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CS Department, AI Unit, University of Dortmund, 44221 Dortmund, Germany, E-Mail stefan.rueping@uni-
dortmund.de

Abstract. Time series analysis is an important and complex problem in machine learning and statistics. Real-world
applications can consist of very large and high dimensional time series data. Support Vector Machines (SVMs) are
a popular tool for the analysis of such data sets. This paper presents some SVM kernel functions and disusses their
relative merits, depending on the type of data that is used.
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1 Introduction

Time is a phenomenon which is both very complex
and very important in many real-world problems. Its
importance comes from the fact that almost every kind
of data contains time-dependent information, either
explicitly in the form of time stamps or implicitly in
the way that the data is collected from a process that
varies with time (e. g. a machine that is getting worn
out, sales that are influenced by changing tastes or
changing contents of web sites). A reason for its com-
plexity is that time can be represented in a multitude
of different representations. As always, an effect that
is obvious in one representation may be very much
hidden in another representation. In [8] Morik gives
a discussion of different representations and learning
tasks for time phenomena.

Of all the possible representation of time, time series,
i. e. the representation of a time dependent observa-
tion at (usually equidistant) time points as tuples

, are the most common. This is the case because
it is the easiest way to aquire time dependent data - all
you need to have to gather the data is a clock. Also,
there are many statistical algorithms that can be used
on numerical time series data, e. g. ARIMA modeling
or Fourier transforms.

One of the main problems of time series analysis, the
forecasting of time series, can be very easily stated
as a pure numerical problem: Split the time series

into windows of size
k. Then find a function such that

for every .
Other learning tasks, such as classification or simi-
larity computation of time series can also be formu-

lated as purely numerical problems. Support Vector
Machines (SVMs, see section 2) have been success-
fully applied for this kind of learning tasks ([10], [9],
[5]).

So if we have a purely numerical problem and purely
numerical data, what is the problem with a purely nu-
merical algorithm? The reason is that the real-world
process, which lies behind the data, in general will not
be this simple.

See the following example: Suppose we are given the
weekly sales of candles in some store and we want
to use machine learning to predict how many can-
dles will be sold next week. Obviously, there will be
an extremely high peak of sales at Christmas time.
The usual (numerical) solution would be to notice that
there is a cycle of one year in the data, so one could
try to use the sales of one year ago to predict the next
sales - but as the data is given per week, there could
be 51 or 52 weeks between two Christmas’s, depend-
ing on the actual date. The problem gets much worse
for easter instead of Christmas, because the date of the
easter holidays can vary about six weeks.

As another example, think of the problem of analyz-
ing data in intensive care medicine. A time series in
this field, for example some blood pressure, is char-
acterized by high variation, which is due to normal
physiological effects and small variations in the sen-
sors. Such a time series may exhibit three different be-
haviors: It could be stable, which in this case means
that the variation is not too high, it could have one or
several outliers, i. e. observation that lie out of the nor-
mal variation but which are not significant of the state
of the patient (e. g. measurement errors) or it may be a



significant change in the time series, i. e. the structure
of the time series itself changes. To decide which of
the three cases a given observation belongs to, is very
complicated and may depend on many facts, including
very high level medical reasoning.

As we see, there is always a gap between numerical
analysis and high-level, symbolic reasoning that needs
to be bridged. To incorporate higher level reasoning
and background knowledge into the analysis of nu-
merical time series there are two possible ways:

1. Bring the data to the high-level reasoning: Trans-
form the time series into a representation more
suitable for higher level reasoning, e.g. discretize
the time series and apply some logical modeling.

2. Bring the high-level reasoning to the data:
Choose the hypothesis space and transform the
data for the numerical learner in such a way, that
results that are meaningful in some way can be
found and are preferred. For examples, do some
higher level analysis of the data and use the re-
sults as additional features for the numerical al-
gorithm, like flags for the occurrence of special
holidays in the sales data, or choose a hypothesis
space that corresponds to a meaningful model.

