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Abstract


This paper presents new experimental evidence against the utility of Occam's razor.
A systematic procedure is presented for post-processing decision trees produced by C4.5.
This procedure was derived by rejecting Occam's razor and instead attending to the as-
sumption that similar objects are likely to belong to the same class. It increases a decision
tree's complexity without altering the performance of that tree on the training data from
which it is inferred. The resulting more complex decision trees are demonstrated to have,
on average, for a variety of common learning tasks, higher predictive accuracy than the less
complex original decision trees. This result raises considerable doubt about the utility of
Occam's razor as it is commonly applied in modern machine learning.


1. Introduction


In the fourteenth century William of Occam stated \plurality should not be assumed with-
out necessity". This principle has since become known as Occam's razor. Occam's razor
was originally intended as a basis for determining one's ontology. However, in modern times
it has been widely reinterpreted and adopted as an epistemological principle|a means of
selecting between alternative theories as well as ontologies. Modern reinterpretations of
Occam's razor are widely employed in classi�cation learning. However, the utility of this
principle has been subject to widespread theoretical and experimental attack. This paper
adds to this debate by providing further experimental evidence against the utility of the
modern interpretation of Occam's razor. This evidence takes the form of a systematic pro-
cedure for adding non-redundant complexity to classi�ers in a manner that is demonstrated
to frequently improve predictive accuracy.


The modern interpretation of Occam's razor has been characterized as \of two hy-
potheses H and H0, both of which explain E, the simpler is to be preferred" (Good, 1977).
However, this does not specify what aspect of a theory should be measured for simplicity.
Syntactic, semantic, epistemological and pragmatic simplicity are all alternative criteria that
can and have been employed Bunge (1963). In practice, the common use of Occam's razor
in machine learning seeks to minimize surface syntactic complexity. It is this interpretation
that this paper addresses.


It is to be assumed that Occam's razor is usually applied in the expectation that its
application will, in general, lead to some particular form of advantage. There is no widely
accepted articulation of precisely how Occam's razor should be applied or what advantages
are to be expected from its application in classi�cation learning. However, the literature
does contain two statements that seem to capture at least one widely adopted approach to
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the principle. Blumer, Ehrenfeucht, Haussler, and Warmuth (1987) suggest that to wield
Occam's razor is to adopt the goal of discovering \the simplest hypothesis that is consistent
with the sample data" with the expectation that the simplest hypothesis will \perform well
on further observations taken from the same source". Quinlan (1986) states


\Given a choice between two decision trees, each of which is correct over the
training set, it seems sensible to prefer the simpler one on the grounds that it is
more likely to capture structure inherent in the problem. The simpler tree would
therefore be expected to classify correctly more objects outside the training set."


While these statements would not necessarily be accepted by all proponents of Occam's
razor, they capture the form of Occam's razor that this paper seeks to address|a learning
bias toward classi�ers that minimize surface syntactic complexity in the expectation of
maximizing predictive accuracy.


Both of the above statements of Occam's razor restrict themselves to classi�ers that
correctly classify all objects in a training set. Many modern machine learning systems
incorporate learning biases that tolerate small levels of misclassi�cation of the training data
(Clark & Niblett, 1989; Michalski, 1984; Quinlan, 1986, 1990, for example). In this context,
and extending the scope of the de�nition beyond decision trees to classi�ers in general, it
seems reasonable to modify Quinlan's (1986) statement (above) to


Given a choice between two plausible classi�ers that perform identically on the
training set, the simpler classi�er is expected to classify correctly more objects
outside the training set.


This will be referred to as the Occam thesis.


The concept of identical performance on a training set could be de�ned in many di�erent
ways. It might be tempting to opt for a de�nition that requires identical error rates when
two classi�ers are applied to the training set. A less strict interpretation might allow two
classi�ers to have di�ering error rates so long as the di�erence is within some statistical
con�dence limit. However, to maximize the applicability of its results, this paper will adopt
a very strict interpretation of identical performance|that for every object o in the training
set, both classi�ers provide the same classi�cation for o.


It should be noted that the Occam thesis is not claiming that for any two classi�ers
with equal empirical support the least complex will always have greater predictive accuracy
on previously unseen objects. Rather, it is claiming that more frequently than not the less
complex will have higher predictive accuracy.


This paper �rst examines some arguments for and against the Occam thesis. It then
presents new empirical evidence against the thesis. This evidence was acquired by using a
learning algorithm that post-processes decision trees learnt by C4.5. This post-processor
was developed by rejecting the Occam thesis and instead attending to the assumption
that similarity is predictive of class. The post-processor systematically adds complexity to
decision trees without altering their performance on the training data. This is demonstrated
to lead to an increase in predictive accuracy on previously unseen objects for a range of
`real-world' learning tasks. This evidence is taken as incompatible with the Occam thesis.
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2. Previous Theoretical and Experimental Work


To provide a context for the new evidence against the Occam thesis, it is worth briey
examining previous relevant theoretical and experimental work. Where relevant, an outline
will be provided of reasons why each contribution may have failed to persuade the other
side of the debate.


2.1 The Law of Conservation of Generalization Performance


The conservation law of generalization performance (Scha�er, 1994) proves that no learning
bias can outperform any other bias over the space of all possible learning tasks1. It follows
that if Occam's razor is a valuable learning bias, it can only be so for some subset of all
possible learning tasks. It might be argued that the set of `real-world' learning tasks is such
a subset.


This paper is predicated on accepting the proposition that the set of `real-world' learning
tasks is distinguished from the set of all possible learning tasks in respects that render the
conservation law inapplicable. Rao, Gordon, and Spears (1995) argue that this is the case
because learning tasks in our universe are not uniformly distributed across the space of all
possible learning tasks.


