
An Experimental Evaluation of the
Generic Evolutionary Algorithms Programming Library

Zoltán Tóth and Gabriella Kókai

Department of Informatics, University of Szeged, Hungary (zntoth@inf.u-szeged.hu)
Now visiting:

Department of Computer Science II, Friedrich-Alexander University of Erlangen-Nürnberg
(kokai@informatik.uni-erlangen.de)

Abstract. In this paper the Generic Evolutionary Algorithms Programming Library (GEA) system is evaluated via
a comparison with other genetic programming libraries based on test functions. The purpose of the GEA system
is to provide researchers with an easy-to-use and extendable programming library which can solve optimization
problems by means of evolutionary algorithms. GEA is implemented in the ANSI C++ programming language and
the class hierarchy is designed in a way that enables users to integrate new methods easily. Since there exist several
evolutionary algorithm implementations, it is important to check whether it is worth using GEA or not. Besides its
flexibility, the presented system outperforms other EA tools on most test functions.

Keywords. Evolutionary Computation, Programming Toolkit

Introduction

Engineering applications provide a wide range of op-
timization problems for people working in this area.
The different tasks require in many cases different pro-
gramming environments to achieve the best results.

The purpose of the Generic Evolutionary Algo-
rithms Programming Library system1 is to provide
researchers with an easy-to-use, widely applicable
and extendable programming library which solves
these tasks by means of evolutionary algorithms
[10][12][16].

Evolutionary algorithms are general purpose function
optimization methods which search for optima by
making potential solutions compete for survival in a
population. The better a potential solution is, the bet-
ter chance it has to survive. The search space is ex-
plored by modifying these potential solutions by ge-
netic operators observed in nature: generally mutation
and recombination [18].

Evolutionary algorithms have (among others) the fol-
lowing two advantages over other optimization meth-
ods: First, in many cases they converge to global op-
tima, and second, the usage of the black-box principle
(which only requires knowledge about a function’s in-

put and output to perform optimisation on it) makes
them easily applicable to functions whose behaviour
is too complex to handle with other methods.

The GEA system contains algorithms for various evo-
lutionary methods, implemented genetic operators for
the most common representation forms for individu-
als, various selection methods, and examples on how
to use and expand the library. The implemented ge-
netic operators, selection methods and evolutionary al-
gorithms make the system easy-to-use even for begin-
ners: If the user wants to solve a problem with GEA
and the search space consists of, say, bit-strings or
real vectors, then he/she only has to implement the
problem-specific fitness function, set the parameters
of the algorithm and start searching for the solution.
GEA is implemented in the ANSI C++ programming
language and the class hierarchy is designed in a way
that enables users of the system to easily add new se-
lection methods, representation forms for individuals
or even evolutionary algorithms.

One must admit that there exist a nice amount of pro-
gramming libraries that deal with the problem of kinds
of evolutionary algorithms [8][9][14][21]. GEA tries
to be the ‘alloy’ of these libraries in a manner that it
contains several methods and representation forms, so

This work was supported by the grants of the Bayerischer-Habilitationsförderpreis 1999, DAAD and Siemens AG
1http://gea.ztoth.net

it can be used to solve a large amount of problems. Al-
though there are functions in GEA (such as algorithms
for evolutionary strategies (ESs), the so-called meta-
ES and the adaptation of the probability of the genetic
operators [11]) which are supported only by a few
other libraries. In this paper an evaluation of GEA is
given making comparison with other genetic program-
ming libraries based on carefully selected test func-
tions. The executed runs show that GEA performed
very well on the test suit with regard to execution
speed and achieved fitness values as well. The pre-
sented results show empirical evidence that the devel-
oped system can expect success in the field of applica-
tions.

