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of the way. There are other types of divergence which could perhaps be recognized by the
divergence critic. Further research is needed to identify such divergence patterns, isolate
their causes and propose ways of �xing them. This research may take advantage of the close
links between divergence patterns and particular types of generalization. For instance, it
may be possible to identify speci�c divergence patterns with the need to generalize common
subterms in the theorem being proved.
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rev(qrev(x; nil)) = x


rev(qrev(x; cons(y; nil) )) = cons(y; x)


rev(qrev(x; cons(z; cons(y; nil)) )) = cons(z; cons(y; x))


...


This annotated sequence is the unique maximal di�erence match. These annotations suggest
the need for the wave rule,


rev(qrev(X; cons(Y; nil) )) = cons(Y; rev(qrev(X; nil))) :


This rule allows the proof to go through without divergence. By comparison, most speci�c
generalization seems to be unable to identify this rule. The most speci�c generalization of
the left hand side of this sequence gives the term rev(qrev(X;Z)) (or, ignoring the �rst term
in the sequence, rev(qrev(X; cons(Y;Z)))). Most speci�c generalization cannot, however,
identify the more useful pattern, rev(qrev(X; cons(Y; nil))).


Nqthm contains a simple test for divergence based on subsumption. For instance, on
example 13 of the last section, Nqthm is unable to simplify the following subgoal in the
step case of the proof,


(EQUAL (ROT (LENGTH X) (APPEND X (LIST Z)))


(CONS Z (ROT (LENGTH X) X))))


Note that this is the lemma speculated by the divergence critic. Nqthm generalizes (LENGTH
X) in this subgoal giving the false conjecture,


(EQUAL (ROT Y (APPEND X (LIST Z)))


(CONS Z (ROT Y X))))


After several more attempts at induction and generalization, Nqthm realizes the proof is
diverging since a subgoal is subsumed by its parent. As the proof is therefore about to loop,
Nqthm gives up. No attempt is made to analyse the failed proof attempt to identify where
it started to go wrong. In addition, subsumption is a very weak test for divergence, much
weaker than tests based on di�erence matching or generalization. This subsumption test
recognizes divergence on just a small number of the failed examples in the last section.


10. Conclusions


I have described a divergence critic, a computer program which attempts to identify di-
verging proof attempts and to propose lemmas and generalizations which overcome the
divergence. The divergence critic has proved very successful; it enables the system Spike


to prove many theorems from the de�nitions alone. The divergence critic's success can
be largely attributed to the power of the rippling heuristic. This heuristic was originally
developed for proofs using explicit induction but has since found several other applications.
Di�erence matching is used to identify accumulating term structure which is causing di-
vergence. Lemmas and generalizations are then proposed to ripple this term structure out
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divergence critic described here works in an implicit (and not an explicit) induction setting.
Second, the divergence critic is not automatically invoked but must identify when the proof
is failing. Third, the divergence critic is less specialized. These last two di�erences reect the
fact that critics in Clam are usually associated with the failure of a particular precondition
to a heuristic. The same divergence pattern can, by comparison, arise for many di�erent
reasons: the need to generalize variables apart, to generalize common subterms, to add a
lemma, etc. Fourth, the divergence critic must use di�erence matching to annotate terms; in
Clam, terms are usually already appropriately annotated. Finally, the divergence critic is
less tightly coupled to the the theorem prover's inference rules or heuristics. The critic can
therefore exploit the strengths of the prover without needing to reason about the complex
rules or heuristics being used. For instance, the divergence critic has no di�culty identifying
divergence in complex situations like nested or mutual inductions. The critic also bene�ts
from the powerful simpli�cation rules used by Spike.


Divergence has been studied quite extensively in completion procedures. Two of the
main novelties of the critic described here are the use of di�erence matching to identify
divergence, and the use of rippling in the speculation of lemmas to overcome divergence.
Dershowitz and Pinchover, by comparison, use most speci�c generalization to identify diver-
gence patterns in the critical pairs produced by completion (Dershowitz & Pinchover, 1990).
Kirchner uses generalization modulo an equivalence relation to recognise such divergence
patterns (Kirchner, 1987); meta-rules are then synthesized to describe in�nite families of
rules with some common structure. Thomas and Jantke use generalization and inductive
inference to recognize divergence patterns and to replace in�nite sequences of critical pairs
by a �nite number of generalizations (Thomas & Jantke, 1989). Thomas and Watson use
generalization to replace an in�nite set of rules by a �nite complete set with an enriched
signature (Thomas & Watson, 1993).


Generalization modulo an equivalence enables complex divergence patters to be identi-
�ed. However, it is in general undecidable. Most speci�c generalization, by comparison, is
more limited. It cannot recognize divergence patterns which give nested wave-fronts like,


s( s(x) + x) :


In addition, most speci�c generalization cannot identify term structure in wave-holes. For
example, consider the divergence sequence of equations produced when Spike attempts to
prove example 25 from Section 8,


rev(qrev(x; nil)) = x


rev(qrev(x; cons(y; nil))) = cons(y; x)


rev(qrev(x; cons(z; cons(y; nil)))) = cons(z; cons(y; x))


...


Divergence analysis identi�es term structure accumulating within the accumulator argument
of qrev,
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Unfortunately the heuristics for instantiating the right hand side of speculated lemmas are
not strong enough to suggest the rule,


X + (Y + Z) = Y + (X + Z)


With this rule, Spike �nds a proof of the commutativity of multiplication without di�culty.
The di�culties in speculating this rule arise because the wave-front is stuck in a similar
position on both sides of the equality. There are few clues therefore to suggest how to ripple
it up to the top of the term tree.


In example 33, the divergence critic proposes a lemma where one is not needed. Spike
is able to �nd a proof of this theorem from the de�nitions alone using 16 inductions. Three
of these inductions are on the equations,


0 + x = x


s(0) + x = s(x)


s(s(0)) + x = s(s(x))


This sequence of equations satis�es the divergence critic's preconditions. The critic therefore
proposes wave rules for moving accumulating successor functions o� the �rst argument
position of +. Although the proposed lemmas are not necessary, either give a much shorter
and simpler proof needing just 7 inductions.


Example 34 is the lemma speculated in example 24. Divergence analysis of Spike's
attempt to prove this theorem identi�es term structure accumulating on the second (alias
accumulator) argument of qrev. The �rst two lemmas proposed for removing this term
structure are of no use as they are subsumed by the recursive de�nition of qrev. The third
lemma also fails to prevent divergence. This lemma simpli�es two element lists in the second
argument position of qrev. However, divergence will still occur as the prover cannot simplify
lists that occur in the second argument position of qrev which contain 3 or more elements.
Divergence can be overcome if we introduce a derived function for appending onto the end
of a list. This can be used to simplify terms in which a list of arbitrary size occurs on the
second argument position of qrev. For example, we can simplify with the rule,


qrev(X; Y ) = app(qrev(X; nil); Y )


Unfortunately, append does not occur in the speci�cation of the theorem so it is di�cult to
�nd a heuristic that would speculate such a rule.