But why should this be so? One argument in support of this proposition is as follows.
`Real-world' learning tasks are de�ned by people for use with machine learning systems. To
this end, the task constructors will have sought to ensure that the independent variables
(class attributes) are related to the dependent variables (other attributes) in ways that can
be captured within the space of classi�ers that are made available for the learning system.
Actual machine learning tasks are not drawn randomly from the space of all possible learning
tasks. The human involvement in the formulation of the problems ensures this.


As a simple thought experiment in support of this proposition, consider a learning task
for which the class attribute is generated by a random number generator and in no way
relates to the other attributes. The majority of machine learning researchers would not be in
the slightest disconcerted if their systems failed to perform well when trained on such data.
As a further example, consider a learning task for which the class attribute is a simple count
of the number of missing attribute values for an object. Assume that such a learning task
was submitted to a system, such as C4.5 (Quinlan, 1993), that develops classi�ers that have
no mechanism for testing during classi�cation whether an attribute value is missing. Again,
the majority of machine learning researchers would be unconcerned that their systems failed
to perform well in such circumstances. Machine learning is simply unsuited to such tasks.
A knowledgeable user would not apply machine learning to such data, at least not in the
expectation of obtaining a useful classi�er therefrom.


This paper explores the applicability of the Occam thesis to `real-world' learning tasks.


2.2 Other Theoretical Objections to the Occam Thesis


Most machine learning systems explicitly or implicitly employ Occam's razor. In addition
to its almost universal use in machine learning, the principle of Occam's razor is widely


1. The law is only proved for discrete valued learning tasks, but there is no reason to believe it does not


also apply to continuous valued tasks
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accepted in general scienti�c practice. That this has persisted, despite Occam's razor being
subjected to extensive philosophical, theoretical and empirical attack, suggests that these
attacks have not been found persuasive.


On the philosophical front, to summarize Bunge (1963), the complexity of a theory
(classi�er) depends entirely upon the language in which it is encoded. To claim that the
acceptability of a theory depends upon the language in which it happens to be expressed
appears indefensible. Further, there is no obvious theoretical relationship between syn-
tactic complexity and the quality of a theory, other than the possibility that the world is
intrinsically simple and that the use of Occam's razor enables the discovery of that intrinsic
simplicity. However, even if the world is intrinsically simple, there is no reason why that
simplicity should correspond to syntactic simplicity in an arbitrary language.


To merely state that a less complex explanation is preferable does not specify by what
criterion it is preferable. The implicit assumption underlying much machine learning re-
search appears to be that, all other things being equal, less complex classi�ers will be, in
general, more accurate (Blumer et al., 1987; Quinlan, 1986). It is this Occam thesis that
this paper seeks to discredit.


On a straight-forward interpretation, for a syntactic measure to be used to predict
expected accuracy appears absurd. If two classi�ers have identical meaning (such as IF
20�AGE�40 THEN POS and IF 20�AGE�30 OR 30�AGE�40 THEN POS) then it is
not possible for their accuracies to di�er, no matter how greatly their complexities di�er.
This simple example highlights the apparent dominance of semantics over syntax in the
determination of predictive accuracy.


2.3 Previous Experimental Evidence Against the Occam Thesis


On the empirical front, a number of recent experimental results have appeared to conict
with the Occam thesis. Murphy and Pazzani (1994) demonstrated that for a number of arti-
�cial classi�cation learning tasks, the simplest consistent decision trees had lower predictive
accuracy than slightly more complex consistent trees. Further experimentation, however,
showed that these results were dependent upon the complexity of the target concept. A
bias toward simplicity performed well when the target concept was best described by a
simple classi�er and a bias toward complexity performed well when the target concept was
best described by a complex classi�er (Murphy, 1995). In addition, the simplest classi�ers
obtained better than average (over all consistent classi�ers) predictive accuracy when the
data was augmented with irrelevant attributes or attributes strongly correlated to the target
concept, but not required for classi�cation.


Webb (1994) presented results that suggest that for a wide range of learning tasks from
the UCI repository of learning tasks (Murphy & Aha, 1993), the relative generality of
the classi�ers is a better predictor of classi�cation performance than is the relative surface
syntactic complexity. However, it could be argued that while these results demonstrate that
a strategy of selecting the simplest between any pair of theories will not lead to maximization
of predictive accuracy, they do not demonstrate that selecting the simplest of all available
theories would fail to maximize predictive accuracy.


Scha�er (1992, 1993) has shown that pruning techniques that reduce complexity while
decreasing resubstitution accuracy sometimes increase predictive accuracy and sometimes
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decrease predictive accuracy of inferred decision trees. However, a proponent of the Occam
thesis could explain these results in terms of a positive e�ect from the application of Occam's
razor (the reduction of complexity) being counter-balanced by a negative e�ect from a
reduction of empirical support (resubstitution accuracy).


Holte, Acker, and Porter (1989) have shown that specializing small disjuncts (rules
with low empirical support) to exclude areas of the instance space occupied by no training
objects frequently decreases the error rate of unseen objects covered by those disjuncts. As
this specialization involves increasing complexity, this might be viewed as contrary to the
Occam thesis. However, the same research shows that the total error rates for the classi�ers
in which the disjuncts are embedded increases when those disjuncts are specialized. A
proponent of the Occam thesis could thus dismiss the relevance of the former results by
arguing that the thesis only applies to complete classi�ers and not to elements of those
classi�ers.


2.4 Theoretical and Experimental Support for the Occam Thesis


Against these theoretical and experimental objections to the Occam thesis there exists a
body of apparent theoretical and empirical support.


