
Conceptual Clustering with Iceberg Concept Lattices

Gerd Stumme, Rafik Taouil, Yves Bastide, Lotfi Lakhal

Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Universität Karlsruhe (TH), D–
76128 Karlsruhe, Germany; stumme@aifb.unikarlsruhe.de

INRIA Lorraine, LORIA, BP 239, F–54506 Vandoeuvre–lès–Nancy, France; rafik.taouil@loria.fr

Laboratoire d’Informatique (LIMOS), Université Blaise Pascal, Complexe Scientifique des Cézeaux, 24 Av. des
Landais, F–63177 Aubière Cedex, France; bastide@libd2.univbpclermont.fr

LIM, CNRS FRE2246, Université de la Méditerranée, Case 90, 163 Avenue de Luminy, F–13288 Marseille Cedex
9, France; lotfi.lakhal@lim.univmrs.fr

Abstract. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in
Databases (KDD). Iceberg lattices are a conceptual clustering method, which is well suited for analyzing very large
databases. They also serve as a condensed representation of frequent itemsets, as starting point for computing bases
of association rules, and as a visualization method for association rules. Iceberg concept lattices are based on the
theory of Formal Concept Analysis, a mathematical theory with applications in data analysis, information retrieval,
and knowledge discovery.

Keywords. Formal Concept Analysis, Conceptual Clustering, Knowledge Discovery, Visualization, Lattices

1 Introduction

Concept Lattices are used to represent conceptual hi-
erarchies which are inherent in data. They are the core
of the mathematical theory of Formal Concept Analy-
sis (FCA). Introduced in the early 1980ies as a formal-
ization of the concept of ‘concept’ [37], FCA has over
the years grown to a powerful theory for data analysis,
information retrieval, and knowledge discovery [32].
In Artificial Intelligence (AI), FCA is used as a knowl-
edge representation mechanism [39] and as conceptual
clustering method [38, 7, 23]. In database theory, FCA
has been extensively used for class hierarchy design
and management [24, 40, 9, 36, 28, 11]. Its usefulness
for the analysis of data stored in relational databases
has been demonstrated with the commercially used
management system TOSCANA for Conceptual Infor-
mation Systems [35].

A current research domain common to both the AI
and the database community is Knowledge Discovery
in Databases (KDD). Here FCA has been used as a
method for conceptual clustering [38, 7, 12, 35, 23],
a formal framework for implication and association
rules discovery and reduction [19, 26, 4, 31], and for
improving the response times of algorithms for min-
ing association rules [25, 26, 5]. The interaction of
FCA and KDD in general has been discussed in [33]
and [14].

In this paper we present a new approach of concep-
tual clustering with FCA: iceberg concept lattices. Ice-
berg concept lattices show only the topmost part of a
concept lattice. The extensions of the concepts pro-
vide the clusters, and the intensions their descriptions.
Beside conceptual clustering, iceberg concept lattices
have different uses in KDD: as a visualization method
— especially for very large databases —, as a con-
densed representation of frequent itemsets, as a base
of association rules, and as a visualization tool for as-
sociation rules.

In [30], we have presented the algorithm TITANIC,
as a new, efficient algorithm for computing concept
lattices. As this algorithm is based on a levelwise ap-
proach [2, 22] which is in line with our pruning crite-
rion (the support of a concept), it can easily be adapted
to compute iceberg concept lattices.1

In the next section, we recall the basics of FCA. In
Section 3, we introduce iceberg concept lattices and
explain their use as conceptual clustering method by
an example. Section 4 lists some typical applications.
Section 5 concludes the article.

1One just has to add “ and ” in Line 8 of
Algorithm 1 in [30].



2 Formal Concept Analysis

Since concepts are necessary for expressing human
knowledge, any knowledge management process ben-
efits from a comprehensive formalization of concepts.
FCA offers such a formalization by mathematizing the
concept of ‘concept’ as a unit of thought constituted
of two parts: its extension and its intension [37, 10].
This understanding of ‘concept’ is first mentioned ex-
plicitly in the Logic of Port Royal [3] and has been
established in the German standard DIN 2330 and the
International Standard ISO 704.