This paper deals with the second approach. In the
context of Support Vector Machines, kernel functions
(which define the hypothesis space) are discussed that
can be interpreted as some kind of time series model.
Experiments are made to discover if these different
model assumptions have effects in practice and if there
exist kernel functions that allow time series data to be
processed with Support Vector Machines without in-
tensive preprocessing.

The remainder of this paper is organized as follows: In
the next section, a short introduction to Support Vector
Machines will be given. Section 3 presents some ker-
nel function and discusses the ideas about time series
that lies behind them. In Section 4, experiments are
made to see how these kernels perform on real-world
data.

2 Support Vector Machines

Support Vector Machines (SVMs) are based on the
work of Vladimir Vapnik in statistical learning the-
ory [15]. Statistical learning theory deals with the
question, how a function from a class of functions

can be found, that minimizes the expected
risk

(1)

with respect to a loss function , when the distribu-
tions of the examples and their classifications

are unknown and have to be estimated from
finitely many examples .

The SVM algorithm solves this problem by minimiz-
ing the regularized risk reg , which is the weighted
sum of the empirical risk emp with respect to the
data and a complexity term

reg emp

In their basic formulation, SVMs find a linear deci-
sion function sign that both
minimizes the prediction error on the training set and
promises the best generalization performance. Given
the examples this is done by
solving the following optimization problem:

(2)

subject to

(3)

(4)

The hyperplane vector has a representation in terms
of the training examples and their La-
grangian multipliers , that are calculated dur-
ing the optimization process:

3 Kernel Functions

One of the major tricks of SVM learning is the use of
kernel functions to extend the class of decision func-
tions to the non-linear case. This is done by map-
ping the data from the input space into a high-
dimensional feature space by a function

and solving the linear learning problem in . The ac-
tual function does not need to be known, it suffices
to have a kernel function which calculates the inner
product in the feature space.

It was noticed by Schölkopf in [14] that the kernel
function defines a distance measure on the input
space by

(5)

(6)
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Figure 1 AR[1] time series.

This shows the kernel function can be inter-
preted as a measure of similarity between the exam-
ples and .

3.1 Linear kernel

The linear kernel is the most simple
kernel function. The decision function takes the form

. When one uses the linear kernel to
predict time series, i. e.

, this means the resulting model is an
statistical autoregressive model of the order k (AR[k]).

With this kernel, time series are taken to be similar, if
they are generated by the same AR-model.

3.2 RBF kernels

Radial basis kernels take the form
. clearly, the similarity of two ex-

amples is simply judged by their euclidian distance.

In terms of time series, this has a parallel in the so-
called phase space representation. Assume the time
series is generated by a function such that

. If one takes the time series
and plots the -dimensional

vectors , the resulting plot is a
part of the graph of g, so the function g can be esti-
mated from the time series (see Figures 1 and 2).

Especially, assuming that the function is linear and
the data is generated by
where is a Gaussian noise (i. e. the time series model
is AR[1]), it can be shown that most of the data lies in
an ellipsoid defined by the mean of the time series and
the variance of . In [1] this is used in the phase space
procedure for finding outliers in the time series.

This shows that information about a window of a time
series can be gotten from other windows of the time
series that are similar in means of the euclidian dis-
tance, which makes the RBF kernel promising for time
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Figure 2 Phase space embedding of the time series in
Figure 1.
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Figure 3 Fourier transform of the time series in Figure
1.

series analysis.

3.3 Fourier Kernel

A common transformation for the analysis of time se-
ries data is to use the Fourier transform (see Figure
3). This representation is useful if the information of
the time series does not lie in the individual values at
each time point but in the frequency of some events. It
was noted by Vapnik [15] that the inner product of the
Fourier expansion of two time series can be directly
calculated by the regularized kernel function

3.4 Subsequence Kernels

As mentioned in Section 1, time dependent processes
may not show themselves by certain events happen-
ing at a fixed time-point, but by a certain sequence
of events, independent of the actual time. In between
this events, outliers or random observations may oc-
cur. Therefore, many algorithms for finding similar
time series do not consider the whole time series but
look for informative subsequences ([2], [4]).