9. Related Work


Critics for monitoring the construction of proofs were �rst proposed by Ireland for the Clam
prover (Ireland, 1992). In this framework, failure of one of the proof methods automatically
invokes a critic. Various critics for explicit induction have been developed that speculate
missing lemmas, perform generalizations, look for suitable case splits, etc. As rippling plays
a central role in Clam's proof methods, many of the heuristics are similar to those described
here (Ireland & Bundy, 1992). There are, however, several signi�cant di�erences. First, the
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No Theorem Lemmas speculated Time/s


31 s(x) � y=y+(x � y) { n/a
32 x � y=y � x s(X)+Y=X+s(Y) 8.0
33 x+(y+(z+(v+w))) = w+(x+(y+(z+v))) s(X)+Y=s(X+Y) 17.7


s(X)+Y=X+s(Y)
34 qrev(qrev(x,[y]),z)=y :: qrev(qrev(x,[]),z) qrev(Y,X ::Z)) = qrev(X ::Y,Z) 9.6


qrev(qrev(X,Y ::Z),W)=qrev(qrev(Y ::X,Z),W)
qrev(qrev(X,Y :: [Z]),W)=Z :: qrev(qrev(X,[Y]),W)


Table 2: Some of the divergence critic's failures.


diverges, generating the following sequence of equations,


s(y) + (x+ (x� y)) = s(y) + (y + (x� y))


s(s(y)) + (x+ (x+ (x� y))) = s(x) + (s(y) + (x+ (x� y))


s(s(s(y))) + (x+ (x+ (x+ (x� y)))) = s(x) + (s(s(y)) + (x+ (x+ (x� y))))
...


Divergence analysis of the left hand sides of these equations suggests the need for a rule of
the form,


s(Y ) + (X + Z) = F (Y + Z)


Unfortunately the heuristics for lemma speculation are not su�ciently strong to suggest
a suitable instantiation for F (for example, �z : s(X + z)). This lemma is rather complex
and is the result of two overlapping divergence patterns. If the annotations are considered
separately, they suggest the rules,


s(X) + Y = s(X + Y )


Y + (X + Z) = X + (Y + Z)


With these two rules, Spike �nds a proof without di�culty.
Example 32 is the commutativity of multiplication. The divergence critic identi�es a


divergence pattern and proposes the transverse wave rule,


s(X) + Y = X + s(Y )


However, Spike is unable to prove the commutativity of multiplication with the addition of
this rule. The proof attempt is now somewhat simpler and contains the diverging sequence
of equations,


x+ (y + (x+ (x � y))) = y + (x+ (x+ (x � y)))


x+ (y + (x+ (x+ (x � y))) ) = y + (x+ (x+ (x+ (x � y))))


x+ (y + (x+ (x+ (x+ (x � y)))) ) = y + (x+ (x+ (x+ (x+ (x � y)))))


...
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speculate more non-theorems. Further research into the optimal strength of generalization
heuristics would be valuable.


Example 24 is the only disappointment; the lemma proposed �xes divergence but is
too di�cult to be proved automatically, even with the assistance of the divergence critic.
See example 34 at the end of this section for more details. Example 25 is discussed in
more detail in the related work in Section 9 as it demonstrates the superiority of di�erence
matching over generalization techniques for divergence analysis. Examples 26 to 28 require
little discussion. Finally, examples 29 and 30 demonstrate that the critic can cope with
divergence in moderately complex theories containing conditional equations.


The results are very pleasing. Using the divergence critic, the 30 theorems listed (with
the exception of 24) can all be proved from the de�nitions alone. To provide an indication
of the di�culty of these theorems, the Nqthm system (Boyer & Moore, 1979), which is
perhaps the best known explicit induction theorem prover, was unable to prove more than
half these theorems from the de�nitions alone. To be precise, Nqthm failed on 5, 6, 7, 8, 9,
11, 12, 13, 14, 15, 18, 19, 21, 22, 24, 25, 26, 27 and 28. Of course, with the addition of some
simple lemmas, Nqthm is able to prove all these theorems. Indeed, in many cases, Nqthm
needs the same lemmas as those proposed by the divergence critic and required by Spike.
This suggests that the divergence critic is not especially tied to the particular prover used
nor even to the implicit induction setting.


To test this hypothesis, I presented the output of a diverging proof attempt fromNqthm


to the critic. I chose the commutativity of multiplication as this is perhaps the simplest
theorem which causes Nqthm to diverge. The critic proposed the lemma,


(EQUAL (TIMES Y (ADD1 X)) (PLUS Y (TIMES Y X))))


where TIMES and PLUS are primitives of Nqthm's logic recursively de�ned on their �rst
arguments. This is exactly the lemma needed by Nqthm to prove the commutativity of
multiplication. Nqthm fails on many of the other examples for similar reasons to Spike,
and divergence analysis identi�es an appropriate lemma. This supports the suggestion that
the divergence critic is likely to be useful for a wide variety of provers.


The divergence critic has several limitations. Recognizing divergence is, in general,
undecidable since it reduces to the halting problem. The divergence critic will therefore
sometimes fail to identify a diverging proof attempt. In addition, the critic will sometimes
identify a \divergence" pattern when the proof attempt is not diverging. Even when di-
vergence is correctly identi�ed, the critic will sometimes fail to speculate an appropriate
lemma. Finally, the critic only speculates wave-rules. Whilst many theories contain a large
number of wave-rules, and these are often very useful for �xing divergence, other types of
lemma can be needed.


Table 2 lists four theorems on which the divergence critic fails. These problems are
representative of the di�erent ways in which the critic can fail. The two main cause of
failure are overlapping divergence patterns, and the inability of the heuristics to speculate
an appropriate right hand side for a lemma. Again times are those to speculate lemmas
and not to �nd a proof of the theorem.


Example 31 is a commuted version of the recursive de�nition of multiplication (� is
de�ned recursively on its second argument position). Spike's attempt to prove this theorem
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Just as in examples 6 and 7, these are not the optimal rules for �xing divergence. Neverthe-
less, either of the proposed rules �x divergence and both can be proved without di�culty
by Spike. Example 9 is very similar to example 8.


Examples 10 to 12 require little comment. In example 13, the proposed lemma is too
di�cult to be proved automatically. However, the divergence critic is able to identify the
cause of this di�culty and propose a lemma which allows the proof to go through (example
15). In example 14, the speculated lemma is not optimal. The simpler lemma speculated in
example 13 would be adequate to prove this theorem without divergence. The speculated
lemma is not optimal because the divergence critic attempts to ripple the accumulating
term structure over two functors, len and rot to the top of the term tree. However, it is
su�cient on this problem to ripple it up over just one functor, rot.


Examples 16 to 19 are straightforward and do not require discussion. In example 20, the
critic identi�es two separate divergence patterns. To overcome divergence, the �rst lemma
plus one or other of the second and third are therefore needed. The �rst divergence pattern
occurs in the sequence of subgoals,


len(rev(x)) = 0 + len(x)


len( app(rev(x); cons(y; nil)) ) = s(0 + len(x))


len( app(app(rev(x); cons(y; nil)); cons(z; nil)) ) = s(s(0 + len(x)))


...