In the following, Section 1 offers an overview of evo-
lutionary algorithms. Section 2 contains some details
of the GEA system: The class hierarchy and the pur-
pose of the classes. In Section 3 a comparison of GEA
and some other systems can be found. The GEA sys-
tem and the other libraries have been tested on some
standard test functions. The results of these tests are
presented in this section. Finally in Section 4 a sum-
mary of present and future work is given.

1 Evolutionary Algorithms
In this section an overview of evolutionary algorithms
is given, focusing on details that are important for the
GEA system; that is, the theoretical foundations of the
implemented methods are described here.

Evolutionary algorithms (EAs for short) are general
purpose function optimization methods which use the
‘survival-of-the-fittest’-model known from nature [4].
In this model individuals compete for resources in
an environment and selection assures that individuals
which are better suited for the given environment will
produce more offspring. Thus the preservation of good
attributes is guaranteed.

Unlike most optimization methods, EAs consider sev-
eral potential solutions at a time. These potential solu-
tions, called individuals from now, form a population.
The individuals interact with each other, thus they cre-
ate new individuals to form a new generation.

An individual of the population is represented with a
sort of data structure. The most common representa-
tion forms for individuals are bit-string and real vec-
tor. Each element of the vector is called a gene. The
chain of genes is also called a chromosome. The val-
ues in it are the individual’s genotype. The appearance
of an individual – which can be e.g. a permutation of
certain numbers – is called phenotype. Evolutionary
algorithms work on the level of the genotype, which
means that they modify the encoded form of individ-
uals. When evaluating an individual in its current en-
vironment, its phenotype is considered. The result of

the evaluation is usually a real number, and the task
of the evolutionary algorithm is either to maximize or
minimize this number. From the evaluation, a positive
fitness value is computed, which is always greater for
fitter individuals. This fitness value is considered when
performing selection.

The creation of new individuals is done by applying
certain genetic operators on the selected parents. The
most common genetic operators are reproduction, mu-
tation and recombination. Reproduction simply copies
the individual into the new generation, while muta-
tion modifies its argument by randomly changing each
gene of it with a certain probability. Recombination
takes two or more individuals and creates new ones by
replacing parts of their gene-chains. Each genetic op-
erator is applied with a certain probability. However,
sometimes one operator is more efficient than the oth-
ers and it is not easy (or at least it requires experiment)
to set the probabilities correctly at the start of an evo-
lution process. Davis’s solution is to change the prob-
abilities dynamically during the evolution process by
observing the effectiveness of the operators. He calls
this method the adaptation of operator probability [5].

Executing an evolutionary algorithm is an iterative
process: At the beginning, an initial population is cre-
ated and its individuals are evaluated. The iteration
steps contain the creation of the new population and
the evaluation of the newly created individuals. The
process stops when a certain halting condition is satis-
fied, which can be, for example reaching a given gen-
eration number.

Several kinds of evolutionary algorithms are known,
from which the most important ones are genetic al-
gorithms (GAs) [6][10] and evolutionary strategies
(ESs) [16]. They were developed independently in the
1970s: GAs were introduced by John Holland and an-
alyzed by his students (e.g. Kenneth De Jong) in the
USA, and at the same time, evolutionary strategies
were invented in Germany by Ingo Rechenberg. The
main differences between these two kinds of EAs are
the method of creating the new generation and the
typical representation form for individuals. The typi-
cal representation form for individuals is bit-string for
GAs and real vector for ESs.

The two kinds of EAs also differ in the manner in
which genetic operators are applied. Genetic algo-
rithms use a wide range of selection methods to se-
lect the individuals that can reproduce. These selec-
tion methods apply different selection pressure. The
recombination operator of GAs always takes two indi-
viduals and produces two descendants, that’s why it is
often called crossover. The most widespread recombi-
nation method is to select one or more recombination
points on the chromosome and exchange the parts of

the individuals between these points. Another possi-
bility is the so-called parametric uniform crossover,
where each gene is exchanged with a certain probabil-
ity.

