6): (DRIVE CAR-2 LOCATION-2) YES: [LOC0S: B][CAR0S: C2]

NO : [CAR0S: C1]

(AT LOCATION-2)

0 -> (AVAILABLE CAR-2) NO : [CAR0S: C1]

Step 7 (7): (DRIVE CAR-1 LOCATION-1) YES: [LOC0S: A][CAR0S: C1]

NO : [CAR0S: C2]

(AT LOCATION-1)

0 -> (AVAILABLE CAR-1) NO : [CAR0S: C2]

Step 8 (3): (DRIVE CAR-1 LOCATION-2) YES: [LOC0S: B][CAR0S: C1]

NO : [CAR0S: C2]

(AT LOCATION-2)

0 -> (AVAILABLE CAR-1) NO : [CAR0S: C2]

Goal: (AND (AT ?LOC) (PACKAGE-AT ?LOC))

GOAL YES: [LOC0S: A][CAR0S: C2]

5 -> (AT LOCATION-1) NO : [CAR0S: C1]

0 -> (PACKAGE-AT LOCATION-1) NO : [LOC0S: B]

GOAL YES: [LOC0S: B][CAR0S: C2]

6 -> (AT LOCATION-2) NO : [CAR0S: C1]

0 -> (PACKAGE-AT LOCATION-2) NO : [LOC0S: A]

GOAL YES: [LOC0S: B][CAR0S: C1]

8 -> (AT LOCATION-2) NO : [CAR0S: C2]

0 -> (PACKAGE-AT LOCATION-2) NO : [LOC0S: A]

GOAL YES: [LOC0S: A][CAR0S: C1]

7 -> (AT LOCATION-1) NO : [CAR0S: C2]

0 -> (PACKAGE-AT LOCATION-1) NO : [LOC0S: B]

Complete!

A.5 Tossing a Coin

In Section 4.2.3 we described a plan for ending up with a at coin. The decision in this plan
does not distinguish between the coin landing heads-up and tails-up|the decision rules are
ambiguous.

Initial: (HOLDING-COIN)

Step 1 (2): (TOSS-COIN)

(AND (NOT (HOLDING-COIN)) (ON-TABLE))

0 -> (HOLDING-COIN)

Step 2 (4): (INSPECT-COIN)

(AND (KNOW-IF (FLAT-COIN)) (KNOW-IF (HEADS-UP))

(KNOW-IF (TAILS-UP)) (KNOW-IF (ON-EDGE)))

332

Planning for Contingencies: A Decision-based Approach

Step 3 (3): (DECIDE UNK2S)

(and (FLAT-COIN)

T) => [UNK2S: H]

(and (FLAT-COIN)

T) => [UNK2S: T]

(and (ON-EDGE)

T) => [UNK2S: E]

2 -> (KNOW-IF (FLAT-COIN))

2 -> (KNOW-IF (ON-EDGE))

Step 4 (1): (TIP-COIN) YES: [UNK2S: E]

NO : [UNK2S: H T]

(FLAT-COIN)

1 -> (ON-EDGE) NO : [UNK2S: H T]

Goal: (FLAT-COIN)

GOAL YES: [UNK2S: T]

1 -> (FLAT-COIN) NO : [UNK2S: H E]

GOAL YES: [UNK2S: H]

1 -> (FLAT-COIN) NO : [UNK2S: T E]

GOAL YES: [UNK2S: E]

4 -> (FLAT-COIN) NO : [UNK2S: H T]

Complete!

A.6 Tossing Another Coin

The plan in Figure 11 has two decisions with unambiguous decision-rules. There are four
ways of achieving the goal in this plan, because there are two sources of uncertainty.