Several attempts have been made to provide theoretical support for the Occam thesis
in the machine learning context (Blumer et al., 1987; Pearl, 1978; Fayyad & Irani, 1990).
However, these proofs apply equally to any systematic learning bias that favors a small
subset of the hypothesis space. Indeed, it has been argued that they equally support a
preference for classi�ers with high complexity (Scha�er, 1993; Berkman & Sandholm, 1995).


Holte (1993) compared learning very simple classi�cation rules with the use of a sophis-
ticated learner of complex decision trees. He found that, for a number of tasks from the UCI
repository of machine learning datasets (Murphy & Aha, 1993), the simple rules achieved
accuracies of within a few percentage points of the complex trees. This could be considered
as supportive of the Occam thesis. However, in no case did the simple rules outperform the
more complex decision trees. Nor was it demonstrated that there did not exist yet another
learning bias that consistently outperformed both those studied.


A �nal argument that might be considered to support the Occam thesis is that the
majority of machine learning systems employ some form of Occam's razor and they ap-
pear to perform well in practice. However, it has not been demonstrated that even better
performance would not be obtained if Occam's razor were abandoned.


3. New Experimental Evidence Against the Occam Thesis


The theoretical and experimental objections to the Occam thesis do not appear to have
greatly diminished the machine learning community's use of Occam's razor. This paper
seeks to support objections to the Occam thesis with robust and general experimental
counter-evidence. To this end it presents a systematic procedure for increasing the com-
plexity of inferred decision trees without modifying their performance on the training data.
This procedure takes the form of a post-processor for decision trees produced by C4.5 (Quin-
lan, 1993). The application of this procedure to a range of learning tasks from the UCI
repository of learning tasks (Murphy & Aha, 1993) is demonstrated to result, on average,
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in increased predictive accuracy when the inferred decision trees are applied to previously
unseen data.


3.1 Theoretical Basis for the Decision Tree Post-processor


The similarity assumption is a common assumption in machine learning|that objects that
are similar have high probability of belonging to the same class (Rendell & Seshu, 1990).
The techniques to be described rely upon this assumption for their theoretical justi�cation
rather than upon the Occam thesis.


Starting from the similarity assumption, machine learning can be viewed as the inference
of a suitable similarity metric for a learning task. A decision tree can be viewed as a
partitioning of the instance space. Each partition, represented by a leaf, contains the
objects that are similar in relevant respects and thus are expected to belong to the same
class.


This raises the issue of how similarity should be measured. Instance-based learn-
ing methods (Aha, Kibler, & Albert, 1991) tend to map the instance space onto an n-
dimensional geometric space and then employ geometric distance measures within that
space to measure similarity. Such an approach is problematic on a number of grounds.
First, it assumes that the underlying metrics of di�erent attributes are commensurable.
How is it possible to determine a priori whether a di�erence of �ve years in age signi�es
a greater or lesser di�erence in similarity than a di�erence of one inch in height? Second,
it assumes that it is possible to provide a priori de�nitions of similarity with respect to a
single attribute. Can one really make a universal prescription that a value of 16 is always
more similar to a value of 2 than to a value of 64? Why should it never be the case that the
relevant similarity metric is based on the log2 of the surface value, in which case 16 would
be more similar to 64 than to 2?


If we wish to employ induction to learn classi�ers expressed in a particular language then
it would appear that we are forced to assume that the language in question in some manner
captures a relevant aspect of similarity. Any potential leaf of a decision tree presents a
plausible similarity metric (all objects that fall within that leaf are similar in some respect).
Empirical evaluation (the performance of that leaf on the training set) can then be used to
infer the relevance of that similarity metric to the induction task at hand. If a leaf l covers
a large number of objects of class c and few of other classes, then this provides evidence
that similarity with respect to the tests that de�ne l is predictive of c.


Figure 1 illustrates a simple instance space and the partition that C4.5 (Quinlan, 1993)
imposes thereon. Note that C4.5 forms nodes for continuous attributes, such as A and B,
that consist of a test on a cut value x. This test takes the form a � x. With respect to
Figure 1 there is one such cut, on value 5 for attribute A.


C4.5 infers that the relevant similarity metric relates to attribute A only. The partition
(shown by a dashed line) is placed at value 5 for attribute A. However, if one does not
accept the Occam thesis, but does accept the similarity assumption, there is no reason to
believe that the area of the instance space for which B > 5 and A � 5 (lightly shaded in
Figure 1) should belong to class + (as determined by C4.5) rather than class {.


C4.5 uses the Occam thesis to justify the termination of partitioning of the instance
space as soon as the decision tree accounts adequately for the training set. In consequence,
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Figure 1: A simple instance space


large areas of the instance space that are occupied by no objects in the training set may
be left within partitions for which the similarity assumption provides little support. For
example, with respect to Figure 1, it could be argued that a more relevant similarity metric
with respect to the region A � 5 and B > 5 is similarity with respect to B. Within the
entire instance space, all objects with values of B > 5 belong to class {. There are �ve such
objects. In contrast, there are only three objects with values of A � 5 that provide the
evidence that objects in this area of the instance space belong to class +. Each of these
tests represents a plausible similarity metric on the basis of the available evidence. Thus,
an object within this region will be similar in a plausible respect to three positive and �ve
negative objects. If objects that are similar in relevant respects have high probability of
belonging to the same class, and the only other information available is that it is plausible
that an object is similar to three positive and �ve negative objects, then it would appear
more probable that the object is negative than positive.


The disagreement between C4.5 and the similarity assumption in this case contrasts
with, for example, the area of the instance space for which A � 5 and B < 1. In this region,
the similarity assumption suggests that C4.5's partition is appropriate because all plausible
similarity metrics will indicate that an object in this region is similar to positive objects
only2.


