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Abstract. In propositional learning, boosting has been a very popular technique for increasing
the accuracy of classification learners. In first-order learning, on the other hand, surprisingly little
attention has been paid to boosting, perhaps due to the fact that simple forms of boosting lead
to loss of comprehensibility and are too slow when used with standard ILP learners. In this paper,
we show how both concerns can be addressed by using a recently proposed technique of constrained
confidence-rated boosting and a fast weak ILP learner. We give a detailed description of our algorithm
and show on two standard benchmark problems that indeed such a weak learner can be boosted to
perform comparably to state-of-the-art ILP systems while maintaining acceptable comprehensibility
and obtaining short run-times.
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1 Introduction

In recent years, the field of Machine Learning has
seen a very strong growth of interest in a class of
methods that have collectively become known as
ensemble methods. The general goal and approach
of such methods is to increase predictive accuracy
by basing the prediction not only on a single hy-
pothesis but on a suitable combination of an en-
tire set of hypotheses. Boosting is a particularly
attractive class of ensemble methods which con-
struct multiple hypotheses by repeatedly calling
a “weak” learner on changing distributions over
the given examples. During each round of boost-
ing, a so called weak hypothesis is learned and the
weight of examples correctly handled by it is de-
creased, while the weight of incorrectly handled
examples is increased. The total prediction, i.e.
the so called strong hypothesis, is obtained by a
weighted majority vote of the weak hypotheses.

Given the set of boosting approaches in propo-
sitional learning, it is surprising that boosting
has not received comparable attention within ILP,
with a notable exception of Quinlan’s [9] initial ex-
periments. There are two possible reasons for this
situation which appear especially relevant. Firstly,

understandability of results has always been a cen-
tral concern of ILP researchers beyond accuracy.
Unfortunately, if, as in Quinlan’s study, one uses
the classic form of confidence-rated boosting (Ad-
aboost.M1) the result will be quite a large set of
rules each of which in addition has an attached
positive or negative voting weight. To understand
the behavior of one rule in this rule set, it is nec-
essary to consider all other rules and their rela-
tive weights, making it quite difficult to grasp the
results of the learner. Secondly, in propositional
learning, boosting is often applied simply by using
an unchanged existing propositional learner as a
basis. If one carries this over to ILP (e.g. Quinlan
simply used FFOIL as a base learner), the run-
times of such a boosted ILP learner clearly would
be problematic due to the high effort already ex-
pended by a typical ILP system.

In this paper, we show that both of these concerns
can be addressed by suitably combining recent ad-
vances in boosting algorithms with a fast weak
learner. In particular, we show how constrained
confidence-rated boosting (CCRB), which is our
denomination and interpretation of the approach
described in [2], can be used to significantly en-
hance the understandability of boosted learning



results by restricting the kinds of rule sets allowed.
We combine this with a weak greedy top-down
learner based on the concept of foreign links in-
troduced in Midos [15] which uses a limited form
of look-ahead and optimizes the same heuristic
criterion as used in [2]. In an empirical evalu-
ation on two known hard problems of ILP, the
well-studied domains of mutagenicity and Quali-
tative Structure Activity Relationships (QSARs),
we show that indeed such a simple weak learner
together with CCRB achieves accuracies compa-
rable to much more powerful ILP systems, while
maintaining acceptable comprehensibility and ob-
taining short run-times.

The paper is organized as follows. In section 2, we
review boosting, and motivate the basic ideas of
CCRB based on [2]. In section 3, we describe our
foreign link based weak learner which employs a
basic form of look-ahead. The heuristic evaluation
functions employed to guide the search in the con-
strained hypothesis space are described in section
4. Section 5 details how the hypotheses generated
by the weak learner are used in the framework
of CCRB. Our experimental evaluation of the ap-
proach is described and discussed in section 6. For
a detailed discussion of related work, we refer to
the full version of this paper [3]. Section 7 con-
tains our conclusions and some pointers to future
work.