Initial: (HOLDING-COIN)

Step 1 (1): (TOSS-COIN)

(AND (NOT (HOLDING-COIN)) (ON-TABLE) (KNOW-IF (FLAT-COIN))

(KNOW-IF (HEADS-UP)) (KNOW-IF (TAILS-UP)) (KNOW-IF (ON-EDGE)))

0 -> (HOLDING-COIN)

Step 2 (2): (DECIDE TOSS1S)

(and (FLAT-COIN)

(HEADS-UP)

T) => [TOSS1S: H]

(and (ON-EDGE)

T) => [TOSS1S: E]

(and (FLAT-COIN)

(TAILS-UP)

T) => [TOSS1S: T]

1 -> (KNOW-IF (ON-EDGE))

1 -> (KNOW-IF (FLAT-COIN))

1 -> (KNOW-IF (TAILS-UP))

1 -> (KNOW-IF (HEADS-UP))

Step 3 (4): (TIP-COIN) YES: [TOSS1S: E]

333

Pryor & Collins

NO : [TOSS1S: T H]

(AND (FLAT-COIN) (KNOW-IF (HEADS-UP)) (KNOW-IF (TAILS-UP)))

1 -> (ON-EDGE) NO : [TOSS1S: H T]

Step 4 (5): (DECIDE TIP4S) YES: [TOSS1S: E]

NO : [TOSS1S: T H]

(and (TAILS-UP)

T) => [TIP4S: T]

(and (HEADS-UP)

T) => [TIP4S: H]

3 -> (KNOW-IF (TAILS-UP)) NO : [TOSS1S: T H]

3 -> (KNOW-IF (HEADS-UP)) NO : [TOSS1S: T H]

Step 5 (3): (TURN-OVER) YES: [TOSS1S: T]

NO : [TOSS1S: E H]

1 -> (FLAT-COIN) NO : [TOSS1S: H E]

(HEADS-UP)

1 -> (TAILS-UP) NO : [TOSS1S: H E]

Step 6 (6): (TURN-OVER) YES: [TOSS1S: E][TIP4S: T]

NO : [TOSS1S: T H][TIP4S: H]

3 -> (FLAT-COIN) NO : [TOSS1S: T H]

(HEADS-UP)

3 -> (TAILS-UP) NO : [TOSS1S: T H][TIP4S: H]

Goal: (AND (FLAT-COIN) (HEADS-UP))

GOAL YES: [TOSS1S: E][TIP4S: T]

3 -> (FLAT-COIN) NO : [TOSS1S: T H]

6 -> (HEADS-UP) NO : [TOSS1S: T H][TIP4S: H]

GOAL YES: [TOSS1S: E][TIP4S: H]

3 -> (FLAT-COIN) NO : [TOSS1S: T H]

3 -> (HEADS-UP) NO : [TOSS1S: H T][TIP4S: T]

GOAL YES: [TOSS1S: T]

1 -> (FLAT-COIN) NO : [TOSS1S: H E]

5 -> (HEADS-UP) NO : [TOSS1S: E H]

GOAL YES: [TOSS1S: H]

1 -> (FLAT-COIN) NO : [TOSS1S: T E]

1 -> (HEADS-UP) NO : [TOSS1S: T E]

Complete!

A.7 Opening a Door

In Section 4.2.4 we described a plan for opening a locked door without a key; it is depicted
in Figure 12. The plan that Cassandra produces for this situation is shown here. Even
though no preconditions of the pick step depend on any e�ect of the kick step, the former
cannot be performed if the lock is broken as a result of kicking the door. The decision-rules
reect this dependence.

334

Planning for Contingencies: A Decision-based Approach

Initial: (LOCK-INTACT)

Step 1 (2): (KICK)

Step 2 (4): (LOOK)

(AND (KNOW-IF (LOCKED)) (KNOW-IF (LOCK-INTACT))

(KNOW-IF (FOOT-BROKEN)))

Step 3 (3): (DECIDE KICK2S)

(and ((LOCK-INTACT))

T) => [KICK2S: F]

(and (NOT (LOCKED))

T) => [KICK2S: L]

2 -> (KNOW-IF (LOCKED))

Step 4 (6): (PICK) YES: [KICK2S: F]