We recall the basics of Formal Concept Analysis as
far as they are needed for this paper. A more extensive
overview is given in [10].

To allow a mathematical description of extensions and
intensions, FCA starts with a (formal) context.

Definition 2.1 A formal context is a triple
where and are sets and

is a binary relation. The elements of are called
objects and the elements of attributes. The inclu-
sion is read “object has attribute ”.
For , we define

; and for , we define dually
.

We assume — in this article — that all sets are finite,
especially and .

Definition 2.2 A formal concept is a pair with
, , and . (This is

equivalent to and being maximal with
.) is called extent and is called intent

of the concept.

The set of all concepts of a formal context to-
gether with the partial order

(which is equivalent to ) is called
concept lattice of .

Example: As running example, we use the MUSH-
ROOM database from the UCI KDD Archive (http:
//kdd.ics.uci.edu/). It consists of a database
with 8,416 objects (mushrooms) and 22 (nominally
valued) attributes. We obtain a formal context by cre-
ating one (Boolean) attribute for each of the 80 pos-
sible values of the 22 database attributes. The result-
ing formal context has thus 8,416 objects and 80 at-
tributes. In order to explain FCA by a small example,
we restrict ourselves first to a very limited sub-context,
namely the first ten objects, and 13 attributes. This re-
stricted formal context is shown in Figure 1. A line
diagram of its concept lattice is shown in Figure 2.

Mushroom 1
Mushroom 2
Mushroom 3
Mushroom 4
Mushroom 5
Mushroom 6
Mushroom 7
Mushroom 8
Mushroom 9
Mushroom 10

ed
ib

le
po

is
on

ou
s

ca
p 

sh
ap

e:
 c

on
ve

x
ca

p 
sh

ap
e:

 fl
at

ca
p 

su
rf

ac
e:

 fi
br

ou
s

ca
p 

su
rf

ac
e:

 s
ca

ly
ca

p 
su

rf
ac

e:
 s

m
oo

th
ca

p 
co

lo
r:

 b
ro

w
n

ca
p 

co
lo

r:
 b

uf
f

ca
p 

co
lo

r:
 g

ra
y

ca
p 

co
lo

r:
 r

ed
ca

p 
co

lo
r:

 w
hi

te
ca

p 
co

lo
r:

 y
el

lo
w

Figure 1 Formal context about mushrooms

In the line diagram, the name of an object is always
attached to the circle representing the smallest concept
with in its extent; dually, the name of an attribute
is always attached to the circle representing the largest
concept with in its intent. This allows us to read the
context relation from the diagram because an object
has an attribute if and only if there is an ascending
path from the circle labeled by to the circle labeled
by . The extent of a concept consists of all objects
whose labels are below in the hierarchy, and the intent
consists of all attributes attached to concepts above in
the hierarchy. For example, the concept without label
in the middle of the diagram has Mushroom 2, Mush-
room 5, Mushroom 4 as extent, and edible, cap sur-
face: fibrous, cap shape: flat as intent.

For , we say that the implication
holds in the context, if each object having all at-

tributes in also has all attributes in (i. e., an impli-
cation is an association rule2 with 100% confidence).
For instance, the implication cap shape: flat, cap sur-
face: smooth cap color: buff, poisonous
holds in the context. (Of course it may not hold any
longer when we enlarge the set of objects under con-
sideration.)

Implications can be read directly in the line diagram:
the largest concept having both ‘cap shape: flat’ and
‘cap surface: smooth’ in its intent is just the concept
labeled by ‘cap color: buff’ — which on its turn lies
below the concept labeled by ‘poisonous’. In the next
section is discussed how also the association rules with
less than 100 % confidence can by visualized in the
line diagram.