2 Boosting

Boosting is a method for improving the predictive
accuracy of a learning system by means of com-
bining a set of classifiers constructed by a weak
learner into a single, strong hypothesis [11, 9, 8].
It is known to work well with most unstable clas-
sifier systems, i.e. systems where small changes
to the training data lead to notable changes in
the learned classifier. The idea is to “boost” a
weak learning algorithm performing only slightly
better than random guessing into an arbitrarily
accurate learner by repeatedly calling the weak
learner on changing distributions over the train-
ing instances and combining the weak hypotheses
into one strong hypothesis. Each of the resulting
hypotheses gets a voting weight corresponding to
its prediction confidence, and the total prediction,
i.e. the strong hypothesis, is obtained by summing
up all these votes.

A probability distribution over the set of train-
ing instances is maintained modeling the weights
associated with each training instance and indi-
cating the influence of an instance when building
a clagsifier. Initially, all instances have equal influ-

ence on the construction of the weak hypotheses.
In each iterative call of the learner, a weak hy-
pothesis is learned and a prediction confidence is
assigned to it. How this confidence is determined
is a design issue of the weak learner and will, for
our approach, be detailed in section 4.

On each round of boosting, the distribution over
the training instances is modified according to the
confidence of the weak hypothesis and the exam-
ples covered by it. The weights of misclassified in-
stances are increased and, in analogy, those of cor-
rectly classified instances are decreased according
to the confidence of the weak hypothesis. Thus,
correctly classified instances will have less influ-
ence on the construction of the weak hypothesis in
the next iteration, and misclassified instances will
have a stronger influence, confronting the learner
in each new round of boosting with a modified
learning task and forcing the focus on the exam-
ples not yet correctly classified. Finally, all weak
hypotheses are combined into one hypothesis. An
instance z is classified by this strong hypothesis by
adding up the confidence of each weak hypothesis
covering x. The class y of z is predicted as positive
if this sum is positive, otherwise as negative.

The classic form of (unconstrained) confidence-
rated boosting (Adaboost.M1) yields quite a large
set of rules each of which in addition has an at-
tached positive or negative voting weight. More-
over, each weak hypothesis may vote with different
confidences for different examples. This way, rules
inferring the target predicate are learned as well
as rules for the negation of the target predicate.

In our ILP setting, we will, in contrast, assume
that the weak learner produces on each itera-
tion a hypothesis in form of a single Horn clause
H «+ L;,Ls,---,L, [¢] with an associated
real-valued number ¢, where H is the atom
p(Xq,--- ,Xa(p)) and p the target predicate of ar-
ity a(p), the L; are atoms with background predi-
cates p;, and ¢ represents the prediction confidence
of the hypothesis. This confidence is used as the
voting weight of the hypothesis on all examples
covered by it, where large absolute values indi-
cate high confidence. Moreover, we will restrict
the weak hypothesis to vote “0” to abstain on all
examples not covered by it.

Thereby, the semantics of a rule is, as opposed
to usual ILP practice, determined by the sign of
its attached prediction confidence. A hypothesis
H + Ly,Ls,---,L, [c] such that ¢ > 0 implies
that H is true. It is interpreted as classifying all
instances covered by it as positive with confidence
¢. H [¢] such that ¢ < 0 implies that H is false



and is interpreted as classifying each instance as
negative. Here is an example of a boosting result
consisting of 7 weak hypotheses when learning a
target predicate p.

1. p(X) « q(X,a). [0.2]
2. pX) « a(X,Y), r(Y). [0.9]
3. p(X) « s(X). [0.1]
4. p(X) « aX,)Y), v(Y). [-0.6]
5. p(X) « r(X). [-0.5]
6. p(X)+ a(X,b). [-0.3]
7. p(X) + t(X). [-0.9]

In order to classify a new instance about which
we know q(1,a), v(a), t(1), s(1), we need to check
which hypotheses cover this example. Here, 1,3,4,7
cover the example, so we sum up their confidences,
yielding 0.2 +0.1-06—-09 = —-1.2 < 0, and
classify the instance as negative. In other words,
to understand the behavior of one rule in this rule
set, it is necessary to consider all other rules and
their relative weights, making it quite difficult to
grasp the results of the learner.