A subsequence kernel for discrete sequences was used
for text classification in [7]. However, the calculation
of this kernel depends on the discreteness of the se-
quences, so it is not applicable to real-valued time se-
ries.

In section 3.2, radial basis kernels were used for time
series analysis on the basis that similar time series (in
means of the euclidian distance) should have the same
properties. Based on the observation that time series
can be viewed as similar if they have similar subse-
quences, a matching kernel function can be defined as

where and are subsequences of and of a fixed
size. As each subsequence-part of the kernel will be
close to zero for all non-matching subsequences, the
kernel effectively is defined on only the matching sub-
sequences of the time series.

As there are pairs of length k in a time
series of length n, for practical purposes one has to re-
strict the set of subsequences that are used. A possible
solution is to use only connected subsequences, to use
only subsequences with the same index set for x and y
or to restrict k in some way. In the experiments in this
paper, only was used.

3.5 PHMM Kernels

One can take the idea of subsequences as a fitting rep-
resentation of time series a bit further. The idea be-
hind the subsequence representation is that there is a
process hidden behind the data, which can only be ob-
served at certain time points and is inactive or hidden
behind noise the other times.

Hidden Markov Models [11] offer a model in which
these assumptions are explicitly modeled. In a Hidden
Markov Model, the output is assumed to be generated
by a process, which is in one of finitely many states at
each time. At every step, the process jumps from one
state to the next state with a given transition probabil-
ity, which is only dependent on the states. The state
sequence itself cannot be observed, all that is known
are the outputs that are generated by the process by a
certain probability dependent on the state. For a given
Hidden Markov Models and a sequence of observa-
tions, the probability that this sequence is generated
by the model can be calculated.

Pair Hidden Markov Models (PHMMs) are Markov
Models, which generate two output sequences simul-
taneously. At each state, either an output for the first
sequence, an output for the second sequence or a com-
mon output for both sequences is generated. Probabil-
ity estimation for PHMMs can be efficiently done in
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Figure 4 The PHMM used. Thick lines depict high
transition probabilities.
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Figure 5 An example output sequence for a PHMM
and corresponding state sequence.

time , where is the number of states of the
PHMM and is the length of the example sequences
(see [3]).

PHMMs for discrete valued series have been applied
as SVM kernels in [16], where it has been shown that
the joint probabilities of pairs of sequences defined
by PHMMs indeed defines a proper kernel function.
The extension to real valued sequences is very easily
done by replacing the discrete probabilities by contin-
uous probability densities, a standard trick for Hidden
Markov Models. Similar work can be found in [6].

In the experiments in this paper, the very simple
PHMM shown in Figure 4 has been used. The PHMM
consists only of three states. In state an output

for both sequences is generated such that
is normally distributed. In state ( ) only a out-
put for the first (second) sequence is generated. In all
states, the transition probability to state is (usu-
ally near 1) and the probability for a transition to any
other state is . Informally speaking, the idea
behind this model is that two similar sequences usu-
ally should look the same, just that once in a while an
extra output is generated in one of the sequences (see
Figure 5).

It is also possible to learn the parameters of the
PHMM (i. e. the transition and the output probabil-
ities) from the data by the use of a modified Baum-
Welch algorithm ([11], [3]). The problem is how to se-
lect the examples for learning: As the PHMM should
assign high probabilities to similar time series and low
probabilities to dissimilar ones, it must be trained on
similar time series, so they have to be known before-
hand. A possible solution could be to estimate the
PHMM parameters on positive examples alone in the
case of classification or to manually select similar time



series. But of course this can easily lead to a skewed
sampling of examples and hence to a bad parameter
estimation. Because of this problems, no parameter es-
timation from data was done in the experiments of this
paper.

3.6 Extension to Multivariate Time Series

Until now, the focus has only been on univari-
ate time series. But how can multivariate series

be dealt with?

There is a simple trick that works on every case: The
class of kernel functions is closed under addition and
multiplication, so we can always build a multivariate
model by addition or multiplication of univariate time
series models. This model assumes that there is no in-
teraction between the single time series .