Beside association rule mining, FCA has been ap-
plied in a wide range of application domains, includ-
ing medicine, psychology, social sciences, linguistics,
information sciences, machine and civil engineering
etc. (cf. [32]). Over all, FCA has been used in more

2An association rule is a pair with . Its
support is defined by , and its
confidence by conf . See [1].



cap surface: smooth

cap surface: fibrous

cap color: gray
cap shape: flat

poisonous

cap color: buff

cap color: yellow

edible

cap color: white

cap color: brown

cap shape: convex

cap color: red

cap surface: scaly

Mushroom 10

Mushroom 9

Mushroom 7

Mushroom 8

Mushroom 3

Mushroom 4

Mushroom 1

Mushroom 6

Mushroom 5

Mushroom 2

Figure 2 The concept lattice of the context in Figure 1

than 200 projects, both on the scientific and the com-
mercial level. For instance, FCA has been applied for
analyzing data of children with diabetes [27], for de-
veloping qualitative theories in music esthetics [20],
for managing emails [8], for database marketing [14],
and for an IT security management system [6].

3 Iceberg Concept Lattices

The previous example was unsatisfying insofar as it
was restricted to a very small and — more important
— arbitrarily chosen set of objects. On the other hand,
this restriction allowed us to display the entire concept
lattice. In the worst case, the size of a concept lattices
is exponential in the size of the context. Hence for
most applications one has to consider strategies (other
than arbitrarily reducing the context) for dealing with
such large concept lattices. We present an approach
based on frequent itemsets as known from data min-
ing [1]: Our iceberg concept lattices will consist only
of the top-most concepts of the concept lattice. These
are the concepts which provide the most global struc-
turing of the domain:

Definition 3.1 Let , and let .
The support count of the attribute set (also called item-
set) in is . is said to be a
frequent attribute set if .

A concept is called frequent concept if its intent is fre-
quent. The set of all frequent concepts of a context

is called the iceberg concept lattice of the context .

Because the support function is monotonously de-
creasing (i. e.,

), the iceberg concept lattice is an order filter
of the whole concept lattice, and thus in general only a
sup-semi-lattice. But when we add a new bottom ele-
ment, it becomes a lattice again. This makes it possible
to apply the same algorithm (which will be introduced
in the following sections) for computing concept lat-
tices and iceberg concept lattices. But before talking
about their computation, let’s have a closer look to ice-
berg concept lattices:

Example: Now we consider the whole MUSHROOM

database. Its concept lattice consists of 32,086 con-
cepts, hence is by far too large to be displayed. But for
a first glance, it is sufficient to see its top-most part:
Figure 3 shows the MUSHROOM iceberg concept lat-
tice for a minimum support of 85 %.

In the diagram one can clearly see that all mushrooms
in the database have the attribute ‘veil type: partial’.
Furthermore the diagram tells us that the three next-
most attributes are: ‘veil color: white’ (with 97.62 %
support), ‘gill attachment: free’ (97.43 %), and ‘ring
number: one’ (92.30 %). There is no other attribute
having a support higher than 85 %. But even the com-
bination of all these four concepts is frequent (with re-
spect to our threshold of 85 %): 89.92 % of all mush-
rooms in our database have one ring, a white partial



veil type: partial

ring number: one veil color: white

gill attachment: free100 %

92.30 % 97.62 %

97.43 %

97.34 %90.02 %

89.92 %

Figure 3 Iceberg concept lattice of the mushroom
database with

veil, and free gills. This concept with a quite complex
description contains more objects than the concept de-
scribed by the fifth-most attribute, which has a support
below our threshold of 85 %, since it is not displayed
in the diagram.

In the diagram, we can detect the implication

ring number: one, veil color: white
gill attachment: free .

It is indicated by the fact that there is no concept hav-
ing ‘ring number: one’ and ‘veil color: white’ (and
‘veil type: partial’) in its intent, but not ‘gill attach-
ment: free’. This implication has a support of 89.92 %
(and as it is an implication, a confidence of 100 %).
Unlike the implications in Example 1 (which held for
the ten objects under consideration only), this impli-
cation is globally valid, i. e., it does not change when
we consider a different minimum support.

If we want to see more details, we have to decrease
the minimum support. Figure 4 shows the MUSH-
ROOM iceberg concept lattice for a minimum support
of 70 %. One observes that, of course, its top-most
part is just the iceberg lattice for .
Additionally, we obtain five new concepts, having the
possible combinations of the next-most attribute ‘gill
spacing: close’ (having support 81.08 %) with the pre-
vious four attributes. The fact that the combination

gill spacing: close, veil type: partial, gill attachment:
free is not realized as a concept intent indicates an-
other implication:

gill attachment: free, gill spacing: close
veil color: white (*)

This implication has 78.52 % support (the support of
the most general concept having all three attributes in
its intent) and — being an implication — 100 % con-
fidence.