In our approach of constrained confidence-rated
boosting we will restrict each hypothesis to ei-
ther predict the positive class with a posi-
tive confidence, or to be the default hypothesis
p(X1,- -, Xq(p)) With an assigned negative confi-
dence. This constraint ensures that the resulting
set of hypotheses can be more easily interpreted.
Namely, in order to appraise the quality of a hy-
pothesis, it suffices to consider its assigned confi-
dence in proportion to just the weight of the de-
fault hypothesis, instead of having to consider the
entire set of weak hypotheses.

Using the additional restrictions, we see for the
above example that with CCRB only results of the
following form would be allowed, making learning
harder but guaranteeing better understandability:

1. p(X) + q(X,a). [0.2]
2. p(X) « q(X,Y), r(Y). [0.9]
3. p(X) « s(X). [0.1]
4. p(X). [-0.3]

Since the same weak hypothesis might be gener-
ated more than once by the weak learner, we can
further simplify the set of resulting hypotheses by
summarizing hypotheses H [c1],---, H [cn],1 <
i < n, which only differ with regard to their
assigned confidences. A set of such identical hy-
potheses can be replaced by a single hypothesis
H'[c],H =H;,1<i<n,withc=3,_,.,¢-

The constraint on the weak hypotheses requires
the weak learner to employ a search strategy guar-
anteeing that only positively correlated hypothe-

ses, i.e. those predicting the positive class, with a
positive prediction confidence are learned, or that
the default hypothesis is opted for if no such pos-
itive correlated hypothesis can be induced from
the training instances. [2] offer a theoretically well
founded heuristics for this problem which will be
detailed in the following section.

3 The Weak Relational Learner

Our weak greedy top-down learner is using a re-
finement operator based on the concept of foreign
links introduced in Midos [15], and a basic form of
look-ahead. Both will be described in this section.
The heuristics guiding the search of the greedy
weak learner based on the refinement operator in
the constrained hypothesis space will be detailed
in section 4. In Table 2, we give a more concise
description of the weak greedy learner embedded
into the framework of CCRB. In the following,
references to steps in Table 2 will be indicated by
“Tl '_7’ .

The hypothesis space consists of non-recursive,
function-free Horn clauses C = H <+ B, where
H is the atom p(Xi,---,X,(;)) and p the target
predicate of arity a(p). In order to constrain the
complexity of the hypothesis space, the refinement
operator of our weak greedy top-down learner em-
ploys as declarative bias a foreign literal restric-
tion based on the concept of foreign links intro-
duced in [15]. When specializing a clause C' by
adding a new literal L, L must share at least one
variable with previous literals in C. The foreign
literal restriction further confines the set of alter-
native literals that can be added to a clause by
only taking into account predicate argument po-
sitions which have been a priori explicitly defined.

Furthermore, we employ a limited form of look-
ahead in our refinement operator in order to avoid
the shortsightedness problem with respect to exis-
tential variables in the learned hypotheses. Merely
introducing new existential variables in a clause
will probably not lead to notable changes, and the
greedy learner is apt to rather select a literal that
restricts existing variables. Thus, when specializ-
ing a clause C into C' = C, L by means of adding
a new literal L to C, we concurrently add to the
set p(C) of refinements of C all specializations of
the refinement C' which can be obtained by suc-
cessively instantiating the new variables in L.