For some kernels, there are also more complex ways
to deal with this modeling problem. The RBF kernel

, for example, can be
used directly with and representing the multivari-
ate time series windows. This model assumes a full
interaction between the single time series and over all
time points in the window, which may as easily be
wrong as the assumption of no interaction. In particu-
lar, a single outlier in one time series on one time point
will influence the whole example.

A similar approach can be used in the subsequence
kernel. As well as looking for matching subsequences
in the single time series, one can also search matching
subsequences of the whole time series. As well as for
the RBF kernel, the choice is between no intercation
and complete interaction of all single time series.

In the PHMM kernel, the extension to the multivari-
ate case can be done by defining a d-dimensional out-
put probability on the states. Also, one can split up
each of the states and into a number of
states, where each state still produces only output for
both, the first or the second sequence, respectively, but
with different probabilities. This can be used to de-
fine several probabilities on the multivariate outputs.
Therefore, the PHMM kernel can define a very com-
plex model on the time series - on the cost of having
to estimate the model parameters.

4 Experiments

To test the performance of these kernels on real-world
data sets, some experiments were made. In all ex-
periments, 10-fold cross-validation was used to get
an estimation of the mean absolute error (MAE) and
mean squared error (MSE) resp. the accuracy on these
data sets. The SVM implementation mySVM [13] was
used in the experiments.

4.1 Chromatography

This data comes from the chemical process of Chro-
matography. Chromatography is used in chemical in-
dustry to separate temperature sensitive substances. A
mixture of components is injected into a column filled
with porous particles. The component with the highest
adsorption ability has the longest residence time in the
column and the component with the lowest adsorption
ability reaches the column end at first. The concen-
tration of the components is measured over time and
gives a time series which is characteristic of the com-
ponents.

The learning task in this example is to identify the
components by the approximation of a certain real-
valued parameter called Henry, that is characteristic
of the components.

At all there were 500 time-points for each curve.
From these time-points, only 275 points had non-
zero values and were used. To reduce the size of
the data set further, only each k-th time-point for

was used, giving five different
datasets with attributes set sizes of 275, 55, 27, 9 and
5 attributes.

4.1.1 Dot Kernel

Dataset MAE MSE

1 0.534 0.630
5 0.501 0.515
10 0.529 0.530
30 0.744 0.913
50 1.189 2.478

4.1.2 RBF Kernel
Previous investigation showed that usable values of
the parameter of the RBF kernel were in the range
of to .

Dataset gamma MAE MSE

1 0.001 0.201 0.452
1 0.01 0.417 0.896
1 0.1 1.124 3.029
5 0.001 0.189 0.215
5 0.01 0.189 0.344
5 0.1 0.493 1.079
10 0.001 0.239 0.166
10 0.01 0.175 0.237
10 0.1 0.321 0.622
30 0.001 0.609 0.713
30 0.01 0.309 0.305
30 0.1 0.257 0.390
50 0.001 1.015 1.865
50 0.01 0.591 0.682
50 0.1 0.386 0.571



4.1.3 Fourier Kernel

Dataset q MAE MSE

1 0.25 2.058 6.161
1 0.5 2.059 6.140
1 0.75 2.059 6.140
5 0.25 2.046 6.117
5 0.5 0.815 1.065
5 0.75 2.059 6.140
10 0.25 0.559 0.464
10 0.5 0.461 0.222
10 0.75 2.059 6.140
30 0.25 0.300 0.123
30 0.5 0.399 0.183
30 0.75 0.466 0.214
50 0.25 0.435 0.407
50 0.5 0.406 0.323
50 0.75 0.400 .184

4.1.4 Subsequence Kernel

Dataset MAE MSE

1 - -
5 0.578 1.574
10 0.584 0.776
30 1.082 2.322
50 1.805 4.397

This experiment shows the limitations of the subse-
quence kernel: The runtime on dataset 5, i. e. with 55
attributes, was in the range of several days. Therefore,
the experiments with the even larger dataset 1 (275
attributes) were omitted. Clearly this type of kernel
function can only be used for very low dimensional
data.