There is a special kind of genetic algorithms, namely
genetic programming (GP) introduced by John R.
Koza[12]. The main invention of GPs is that branch-
ing structures can be evolved. Most methods are the
same as in GAs, but there are special genetic opera-
tors designed for these structures, e.g. recombination
replaces subtrees of the selected individuals.

Evolutionary strategies always use best and random
selection. The recombination operator always pro-
duces one descendant from the parent individuals and
can be discrete or intermediate: At discrete recombi-
nation the gene values of the new individual are set
from a randomly selected parent, and at intermediate
recombination the offspring’s gene values are com-
puted by averaging the parent individuals’ appropriate
gene values.

Evolutionary strategies can be classified into the so-
called plus and comma strategies. In short, the dif-
ference between the two strategies is that when the
comma strategy is used, parents die off after creating
their offspring. In the case of the plus strategy, parents
compete with their offspring for survival. The model
of competing subpopulations can be applied by the so-
called meta-ES method [11].

2 The GEA System
This section describes the GEA system in detail. It is
explained how the idea of creating such a program-
ming library came up. Then the class hierarchy of the
latest version is presented. This means that the imple-
mented representation forms, their genetic operators
and the evolutionary algorithms are also mentioned
here.

The first aim of the GEA system was to provide a basis
for the evolution of Lindenmayer systems (L-systems
for short) [13]. These structures are capable of describ-
ing fractal structures such as trees (see the Tevol pro-
gram, [19]) or even the blood vessels of the human
retina (the GREDEA project, [20]). These two appli-
cations required the evolution of the rewriting rules of
the L-systems as well as their parameters. The most
suitable evolutionary algorithms to evolve the rewrit-
ing rules and the parameter vectors are genetic pro-
gramming and evolutionary strategies, respectively. A
suitable C++ programming library which dealt with
GPs and ESs at the same time could not be found –
and the design and implementation of GEA has began.

The class hierarchy of the current version of GEA
can be seen in Figure 1. The names of the abstract
classes are written in italics. Class Evolvable is

the superclass of all evolvable objects. The classes
SelectionMethod and NextGenMethod define
interfaces for selection methods and evolutionary al-
gorithms. The abstract classes enable the user of the
system to easily integrate new functions into GEA by
writing so-called plug-in modules which are loaded at
running time into the system. The advantage of the
plug-ins is that the software can be extended with-
out changing its implementation or recompiling it. The
plug-in classes are denoted by a ‘+’ sign in the class
hierarchy.

SelectionMethod
 ProportionalSelection +
 BoltzmannSelection +
 RankSelection +
 TournamentSelection +
 BestSelection +
 RandomSelection +
 SigmaSelection +

 Population
EA
NextGenMethod

Evolvable

 ESNextGen +
 GANextGen +

 EvolvableRealVector +
 EvolvableBitString +

Figure 1 The class hierarchy of the GEA system

The parameters of the evolutionary algorithm are read
from a text file into an e params data structure. This
data structure is designed to contain parameters of ar-
bitrary processes or systems. It is easy to define the
types and restrictions of parameters, and even relations
between them. If an extension of GEA requires new
parameters to be added, then they must be entered into
the system’s parameter structure definition file whose
syntax is given by a set EBNF rules. The parameter
values can be set using a graphical user interface or di-
rectly in the input files. The GEA system is designed
in a way that the evolutionary parameters can be mod-
ified even during a started evolutionary process.

Class Evolvable is the abstract superclass of all
evolvable classes: It declares all the functions a class
has to have in order to become an evolvable class.
The standard GEA system contains two individual rep-
resentations: EvolvableBitString and Evolv-
ableRealVector are classes which implement the
genetic operators of these two individual representa-
tions. If the possible solutions of a problem can be rep-
resented by bitstrings or real valued vectors, then only
the fitness function has to be implemented and passed
to the constructor of the selected class as a callback
function.