The post-processor developed for this research analyses decision trees produced by C4.5
in order to identify such regions|those occupied by no objects from the training set but
for which there is evidence (in terms of the similarity assumption) favoring relabeling with


2. To provide an example of an implausible similarity metric, consider the similarity metric de�ned by


the root node, that everything is similar. This will not be plausible as there is too great a level of


dissimilarity in classes with respect to this metric. If it were a relevant similarity metric, and the


distribution of training examples was representative of the distribution of objects in the domain as a


whole, then the similarity assumption would be violated, as similar objects would have probability of just


0.58 of belonging to the same class. This probability can be calculated as follows. The probabilities of


an object being + or { are 0.3 and 0.7 respectively. If an object is + then the probability of it belonging


to the same class as another object to which it is similar is 0.3. If an object is { then the probability of


it belonging to the same class as another object to which it is similar is 0.7. Thus, the probability of an


object belonging to the same class as another similar object is 0:3� 0:3+0:7� 0:7 = 0:58. The numbers


involved in this simple example are, of course, too small to reach any such conclusion with a high level


of con�dence|the example is intended as illustrative only.


403







Webb


a di�erent class to that assigned by C4.5. When such regions are identi�ed, new branches
are added to the decision tree, creating new partitionings of the instance space. Both trees
must provide identical performance with respect to the training set as only regions of the
instance space that are occupied by no objects in the training set are a�ected.


It is di�cult to see how any plausible metric for complexity could interpret the addition
of such branches as not increasing the complexity of the tree.


The end result is that the post-processor adds complexity to the decision tree without
altering how the tree applies to the training data. The Occam thesis predicts that this will,
in general, lower predictive accuracy while the similarity assumption predicts that it will,
in general, increase predictive accuracy. As will be seen, the latter prediction is consistent
with experimental evidence and the former is not.


3.2 The Post-processor


While the above process could be applied to both continuous and discrete attributes, the
current implementation addresses only continuous attributes.


The post-processor operates by examining each leaf l of the tree in turn. For each l,
each attribute a is considered in turn. For each a, all possible thresholds below and above
the region of the instance space occupied by objects at l are explored. First, the minimum
(min) and maximum (max) are determined for values of a that are possible for objects
that can reach l. If l lies below the � branch of a split on a then the threshold for that
split provides an upper limit (max) on values for a at l. If it lies below a > branch, the
threshold provides a lower limit (min). Where the node does not lie below a � branch,
max = 1. Where the node does not lie below a > branch, min = �1. Only objects
from the training set that have values of a within the range min::max are considered in the
following operations.


For each value observed in the training set for the attribute within the allowable range
but outside the actual range of values of a for objects at l, the evidence is evaluated in
support of reclassifying the region above or below that threshold. The level of support for a
given threshold is evaluated using a Laplacian accuracy estimate (Niblett & Bratko, 1986).
Because each leaf relates to a binary classi�cation (an object belongs to the class in question
or does not), the binary form of Laplace is used. For threshold t on attribute a at leaf l,
the evidence in support of labeling the partition below t with class n is the maximum value
for an ancestor node x of l for the formula


P + 1


T + 2


where T is the number of objects at x for which min < a � t; and P is the number of those
objects which belong to class n.


The evidence in support of labeling a partition above a threshold is calculated identically
with the exception that the objects for which t < a � max are instead considered.


If the maximum evidence for a new labeling exceeds the evidence for the current labeling
of the region, a new branch is added for the appropriate threshold creating a new leaf node
labeled with the appropriate class.


In addition to evidence in favor of the current labeling gathered as above, further evi-
dence in support of the current labeling of a region is calculated using the Laplace accuracy
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estimate considering the objects at the leaf, where T is the number of objects at the leaf and
P is the number of those objects that belong to the class with which the node is labeled.


This approach ensures that all new partitions de�ne true regions. That is, for any
attribute a and value v it is not possible to partition on a � v unless it is possible for
both objects from the domain with values of a greater than v and objects with values less
than or equal to v to reach the node being partitioned (even though no objects from the
training set will fall within the new partition). In particular, this ensures that the new cuts
are not simple duplications of existing cuts at ancestors to the current node. Thus, every
modi�cation adds non-redundant complexity to the tree.


This algorithm is presented in Figure 2. It has been implemented as a modi�cation
to C4.5 release 6, called C4.5X. The source code for these modi�cations is available as an
on-line appendix to this paper.


In C4.5X, where multiple sets of values equally satisfy the speci�ed constraints and
maximize the Laplace function, values of na and nb that are deeper in the tree are selected
over those closer to the root and, at a single node, preference for values of aa and ab depends
upon the order of attributes in the de�nition of the data and preference for values of va
and vb is dependent upon data order. These selection strategies are a side e�ect of the
implementation of the system. There is no reason to believe that the experimental results
would di�er in general if other strategies were used to select between competing constraints.


By default, C4.5 develops two decision trees each time that it is run, an unpruned and a
pruned (simpli�ed) decision tree. C4.5X produces post-processed versions of both of these
trees.


3.3 Evaluation


To evaluate the post-processor it was applied to all datasets containing continuous attributes
from the UCI machine learning repository (Murphy & Aha, 1993) that were then held (due
to previous machine learning experimentation) in the local repository at Deakin University.
These datasets are believed to be broadly representative of those in the repository as a
whole. After experimentation with these eleven data sets, two additional data sets, sick
euthyroid and discordant results, were retrieved from the UCI repository and added to the
study in order to investigate speci�c issues, as discussed below.


The resulting thirteen datasets are described in Table 1. The second column contains
the number of attributes by which each object is described. Next is the proportion of these
that are continuous. The fourth column indicates the proportion of attribute values in the
data that are missing (unknown). The �fth column indicates the number of objects that
the data set contains. The sixth column indicates the proportion of these that belong to
the class represented by the most objects within the data set. The �nal column indicates
the number of classes that the data set describes. Note that the glass type dataset uses the
Float/Not Float/Other three class classi�cation rather than the more commonly used six
class classi�cation.