4.1.5 PHMM Kernel

Dataset MAE MSE

1 - -
5 0.786 1.853
10 0.589 1.285
30 0.359 0.738
50 0.488 0.998

The runtime of the SVM with the PHMM kernel was
better than with the subsequence kernel, but still in the
range of some days for the 55-attribute dataset. As in
the case for the subsequence kernel, the experiments
with the 275-attribute dataset were omitted.

All in all, the RBF kernel with on the 27-
attribute dataset shows the best performance (MAE =
0.175). The Fourier kernel performs worse (MAE =
0.300), but still with good results (9 attributes,

). The PHMM kernel on the 9-attribute dataset
comes third (MAE = 0.359). The dot and subsequence
kernels show the worst performance (MAE = 0.501
and MAE = 0.578, respectively).

In another experiment with this dataset [12] reports
that even better results for this dataset were found by
using a specially construction aggregate features of the
time series such as location of the maximum and turn-
ing points. This shows that the important characteristic
of a time series in this case is its similarity to others in
its overall shape. This explains why the RBF kernel is
suited for this task.

Also the bad performance of the subsequence kernel
can be explained: The equidistant feature selection in
these experiments together with the high reduction of
the input dimensionality (from 275 to 9 in the extreme
case) leads to a high gap between two successive time
points in the time series. Therefore, the comparison
of different time points and thus the use of the subse-
quence kernel is not reasonable.

4.2 Retail Store Data

This data consists of the weekly sales in selected stores
of a retail store chain. 20 items that sold about 3 times
a week were randomly collected and their sales in a
period of four month were recorded. The task was to
predict next weeks sales based on the sales of the past
four weeks.

Kernel MAE MSE

dot 2.532 18.600
RBF, 2.333 16.365
RBF, 2.023 15.067
RBF, 1.217 12.429
RBF, 1.637 4.518
fourier, 2.851 24.137
fourier, 2.885 24.955
fourier, 2.975 24.767
subseq, 2.621 20.221
subseq, 2.650 20.761
subseq, 2.749 22.140
subseq, 2.788 22.874
PHMM 2.722 22.488

As can be seen, the RBF kernel with parameter
shows the best results, followed by the RBF kernel

with . All other kernels show quite similar
performance.

This is consistent with previous experiments with
these time series. As only slow selling products were
regarded, each week’s sales can be very much at-
tributed to random effects or effects that cannot be ex-
plained in terms of previous sales figures. Therefore,



the time series models that were described in the pre-
vious section do not apply.

4.3 Intensive Care Data

This data consists of the minutely measurements of
different vital signs of intensive care patients. These
univariate time series have been classified by an ex-
perienced intensivist into three groups: Time series
where a significant change in the level of the observa-
tions occurs (level change), time series with an outlier
and time series without any change. A sequence of 20
minutes that contained the point of the change in the
pattern of the time series have been extracted and used
as the examples.

The learning task was to distinguish level changes
against the other classes, resulting in 18 positive and
80 negative examples.

Kernel Accuracy

dot 62.2%
RBF, 73.3%
RBF, 82.2%
RBF, 81.1%
fourier, 81.1%
fourier, 81.1%
fourier, 78.8%
subseq, 81.1%
PHMM 83.5%

The dot kernel completely fails to grasp the concept to
be learned. All other kernels perform similar, with the
PHMM kernel best.

The time series models that are based on sequences
work well with this dataset because of the way the
examples were generated: As the point of the pattern
change could lie anywhere in the windows of the time
series that was used as an examples, the matching of
two time series requires to adjust both time indexes to
each other.

5 Conclusions

The paper has presented different SVM kernels that
can be used for univariate and multivariate time se-
ries analysis. Each of these kernels models different
assumptions on the process that generates the time se-
ries. How to efficiently find out which kernel is opti-
mal for a given learning task is still an unsolved prob-
lem.

The experiments showed that the RBF kernel performs
very well on different types of time series and learning
tasks. However, in specialized applications it may pay

to have a close look on the time series model to be
used.
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