By further decreasing the minimum support, we dis-
cover more and more details. Figure 5 shows the
MUSHROOM iceberg concept lattice for a minimum
support of 55 %. It shows four more partial copies of
the 85 % iceberg lattice, and three new, single con-
cepts.

The observation that the top-most part of the iceberg
lattice appears partially again in combination with
other attributes can be used for an alternative visual-
ization: Figure 6 shows the iceberg concept lattice as a
nested line diagram. The diagram provides exactly the
same information as Figure 5, but in a more structured
way.

Each of the ‘satellites’ contains a partial copy of
the top-most iceberg lattice. Only those concepts are
copied which are, together with the new attribute(s),
still frequent. The lines of the outer diagram have to
be read as a bundle of parallel lines, linking corre-
sponding concepts. For instance, the concept on the
right side of the diagram labeled by ‘78.80 %’ is not
only an immediate subconcept of the one labeled by
‘81.08 %, but also of the one labeled by ‘97.62 %’.

The empty circles indicate unrealized concepts: They
are still frequent, but all objects in an unrealized con-
cept share at least one more attribute. For instance, the
unrealized concept on the right side left of the concept
labeled by ‘78.80 %’ has as intent gill spacing: close,
gill attachment: free, veil type: partial . But implica-
tion (*) tells us that all objects having these attributes
also have the attribute ‘veil color: white’. Therefore,
‘veil color: white’ has to be in each realized concept
which contains the three other attributes. The largest
of them is just the first realized concept below: the one
with 78.52 % support. This way, each unrealized con-
cept indicates an implication: the attributes of its intent
always imply all attributes in the intent of its largest
realized subconcept. For instance, the two unrealized
concepts below the attribute ‘no bruises’ indicate the
implications

no bruises, gill attachment: free
veil color: white

no bruises, veil color: white
gill attachment: free

respectively, each having 57.22 % support.

For attributes which are labeled at concepts having no
subconcepts in the diagram, we cannot decide whether
they are part of interesting implications. For instance,
the diagram does not show whether there is an im-
plication having ‘stalk color below ring: white’ in its
premise or conclusion (other than the trivial implica-
tion stalk color below ring: white veil type:
partial ). If there are any such rules, then their support



veil type: partial
ring number: one

veil color: white

gill attachment: free

gill spacing: close

100 %

92.30 % 97.62 %97.43 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

78.52 %

74.52 %

Figure 4 Iceberg concept lattice of the mushroom database with

is below the actual minimum support of 55 %. In or-
der to study them, the threshold has to be decreased
further.

In the way nested line diagrams are introduced in
[38], the attributes are grouped manually according
to their semantics. Related attributes are grouped to-
gether. This usually involves a human expert to de-
cide which attributes are related. The support func-
tion, on the other hand, allows an automatic grouping:
In Figure 6, the inner diagram contains the top-most
attributes, the outer diagram the next-most attributes.
The resulting diagram shows the most important at-
tributes for structuring the domain. The knowledge en-
gineer only has to fix the minimum support thresholds
for the different layers.

Observe that the iceberg concept lattices in this ex-
ample are used for conceptual clustering, or un-
supervised learning. Our aim was to gain new insights
about the mushrooms in the database, independent
from a specific purpose. In particular, the aim was not
to learn how to distinguish between poisonous and ed-
ible mushrooms. The question if and how iceberg con-
cept lattices can be used in such a supervised learning
scenario is an interesting open problem.