NO : [KICK2S: L]

(NOT (LOCKED))

0 -> (LOCK-INTACT) NO : [KICK2S: L]

Step 5 (5): (OPEN-DOOR) YES: [KICK2S: F]

NO : [KICK2S: L]

(OPEN)

4 -> (NOT (LOCKED)) NO : [KICK2S: L]

Step 6 (1): (OPEN-DOOR) YES: [KICK2S: L]

NO : [KICK2S: F]

(OPEN)

1 -> (NOT (LOCKED)) NO : [KICK2S: F]

Goal: (OPEN)

GOAL YES: [KICK2S: F]

5 -> (OPEN) NO : [KICK2S: L]

GOAL YES: [KICK2S: L]

6 -> (OPEN) NO : [KICK2S: F]

Complete!

Acknowledgements

Thanks to DanWeld and Tony Barrett for supplying the ucpop code, Mark Peot and Robert
Goldman for their comments on earlier drafts, Will Fitzgerald for many useful discussions,
and the anonymous reviewers for their constructive and helpful criticism. Much of this
work was performed while the �rst author was a student at the Institute for the Learning
Sciences, Northwestern University. This work was supported in part by the AFOSR under
grant number AFOSR-91-0341-DEF. The Institute for the Learning Sciences was established
in 1989 with the support of Andersen Consulting, part of The Arthur Andersen Worldwide
Organization. The Institute receives additional support from Ameritech and North West
Water, Institute Partners, and from IBM.

335

Pryor & Collins

References

Allen, J., Hendler, J., & Tate, A. (Eds.). (1990). Readings in Planning. Morgan Kaufmann,
San Mateo, CA.

Ambros-Ingerson, J., & Steel, S. (1988). Integrating planning, execution, and monitoring.
In Proceedings of the Seventh National Conference on Arti�cial Intelligence, pp. 83{88
St Paul, MN. AAAI. Also in (Allen, Hendler, & Tate, 1990).

Barrett, A., Soderland, S., & Weld, D. S. (1991). E�ect of step-order representations on
planning. Technical report 91-05-06, Department of Computer Science and Engineer-
ing, University of Washington, Seattle.

Chapman, D. (1987). Planning for conjunctive goals. Arti�cial Intelligence, 32, 333{377.
Also in (Allen et al., 1990).

Collins, G. C. (1987). Plan creation: Using strategies as blueprints. Technical report
YALEU/CSD/RR 599, Department of Computer Science, Yale University.

Collins, G., & Pryor, L. (1992). Achieving the functionality of �lter conditions in a partial
order planner. In Proceedings of the Tenth National Conference on Arti�cial Intelli-
gence, pp. 375{380 San Jose, CA. AAAI.

Collins, G., & Pryor, L. (1995). Planning under uncertainty: Some key issues. In Proceedings
of the Fourteenth International Joint Conference on Arti�cial Intelligence, pp. 1567{
1573 Montreal, Canada. IJCAI.

Draper, D., Hanks, S., & Weld, D. (1994a). A probabilistic model of action for least-
commitment planning with information gathering. In Proceedings of the Tenth Con-

ference on Uncertainty in Arti�cial Intelligence, pp. 178{186 Seattle, WA. Morgan
Kaufmann.

Draper, D., Hanks, S., & Weld, D. (1994b). Probabilistic planning with information gather-
ing and contingent execution. In Proceedings of the Second International Conference

on Arti�cial Intelligence Planning Systems, pp. 31{36 Chicago, IL. AAAI Press.

Drummond, M. (1989). Situated control rules. In Proceedings of the First International

Conference on Principles of Knowledge Representation and Reasoning, pp. 103{113
Toronto. Morgan Kaufmann.

Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N., & Williamson, M. (1992). An ap-
proach to planning with incomplete information. In Proceedings of the Third Interna-

tional Conference on Knowledge Representation and Reasoning, pp. 115{125 Boston,
MA. Morgan Kaufmann.