Each data set was divided into training and evaluation sets 100 times. Each training
set consisted of 80% of the data, randomly selected. Each evaluation set consisted of the
remaining 20% of the data. Both C4.5 and C4.5X were applied to each of the resulting 1300
(13 data sets by 100 trials) training and evaluation set pairs.
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Let cases(n) denote the set of all training examples that can reach node n.


Let value(a; x) denote the value of attribute a for training example x.


Let pos(X; c) denote the number of objects of class c in the set of training examples X.


Let Laplace(X; c) = pos(X;c)+1
jXj+2 where X is a set of training examples, jXj is the number of training


examples and c is a class.


Let upperlim(n; a) denote the minimum value of a cut on attribute a for an ancestor node of n for
which n lies below a � branch. If there is no such cut, upperlim(n; a) = 1. This determines an
upper bound on the values for a that may reach n.


Let lowerlim(n; a) denote the maximum value of a cut on attribute a for an ancestor node of n for
which n lies below a > branch. If there is no such cut, lowerlim(n; a) = �1. This determines a
lower bound on the values for a that may reach n.


To post-process leaf l dominated by class c


1. Find values of


na: na is an ancestor of l


aa: aa is a continuous attribute


va : 9x : x 2 cases(na) & va = value(aa; x) & va � min(v : 9y : y 2 cases(l) & v =
value(aa; y)) & va > lowerlim(l; aa)


ca: ca is a class


that maximize La = Laplace(fx : x 2 cases(na) & value(aa; x) � va & value(aa; x) >


lowerlim(l; aa)g; ca).


2. Find values of


nb: nb is an ancestor of l


ab: ab is a continuous attribute


vb : 9x : x 2 cases(nb) & vb = value(ab; x) & vb > max(v : 9y : y 2 cases(l) & v =
value(ab; y)) & vb � upperlim(l; ab)


cb: cb is a class


that maximize Lb = Laplace(fx : x 2 cases(nb) & value(ab; x) > vb & value(ab; x) �
upperlim(l; ab)g; cb).


3. If La > Laplace(cases(l); c) & La � Lb then


(a) if ca 6= c


i. replace l with a node n with the test aa � va.


ii. set the � branch for n to lead to a new leaf for class ca.


iii. set the > branch for n to lead to l.


else if Lb > Laplace(cases(l); c)


(b) if cb 6= c


i. replace l with a node n with the test ab � vb.


ii. set the > branch for n to lead to a new leaf for class cb.


iii. set the � branch for n to lead to l.


Figure 2: C4.5X post-processing algorithm
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Table 1: UCI data sets used for experimentation


% % most
No. of contin- % No. of common No. of


Name Attrs. uous missing objects class classes


breast cancer Wisconsin 9 100 <1 699 66 2
Cleveland heart disease 13 46 <1 303 54 2
credit rating 15 40 1 690 56 2
discordant results 29 24 6 3772 98 2
echocardiogram 6 83 3 74 68 2
glass type 9 100 0 214 40 3
hepatitis 19 32 6 155 79 2
Hungarian heart disease 13 46 20 295 64 2
hypothyroid 29 24 6 3772 92 4
iris 4 100 0 150 33 3
new thyroid 5 100 0 215 70 3
Pima indians diabetes 8 100 0 768 65 2
sick euthyroid 29 24 6 3772 94 2


Table 2 summarizes the percentage predictive accuracy obtained for the unpruned de-
cision trees generated by both C4.5 and C4.5X. It presents the mean (x) and standard
deviation (s) over each set of 100 trials with respect to each data set for both C4.5 and
C4.5X along with the results of a two-tailed matched pairs t-test comparing these means.
For twelve of the thirteen data sets C4.5X obtained a higher mean accuracy than C4.5. For
the remaining data set, hypothyroid, C4.5 obtained higher mean predictive accuracy than
C4.5CS (albeit by a small margin|measured to two decimal places the respective mean ac-
curacies were 99.51 and 99.46, respectively). For nine of the data sets the advantage toward
C4.5X is statistically signi�cant at the 0.05 level (p � 0:05), although the advantage with
respect to the discordant results data is too small to be apparent when measured to one
decimal place (measured to two decimal places the values are 98.58 and 98.62 respectively).
The advantage toward C4.5 for the hypothyroid data is also statistically signi�cant at the
0.05 level. The di�erences in mean predictive accuracy for the Hungarian heart disease,
new thyroid and sick euthyroid data sets are not signi�cant at the 0.05 level.


Table 3 uses the same format as Table 2 to summarize the predictive accuracy obtained
for the pruned decision trees generated by both C4.5 and C4.5X. For the same twelve data
sets C4.5X obtained a higher mean predictive accuracy than C4.5. For the remaining data
set, hypothyroid, C4.5 again obtained higher mean predictive accuracy, although again the
magnitude of the di�erence is so small that it is not apparent at the level of precision
displayed (measured to two decimal places the mean accuracies are 99.51 and 99.46). For
six of the data sets the advantage toward C4.5X is statistically signi�cant at the 0.05
level, although the di�erence is only apparent at a precision of two decimal places for the
discordant results data (99.81 and 99.82, respectively). The advantage toward C4.5 for
the hypothyroid data is also statistically signi�cant at the 0.05 level. The di�erences for
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Table 2: Percentage predictive accuracy for unpruned decision trees.