Term structure is accumulating on the second argument of append. Such term structure is
removed by the �rst rule,


len( app(X; cons(Y; nil)) ) = s(len(X))


The second divergence pattern occurs in the sequence of subgoals,


s(x) + len(y) = s(x+ len(y))


s(s(x)) + len(y) = s(s(x+ len(y)))


s(s(s(x))) + len(y) = s(s(s(x+ len(y))))


...


Term structure is accumulating on the �rst argument of +. This is removed by one or other
of the second and third rules,


s(X) + Y = s(X + Y )


s(X) + Y = X + s(Y )


Examples 21 and 23 are reasonably straightforward. The lemma speculated in example
22 is a special case of the associativity of append. More powerful generalization heuristics
could have speculated the associativity of append. However, such heuristics would also
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causes divergence in the current release. The speculated lemmas do, however, simplify the
proof. Example 4 was used in the text to illustrate the generalization heuristics. The second
lemma in example 5 is perhaps a little surprising,


len(app(X; (cons(W; cons(Z; Y ) )))) = s(len(app(X; cons(W;Y )))) :


Although it is more complex than the �rst lemma, it is nearly as good at �xing divergence.


In example 6, the lemma proposed,


even( s(s(X)) + Y ) = even(X + Y )


is not optimal. That is, it is not the simplest possible lemma that �xes divergence. To �x
divergence, we merely need one of the rules, s(X) + Y = s(X + Y ) or s(X) + Y = X +
s(Y ). Either of these will ripple the successor functions accumulating on the �rst argument
position of +. The divergence critic attempts to construct a lemma to ripple two successor
functions across from the �rst to the second argument positions of +. Unfortunately, the
critic fails to �nd an appropriate instantiation for the right hand side of such a lemma. The
critic instead proposes a rule to move the two successor functions up to the top of the term
where the wave-front can peter out. Example 7 is very similar to example 6.


Examples 8 to 10 demonstrate that the critic can cope with divergence in theories involv-
ing mutual recursion. In example 8, Spike attempts to prove by induction the equations,


evenm(x+ x) = true


oddm(s(x) + x) = true


evenm(s(s(x)) + x) = true


oddm(s(s(s(x))) + x) = true


evenm(s(s(s(s(x)))) + x) = true


...


The critic identi�es two inter-linking divergence patterns,


evenm(x+ x) = true oddm(s(x) + x) = true


evenm( s(s(x)) + x) = true oddm( s(s(s(x))) + x) = true


evenm( s(s(s(s(x)))) + x) = true oddm( s(s(s(s(s(x))))) + x) = true


...
...


The critic therefore proposes rules which ripple this accumulating term structure up to the
top of the term where it peters out,


evenm( s(s(X)) + Y ) = evenm(X + Y )


oddm( s(s(X)) + Y ) = oddm(X + Y )
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No Theorem Lemmas speculated Time/s


1 s(x)+x=s(x+x) s(X)+Y=s(X+Y) 7.8
s(X)+Y=X+s(Y)


2 dbl(x)=x+x $ s(X)+Y=s(X+Y) 8.2
dbl(0)=0, dbl(s(x))=s(s(dbl(x))) s(X)+Y=X+s(Y)


3 len(x@y)=len(y @x) len(X@ (Z ::Y))=s(len(X @Y)) 3.6
len(X@ (Z ::Y))=len((W ::X)@Y)


4 len(x@ y)=len(x)+len(y) s(X)+Y=s(X+Y) 7.2
s(X)+Y=X+s(Y)


5 len(x@x)=dbl(len(x)) len(X@ (Z ::Y))=s(len(X @Y)) 11.6
len(X@ (W ::Z ::Y))=s(len(X @ (W ::Y)))


6 even(x+x) even(s(s(X))+Y)=even(X+Y) 5.4
7 odd(s(x)+x) odd(s(s(X))+Y)=odd(X+Y) 16.0
8 evenm(x+x) evenm(s(s(X))+Y)=evenm (X+Y) 28.4


oddm(s(s(X))+Y)=oddm (X+Y)
9 oddm(s(x)+x) evenm(s(s(X))+Y)=evenm (X+Y) 65.5


oddm(s(s(X))+Y)=oddm (X+Y)
10 evenm(x) ! half(x)+half(x)=x s(X)+Y=s(X+Y) 6.0


s(X)+Y=X+s(Y)
11 half(x+x)=x s(s(X))+Y=X+s(s(Y)) 11.1


half(s(s(X))+Y)=half(X+Y)
12 half(s(x)+x)=x s(s(X))+Y=X+s(s(Y)) 31.0


half(s(s(X))+Y)=half(X+Y)
13 rot(len(x),x)=x rot(len(X),X@ [Y])=Y :: rot(len(X),X) 2.4
14 len(rot(len(x),x))=len(x) len(rot(X,Z@ [Y]))=s(len(rot(X,Z))) 4.8
15 rot(len(x),x@ [y])=y :: rot(len(x),x) (X@ [Y])@ Z=X@(Y ::Z) 86.3


rot(len(X),(X@ [Y])@ Z)=Y :: rot(len(X),X@Z)
16 len(rev(x))=len(x) len(X@ [Y])=s(len(X)) 2.0
17 rev(rev(x))=x rev(X@ [Y])=Y :: rev(X) 1.2
18 rev(rev(x) @ [y])=y :: x rev(X@ [Y])=Y :: rev(X) 16.0
19 rev(rev(x) @ [y])=y :: rev(rev(x)) rev(X@ [Y])=Y :: rev(X) 18.6
20 len(rev(x @y))=len(x)+len(y) len(X@ [Y])=s(len(X)) 10.0


s(X)+Y=s(X+Y)
s(X)+Y=X+s(Y)


21 len(qrev(x,[]))=len(x) len(qrev(X,Z ::Y))=s(len(qrev(X,Y))) 2.2
22 qrev(x,y)=rev(x) @y (X@ [Y])@ Z=X@(Y ::Z) 3.4
23 len(qrev(x,y))=len(x)+len(y) s(X)+Y=s(X+Y) 12.0


s(X)+Y=X+s(Y)
24 qrev(qrev(x,[]),[])=x qrev(qrev(X,[Y]),Z)=Y :: qrev(qrev(X,[]),Z) 5.0
25 rev(qrev(x,[]))=x rev(qrev(X,[Y]))=Y :: rev(qrev(X,[])) 5.8
26 qrev(rev(x),[])=x qrev(X@ [Y],Z)=Y:: qrev(X,Z) 5.2
27 nth(i,nth(j,x))=nth(j,nth(i,x)) nth(s(I),nth(J,Y ::X))=nth(I,nth(J,X)) 7.4
28 nth(i,nth(j,nth(k,x)))=nth(k,nth(j,nth(i,x))) nth(s(I),nth(J,Y ::X))=nth(I,nth(J,X)) 7.6
29 len(isort(x))=len(x) len(insert(Y,X))=s(len(X)) 2.0
30 sorted(isort(x)) sorted(insert(Y,X))=sorted(X) 114


sorted(insert(Y,insert(Z,X)))=sorted(X)


Table 1: Some lemmas speculated by the divergence critic.
Notes: :: is written for in�x cons, @ for in�x append, [] for nil, and [x] for cons(x,nil). In
addition, even is de�ned by a s(s(x)) recursion, evenm by a mutual recursion with oddm,
and rot(n; l) rotates a list l by n elements.
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The critic is successful at identifying divergence and proposing appropriate lemmas and
generalizations for a signi�cant number of theorems. Divergence analysis is very quick on
most examples. The divergence pattern is recognized usually in less than a second. Most
of the time is spent looking for generalizations and refuting over-generalizations with the
conjecture disprover. This usually takes between 1 and 100 seconds. Additional heuristics
for preventing over-generalization and a more e�cient implementation of the conjecture
disprover would speed up the critic considerably.