Feldman, J. A., & Sproull, R. F. (1977). Decision theory and arti�cial intelligence II: The
hungry monkey. Cognitive Science, 1, 158{192. Also in (Allen et al., 1990).

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Arti�cial Intelligence, 2, 189{208. Also in (Allen
et al., 1990).

336

Planning for Contingencies: A Decision-based Approach

Golden, K., Etzioni, O., & Weld, D. (1994). Omnipotence without omniscience: E�cient
sensor management for planning. In Proceedings of the Twelfth National Conference

on Arti�cial Intelligence, pp. 1048{1054. AAAI Press.

Goldman, R. P., & Boddy, M. S. (1994a). Conditional linear planning. In Proceedings of

the Second International Conference on Arti�cial Intelligence Planning Systems, pp.
80{85 Chicago, IL. AAAI Press.

Goldman, R. P., & Boddy, M. S. (1994b). Representing uncertainty in simple planners. In
Proceedings of the Fourth International Conference on the Principles of Knowledge

Representation and Reasoning, pp. 238{245 Bonn. Morgan Kaufmann.

Haas, A. R. (1986). A syntactic theory of belief and action. Arti�cial Intelligence, 28,
245{292.

Haddawy, P., & Hanks, S. (1992). Representations for decision-theoretic planning: Utility
functions for deadline goals. In Proceedings of the Third International Conference

of Principles of Knowledge Representation and Reasoning, pp. 71{82 Boston, MA.
Morgan Kaufmann.

Haddawy, P., & Suwandi, M. (1994). Decision-theoretic re�nement planning using inherit-
ance abstraction. In Proceedings of the Second Internatinal Conference on Arti�cial

Planning Systems, pp. 266{271 Chicago. AAAI Press.

Knoblock, C. (1995). Planning, executing, sensing, and replanning for information gath-
ering. In Proceedings of the Fourteenth International Joint Conference on Arti�cial

Intelligence, pp. 1686{1693 Montreal. IJCAI.

Kushmerick, N., Hanks, S., & Weld, D. (1995). An algorithm for probabilistic planning.
Arti�cial Intelligence, 76, 239{286.

Langley, P. (1992). Systematic and nonsystematic search strategies. In Proceedings of the

First International Conference on Arti�cial Intelligence Planning Systems, pp. 145{
152 College Park, Maryland. Morgan Kaufmann.

McAllester, D., & Rosenblitt, D. (1991). Systematic nonlinear planning. In Proceedings of

the Ninth National Conference on Arti�cial Intelligence, pp. 634{639 Anaheim, CA.
AAAI.

McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of
arti�cial intelligence. In Meltzer, B., & Michie, D. (Eds.), Machine Intelligence 4, pp.
463{502. Edinburgh University Press. Also in (Allen et al., 1990).

McDermott, D. (1987). A critique of pure reason. Computational Intelligence, 3, 151{160.

McDermott, D. (1991). Regression planning. International Journal of Intelligent Systems,
6 (4), 357{416. Also available as Yale TR YALEU/CSD/RR 752.

Moore, R. C. (1985). A formal theory of knowledge and action. In Hobbs, J. R., & Moore,
R. C. (Eds.), Formal Theories of the Commonsense World. Ablex, Norwood, NJ. Also
in (Allen et al., 1990).

337

Pryor & Collins

Morgenstern, L. (1987). Knowledge preconditions for actions and plans. In Proceedings
of the Tenth International Joint Conference on Arti�cial Intelligence, pp. 867{874
Milan. IJCAI.

Olawsky, D., & Gini, M. (1990). Deferred planning and sensor use. In Proceedings of a

Workshop on Innovative Approaches to Planning, Scheduling and Control, pp. 166{
174 San Diego, CA. DARPA.

Pednault, E. P. D. (1988). Extending conventional planning techniques to handle actions
with context-dependent e�ects. In Proceedings of the Seventh National Conference on

Arti�cial Intelligence, pp. 55{59 St Paul, MN. AAAI.