C4.5 C4.5X
Name x s x s t p


breast cancer Wisconsin 94.1 1.8 94.4 1.7 {3.2 0.002
Cleveland heart disease 72.8 5.0 74.4 4.8 {6.1 0.000
credit rating 82.2 3.4 83.0 3.3 {7.6 0.000
discordant results 98.6 0.5 98.6 0.5 {5.4 0.000
echocardiogram 72.0 9.8 73.5 10.2 {2.8 0.007
glass type 74.0 7.0 75.3 7.2 {4.2 0.000
hepatitis 79.6 7.1 80.8 6.9 {3.3 0.001
Hungarian heart disease 77.0 5.3 77.4 5.2 {1.8 0.082
hypothyroid 99.5 0.2 99.5 0.2 4.4 0.000
iris 95.4 3.4 95.7 3.5 {2.2 0.028
new thyroid 89.9 4.2 90.1 4.3 {1.0 0.302
Pima indians diabetes 70.2 3.5 71.3 3.6 {8.1 0.000
sick euthyroid 98.7 0.5 98.7 0.5 {0.0 0.963


Table 3: Percentage accuracy for pruned decision trees.


C4.5 C4.5X
Name x s x s t p


breast cancer Wisconsin 95.1 1.7 95.2 1.7 {2.0 0.051
Cleveland heart disease 74.1 5.3 74.8 5.3 {3.7 0.000
credit rating 84.1 3.2 84.6 3.2 {5.3 0.000
discordant results 98.8 0.4 98.8 0.4 {2.6 0.010
echocardiogram 74.2 9.3 75.1 9.8 {1.6 0.1180
glass type 74.4 6.9 75.4 6.9 {3.3 0.001
hepatitis 79.9 6.2 80.7 6.2 {3.0 0.003
Hungarian heart disease 79.2 4.9 79.4 4.8 {1.0 0.310
hypothyroid 99.5 0.2 99.5 0.2 5.4 0.000
iris 95.4 3.6 95.7 3.7 {1.6 0.109
new thyroid 89.6 4.2 89.8 4.2 {0.8 0.451
Pima indians diabetes 72.2 3.5 72.8 3.5 {5.9 0.000
sick euthyroid 98.7 0.4 98.7 0.4 {0.7 0.480


breast cancer Wisconsin, echocardiogram, Hungarian heart disease, iris, new thyroid and
sick euthyroid are not statistically signi�cant at the 0.05 level.


After completing experimentation on the initial eleven data sets, the results for the
hypothyroid data stood out in stark contrast from those for the other ten. This raised
the possibility that there might be distinguishing features of the hypothyroid data that
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accounted for this di�erence in performance. Table 1 indicates this data set is clearly
distinguishable from the other ten initial data sets in the following six respects|


� having more attributes;


� containing a greater proportion of discrete attributes (which are not directly addressed
by C4.5X);


� containing more objects;


� having a greater proportion of the objects belong to the most common class;


� having more classes; and


� producing decision trees of extremely high predictive accuracy without post-processing.


To explore these issues the discordant results and sick euthyroid data sets were retrieved
from the UCI repository and added to the study. These data sets are identical to the
hypothyroid data set with the exception that each has a di�erent class attribute. All three
data sets contain the same objects, described by the same attributes. The addition of the
discordant results and sick euthyroid data did little to illuminate this issue however. For
all three data sets the changes in accuracy are of very small magnitude. For hypothyroid
there is a signi�cant advantage to C4.5. For sick euthyroid there is no signi�cant advantage
to either system. For the discordant results data there is a signi�cant advantage to C4.5X.


The question of whether there is a distinguishing feature of the hypothyroid data that
explains the observed results remains unanswered. Further investigation of this issue lies
beyond the scope of the current paper but remains an interesting direction for future re-
search.


These results suggest that C4.5X's post-processing more frequently increases predictive
accuracy than not for the type of data to be found in the UCI repository. (Of the twenty-six
comparisons, there was a signi�cant increase for �fteen and there was a signi�cant decrease
for only two. A sign test reveals that this rate of success is signi�cant at the 0.05 level,
p = 0:001.)


Tables 4 and 5 summarize the number of nodes in the decision trees developed. Table 4
addresses unpruned decision trees and Table 5 addresses pruned decision trees. Each post-
processing modi�cation replaces a single leaf with a split and two leaves. At most one such
modi�cation can be performed per leaf in the original tree. For all data sets the post-
processed decision trees are signi�cantly more complex than the original decision trees. In
most cases post-processing has increased the mean number of nodes in the decision trees
by approximately 50%. This demonstrates that the post-processing is causing substantial
change.


4. Discussion


The primary objective of this research has been to discredit the Occam thesis. To this
end it uses a post-processor that disregards the Occam thesis and instead is theoretically
founded upon the similarity assumption. Experimentation with this post-processor has
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Table 4: Number of nodes for unpruned decision trees.


C4.5 C4.5X
Name x s x s t p


breast cancer Wisconsin 38.1 6.0 64.0 10.3 {51.5 0.000
Cleveland heart disease 66.7 7.1 100.2 11.3 {61.9 0.000
credit rating 117.6 18.1 177.9 28.4 {44.2 0.000
discordant results 64.0 10.6 85.2 16.2 {33.3 0.000
echocardiogram 15.4 4.1 22.1 6.3 {26.1 0.000
glass type 43.0 5.2 69.7 8.4 {57.2 0.000
hepatitis 24.5 4.2 34.8 6.0 {49.1 0.000
Hungarian heart disease 62.1 7.5 94.8 13.0 {50.1 0.000
hypothyroid 29.4 4.4 47.5 7.1 {57.8 0.000
iris 9.0 1.9 16.0 4.0 {31.5 0.000
new thyroid 14.7 2.4 23.4 3.8 {41.5 0.000
Pima indians diabetes 164.8 10.8 238.8 16.3 {108.9 0.000
sick euthyroid 71.7 6.6 111.4 12.1 {65.8 0.000


Table 5: Number of nodes for pruned decision trees.