8. Results


Table 1 lists 30 theorems that cause Spike to diverge and the lemmas speculated by the
divergence critic after analysing the diverging proof attempts. These problems provide a
representative sample of the type of theorems for which the cause of divergence can be
identi�ed and an appropriate lemma or generalization speculated. Many of these problems
come from the Clam library corpus. Part of this table has appeared before (Walsh, 1994).
Times are for the divergence critic to speculate the lemmas and are for the average of 10
runs on a Sun 4 running Quintus 3.1.1.


Spike's proof attempt diverges on each example when given the de�nitions alone. In
each of the 30 cases, the critic is quickly able to suggest a lemma which overcomes divergence.
When multiple lemmas are proposed (with the exception of 20) any one on its own is
su�cient to �x divergence. In every case (except 13 and 24) the lemmas proposed are
su�ciently simple to be proved automatically without introducing fresh divergence. In the
majority of cases, the lemmas proposed are optimal; that is, they are the simplest possible
lemmas which �x divergence. In the cases when the lemma is not optimal, they are usually
only slightly more complex than the simplest lemma which �xes divergence. In many of the
examples, other lemmas are conjectured by the divergence analysis but these are quickly
rejected by the conjecture disprover. For example, in example 16, divergence analysis and
the petering out heuristic suggest the rule,


## len( app(X; cons(Y; nil)) ) = len(X) ##


However, this is refuted by exhaustive normalization using any ground terms for X and Y .
In this case, the cancellation heuristic identi�es the required lemma,


len( app(X; cons(Y; nil)) ) = s(len(X)) :


Some of the examples deserve additional comment. In example 1, the divergence critic
identi�es that successor functions are accumulating on the �rst argument position of +.
The critic speculates a lemma for moving these successor functions either to the top of the
term (so that immediate cancellation can occur) or onto to the second argument position
(so that simpli�cation with the recursive de�nition of + can occur). The �rst lemma
speculated is in fact a generalization of the theorem being proved. Example 2 is a simple
program veri�cation problem taken from Dershowitz and Pinchover (1990). The forward
direction of this theorem was discussed in the introduction. Similar divergence occurs as in
example 1 and, after generalization, the same lemmas are speculated.


Example 3 caused divergence in the beta-version of Spike available in the summer of
1994. The proof rules in Spike have since been strengthened and this example no longer
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% compiling file /home/dream5/tw/work/Spike/diverge/data.double.x+x


% data.double.x+x compiled in module user, 0.233 sec 1,612 bytes


| ?- speculate.


Equations input:


double(x1)=x1+x1


s(x1+x1)=s(x1)+x1


s(s(x1+x1))=s(s(x1))+x1


s(s(s(x1+x1)))=s(s(s(x1)))+x1


Lemmas speculated:


s(x1)+x1=s(x1+x1)


s(x1)+x99=s(x1+x99)


s(x99)+x1=s(x99+x1)


s(x99)+x100=s(x99+x100)


s(x1)+x1=x1+s(x1)


s(x1)+x99=x1+s(x99)


s(x99)+x1=x99+s(x1)


s(x99)+x100=x99+s(x100)


Deleting lemmas subsumed:


s(x1)+x99=s(x1+x99)


s(x1)+x99=x1+s(x99)


Merging remaining lemmas:


s(x1)+x99=s(x1+x99)


s(x1)+x99=x1+s(x99)


yes


| ?-


Figure 4: Example output of the divergence critic.


Figure 1 gives the divergence critic's output on the problem discussed in the introduction.
Either of the proposed lemmas when used as a rewrite rule is adequate to �x divergence. In
addition, the proposed lemmas are su�ciently simple to be proved automatically without
introducing fresh divergence. The �rst lemma is a rewrite rule for moving accumulating
successor functions from the �rst argument position of + to the top of the term tree. The
second lemma is a transverse wave rule discussed in Section 6 for moving accumulating
successor functions from the �rst argument position of + to the second argument position.
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Preconditions:


1. There is a sequence of equations si = ti which the
prover attempts to prove by induction (i = 0, 1 ...);


2. There exists (non trivial) G;H such that for each j,
the maximal di�erence match has sj = G(Uj ; Acc) and


sj+1 = G( H(Uj) ; Acc).


Postconditions:


1. The critic proposes a rule of the form,


G( H(U0) ; Acc) = G(U0; F (Acc) )


2. F is instantiated by the fertilization or simpli�cation
heuristics;


3. The lemma is generalized using the (augmented) pri-
mary terms and equality heuristics;


4. Generalized lemmas are �ltered through a type checker
and a conjecture disprover;


5. If several lemmas are suggested, the critic deletes any
that are subsumed.


Figure 3: Speculation of transverse wave rules.


annotations. We could also speculate hybrid wave rules which ripple part of the wave-front
across and part of it up the term tree. However, such rules appear to be rare. In addition,
such hybrid wave rules can often be decomposed into a pair of wave rules, one of which
moves some of the wave-fronts up the term tree, and another which moves the wave-fronts
across.


7. Implementation


The divergence critic described in the previous sections has been implemented in Prolog.
The system consists of 787 lines of code de�ning approximate 100 di�erent Prolog pred-
icates. More recently a cut down version has been incorporated directly within the Spike
system which is written in Caml Light (Bouhoula & Rusinowitch, 1995b). The output
of Spike is parsed to generate input to the critic. The input consists of: the equations
which the prover attempts to prove by induction; sort information (for the type checker
and di�erence matcher); the recursive argument positions (for constructing primary terms);
and the rewrite rules de�ning the theory (used by the conjecture disprover).
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This rule allows the proof to go through without divergence.
Speculated transverse wave rules are generalized using the extended primary terms


heuristic described in Section 5. The divergence critic also generalizes transverse wave
rules by means of an equality heuristic. This heuristic attempts to cancel equal outermost
functors where possible. For example, consider the theorem,


8x; y : (x+ y)� x = y


where addition is de�ned recursively on its second argument position and subtraction is
de�ned by the rewrite rules,


X � 0 = X


0�X = 0


s(X)� s(Y) = X� Y:


Spike's attempt to prove this theorem diverges generating (amongst others) the goals,


(x+ y)� x = y


(s(x) + y)� x = s(y)


(s(s(x)) + y)� x = s(s(y))


...