Given, for example, a target predicate active/1,
a predicate atm/3, and a foreign link declaration
active[l] — atm[1], applying p on C = active(X;)
would, for a nominal variable X, with the do-



main {c,cl}, and a continuous variable X3 with
discretization D = [—0.782,1.002], result in the
specializations

active(Xl) < atm (Xl,Xz,X:;),
actlve X1) ¢« atm (X1, ¢, X3),
X1 <—atm(X1,cl X3)
actlve X1) < atm (Xl,Xg,Xg) X3S—0782,
1) ¢ atm (Xl,Xz, 3) X3>_0.782,
active(X; ( ), X3< 1.002,
( ),

active(X; X3> 1.002.

+ atm (X1, X5, X3
+— atm Xl,Xz,X3
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4 Search Strategy

Our weak first-order inductive learner accepts as
input instances from a set £ = ET U E~ of train-
ing examples along with a probability distribution
D over the training instances. The background
knowledge is provided in form of a set B of ground
facts over background predicates. However, we
will sometimes write ET and E~ somewhat dif-
ferently than used in ILP, and will say that
E={(z,1)|z€ EY}U{(z,-1) | ~z € E"}.

To avoid overfitting in the weak learner, the train-
ing instances are randomly split into two sets,
G, P, used to specialize clauses and to prune these
refinements later on, respectively. Starting with
the target predicate, the weak learner greedily
generates specializations which are positively cor-
related with the training instances and thus have a
positive prediction confidence on the training set.

When thinking about strategies to guide the
search of a greedy learner, entropy based methods
like information gain represent an obvious choice.
However, the theoretical framework of boosting
provides us with a guiding strategy based on one
of the specific features of boosting, namely the
probability distribution being modified in each it-
erative call of the weak learner.

As suggested by [2], the training error can be min-
imized by searching in each round of boosting for
a weak hypothesis maximizing the objective func-
tion

(O =aer. (Vor GG - Vo ©9) ()

which is based on the collective weight of all in-
stances in G covered by clause C'. For a clause C
and a set S, the two weight functions wy,w_ are
defined by

’LU+(C, S) =def. Z Df:
(x;,y;) € Scovered

w_(C,8) =qgey. Z D;.(2)

(x;,y;) € Scovered
by C,y; = -1

Since clauses C' maximizing z(C) may be nega-
tively correlated with the positive class, we re-
strict, as proposed in [2], the search to positively
correlated clauses, i.e. to clauses maximizing the
objective function Z defined as

#(C) =aer. Vwi(C,6) = Vw_(C,G).  (3)

The refinement operator p of the weak learner iter-
atively refines the clause C' currently maximizing
Z until either a clause C' is found with hitherto
maximal Z(C") only covering positive examples, or
until Z can not be further maximized (T1.2d).

The positively correlated clause C resulting from
the refinement process is subject to overfitting on
the training set, and is thus immediately exam-
ined to see whether it can be pruned. Namely, all
generalizations of C' resulting from deleting single
literals and constants in C' from right to left are
generated (T1.2e).

The objective function (3) is only maximized on
the set G based on which rules are generated
by the weak learner. However, the evaluation of
the prediction confidence of a weak hypothesis is
based on the entire training set. Thus, it is pos-
sible for the weak learner to learn a hypothesis
C'[¢], ¢ < 0, which is, on the entire training set,
negatively correlated with the positive class. Such
hypotheses are not considered in order to ensure
the constraint for a weak hypothesis to be either
positively correlated or to be the default hypothe-
sis. Thus, generalizations of C' with a non-positive
prediction confidence on the whole training set are
ruled out (T1.2f). If no generalization of C' with a
positive confidence exists, the default hypothesis
is chosen as current weak hypothesis (T1.2g). The
prediction confidence of a clause C on a set S is
defined as

w+(C,S)+ﬁ) )

1
(09 ur 3 (S o

where N is the number of training instances and
ﬁ is a smoothing constant applied to avoid ex-
treme estimates when w_ (C,S) is small.