C4.5 C4.5X
Name x s x s t p


breast cancer Wisconsin 19.2 5.0 33.1 8.6 {34.9 0.000
Cleveland heart disease 44.6 8.3 68.3 12.8 {43.6 0.000
credit rating 51.2 14.8 78.4 24.2 {25.8 0.000
discordant results 24.9 5.6 32.5 8.8 {21.1 0.000
echocardiogram 10.4 3.0 14.8 4.8 {21.0 0.000
glass type 36.6 5.5 61.0 9.5 {48.5 0.000
hepatitis 13.7 4.8 19.8 6.6 {30.7 0.000
Hungarian heart disease 26.8 11.4 41.2 17.3 {22.1 0.000
hypothyroid 23.6 2.9 37.1 5.6 {46.7 0.000
iris 8.2 1.9 14.8 3.9 {30.3 0.000
new thyroid 14.1 2.7 22.5 4.3 {36.9 0.000
Pima indians diabetes 112.0 16.4 163.9 24.0 {62.5 0.000
sick euthyroid 46.5 5.8 72.6 8.7 {76.7 0.000


demonstrated that it is possible to develop systematic procedures that, for a range of `real-
world' learning tasks increase the predictive accuracy of inferred decision trees as a result
of changes that substantially increase their complexity without altering their performance
upon the training data.


It is, in general, di�cult to attack the Occam thesis due to the absence of a widely
agreed formulation thereof. However, it is far from apparent how the Occam thesis might
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Figure 3: Modi�ed simple instance space


be recast to both accommodate these experimental results and provide a practical learning
bias.


4.1 Directions for Future Research


The implications of this research reach beyond its relevance to Occam's razor. The post-
processor appears to have practical utility in increasing the quality of inferred decision trees.
However, if the objective of the research were to improve predictive accuracy rather than
to discredit the Occam thesis, the post-processor would be modi�ed in a number of ways.


The �rst modi�cation would be to enable the addition of multiple partitions at a single
leaf from the original tree. C4.5X selects only the single modi�cation for which there is the
maximum support. This design decision originated from a desire to minimize the likelihood
of performing modi�cations that will decrease accuracy. In principle, however, it would
appear desirable to select all modi�cations for which there is strong support, each of which
could then be inserted into the tree in order of level of supporting evidence.


Even greater increases in accuracy might be expected if one removed the constraint that
the post-processing should not alter the performance of the decision tree with respect to
the training set. In this case, new partitions may well be found that employ objects from
other regions of the instance space to provide evidence in support of adding partitions that
correct misclassi�cations of small numbers of objects at a leaf node from the original tree.
The similarity assumption would provide strong evidence for such repartitioning. Such
a situation would occur, for example, with respect to the learning problem illustrated in
Figure 1, if there was an additional object of class { with attribute values A=2 and B=9.
This is illustrated in Figure 3. In this case C4.5 would still create the indicated partitions.
However, C4.5X would be unable to relabel the area containing the additional object due to
the constraint that it not alter the performance of the original decision tree with respect to
the training set. Thus the addition of the object prevents C4.5X from relabeling the shaded
region even though, on the basis of the similarity assumption, it improves the evidence in
support of that relabeling.


Such an extended post-processor would encourage the following model of inductive in-
ference of decision trees. The role of C4.5 (or a similar system) would be to identify clusters
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of objects within the instance space that should be grouped under a single leaf node. A
second stage would then analyze regions of the instance space that lie outside those clusters
in order to allocate classes to those regions. Current decision tree learners, motivated by
the Occam thesis, ignore this second stage, leaving regions outside the identi�ed clusters
associated with whatever classes have been assigned to them as a by-product of the cluster
identi�cation process.


4.2 Other Related Research


A number of researchers have developed learning systems that can be viewed as considering
evidence from neighboring regions of the instance space in order to derive classi�cations
within regions of the instance space that are not occupied by examples from the training
set. Ting (1994) does this explicitly, by examining the training set to directly explore the
neighborhood of the object to be classi�ed. This system uses instance based learning for
classi�cation within nodes of a decision tree with low empirical support (small disjuncts).


A number of other systems can also be viewed as considering evidence from neighboring
regions for classi�cation. These systems learn and then apply multiple classi�ers (Ali,
Brunk, & Pazzani, 1994; Nock & Gascuel, 1995; Oliver & Hand, 1995). In such a context,
any point within a region of the instance space that is occupied by no training objects is
likely to be covered by multiple leaves or rules. Of these, the leaf or rule with the greatest
empirical support will be used for classi�cation.


C4.5X uses two distinct criteria for evaluating potential splits. The standard C4.5 stage
of tree induction employs an information measure to select splits. The post-processor uses
a Laplace accuracy estimate. Similar uses of dual criteria have been investigated elsewhere.
Quinlan (1991) employs a Laplace accuracy estimate considering neighboring regions of the
instance space to estimate the accuracy of small disjuncts. Lubinsky (1995) and Brodley
(1995) employ resubstitution accuracy to select splits near the leaves during induction of
decision trees.


By adding a split to a leaf, C4.5X is specializing with respect to the class at that leaf
(and generalizing with respect to the class of the new leaf). Holte et al. (1989) explored a
number of techniques for specializing small disjuncts. C4.5X di�ers in that all leaves are
candidates for specialization, not just those with low empirical support. It further di�ers
in the manner in which it selects the specialization to perform by considering the evidence
in support of alternative splits rather than just the strength of the evidence in support of
individual potential conditions for the current disjunct.