Divergence analysis identi�es accumulating term structure within these equations,


(x+ y)� x = y


( s(x) + y)� x = s(y)


( s(s(x)) + y)� x = s(s(y))


...


This is the unique maximal di�erence match. These annotations suggest the need for the
transverse rule,


( s(X) + Y )�X = (X + s(Y ) )�X:


The equality heuristic deletes the equal outermost function, �z : z�X . This gives the more
general lemma,


s(X) + Y = X + s(Y ) :


All speculated lemmas are �ltered through a type checker to ensure that their erasure
is well typed. Speculated lemmas are also �ltered through a conjecture disprover to guard
against over-generalization.


The actions of the critic are summarized in Figure 3. The speci�cation of preconditions
and postconditions again uses second order variables but in a limited manner. The imple-
mentation merely requires second order matching and �rst order di�erence matching. The
preconditions and postconditions can be easily generalised to include multiple and nested
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qrev(a; b) = app(rev(a); b)


qrev(a; cons(c; b) ) = app( app(rev(a); cons(c; nil)) ; b)


qrev(a; cons(c; cons(d; b)) ) = app( app(app(rev(a); cons(c; nil)); cons(d; nil)) ; b)


...


This is the unique maximal di�erence match. Rather than move the accumulating term
structure on the right hand side of the equations to the top of the term, it is much simpler
to move the accumulating term structure from the �rst onto the second argument of the
outermost append. The critic therefore proposes a transverse wave rule, which preserves
the skeleton but moves the di�erence onto a di�erent argument position. In this example,
this is a rule of the form,


app( app(rev(A); cons(C; nil)) ;B) = app(rev(A); F (B) ):


In moving the di�erence onto another argument position, the di�erence may change syn-
tactically. The right hand side of the lemma is therefore only partially determined. To
instantiate F , the critic uses two heuristics: fertilization and simpli�cation.


The fertilization heuristic uses matching to �nd an instantiation for F which enables
immediate fertilization. In this case, matching against the universally quanti�ed variable b
in the induction hypothesis suggests,


app( app(rev(A); cons(C; nil)) ;B) = app(rev(A); cons(C;B) ):


Finally the critic generalizes the lemma using the same extended primary term heuristic as
before (i.e., augmenting recursive positions with wave-hole positions). This gives the rule,


app( app(A; cons(C; nil)) ;B) = app(A; cons(C;B) ):


This is exactly the rule needed by Spike to complete the proof. In addition, it is simple
enough to be proved by itself without divergence; this is not true of the ungeneralized rule.


The other heuristic used to instantiate the right hand side of the speculated lemma is
the simpli�cation heuristic. The heuristic uses regular matching to �nd an instantiation for
F which will enable the wave-front to be simpli�ed using one of the recursive de�nitions.
Consider again the dbl theorem from the introduction. Divergence analysis identi�es suc-
cessor functions accumulating on the �rst argument position of +. This accumulating term
structure can either be moved to the top of the term tree or alternatively onto the second
argument position of + using a transverse wave rule of the form,


s(X) + Y = X + F (Y ) :


The right hand side of this transverse wave rule is instantiated by the simpli�cation heuristic.
The wave-front on the right hand side can be simpli�ed by the rewrite rule recursively
de�ning + if F is instantiated by �z : s(z). That is, if we have the rule,


s(X) + Y = X + s(Y ) :
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As f0; s(Y)g is a cover set for the natural numbers, these two rules can be merged to give,


sorted( insert(Y;X) ) = sorted(X):


6. Transverse Wave Rules


The lemmas speculated so far have moved accumulating term structure directly to the top
of the term where it is removed by cancellation or petering out. An alternative way of
removing accumulating term structure is to move it onto another argument position where:
either it can be removed by matching with a \sink", a universally quanti�ed variable in
the induction hypothesis; or it can be moved upwards by rewriting with the recursive
de�nitions. Annotated rewrite rules which preserve the skeleton and move wave-fronts
across to other argument positions are called transverse wave rules (Bundy et al., 1993).
Theorems involving functions with accumulators provide a rich source of examples where
such rewrite rules prevent divergence.


Consider, for example, a theorem about the correctness of tail recursive list reversal,


8a; b : qrev(a; b) = app(rev(a); b)


where both a and b are universally quanti�ed, rev is naive list reversal using append, and
qrev is tail recursive list reversal building the reversed list on the second argument position.
These functions are de�ned by the rewrite rules,


rev(nil) = nil


rev(cons(H;T)) = app(rev(T); cons(H; nil))


qrev(nil;R) = R


qrev(cons(H;T);R) = qrev(T; cons(H;R)):


Spike's attempt to prove this theorem diverges generating the following sequence of equa-
tions which the prover attempts to show by induction,


qrev(a; b) = app(rev(a); b)


qrev(a; cons(c; b)) = app(app(rev(a); cons(c; nil)); b)


qrev(a; cons(c; cons(d; b))) = app(app(app(rev(a); cons(c; nil)); cons(d; nil)); b)


...


Di�erence matching identi�es the term structure accumulating within these equations that
is causing divergence,
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s(0) + len(b) = s(len(b))


s(s(0)) + len(b) = s(s(len(b)))


...


Di�erence matching identi�es the term structure causing divergence,


0 + len(b) = len(b)


s(0) + len(b) = s(len(b))


s(s(0)) + len(b) = s(s(len(b)))


...


This is the unique maximal di�erence match. These annotations suggest the need for the
wave rule,


s(0) + len(B) = s(0 + len(B)) :


A set of candidate terms for generalization is constructed by computing the intersection of
the primary terms of the two sides of this rule. In this case, the primary terms of the left
hand side are the set fs(0) + len(B); len(B);Bg, and the primary terms of the right hand
side are the set fs(0+ len(B)); 0+ len(B); len(B);Bg. The intersection of the primary terms
is thus the set flen(B);Bg. The critic picks members of the intersection to generalize to new
variables. Picking B justs gives an equivalent lemma up to renaming of variables. Picking
len(B) gives the generalization,


s(0) + Y = s(0 + Y) :


The reason for considering just primary terms is that the recursive de�nitions typically
provide wave rules for removing term structure which accumulates at these positions. In
addition to primary terms, the divergence critic therefore also considers the positions of
the wave-holes (but not wave-fronts) in the skeleton of the lemma being speculated. The
motivation for this extension is that the speculated lemma will allow accumulating term
structure to be moved from the wave-hole positions; such positions are therefore also can-
didates for generalization. Positions of the wave-fronts are not included since we want to
speculate a lemma that will move the term structure at such positions.


For instance, because of the wave-hole on the �rst argument of + in the last example,
0 is also included in the intersection set of candidate terms for generalization. Picking 0 to
generalize gives,


s(X) + Y = s(X+ Y) :


The speculated lemma is now as general as is possible. This rule allows the proof to go
through without divergence.