All generalizations of C with a positive confidence
on the entire training set are then evaluated with
respect to their confidence on the set G and their
coverage and accuracy on the set P. This kind of
evaluation is proposed by [2] who define, based
on the definition of the loss of a clause C' with



C?RIB FOIL Fors Progol
Mutagenicity | Accuracy  StdDev | 88.0 = 6.0 | 82.0 = 3.0 [14] | 89.0 £ 6.0 [4] | 88.0 £ 2.0 [14]
© Run-time (mins.) | 7 n/a n/a 307
@ Number of literals | 64 46 [13] n/a 28
QSARs Accuracy £+ StdDev | 83.2+3.0 | 82.9+ 2.7 n/a 79.8 + 3.7
@ Run-time (mins.) | 57 0.7 n/a 372
@ Number of literals | 142 140 n/a 154

Table 1 Accuracy, standard deviation, average run-time and number of literals in the final hypotheses
on the 188 — B, mutagenicity dataset [13] and the QSARs dataset [5, 6]

associated confidence ¢(C, G) of [2], a loss function
for a clause C' as

(1= (wi(C,P) +w(C,P)))

—+ Wy (C) P) . e(—C(C,g))
+  w_(C,P)-el@9), (5)

loss(C)  =agey.

This function is minimized over all generalizations
of C with a positive confidence (T1.2(h)i).

In a last step, the positively correlated general-
ization C" of C' with minimal loss(C") and the
default hypothesis are compared with respect to
their training error (T1.2(h)ii). Since a positively
correlated clause is compared to the default hy-
pothesis predicting the negative class, the objec-
tive function to be maximized is in this case z as
defined in equation (1). Whichever of these two
hypotheses maximizes z is chosen as the weak hy-
pothesis of the current iteration.

5 Constrained Confidence-
Rated Boosting of a Weak Rela-
tional Learner

In this section, following [2], we explain how the
weak hypotheses generated in each iteration of
the greedy learner are used in the framework of
CCRB. The weak learner is invoked 7T times. Let
C} denote the weak hypothesis generated in the ¢-
th iteration based on the refinement operator and
the heuristic search strategy described in the pre-
vious section. C; is used in function h; : X — R,

c(Cy, E if C; covers e = (x,
hi() :{ 0( nE) else,t ' o)

mapping each instance to a real-valued number,
i.e. to the prediction confidence of C; on the entire
training set if this instance is covered by Cy, and
to 0 otherwise (T1.2i).

Before starting the next round of boosting, the
distribution over the training instances, which

is initially uniform, is updated by means of hy,
namely by determining D! = e(yzlf?ﬁ This
way, the weights of all instances not covered by
C; are not modified, whereas the weights of all
positive and negative instances covered by C} are
decreased and increased, respectively, in propor-
tion to the prediction confidence of Cy. Then,
the sum of t%le resulting weights is normalized,

t+1 D!
Dt = D"’

the probabifity distribution of the next iteration
(T1.2j).

After T iterations of the weak learner, the
strong hypothesis is defined by means of the
weak hypotheses. For each instance, the pre-
diction confidence of all hypotheses covering
it are summed up. If this sum is positive,
the strong hypothesis classifies the instance as
positive, otherwise it is classified as negative:

1 < ¢ < N, so as to serve as

H(z) := sign Z

Cy:(z,y) covered by C;

C(Ct7 E)

6 Empirical Evaluation

We conducted an empirical evaluation of our ap-
proach to CCRB on the two thoroughly investi-
gated domains of mutagenicity [14] and Quanti-
tative Structure Activity Relationships (QSARs)
[5, 6]. For a detailed description of the domains, we
refer to [3]. The weak learner is invoked T = 100
times. Although the number T of iterations can
be automatically determined by cross-validation
[2], we treat T as fixed in our experiments. The
predictive accuracy is estimated by 10-fold-cross-
validation on the data of the mutagenicity do-
main and by 5-fold-cross-validation on the data
of the QSARs domain. The accuracy obtained
in our experiment with C2RIB, which stands for
Constrained Confidence-Rated ILP Boosting, is



Let N denote the number of training instances e = (x;,1;) € E = EYUE™, p the target predicate of arity
a(p), and let T denote the total number of iterations of the weak learner. Furthermore, let w;,w_ denote
the weight functions defined according to equation (2), ¢(C,S) the prediction confidence of a clause C on
a set S defined according to equation (4), and Z the objective function defined according to equation (3).