Up to now, we have discussed the use of ice-
berg concept lattices as a conceptual clustering tech-
nique, equipped with a visualization method, which
is very well suited especially for analyzing very large
databases containing strongly correlated data. Now we
briefly discuss some more uses of iceberg concept lat-
tices in KDD:

A condensed representation of frequent itemsets.
The computation of frequent attribute sets [itemsets]
is the first (and most expensive) step in the computa-
tion of association rules. One reason is that one needs
to count the support for each itemset. By using the fact
that , for , we can de-
rive the supports of all itemsets from the supports of
the frequent concept intents only. In strongly corre-
lated data, only relatively few of the frequent item-
sets are also concept intents. Hence only few support
counts have to be effected in the database.

A starting point for computing bases of association
rules. One problem in mining association rules is
the large number of rules which are usually returned.
In [4], different bases for association rules are intro-
duced, which prune redundant rules, but from which
all valid rules can still be derived. The computation
of the bases does not require all frequent itemsets, but
only frequent concept intents.

A visualizing technique for association rules. We
have already discussed how implications (i. e., asso-
ciation rules with 100 % confidence) can be read from
the line diagram. The Luxenburger basis for approxi-
mate association rules (i. e., association rules with less
than 100 % confidence), which is presented in [34],
can also be visualized directly in the line diagram of an
iceberg concept lattice. The Luxenburger basis is de-
rived from [19]. It contains only those rules
where and are frequent concept intents, and
the concept is an immediate subconcept of

. Hence there corresponds to each approxi-
mate rule in the Luxenburger base exactly one edge
in the line diagram. Figure 7 visualizes all rules in



veil type: partial
ring number: one

veil color: white

stalk surface below ring: smoothstalk surface above ring: smooth

gill attachment: free

gill size: broad

gill spacing: close

stalk shape: tapering

stalk color below ring: white

stalk color above ring: white

no bruises

100 %

92.30 % 97.62 %

60.31 %

55.09 %

63.17 %

57.94 %

97.43 %69.87 %

62.17 % 67.59 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

57.79 %

55.13 %

56.37 %

58.03 %60.88 %

55.66 %

67.30 %

59.89 %

78.52 %

74.52 %

59.89 %

55.70 % 57.51 %57.32 %

57.22 %

Figure 5 Iceberg concept lattice of the mushroom database with

the Luxenburger basis for minsupp = 70 % and min-
conf = 95 %. For instance, the rightmost arrow stands
for the association rule veil color: white, gill spacing:
close gill attachment: free , which holds with a
confidence of 99.6 %. Its support is the support of the
concept the arrow is pointing to: 78.52 %, as shown
in Figure 4. Edges without label indicate that the con-
fidence of the rule is below the minimum confidence
threshold.

4 Some Typical Applications

In Section 3, we have already discussed the use of
(iceberg) concept lattices for knowledge discovery
and conceptual clustering. Here we give another, real-
world example of a KDD application:

Database marketing. The purpose of database mar-
keting is the study of customers and their buying be-
havior in order to create and validate marketing strate-

gies. In [14], the use of iceberg concept lattices for
database marketing in a Swiss department store is dis-
cussed in more detail. In that scenario, the object set

consists of all customers of the warehouse paying
by credit card, and the attribute set consists of at-
tributes describing the customers (e. g., ‘lives in West-
ern Switzerland’) and their buying behavior (e. g., ‘has
spent more than 1000 Swiss francs in the last year’).
For a given set of attributes, the weight function re-
turns the number of customers fulfilling all attributes
in . By decreasing the minimum support, one can
study the customer behavior in more and more detail.

The use of (iceberg) concept lattices is not only re-
stricted to knowledge discovery. Here we give some
more examples of typical applications, in which TI-
TANIC can be applied:

Configuration space analysis. In software re-
engineering, one task is to analyze the source code
of a given program where no (or relatively few)