The critic also has a heuristic for merging speculated lemmas. For instance, with the
theorem sorted(isort(x)), the critic speculates several rules including,


sorted( insert(0;X) ) = sorted(X)


sorted( insert(s(Y);X) ) = sorted(X)


219







Walsh


1. The critic proposes a rule of the form,


G( H(U0) ) = F (G(U0))


2. F is instantiated by the cancellation or petering out
heuristics;


3. Lemmas are �ltered through a type checker and a con-
jecture disprover;


4. If several lemmas are suggested, the critic deletes any
that are subsumed.


Figure 2: Postconditions to the divergence critic


5. Generalization


A major cause of divergence is the need to generalize. Most of the lemmas proposed
by the critic �x divergence, but attempting to prove the lemmas themselves can cause
fresh divergence. In addition, several speculated lemmas can sometimes be replaced by
a single generalization. Generalized lemmas also can lead to shorter, more elegant and
natural proofs. The critic therefore attempts to generalize the lemma speculated, using the
conjecture disprover to guard against over-generalization.


The main heuristic used for generalization is an extension of the primary term heuristic
(Aubin, 1976). The primary terms are those terms encountered as a term is explored from
the root to the leaves ignoring non-recursive argument positions to functions. The same
notion of recursive argument position is used by the critic as de�ned by Bouhoula and
Rusinowitch (1995a) and as used by Spike for performing inductions.


Consider, for example, the theorem,


8a; b : len(a) + len(b) = len(app(a; b))


where + is again de�ned recursively on its second argument, and len and app are de�ned
by means of the rewrite rules,


len(nil) = 0


len(cons(H;T)) = s(len(T))


app(nil;T) = T


app(cons(H;T);R) = cons(H; app(T;R)):


This problem is taken from the Clam library corpus (Bundy et al., 1990). Spike's attempt
to prove this theorem diverges. One of the sequences of equations generated is,


0 + len(b) = len(b)


218







A Divergence Critic


Spike's diverging attempt to prove this theorem generates the equations,


nth(s(i); nth(j; x)) = nth(s(j); nth(i; x))


nth(s(s(i)); nth(j; cons(y; x))) = nth(s(j); nth(i; x))


nth(s(s(s(i))); nth(j; cons(z; cons(y; x)))) = nth(s(j); nth(i; x))


...


Divergence analysis identi�es term structure accumulating in two di�erent places,


nth(s(i); nth(j; x)) = nth(s(j); nth(i; x))


nth( s(s(i)) ; nth(j; cons(y; x) )) = nth(s(j); nth(i; x))


nth( s(s(s(i))) ; nth(j; cons(z; cons(y; x)) )) = nth(s(j); nth(i; x))


...


This is the unique maximal di�erence match. This divergence pattern suggests the need for
a rewrite rule of the form,


nth( s(I) ; nth(J; cons(Y;X) )) = F (nth(I; nth(J;X))) :


The petering out heuristic instantiates F to the identity function �z : z giving the rule,


nth( s(I) ; nth(J; cons(Y;X) )) = nth(I; nth(J;X)):


This rule allows the proof to go through without divergence.
Since the erasure of the wave rule must be properly typed, sort information can be used


to prune inappropriate instantiations for F . All speculated lemmas are therefore �ltered
through a type checker. Speculated lemmas are also �ltered through a conjecture disprover.
When a conuent set of rewrite rules exists for ground terms, exhaustive normalization
of some representative set of ground instances of the equations is used to �lter out non-
theorems. Alternatively, the prover itself could be used to �lter out non-theorems. Unlike
many other induction theorem provers, Spike can refute conjectures since its inference
rules are refutationally complete for conditional theories in which the axioms are ground
convergent and de�ned functions are completely de�ned over free constructors (Bouhoula &
Rusinowitch, 1995a). Other techniques for disproving conjectures are described by Protzen
(1992).


The critic's lemma speculation is summarized in Figure 2 (using the same variable
names as the preconditions). This speci�cation again uses second order variables in a
limited manner. First order di�erence matching is merely required to construct lemmas.
As with the preconditions, the speci�cation of the postconditions can be easily extended
to deal with multiple and nested wave-fronts (as in the nth(i; nth(j; l)) = nth(j; nth(i; l))
example). Since the rules proposed by the critic move the wave-fronts to top of the term,
they usually only introduce fresh divergence in the rare cases that cancellation or fertilization
fails. This is unlikely since the cancellation and petering out heuristics attempt to ensure
precisely that cancellation or fertilization can take place.
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This divergence pattern suggests that F should be instantiated to �z : s(z) to enable imme-
diate cancellation. Thus, as required, the cancellation heuristic suggests the rule,


s(X) + Y = s(X + Y ) :


The other heuristic used to instantiate the right hand side of speculated lemmas is
petering out. In moving the di�erences up to the top of the term, they may disappear
altogether. Consider, for example, the theorem,


8l : sorted(isort(l)) = true


where isort is insertion sort and sorted is true i� a list is sorted into order. These are de�ned
by the conditional rewrite rules,


sorted(nil) = true


sorted(cons(X; nil)) = true


X < Y ! sorted(cons(X; cons(Y; Z))) = sorted(cons(Y; Z))


isort(nil) = nil


isort(cons(X; Y )) = insert(X; isort(Y ))


where insert(X;Z), which inserts the element X into the list Z in order, and X < Y are
de�ned by the rewrite rules,


0 < X = true


s(X) < 0 = false


s(X) < s(Y ) = X < Y


insert(X; nil) = cons(X; nil)


X < Y ! insert(X; cons(Y; Z)) = cons(X; cons(Y; Z))


:(X < Y )! insert(X; cons(Y; Z)) = cons(Y; insert(X;Z))


Divergence analysis of Spike's attempt to prove this theorem suggests the need for a
rule of the form,


sorted( insert(Y;X) ) = F (sorted(X) :


The petering out heuristic instantiates F to the identity function �z : z. This gives the rule,


sorted( insert(Y;X) ) = sorted(X):


This rule allows the proof to go through without divergence.
As a more complex example, consider the theorem,


8i; j; l : nth(i; nth(j; l)) = nth(j; nth(i; l))


where nth is de�ned by the rewrite rules,


nth(0; L) = L


nth(N; nil) = nil


nth(s(N); cons(H; T )) = nth(N; T ):
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nested annotations. This allows the critic to recognise multiple sources of divergence in the
same equation. Techniques which identify accumulating term structure by most speci�c
generalization (Dershowitz & Pinchover, 1990) cannot cope with divergence patterns that
give rise to nested annotations (see Section 9 for more details).


The speci�cation of the preconditions has left the length of sequence unde�ned. If the
sequence is of length 2, then the critic is preemptive. That is, it will propose a lemma just
before another induction is attempted and divergence begins. Such a short sequence risks
identifying divergence when none exists. On the other hand using a long sequence is expen-
sive to test and allows the prover to waste time on diverging proof attempts. Empirically,
a good compromise appears to be to look for sequences of length 3. This is both cheap
to test and reliable. To identify accumulating term structure, it appears to be su�cient
to use ground di�erence matching with alpha conversion of variable names. There exists
a fast polynomial algorithm to perform such di�erence matching based upon the ground
di�erence matching algorithm using dynamic programming (Basin & Walsh, 1993). Since
the skeleton must be well typed (along with the erasure), the algorithm is extended to use
sort information to prune potential di�erence matches.