The genetic operators are implemented according to
the representation form. For bitstrings, mutation can
change a bit by either flipping it or generating a
random bit into its place. The GA-crossover can
be single-point, multi-point or parametrised uniform
crossover. Recombination of the ES works by getting
genes from the selected parents (only discrete recom-
bination is applicable, since it does not make sense to
compute the average of bits).

For real vectors, the mutation of a gene can be done by
adding a Gaussian random number to it or multiplying
it with a randomly generated value. Crossover is the
same as at bitstring representation, and recombination
can be either local/global and discrete/intermediate.

The system can optionally adapt the probability of the
genetic operators, that is, it can observe their effec-
tiveness and change the probabilities according to the
result. This feature can be useful to set up the appro-
priate operator probabilities.

Class Population represents a population (a com-
munity of individuals) in the GEA system. The point-
ers to the individuals are stored in an array and are
sorted by decreasing fitness values. The class has some
functions which perform preprocessing computations
needed by certain special selection methods.

Being a subclass of Evolvable, populations of
populations can be created, thus populations can be
evolved, too. This makes meta-ES available in the sys-
tem. The implementation of the genetic operators is
very similar to that of bitstrings. The fitness value of
a population can be either its best individual’s fitness
value or the mean of all individuals’ fitness values.

The selection operators in GEA are all implemented as
subclasses of the abstract class SelectionMethod.
Evolutionary strategies always use random selection,
but genetic algorithms and other evolutionary algo-
rithms which might be added to the system by its
users can use arbitrary selection methods. The re-
quired method can be specified among the parameters
and the system loads the appropriate plug-in when the
evolutionary process is created.

Class EA represents an evolution process in the GEA
system. It has all methods that are necessary to handle
a population and create new generations from it. It has
to know the parameters of the evolutionary algorithms
and the representation type of the individuals. After
creating an EA object, only its NextGen function has
to be called to run the evolution process. Eventual er-
rors caused by incorrect parameter setting or insuffi-
cient system resources are handled with a general error
handling procedure.

3 Comparison with Other Programming
Libraries

In this section a comparison of the GEA system with
some other freely available evolutionary/genetic pro-
gramming libraries is given. There are a large num-
ber of programming libraries which try to deal with
evolutionary algorithms, but most of them are writ-
ten in C or other programming languages, thus the
advantages of C++’s object-oriented capabilities can-
not be exploited. For such libraries, see SGA-C [8]
and GENESIS [9]. Another problem with existing pro-

gramming libraries is that some of them are capable
to work only with bitstring and real vector individual
representations (GENESIS). Since the GEA system is
written in ANSI C++ language and – thanks to the
plug-in technology – can be applied on any represen-
tation forms of the individuals, these deficiencies are
overcome.

There are other programming libraries (e.g. GAlib
[21]) written in C++ with support for any represen-
tation forms, but even these libraries do not contain
methods for evolutionary strategies. The most impor-
tant thing in the GEA system is that at the time when its
development started, there could not be found any pro-
gramming libraries with implementation of ESs. Thus,
experiments with them could not be done. Besides the
implementation of functions needed for ESs, the GEA
system also provides functions for experiments with
meta-ES as well.

A larger project, the EO Evolutionary Computation
Framework [14] exists supervised by J. J. Merelo at
the University of Granada that deals with any kind
of evolutionary algorithms, but ESs were not imple-
mented in the ancestor of this system, GAGS.

The above mentioned evolutionary systems and GEA
were tested on several test functions. These test func-
tions were chosen according to [7], so that they dif-
fer in their modality, separability and regularity (that
is, the regular or irregular arrangement of the local
optima). Table 1 shows the exact definition and the
attributes of the functions. The dimensionality is not
indicated in the table: is in all cases, i.e.

.