92.30%

90.02% 97.34%

89.92%

78.80%

78.52%

56,37%

55.09%

58.03%

57.79%

55.70%

57.22%

63.17%

57.94%

60.88%

55.66%

55.13%

67.59%

67.30%

58.89%

62.17%

69.87%

100%

97.62%
97.43% 81.08%

60.31%

58.89%

ring number: one veil color: white

veil type: partial

gill spacing: closegill size: broad

stalk color above ring: white

stalk surface above ring: smooth

stalk surface below ring: smooth

no bruisesstalk shape: tapering

stalk color below ring: white

gill attachment: free

Figure 6 Nested line diagram of the iceberg concept lattice in Figure 5

documentation is given. In [17], the use of Formal
Concept Analysis for analyzing the configuration
space of C programs is discussed. In the described
scenario, iceberg concept lattices could be introduced
quite naturally. The set of objects contains the
lines of code, the set consists basically of the
C preprocessor symbols which appear in the code,
and the relation indicates which lines of code are
governed by which preprocessor symbols. Instead
of computing the whole concept lattice, one can
restrict the computation to the top-level groupings of
code pieces by using TITANIC. The weight function
returns, for a set of preprocessor symbols, the

number of lines of code which are governed by all
preprocessor symbols in .

Transformation of class hierarchies. In object-
oriented languages, one aim is to simplify the class hi-
erarchy according to a (number of) given program(s).
In [29], this problem has been attacked by using con-
cept lattices. In the scenario, the set of attributes
contains all data members and methods of a given
class hierarchy, and the set of objects consists of all
variables and pointers of the program(s). The relation

basically indicates which variables and pointers are
related to which data members and methods.The re-



ring number: one

veil type: partial
gill attachment: free

gill spacing: close

97.0%

99.9% 99.6%

97.2%

97.4%

99.9%

99.7%

97.5%

veil color: white
97.6%

Figure 7 Visualization of the Luxenburger basis for and minconf

sulting concept lattice provides an improved hierarchy
which can be used for restructuring the class hierarchy
according to software engineering principles without
the need to modify the source code. The computation
of the concept lattice can be done by using as weight
function the function which returns, for a given set
of data members and methods, the number of variables
and pointers related to all elements in .

Ontology Learning. Ontologies are “explicit speci-
fication[s] of a conceptualization” [13]. They usually
consist of a set of concepts (not to be confused with
formal concepts from FCA), a hierarchical is-a re-
lation and other (non-hierarchical) relations between
the concepts, and eventually axioms describing con-
straints on the relations and concepts. One task in
learning ontologies from data is the construction of
the is-a hierarchy. Suppose that the concepts are al-
ready learned (e. g., by applying linguistic and statis-
tical methods [21]) and stored in the set . The set
contains tuples of a relational database, or documents
annotated with the concepts. The relation indicates
if a tuple includes a concept, or if a document is anno-
tated with a concept. TITANIC uses the weight func-
tion, which assigns to a set of ontology concepts the
number of documents/tuples related to all concepts in

. The resulting iceberg concept lattice provides an
is-a hierarchy on the set of the ontology concepts. Ad-
ditionally, it suggests new concepts which may sim-
plify the structure of the concept hierarchy.

Another situation where a weight function arises nat-
urally in the computation of a closure system is the
following. This scenario is more difficult to state in
terms of a formal context:

Discovery of functional dependencies. One impor-
tant task of logical database tuning is the discovery
of minimal functional dependencies from database re-
lations [15, 18]. This is equivalent to computing a clo-
sure system on the set of all database attributes. The
closed sets are just those which are closed under all
functional dependencies which hold in the database.
TITANIC can be applied for this computation, using as
weight of a given attribute set the minimal number
of rows which have to be deleted from the database
such that is closed under all functional dependen-
cies which are valid for the remaining rows. This
weight function is derived from the measure intro-
duced in [16]. For this application, all ‘min’ in this pa-
per have to be replaced by ‘max’ (refer to Remark 2).

5 Conclusion

The paper shows the use of iceberg concept lattices as
a conceptual clustering method, a condensed represen-
tation of frequent itemsets, and an efficient visualiza-
tion technique for conceptual hierarchies derived from
very large databases. Typical examples for its applica-
tion are listed in the paper.

References
1. R. Agrawal, T. Imielinski, and A. Swami. Mining association

rules between sets of items in large databases. In Proc. SIG-
MOD Conf., pages 207–216, 1993.

2. R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules. In Proc. VLDB Conf., pages 478–499, 1994.
(Expanded version in IBM Report RJ9839).

3. A. Arnauld and P. Nicole. La logique ou l’art de penser —
contenant, outre les règles communes, plusieurs observations
nouvelles, propres à former le jugement. Ch. Saveux, Paris,
1668.

4. Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal.
Mining minimal nonredundant association rules using frequent



closed itemsets. In J. Lloyd, V. Dahl, U. Furbach, M. Kerber,
K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J.
Stuckey, editors, Computational Logic — CL. Proc. 1st Intl.
Conf. on CL (6th Intl. Conf. on Database Systems), number
1861 in LNAI, pages 972–986, Heidelberg, 2000.

5. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal.
Mining frequent patterns with counting inference. Sigkdd Ex-
plorations, 2(2):71–80, 2000. Special Issue on Scalable Algo-
rithms.

6. K. Becker, G. Stumme, R. Wille, U. Wille, and M. Zickwolff.
Conceptual information systems discussed through an itsecu-
rity tool. In R. Dieng and O. Corby, editors, Knowledge Engi-
neering and Knowledge Management. Methods, Models, and
Tools. Proc. EKAW ’00, number 1937 in LNAI, pages 352–
365, Heidelberg, 2000. Springer.

7. C. Carpineto and G. Romano. GALOIS: An ordertheoretic
approach to conceptual clustering. In Proc. ICML 1993, pages
33–40. Morgan Kaufmann Prublishers, 1993.

8. R. Cole and G. Stumme. Cem – a conceptual email manager.
In B. Ganter and G. W. Mineau, editors, Conceptual Struc-
tures: Logical, Linguistic, and Computational Issues. Proc.
ICCS ’00, LNAI, pages 438–452, Heidelberg, 2000. Springer.

9. H. Dicky, C. Dony, M. Huchard, and Th. Libourel. On au-
tomatic class insertion with overloading. In OOPSLA, pages
251–267, 1996.

10. B. Ganter and R. Wille. Formal Concept Analysis: Mathemat-
ical Foundations. Springer, Heidelberg, 1999.

11. R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Arfi, and
T. Chau. Design of class hierarchies based on concept (Ga-
lois) lattices. TAPOS, 4(2):117–134, 1998.

12. R. Godin and R. Missaoui. An incremental concept formation
approach for learning from databases. TCS, 133(2):387–419,
1994.

13. T. Gruber. Towards principles for the design of ontologies used
for knowledge sharing. Intl. J. of Human and Computer Stud-
ies, 46((2/3)):293–310, 1997.

14. J. Hereth, G. Stumme, U. Wille, and R. Wille. Conceptual
knowledge discovery and data analysis. In B. Ganter and
G. Mineau, editors, Conceptual Structures: Logical, Linguis-
tic, and Computational Structures. Proc. ICCS 2000, number
1867 in LNAI, pages 421–437, Heidelberg, 2000. Springer.

15. Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. Tane:
an efficient algorithm for discovering functional and approx-
imate dependencies. The Computer Journal, 42(2):100–111,
1999.

16. J. Kivinen and H. Mannila. Approximate inference of func-
tional dependencies from relations. TCS, 149(1), 1995.

17. M. Krone and G. Snelting. On the inference of configuration
structures from source code. In Proc. 16th Intl. Conference on
Software Engineering, pages 49–57. IEEE Comp. Soc. Press,
May 1994.

18. S. Lopes, J.-M. Petit, and L. Lakhal. Efficient discovery
of functional dependencies and amstrong relations. In Proc.
EDBT 2000, number 1777 in LNCS, pages 350–364, Heidel-
berg, 2000. Springer.

19. M. Luxenburger. Implications partielles dans un con-
texte. Mathématiques, Informatique et Sciences Humaines,
29(113):35–55, 1991.

20. K. Mackensen and U. Wille. Qualitative text analysis sup-
ported by conceptual data systems. Quality and Quantity: In-
ternatinal Journal of Methodology, 2(33):135–156, 1999.

21. A. Mädche and S. Staab. Mining ontologies from text. In
R. andO Corby Dieng, editor, Knowledge Engineering and
Knowledge Management. Methods, Models, and Tools. Proc.
EKAW ’00, number 1937 in LNAI, pages 189–202, Heidelberg,
2000. Springer.