4.3 Bias Versus Variance


Breiman, Friedman, Olshen, and Stone (1984) provide an analysis of complexity and induc-
tion in terms of a trade-o� between bias and variance. A classi�er partitions the instance
space into regions. When these regions are too large, the degree of �t to an accurate parti-
tioning of the instance space will be poor, increasing error rates. This e�ect is called bias.
When the regions are too small, the probability that individual regions are labeled with the
wrong class is increased. This e�ect, called variance, also increases error rates. According to
this analysis, due to variance, too �ne a partitioning of the instance space tends to increase
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the error rate while, due to bias, too coarse a partitioning also tends to increase the error
rate.


Increasing the complexity of a decision tree creates �ner partitionings of the instance
space. This analysis can be used to argue against the addition of undue complexity to
decision trees on the ground that it will increase variance and hence the error rate.


However, the success of C4.5X in decreasing the error rate demonstrates that it is
successfully managing the bias/variance trade-o� when it introduces complexity to the
decision tree. By using evidence from neighboring regions of the instance space, C4.5X
is successful in increasing the error rate resulting from variance at a lower rate than it
decreases the error rate resulting from bias. The success of C4.5X demonstrates that it is
not adding undue complexity to C4.5's decision trees.


4.4 Minimum Encoding Length Induction


Minimum encoding length approaches perform induction by seeking a theory that enables
the most compact encoding of both the theory and available data. Two key approaches
have been developed, Minimum Message Length (MML) (Wallace & Boulton, 1968) and
Minimum Description Length (MDL) (Rissanen, 1983). Both approaches admit to proba-
bilistic interpretations. Given prior probabilities for both theories and data, minimization
of the MML encoding closely approximates maximization of posterior probability (Wal-
lace & Freeman, 1987). An MDL code length de�nes an upper bound on \unconditional
likelihood" (Rissanen, 1987).


The two approaches di�er in that MDL employs a universal prior, which Rissanen (1983)
explicitly justi�es in terms of Occam's razor, while MML allows the speci�cation of distinct
appropriate priors for each induction task. However, in practice, a default prior is usually
employed for MML, one that appears to also derive its justi�cation from Occam's razor.


Neither MDL nor MML with its default prior would add complexity to a decision tree
if doing so were justi�ed solely on the basis of evidence from neighboring regions of the
instance space. The evidence from the study presented herein appears to support the
potential desirability of doing so. This casts some doubt upon the utility of the universal
prior employed by MDL and the default prior usually employed with MML, at least with
respect to their use for maximizing predictive accuracy.


It should be noted, however, that the probabilistic interpretation of these minimum
encoding length techniques indicates that encoding length minimization represents max-
imization of posterior probability or of unconditional likelihood. Maximization of these
factors is not necessarily directly linked with maximizing predictive accuracy.


4.5 Appropriate Application of Grafting and Pruning


It is important to note that although this paper calls into question the value of learning
biases that penalize complexity, in no way does it provide support for learning biases that
encourage complexity for its own sake. C4.5X only grafts new nodes onto a decision tree
when there is empirical support for doing so.


Nor do the results in any way argue against the appropriate use of decision tree pruning.
To generate its pruned trees, C4.5 removes branches where statistical estimates of the upper
bounds on the error rates indicate that these will not increase if the branch is removed. It


413







Webb


could be argued that C4.5 only reduces complexity when there is empirical support for
doing so. It is interesting to note that for eight of the thirteen data sets examined, C4.5X's
post-processing of the pruned trees resulted in higher average predictive accuracy than
post-processing of unpruned trees. These results suggest that both pruning and grafting
can play a valuable role when applied appropriately.


5. Conclusion


This paper presents a systematic procedure for adding complexity to inferred decision trees
without altering their performance on the training data. This procedure has been demon-
strated to lead to increases in predictive accuracy for a range of learning tasks when applied
to both pruned and unpruned trees inferred by C4.5. For only one of the thirteen learning
tasks examined did the procedure lead to a statistically signi�cant loss in accuracy and in
this case the magnitude of the di�erence in mean accuracy was extremely small. On the
face of it, this provides strong experimental evidence against the Occam thesis.


This post-processing technique was developed by rejecting the Occam thesis and in-
stead attending to the similarity assumption|that similar objects have high probability of
belonging to the same class.


The procedure developed was constrained by the need to ensure that the revised decision
tree performed identically to the original decision tree with respect to the training data.
This constraint arose from the desire to obtain experimental evidence against the Occam
thesis. It is possible that if this constraint is removed, the basic techniques outlined in this
paper could result in even greater improvements in predictive accuracy than those reported
herein.


This research has considered only one version of Occam's razor that favors minimization
of syntactic complexity in the expectation that this will tend to increase predictive accuracy.
Other interpretations of Occam's razor are also possible, such as that one should minimize
semantic complexity. While others (Bunge, 1963) have provided philosophical objections to
such formulations of Occam's razor, this paper has not sought to investigate them.


The version of Occam's razor examined in this research has been used widely in machine
learning with apparent success. The objections to this principle that have been substan-
tiated by this research raise the question, why has it had such apparent success if it is so
awed? Webb (1994) suggests that the apparent success of the principle has been due to the
manner in which syntactic complexity is usually associated with other relevant qualities of
inferred classi�ers such as generality or prior probability. If this thesis is accepted then one
of the key challenges facing machine learning is to understand these deeper qualities and to
employ that understanding to place machine learning on a sounder theoretical footing. This
paper o�ers a small contribution in this direction by demonstrating that minimization of
surface syntactic complexity does not, in itself, in general maximize the predictive accuracy
of inferred classi�ers.


It is nonetheless important to realize that, the thrust of this paper notwithstanding,
Occam's razor will often be a useful learning bias to employ. This is because there will fre-
quently be good pragmatic reasons for preferring a simple hypothesis. A simple hypothesis
will in general be easier to understand, communicate and employ. A preference for simple
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hypotheses cannot be justi�ed in terms of expected predictive accuracy but may be justi�ed
on pragmatic grounds.
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