Since multi-modal and inseparable functions mean
more severe challenge to evolutionary algorithms,
these are represented with greater weight in the test
suite. Moreover, it is also important to make a dif-
ference between regular and irregular functions. The
local optima of the Ackley and Griewangk functions
are distributed normally, while the Fletcher-Powell
and Langerman functions are based on random values,
thus these are irregular.

All test functions were implemented in all systems,
and ten independent runs were performed on each
function. The running times were measured, thus the
convergence speed can also be compared. When it was
possible, the parameters of the evolution processes
were set to the same values in all cases. These com-
mon parameters were the following:

Population size: 100
Selection method: Fitness proportional
Mutation probability: 0.01
Recombination probability: 0.8
For each test function, the number of processed
generations was determined according to [7]

N
ot

at
io

n

M
od

al
it

y

Se
pa

ra
bl

e?

R
eg

ul
ar

?

Sphere model
[17]

where () uni yes N/A

Schwefel’s
double sum [17]

where ()

uni no N/A

Generalized
Rastrigin’s
function [2]

cos

where ()
multi yes N/A

Generalized
Ackley’s function
[1]

exp

exp cos

where exp and ()

multi no yes

Generalized
Griewangk
function [2]

cos

where ()
multi no yes

Fletcher-Powell
function2[1]

where sin cos

sin cos and ()
multi no no

Generalized
Langerman
function3[3]

exp cos

where and ()

multi no no

Table 1 The definition of the test functions

When it was possible, the elitism rate was set to
and the mutation rate to . Note that the Fletcher-
Powell function had to be minimized and some sys-
tems (EO, SGA-C) are not able to perform minimiza-
tion on the target function. The fitness computation
had to be modified in the case of these systems and
thus a fair comparison could not be made.

Table 2 shows the running times of the different ge-
netic systems for each of the test functions. The entry
of the fastest system is typed in boldface and the val-
ues in parentheses show the speed factor of the respec-
tive system to the fastest one. It can be observed that
the ‘best’ library with respect to execution speed is
GEA. It was the fastest on four of the seven test func-
tions and reached a second place on the other three
functions. The second fastest system was GENESIS
which outperformed GEA on the more complicated
test functions.

Of course when observing the performance of an evo-
lutionary system, one must not regard only the execu-

tion speed. The acquired fitness values are more im-
portant than the speed of the process. The best fitness
values found by the various systems are shown in Ta-
ble 3 with the best values typed in boldface. To make
the comparison on the single test functions easier, cer-
tain number of points were assigned to each library for
each function. These values are indicated in parenthe-
ses in the table. Where the goal was to maximize the
target function, ten points were assigned to the library
which achieved the highest target value. The number
of points given to the other libraries is proportional
to the fitness value achieved by the respective sys-
tem. For the Fletcher-Powell function, where the goal
was to minimize the target function value, the values
in the parentheses show the factor between the result
achieved by the according library and the result of the
best system.

On four test functions (, , ,), GEA achieved
the best fitness values and in the case of three of these
functions (, ,), it was the fastest system as well.
In the case of , GENESIS was the fastest implemen-

2 () are random integers, and () is the randomly chosen
global optimum position. Reference values for matrices A, B and vector can be found in [1].

3The matrix () and vector are randomly generated over the set of real numbers. [7] contains reference to these
values; they also can be found at http://www.wi.leidenuniv.nl/CS/ALP/alea.html.

Genetic Running times (in seconds, 10 runs)
Library

SGA-C 8.35 (1.8) 141.96 (6.4) 91.66 (1.7) 17.50 (1.6) 16.04 (1.8) 1084.87 (1.5) 463.87 (2.9)
GENESIS 5.78 (1.3) 56.85 (2.1) 56.10 (1.0) 11.21 (1.0) 12.51 (1.4) 736.25 (1.0) 159.74 (1.0)

GALib 6.46 (1.4) 210.65 (7.8) 88.90 (1.6) 22.88 (2.0) 13.83 (1.5) 3045.32 (4.1) 1221.76 (7.6)
EO 7.54 (1.6) 59.49 (2.2) 85.09 (1.6) 36.86 (3.3) 14.10 (1.5) 1221.03 (1.7) 544.61 (3.4)