22. H. Mannila and H. Toivonen. Levelwise search and borders of
theories in knowledge discovery. Data Mining and Knowledge
Discovery, 1(3):241–258, 1997.

23. G. Mineau, G. and and R. Godin. Automatic structuring of

knowledge bases by conceptual clustering. IEEE Transactions
on Knowledge and Data Engineering, 7(5):824–829, 1995.

24. M. Missikoff and M. Scholl. An algorithm for insertion into
a lattice: application to type classification. In Proc. 3rd Intl.
Conf. FODO 1989, number 367 in LNCS, pages 64–82, Hei-
delberg, 1989. Springer.

25. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering
frequent closed itemsets for association rules. In Proc. ICDT
’99, number 1540 in LNCS, pages 398–416, Heidelberg, 1999.
Springer.

26. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient
mining of association rules using closed itemset lattices. Jour-
nal of Information Systems, 24(1):25–46, 1999.

27. P. Scheich, M. Skorsky, F. Vogt, C. Wachter, and R. Wille.
Conceptual data systems. In O. Opitz, B. Lausen, and R. Klar,
editors, Information and Classification, pages 72–84. Springer,
BerlinHeidelberg, 1993.

28. I. Schmitt and G. Saake. Merging inheritance hierarchies for
database integration. In Proc. 3rd IFCIS Intl. Conf. on Coop-
erative Information Systems, pages 122–131, New York City,
Nework, USA, August2022 1998.

29. G. Snelting and F. Tip. Reengineering class hierarchies using
concept analysis. In Proc. ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 99–110, Novem-
ber 1998.

30. G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and
L. Lakhal. Fast computation of concept lattices using
data mining techniques. In Proc. 7th Intl. Workshop on
Knowledge Representation Meets Databases, pages 21–
22, Berlin, August 2000. CEURWorkshop Proceeding.
http://sunsite.informatik.rwthaachen.de/
Publications/CEURWS/.

31. G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal.
Intelligent structuring and reducing of association rules with
formal concept analysis. In Proc. KI 2001, LNAI, Heidelberg,
2001. Springer. (to appear).

32. G. Stumme and R. Wille, editors. Begriffliche Wissensverar-
beitung – Methoden und Anwendungen. Springer, Heidelberg,
2000.

33. G. Stumme, R. Wille, and U. Wille. Conceptual knowledge
discovery in databases using formal concept analysis methods.
In J. M. Żytkow and M. Quafofou, editors, Principles of Data
Mining and Knowledge Discovery. Proc. 2nd European Sym-
posium on PKDD ’98, number 1510 in LNAI, pages 450–458,
Heidelberg, 1998. Springer.

34. R. Taouil, N. Pasquier, Y. Bastide, and L. Lakhal. Mining
bases for assocition rules using closed sets. In Proc. 16th Intl.
Conf. ICDE 2000, San Diego, CA, US, February 2000.

35. F. Vogt and R. Wille. TOSCANA – a graphical tool for ana-
lyzing and exploring data. In Graph Drawing 94, number 894
in LNCS, pages 226–233, Heidelberg, 1995. Springer.

36. K. Waiyamai, R. Taouil, and L. Lakhal. Towards an object
database approach for managing concept lattices. In Proc. 16th
Intl. Conf. on Conceptual Modeling, number 1331 in LNCS,
pages 299–312, Heidelberg, 1997. Springer.

37. R. Wille. Restructuring lattice theory: an approach based on
hierarchies of concepts. In I. Rival, editor, Ordered sets, pages
445–470. Reidel, Dordrecht–Boston, 1982.

38. R. Wille. Line diagrams of hierarchical concept systems. Int.
Classif., 11(2):77–86, 1984.

39. R. Wille. Concept lattices and conceptual knowledge systems.
Computers & Mathematics with Applications, 23(6-9):493–
515, 1992.

40. A. Yahia, L. Lakhal, J. P. Bordat, and R. Cicchetti. iO2:
An algorithmic method for building inheritance graphs in ob-
ject database design. In Proc. 15th Intl. Conf. on Conceptual
Modeling, number 1157 in LNCS, pages 422–437, Heidelberg,
1996. Springer.