1. Set D} := L for 1<i<N

2. Fort=1...T

C = p(Xl’ .
Z:=0
While w_(C,G) > 0
i. Let C' := argmazcncpc){Z(C")}
i. Let Z' == 2(C")
iii. If Z' — Z < 0 exit loop
iv. Else C:=C", Z := 7'
Prunes(C) := {p(X1,---

3 Xa(p))

If Prunes(C) =0 let Cy := p(X4,---
Else

» Xa(p) ¢ B | C=p(Xy,--
Remove from Prunes(C) all clauses C' where ¢(C', E) <0
aXa(p))

Split training set £ randomly into G and P according to Dy such that 35, Di~ %

:Xa(p)) «— BBI}

i. C":=argmingreprunes(cy{loss(C")}, where loss(C") is defined according to equation (5)

2
ii. Let Cy := argmaxcue{cl’p(xl,___’xa(m)}{<\/w+(Cn,g) —Vw_ (C",g)) }

(i) ht : X — R is the function hy(z) = { 0

C(Ct, E)

if e = (x,y) is covered by C;
else

(j) Update the probability distribution D; according to

¢

i t+1 _ _Dj
i = srmey and DT = S DY’
i T

3. Construct the strong hypothesis H(z) := sign (Zot:(z’y) covered by 0, (Ct, E))

Table 2 Constrained Confidence-Rated Boosting Algorithm

displayed in Table 1 together with reference re-
sults on the same data and, in case we did not
conduct the experiments ourselves, the sources
from which the results are reported. Run-times
are referring to results obtained on a sparc SUNW,
Ultra-4.

For the mutagenicity domain, several relational
descriptions are available [13], ranging from a
weakly structured description B2 to a strongly
structured description By. We conducted our ex-
periment with C2RIB on the strongly structured
description By restricted to a subset of 188 so
called regression-friendly compounds 125 of which
are classified as having positive levels of muta-
genicity. We show only results obtained on this

most comprehensive set of background knowledge
which we have worked with.!

As can be seen from the table, C2RIB performs
on par with other ILP learners on the 10-fold-
cross-validation data sets of the mutagenicity do-
main. Moreover, the results are obtained in rea-
sonable time, and the final hypotheses represent
fairly comprehensible results. The number of lit-
erals in the final hypothesis averages to 64 (32
clauses on average, where the body of each clause
averagely comprises two literals), as compared to
the result of averagely 46 literals in the hypothe-

! Additional results have been obtained by other authors
on the B3 dataset [13], in particular by STILL [12] (87+£8)
and G-Net [1] (91 £38).



DEFAULT RULE:
active(A). [-1.40575]

POSITIVE RULES:

active(A) « logp(A,C),C>2.0,logp(A,D),D<4.0. [0.00082336]

active(A)  lumo(A,C),C> -2.0,lumo(A,D),D< -1.2. [0.0210132]

active(A) « logp(A,C),C>2.0. [0.115733]

active(A) < lumo(A,C),C> -2.0,logp(A,D),D<3.0,atm(A,E,F,29,G). [0.175073]
active(A) « atm(A,C,D,35,E). [0.176489]

active(A) « atm(A,C,D,1,E). [0.197106]

active(A) < ringSize5(A,C). [0.215675]

active(A) « atm(A,C,D,27,E). [0.231689]

active(A) « lumo(A,C),C< -1.2. [0.283592)

active(A) « lumo(A,C),C> -2.0,atm(A,D,E,29,F). [0.355777]