4. Lemma Speculation


One way of removing the accumulating and nested term structure is to propose a wave rule
which moves this di�erence to the top of the term leaving the skeleton unchanged. We hope
either that it will then cancel against wave-fronts on the other side of the equality or that
it will disappear in the process of being moved. For the dbl theorem, after generalization
(which is discussed in the next section) the divergence pattern suggests a rule of the form,


s(X) + Y = F (X + Y )


where F is a second order variable which we need to instantiate. Instantiating F is ulti-
mately a di�cult synthesis problem so we can only hope to have heuristics that will work
some of the time. Two of the heuristics used by the divergence critic to instantiate F are
cancellation and petering out.


The cancellation heuristic uses di�erence matching to identify term structure accumu-
lating on the opposite side of the sequence which would allow cancellation to occur. Failing
that, the cancellation heuristic looks for suitable term structure to cancel against in a new
sequence (the original sequence is usually a divergence pattern of a step case, whilst the
new sequence is usually a divergence pattern of a base case). In the dbl example, successor
functions accumulate at the top of the left hand side of the diverging equations,


s(x+ x) = s(x) + x


s(s(x+ x)) = s(s(x)) + x


s(s(s(x+ x))) = s(s(s(x))) + x


...
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The critic then attempts to �nd the accumulating and nested term structure in each
sequence which is causing divergence. In this case, successor functions are accumulating
on the �rst argument of +. To identify this accumulating term structure, the critic uses
di�erence matching. Di�erence matching successive equations gives the annotated sequence,


s(x+ x) = s(x) + x


s(s(x+ x)) = s(s(x)) + x


s(s(s(x+ x))) = s(s(s(x))) + x


...


This is the unique maximal di�erence match.
The critic then tries to speculate a lemma which can be used as a rewrite rule to move


the accumulating and nested term structure out of the way. In this case, the critic speculates
a rule for moving a successor function o� the �rst argument of +. That is, the rule,


s(X) + Y = s(X + Y ) :


With this rule, Spike is able to prove the dbl theorem without divergence. In addition, this
rule is su�ciently simple that it can be proved without assistance. The heuristics used by
the critic to perform this lemma speculation are described in more detail in the next two
sections.


The divergence analysis performed by the critic is summarised in Figure 1. In analysing


1. There is a sequence of equations si = ti which the
prover attempts to prove by induction (i = 0, 1 ...);


2. There exists (non trivial) G;H such that for each j, the
maximal di�erence match has sj = G(Uj), and sj+1 =


G( H(Uj) ).


Figure 1: Preconditions to the divergence critic


the divergence, we consider all the equations which the prover attempts to prove by induc-
tion. This includes those equation where the induction proof succeeds as these can often
suggest useful patterns. By \non-trivial" I wish to exclude �z : z, the identity substitu-
tion. H is thus the accumulating and nested term structure that appears to be causing
divergence. For the dbl example, H is �z : s(z), G is �z : z + x, and U0 is s(x). Although
G and H are second order variables, the second order nature of the divergence analysis
is limited. Indeed, the implementation of the critic merely requires �rst order di�erence
matching which is polynomial. For simplicity, the preconditions ignore the orientation of
equations. In addition, the preconditions can be easily generalised to include multiple and
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Rippling has several desirable properties. It is highly goal directed, manipulating just
the di�erences between the induction hypothesis and the induction conclusion. As the
annotations restrict the application of the rewrite rules, rippling also involves little or no
search. Di�erence matching and rippling have proved useful in domains outside of explicit
induction. For example, they have been used to sum series (Walsh, Nunes, & Bundy, 1992)
and to prove limit theorems (Yoshida, Bundy, Green, Walsh, & Basin, 1994). In the rest
of the paper, I show that di�erence matching and rippling are also useful in identifying
and correcting divergence in a prover that neither uses explicit rules of induction nor uses
annotations to control rewriting.


3. Divergence Analysis


The initial problem is recognizing when the proof is diverging. Various properties of rewrite
rules have been identi�ed which cause divergence like, for example, forwards and backwards
crossed systems (Hermann, 1989). However, these properties fail to capture all diverging
rewrite systems since the problem is, in general, undecidable. The divergence critic instead
studies the proof attempt looking for patterns of divergence; no attempt is made to analyse
the rewrite rules themselves for structures which give rise to divergence. The advantage of
this approach is that the critic need not know the details of the rewrite rules applied, nor the
type of induction being performed, nor the control structure used by the prover. The critic
can thus recognise divergence patterns arising from complex mutual or multiple inductions
with little more di�culty than divergence patterns arising from simple straightforward
inductions. The disadvantage of this approach is that the critic can identify a \divergence"
pattern when none exists. Fortunately, such cases appear to be rare, and even when they
occur, the critic usually suggests a lemma or generalization which gives a shorter and more
elegant proof (see Section 8 for an example).


To illustrate the ideas behind the critic's divergence analysis, consider again the theorem
from the introduction,


8n : dbl(n) = n+ n:


The divergence critic �rst partitions the sequence of equations which the prover attempts to
prove by induction. This is necessary since several diverging sequences may be interleaved
in the prover's output. Several heuristics can be used to reduce the number of partitions
considered. The most useful heuristic is parentage in which the sequence is partitioned
so that each equation is derived from the previous one. That is, the equations lie on a
single branch of the proof tree. In particular, the base case and step case of an induction
are partitioned into di�erent sequences. Other heuristics which can be used include: the
function and constant symbols which occur in one equation occur in the next equation
in the partition, and the weights of the equations in a partition form a simple arithmetic
progression. In this case, there is just a single open branch in the proof tree,


s(x+ x) = s(x) + x


s(s(x+ x)) = s(s(x)) + x


s(s(s(x+ x))) = s(s(s(x))) + x


...
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annotated term r. Di�erence matching is not unitary. That is, two terms can have more


than one di�erence match. For example, both s(s(x)) and s( s(x) ) are di�erence matches


of s(s(x)) with s(x). The number of di�erence matches can be reduced if we compute just
the maximal di�erence match in which wave-fronts are as high as possible in the term tree.
A formal de�nition of such a well founded ordering on annotated terms has been given by
Basin and Walsh (1994).


The aim of rippling is to rewrite the annotated induction conclusion so that the skeleton,
the induction hypothesis, is preserved and the di�erences, the wave-fronts are moved to
harmless places (for example, to the top of the term). If this rewriting succeeds, we will
then be able to appeal to the induction hypothesis. To rewrite the annotated induction
conclusion, we use the following annotated rewrite rules, or wave rules:


dbl( s(X) ) = s(s(dbl(X))) (1)


X + s(Y ) = s(X + Y ) (2)


s(X) + Y = s(X + Y ) (3)


The �rst two of these annotated rewrite rules are derived from the recursive de�nitions of dbl
and + whilst the second is derived from the lemma proposed at the end of the introduction.
Each of these annotated rewrite rules preserves the skeleton of the term being rewritten,
and moves the wave-fronts higher up the term tree. Wave rules guarantee this: a wave rule
is an annotated rewrite rule with an identical skeleton on left and right hand sides that
moves wave-fronts in a well founded direction like, for instance, to the top of the term tree
(Basin & Walsh, 1994).