GEA 4.61 (1.0) 26.85 (1.0) 53.82 (1.0) 13.69 (1.2) 9.16 (1.0) 1077.09 (1.5) 417.50 (2.6)

Table 2 The running times of the libraries on each of the test functions

Genetic Best fitness values found in the ten runs
Library 4

SGA-C 552.0 (7.0) 3.068e7 (7.6) 906.4 (7.5) 21.69 (9.8) 613.2 (6.9) 834800 (88) 0.1072 (2.9)
GENESIS 765.1 (9.7) 4.001e7 (9.9) 1210.5 (10) 22.21 (10) 886.4 (9.8) 9453 (1) 0.1846 (4.9)

GALib 628.3 (8.0) 3.743e7 (9.2) 1137.5 (9.4) 22.05 (9.9) 757.4 (8.4) 385497 (41) 0.0145 (0.4)
EO 593.9 (7.6) 2.278e7 (5.6) 958.9 (7.9) 21.26 (9.6) 592.7 (6.6) 29934 (3) 0.3416 (9.2)

GEA 784.8 (10) 4.061e7 (10) 1208.5 (10) 22.08 (9.9) 900.9 (10) 44937 (5) 0.3731 (10)

Table 3 The best fitness values found by the systems for each test functions

tation but the result of GEA is more than twice as good.
GENESIS achieved the second best results for ,
and and these are only slightly behind GEA’s. EO
has the second place behind GEA for .

350

400

450

500

550

600

650

700

750

800

0 1 2 3 4 5 6 7 8 9

F
itn

es
s

va
lu

e

Elapsed time (secs)

SGA
GENESIS

GALib
EO

GEA

Figure 2 The achieved fitness values and running times for
the Sphere model ()

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

0 50 100 150 200 250

F
itn

es
s

va
lu

e

Elapsed time (secs)

SGA
GENESIS

GALib
EO

GEA

Figure 3 The achieved fitness values and running times for
Schwefel’s double sum function ()

GENESIS stands on the first place in the case of the

functions , and and it was also the fastest
for the latter two, while GEA was the second fastest
system. For , the result of GEA is only be-
hind the best fitness value. Clearly, GENESIS is the
best library for , with regard to execution speed and
achieved result as well. EO has the second place, while
GEA only found the third best result. These are the
three systems (GENESIS, EO and GEA) which found
acceptable solutions for this function.

As a summary, GEA proved to be the ‘best’ system
with respect to achieved fitness values: It found the
best individuals in four of the seven test cases, finished
on the second and the third place twice and once, re-
spectively. GENESIS performed nearly as well as GEA
and the other three libraries had results of different
quality on the test functions.

600

700

800

900

1000

1100

1200

0 10 20 30 40 50 60 70 80 90 100

F
itn

es
s

va
lu

e

Elapsed time (secs)

SGA
GENESIS

GALib
EO

GEA

Figure 4 The achieved fitness values and running times for
the generalized Rastrigin’s function ()

Figures 2 through 8 show the performance of the dif-
ferent programming libraries for each test function.
The achieved best fitness value is plotted against the

4This test function was minimized.

elapsed time, so it is quite easy to compare the sys-
tems (e.g. their real problem solving speed). The non-
monotonity of the graphs of GENESIS and EO shows
that these libraries do not use elitism to preserve the
best individual found so far.