Pednault, E. P. D. (1989). ADL: Exploring the middle ground between STRIPS and the
situation calculus. In Proceedings of the First International Conference on Principles

of Knowledge Representation and Reasoning, pp. 324{332. Morgan Kaufmann.

Pednault, E. P. D. (1991). Generalizing nonlinear planning to handle complex goals and
actions with context-dependent e�ects. In Proceedings of the Twelfth International

Joint Conference on Arti�cial Intelligence, pp. 240{245 Sydney, Australia. IJCAI.

Penberthy, J. S., & Weld, D. S. (1992). UCPOP: A sound, complete, partial order plan-
ner for ADL. In Proceedings of the Third International Conference on Knowledge

Representation and Reasoning, pp. 103{114 Boston, MA. Morgan Kaufmann.

Peot, M. A., & Smith, D. E. (1992). Conditional nonlinear planning. In Proceedings of

the First International Conference on Arti�cial Intelligence Planning Systems, pp.
189{197 College Park, Maryland. Morgan Kaufmann.

Pryor, L. (1994). Opportunities and planning in an unpredictable world. Technical report 53,
Institute for the Learning Sciences, Northwestern University.

Pryor, L. (1995). Decisions, decisions: Knowledge goals in planning. In Hallam, J. (Ed.),
Hybrid Problems, Hybrid Solutions (Proceedings of AISB-95), Frontiers in Arti�cial
Intelligence and Applications, pp. 181{192. IOS Press, Amsterdam.

Pryor, L., & Collins, G. (1991). Information-gathering as a planning task: A position paper.
In Notes of the AAAI workshop on Knowledge-Based Construction of Probabilistic and

Decision Models, pp. 101{105 Anaheim, CA. AAAI.

Pryor, L., & Collins, G. (1992). Planning to perceive: A utilitarian approach. In Working

notes of the AAAI Spring Symposium: Control of Selective Perception, pp. 113{122
Stanford, CA. AAAI.

Pryor, L., & Collins, G. (1993). Cassandra: Planning with contingencies. Technical re-
port 41, Institute for the Learning Sciences, Northwestern University.

Sacerdoti, E. (1977). A structure for plans and behavior. American Elsevier, New York.

Schoppers, M. J. (1987). Universal plans for reactive robots in unpredictable environments.
In Proceedings of the Tenth International Joint Conference on Arti�cial Intelligence,
pp. 1039{1046 Milan. IJCAI.

338

Planning for Contingencies: A Decision-based Approach

Steel, S. (1995). Knowing how: A semantic approach. In Hallam, J. (Ed.), Hybrid Problems,
Hybrid Solutions (Proceedings of AISB-95), Frontiers in Arti�cial Intelligence and
Applications, pp. 193{202. IOS Press, Amsterdam.

Ste�k, M. (1981a). Planning with constraints (MOLGEN: Part 1). Arti�cial Intelligence,
16, 111{140. Also in (Allen et al., 1990).

Ste�k, M. (1981b). Planning with constraints (MOLGEN: Part 2). Arti�cial Intelligence,
16, 141{170.

Sussman, G. J. (1975). A computer model of skill acquisition. American Elsevier, New
York.

Tate, A. (1975). Using goal structure to direct search in a problem solver. Ph.D. thesis,
University of Edinburgh.

Tate, A. (1977). Generating project networks. In Proceedings of the Fifth International

Joint Conference on Arti�cial Intelligence, pp. 888{893 Cambridge, MA. IJCAI. Also
in (Allen et al., 1990).

Warren, D. (1976). Generating conditional plans and programs. In Proceedings of the
Summer Conference on Arti�cial Intelligence and the Simulation of Behaviour, pp.
344{354 Edinburgh. AISB.

Wilkins, D. E. (1988). Practical Planning: Extending the Classical AI Planning Paradigm.
Morgan Kaufmann, San Mateo, CA.

339