active(A) < logp(A,C),C>5.0. [0.470995]

active(A) < bond(A,C,D,5). [0.582912]

active(A) « atm(A,C,D,26,E),atm(A,F,G,1,H),lumo(A,I),I< -1.2. [0.584057]
active(A) « atm(A,C,cl,D,E),bond(F,C,G,H). [0.763684]

active(A) « atm(A,C,D,26,E),logp(A,F),F>3.0. [0.778605]

active(A) « atm(A,C,D,27,E),logp(A,F),F>2.0,logp(A,G),G<3.0. [0.832673]
active(A) « atm(A,C,D,27,E),ringSize5(A,F). [0.925553]

active(A) « atm(A,C,D,230,E). [0.977438]

active(A) < logp(A,C),C>3.0,ringSize5(A,D). [1.00485]

active(A) «+ atm(A,C,D,16,E). [1.01437]

active(A) « atm(A,C,D,32,E),bond(F,G,C,2). [1.1001]

active(A) « carbonbaromaticRing(A,C). [1.4434]

active(A) < bond(A,C,D,3). [1.46341]

active(A) < lumo(A,C),C< -2.0. [1.64408]

active(A) « ringSize5(A,C),logp(A,D),D>4.0. [1.69492]

active(A) « atm(A,C,D,28,E). [1.69956)

active(A) + anthracene(A,C). [2.21461]

active(A) « carbon6Ring(A,C). [3.06628]

active(A) < phenanthrene(A,C). [3.55481]

Table 3 A strong hypothesis obtained from C2RIB

ses obtained by FOIL as published in [13], and 28
literals on average in the hypotheses obtained by
Progol. A final hypothesis obtained by C2RIB is
displayed in Table 3.

The predictive accuracy obtained by C?RIB on
the 5-fold-cross-validation data sets of QSARs do-
main is slightly higher than the ones obtained
with the other two systems (however still within
the range of the standard deviations). Runtime of
C2RIB averages to 57 minutes for 100 iterations,
as compared to 372 and 0.7 minutes for Progol
and FOIL, respectively. The number of literals in
the final hypotheses obtained by C2RIB averages
to 142 (71 clauses on average, where the body of
each clause averagely comprises two literals), as
compared to 140 and 154 literals on average in the

hypotheses obtained by FOIL and Progol, respec-
tively. The fact that FOIL yields good results in
very short run-times suggests to investigate why
FOIL’s heuristics are so successful and how ele-
ments of FOIL could be incorporated in our weak
learner.

7 Conclusion

In this paper, we have presented an approach to
boosting in first order learning. Our approach,
which we have termed constrained confidence
rated boosting (CCRB), builds on recent advances
in the area of propositional boosting; in particular,
it adapts the approach of Cohen and Singer [2] to
the first order domain. The primary advantage of
CCRB is that the resulting rule sets are restricted



to a much simpler and more understandable for-
mat than the one produced by unconstrained ver-
sions, e.g. AdaBoost.M1, as it has been used in
the only prior work on boosting in ILP by Quin-
lan [9]. On two standard benchmark problems, we
have shown that by using an appropriate first or-
der weak learner with look-ahead, it is possible
to design a learning system that produces results
that are comparable to much more powerful ILP-
learners both in accuracy and in comprehensibility
while achieving short run-times due to the simplic-
ity of the weak learner.

These encouraging results need to be substanti-
ated in future work, in particular in the direction
of examining other points in the power/run-time
trade-off of the weak learner. The current weak
learner has short run-times and already reaches
comparable results to other non-boosted systems,
but it appears possible to make this weak learner
slightly more powerful by adding in more of the
standard elements of ”full-blown” ILP-learners.
While this would certainly slow down the system,
it would be an interesting goal of further research
to determine exactly the right balance between
speed and accuracy of the weak learner.

This work was partially supported by DFG (Ger-
man Science Foundation), project FOR345/1-
1TP6.
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