20.6

20.8

21

21.2

21.4

21.6

21.8

22

22.2

0 5 10 15 20 25 30 35 40

F
itn

es
s

va
lu

e

Elapsed time (secs)

SGA
GENESIS

GALib
EO

GEA

Figure 5 The achieved fitness values and running times for
the generalized Ackley’s function ()

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16

F
itn

es
s

va
lu

e

Elapsed time (secs)

SGA
GENESIS

GALib
EO

GEA

Figure 6 The achieved fitness values and running times for
the generalized Griewangk function ()

0

200000

400000

600000

800000

1e+06

1.2e+06

0 200 400 600 800 1000 1200 1400

F
itn

es
s

va
lu

e

Elapsed time (secs)

SGA
GENESIS

GALib
EO

GEA

Figure 7 The achieved fitness values and running times for
the Fletcher-Powell function ()

Figure 2 shows the results for the Sphere model. As
it can be seen, GEA reached the 200th generation first
(see the running times above), and SGA was the slow-
est for this problem. The best individual was found by
GEA. The other graphs concerning the test functions

contain similar information about the speed
of the systems and the best individuals found, so these
observations are not detailed. These are the data sum-
marized in Tables 2 and 3. Additional system-specific
observations can be made from these graphs: For ex-
ample, GENESIS and GALib start with relatively bad
individuals and the progress is continuous during the
evolution process, while GEA finds pretty good solu-
tions even in the first generation, and the progress is
staggered, with long stagnant periods.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000 1200

F
itn

es
s

va
lu

e

Elapsed time (secs)

SGA
GENESIS

GALib
EO

GEA

Figure 8 The achieved fitness values and running times for
the generalized Langerman function ()

4 Summary and Future Work

In this document the GEA (Generic Evolutionary
Algorithms) system, an evolutionary algorithms pro-
gramming library written in the ANSI C++ program-
ming language is compared to other available and
wide-spread evolutionary libraries.

The design and implementation of GEA was started
with projects that evolve parametric Lindenmayer sys-
tems to describe branching structures. These evolution
processes required the use of genetic programming
and evolutionary strategies, and at that time there was
no programming libraries that provided both of these
two algorithms.

The GEA system in its present phase contains im-
plementations of genetic algorithms and evolutionary
strategies, several types of selection methods, and ge-
netic operators for bitstring and real-vector individual
representations. The examples provided with the sys-
tem and the current applications contain the genetic
operators of permutations and parametric L-systems
as well. Genetic programming can be applied by the
creation of tree-like individual representation forms.
The library is designed to be modular, that is, it can be
easily extended by subclassing the respective abstract
classes to create plug-ins.

The comparison of the GEA system with other li-
braries with a similar goal has proven that the en-

ergy invested into the development of the program-
ming library was not wasted. It is not only a flexible
and easy-to-use library with simple ways of applica-
tion and extension, but its performance is very good on
many problems of different characteristics. Despite of
the low level of optimization in the genetic functions
(the system is continually under development and be-
ing optimized), it is faster than other freely available
evolutionary systems. The numerous parameters make
the fine-tuning of the evolution process available in or-
der to achieve the best possible solutions in affordable
time.

The current implementation of GEA will be extended
with the following features in the foreseeable future:

More optimization to increase the speed of the
system.
Coevolution [15] will be made available by let-
ting the individuals know about their mates in
the population. This is not implemented in any
of the libraries mentioned in Section 3.
A graphical user interface is under development
for GEA which will enable the user to set the
genetic parameters easily, to observe the perfor-
mance of an EA run, and to display the individ-
uals graphically. The GTK GUI Toolkit5 is used
in the implementation. GEA stays independent
of the GUI, that is, it will be possible to use the
system without it.
A utility will be designed and implemented
which will help the user to design evolutionary
algorithms by the drag-and-drop technique.

It can be seen that the GEA system in its present
state is a widely applicable and easy-to-use library.
As many research projects, it is of course constantly
under development. Among the above mentioned im-
provements other modifications also will be carried
out as further reports and comments arrive from the
researchers working in the field.