Rippling on the left hand side of the annotated induction conclusion using (1) yields,


s(s(dbl(x))) = s(x) + s(x) :


Then rippling on the right hand side with (2) gives,


s(s(dbl(x))) = s( s(x) + x) :


Finally rippling with (3) on the right hand side yields,


s(s(dbl(x))) = s(s(x+ x)) :


As the wave-fronts are at the top of each term, we have successfully rippled both sides of
the equality. We can now appeal to the induction hypothesis on the left hand side giving,


s(s(x+ x)) = s(s(x+ x)) :


This is a simple identity and the proof is complete. Note that to complete the proof, we
needed to rewrite with a lemma, (3). The aim of the divergence critic described in this
paper is to propose such lemmas.
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A Divergence Critic


In Section 2, I describe di�erence matching and rippling, the two key ideas at the heart
of the divergence critic. I then outline how di�erence matching identi�es the accumulating
term structure which is causing divergence (Section 3). In Section 4 and 6, I show how
lemmas are speculated which \ripple" this term structure out of the way. In Section 5,
I describe the heuristics used in generalizing these lemmas. Finally, implementation and
results are described in Sections 7 and 8.


2. Di�erence matching and rippling


Rippling is a powerful heuristic developed at Edinburgh for proving theorems involving
explicit induction (Bundy, Stevens, van Harmelen, Ireland, & Smaill, 1993) and is imple-
mented in the Clam theorem prover (Bundy, van Harmelen, Horn, & Smaill, 1990). In the
step case of an inductive proof, the induction conclusion typically di�ers from the induction
hypothesis by the addition of some constructors or destructors. Rippling uses annotations
to mark these di�erences and applies annotated rewrite rules to remove them.


As a simple example, consider again the theorem discussed in the introduction. In the
step case, the induction hypothesis is,


dbl(x) = x+ x


And the induction conclusion is,


dbl(s(x)) = s(x) + s(x):


If we \di�erence match" the induction conclusion against the induction hypothesis (Basin
& Walsh, 1992), we obtain the following annotated induction conclusion,


dbl( s(x) ) = s(x) + s(x) :


An annotation consists of a wave-front, a box with a wave-hole, an underlined term. Wave-
fronts are always one functor thick (Basin & Walsh, 1994). That is, every wave-front has
one immediate subterm that is annotated with a wave-hole. To make presentation simpler,


we display adjacent wave-fronts merged. Thus, s(s(x)) is just syntactic sugar for the


annotated term, s( s(x) ) . Wave-fronts can also include up and down arrows to indicate


whether they are moving towards the top of the term tree or down towards the leaves. This
extension can, however, be safely ignored here.


The skeleton of an annotated term is formed by deleting everything that appears in
the wave-front but not in the wave-hole. The erasure of an annotated terms is formed by
deleting the annotations but not the terms they contain. In this case, the skeleton of the
annotated induction conclusion is identical to the induction hypothesis, and the erasure
of the annotated induction conclusion is the unannotated induction conclusion. Di�erence
matching guarantees this; that is, di�erence matching the induction conclusion with the
induction hypothesis annotates the induction conclusion so that its skeleton matches the
induction hypothesis.


Formally, r is a di�erence match of s with t with substitution � i� �(skeleton(r)) = t


and erase(r) = s where skeleton(r) and erase(r) build the skeleton and erasure of the
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both alpha convert variable names where necessary. Rewriting the induction conclusion
with the recursive de�nitions of dbl and + gives,


s(s(dbl(x))) = s(s(x) + x):


The outermost successor functions on either side of the equality are now cancelled,


s(dbl(x)) = s(x) + x:


The prover then fertilizes with the induction hypothesis on the left hand side,


s(x+ x) = s(x) + x:


This equation cannot be simpli�ed further so another induction is performed. Unfortunately,
this generates the diverging sequence of subgoals,


s(x+ x) = s(x) + x


s(s(x+ x)) = s(s(x)) + x


s(s(s(x+ x))) = s(s(s(x))) + x


s(s(s(s(x+ x)))) = s(s(s(s(x)))) + x


s(s(s(s(s(x+ x))))) = s(s(s(s(s(x))))) + x


...


The problem is that the prover repeatedly tries an induction on x but is unable to simplify
the successor functions that this introduces on the �rst argument position of +. The proof
will go through without divergence if we have the rewrite rule,


s(X) + Y = s(X + Y ):


This rule \ripples" accumulating successor functions o� the �rst argument position of +.
This rewrite rule is derived from the lemma,


8x; y : s(x) + y = s(x+ y):


This is the commuted version of the recursive de�nition of addition and is, coincidently, a
generalization of the �rst subgoal. This lemma can be proved without divergence as the
induction variable, y occurs just in the second argument position of +.


In this paper I describe a simple \divergence critic", a computer programwhich attempts
to automate this process. The divergence critic identi�es when a proof attempt is diverging
by means of a \di�erence matching" procedure. The critic then proposes lemmas and
generalizations which hopefully allow the proof to go through without divergence. Although
the critic is designed to work with the prover Spike, it should also work with other induction
provers (Walsh, 1994). Spike is a rewrite based theorem prover for �rst order conditional
theories. It contains powerful rules for case analysis, simpli�cation and implicit induction
using the notion of a test set. Unfortunately, as is the case with other inductive theorem
provers, its attempts to prove many theorems diverge without an appropriate generalization
or the addition of a suitable lemma.
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Abstract


Inductive theorem provers often diverge. This paper describes a simple critic, a com-
puter program which monitors the construction of inductive proofs attempting to identify
diverging proof attempts. Divergence is recognized by means of a \di�erence matching"
procedure. The critic then proposes lemmas and generalizations which \ripple" these dif-
ferences away so that the proof can go through without divergence. The critic enables the
theorem prover Spike to prove many theorems completely automatically from the de�ni-
tions alone.


1. Introduction


Two key problems in inductive theorem proving are proposing lemmas and generalizations.
A prover's divergence often suggests to the user an appropriate lemma or generalization
that will enable the proof to go through without divergence. As a simple example, consider
the theorem,


8n : dbl(n) = n+ n:


This is part of a simple program veri�cation problem (Dershowitz & Pinchover, 1990).
Addition and doubling are de�ned recursively by means of the rewrite rules,


X + 0 = X


X + s(Y ) = s(X + Y )


dbl(0) = 0


dbl(s(X)) = s(s(dbl(X)))


where s(X) represents the successor of X (that is, X + 1). I have adopted the Prolog
convention of writing meta-variables like X and Y in upper case.


The theorem prover Spike (Bouhoula, Kounalis, & Rusinowitch, 1992) fails to prove
this theorem. The proof attempt begins with a simple one step induction on x. The base
case is trivial. In the step case, the induction hypothesis is,


dbl(x) = x+ x


And the induction conclusion is,


dbl(s(x)) = s(x) + s(x):


To ease presentation, variables in this paper are, as here, sometimes renamed from those
introduced by Spike. This has no e�ect on the results as the prover and divergence critic
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