References
1. T. Bäck. Evolutionary Algorithms in Theory and Prac-

tice. Oxford University Press, New York, 1996.
2. T. Bäck and Z. Michalewicz. Test landscapes. In

T. Bäck, D. Fogel, and Z. Michalewitz, editors, Hand-
book of Evolutionary Computation, pages B2.7:14–
B2.7:20, Bristol and New York, 1997. Institute of
Physics Publishing Ltd and Oxford University Press.

3. H. Bersini, M. Dorigo, S. Langerman, G. Seront, and
L. Gambardella. Results of the first international con-
test on evolutionary optimisation. In Proceedings of
the 3rd IEEE Conference on Evolutionary Computa-
tion, pages 611–615. IEEE Press, 1996.

4. C. Darwin. On the Origin of Species. Murray, London,
1859.

5. L. Davis. Adapting operator probabilities in genetic al-
gorithms. In Proceedings of the Third ICGA, pages 61–
67. Morgan Kaufmann, 1989.

6. K. A. De Jong. An analysis of the behavior of a class
of genetic adaptive systems. Ph.d thesis, University of
Michigan, 1975.

7. A. E. Eiben and T. Bäck. Empirical investigation of
multiparent recombination operators in evolution strate-
gies. Evolutionary Computation, 5(3):347–365, 1998.

8. D. Goldberg. Simple GA code (C translation
of the code from Goldberg, D. E. ftp://ftp-
illigal.ge.uiuc.edu/pub/src/simpleGA/C/.

9. J. J. Grefenstette. The GENEtic Search Im-
plementation System (GENESIS Version 5.0).
gref@aic.nrl.navy.mil.

10. J. H. Holland. Adaption of Natural and Artificial Sys-
tems. University of Michigan Press, Ann Arbor, Michi-
gan, 1975.

11. C. Jacob. Principia Evolvica – Simulierte Evolution mit
Mathematica. Dpunkt Verlag, 1997.

12. J. R. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press, Cambridge, Massachusetts, 1992.

13. A. Lindenmayer. Mathematical models for cellular in-
teraction in development. Journal of Theoretical Biol-
ogy, 18:280–315, 1968.

14. J. J. Merelo. EO Evolutionary Computation Frame-
work. http://geneura.ugr.es/˜jmerelo/ EO.html.

15. J. Paredis. The Handbook of Evolutionary Compu-
tation, 1st supplement, chapter Coevolutionary algo-
rithms. Oxford University Press, 1998.

16. I. Rechenberg. Evolutionsstrategien: Optimierung
Technischer Systeme nach Prinzipien der Biologischen
Evolution. Fromman-Holzboog, Stuttgart, 1973.

17. H.-P. Schwefel and G. Rudolf. Contemporary evolution
strategies. In F. Morán, A. Moreno, J. J. Merelo, and
P. Chacón, editors, Advances in Artificial Life. Third In-
ternational Conference on Artificial Life, volume 929 of
Lecture Notes in Artificial Intelligence, pages 893–907.
Springer-Verlag, Berlin, 1995.

18. W. M. Spears, K. De Jong, T. Bäck, D. B. Fogel, and
H. de Garis. An overview of evolutionary computation.
In European Conference on Machine Learning, 1993.

19. Z. Tóth, G. Kókai, and R. Ványi. Interactive visual tree
evolution. In EIS2000 Second International ICSC Sym-
posium on Engineering of Intelligent Systems, June 27
- 30, 2000 at the University of Paisley, Scotland, U.K.,
pages 384–390, 2000.

20. R. Ványi, G. Kókai, Z. Tóth, and T. Pető. Grammatical
retina description with enhanced methods. In R. Poli,
W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and
T. C. Fogarty, editors, Genetic Programming, Proceed-
ings of EuroGP’2000, volume 1802 of LNCS, pages
193–208, Edinburgh, Apr. 15-16 2000. Springer-Verlag.

21. M. Wall. GAlib – A C++ Library of Genetic Algorithm
Components. http://lancet.mit.edu/ga/.

5http://www.gtk.org

