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Talk Overview

• On-line learning, concept memory, instance memory

• Algorithm for learning with partial instance memory

• Selecting extreme examples, those on the boundaries of
concept descriptions

• Evaluation and Comparison

– Computer Intrusion Detection

– The stagger Concepts

• Future Work
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On-line Learning

• Training examples distributed over time

• But system must always be able to perform

• Temporal-Batch Learning
1. Learn, say, rules from examples
2. Store rules, store examples
3. Use rules to predict, navigate, etc.
4. When new examples arrive, add to current examples
5. Goto step 1

• Incremental Learning
1. Learn rules from examples
2. Store rules, discard examples
3. Use rules to predict, navigate, etc.
4. When new examples arrive, learn new rules using old rules

and new instances
5. Goto step 2
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Concept Memory

• Full: Learner stores concept descriptions, changing them only
when new examples arrive (e.g., winnow)

• No: Learner stores no concept descriptions that generalize
training examples (e.g., ib2)

• Partial: Learner stores concept descriptions and modifies them
but not necessarily in response to the arrival of new training
examples, like weight decay (e.g., favorit)
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Instance Memory

• Full: Learner stores all examples from the input stream
(e.g., id5, gem)

• No: Learner stores no examples (e.g., id4, aq11)

• Partial: Learner stores some examples (e.g., lair, hillary,
flora, darling, MetaL(b), MetaL(ib), aq-pm, aq11-pm)
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Classification of Learning Systems
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Algorithm for Learning
with Partial Memory

1. Learn rules from training examples

2. Select a portion of the examples

3. Store rules, store examples

4. Use rules to predict, navigate, etc.

5. When new examples arrive

• if incremental learning, then

– learn new rules using old rules, new instances, and
examples held in partial memory

• if temporal-batch learning, then

– learn new rules using new instances and examples held in
partial memory

6. Combine new instances with those in partial memory

7. Goto step 2
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Selecting Examples for Partial Memory

• lair: the first positive example only

• hillary: only the negative examples

• darling: examples near the centers of clusters

• ib2: misclassified examples

• MetaL(b), MetaL(ib): sequence over a fixed window of time

• flora: sequence over a changing window, set adaptively

• aq-pm, aq11-pm, gem-pm: examples on the boundaries of
rules (i.e., extreme examples), possibly over a fixed window of
time
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Visualization of Training Examples:
Discrete Version of the Iris Data Set
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Induced Characteristic Rules

setosa ← [pl = 0] & [pw = 0] &

[sl = 0..3] & [sw = 0, 2..4]

versicolor ← [pl = 1] & [pw = 1..2] &

[sl = 1..6] & [sw = 0..4]
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Visualization of Induced Rules
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Visualization of Extreme Examples
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Evaluation of Learning Systems

• ib2: Instance-based learner. Selects misclassified examples

• flora2: Incrementally learns disjunctive rules. Selects
examples over a window of time. Heuristic adjusts window size

• aq11: Incrementally learns disjunctive rules. No instance
memory. A lesioned version of aq11-pm. Pascal
implementation

• aq-bl: Temporal-batch learner. Disjunctive rules. Full
instance memory. A lesioned version of aq-pm.
C implementation

• aq11-pm: Incrementally learns disjunctive rules. Selects
examples on the boundaries of these descriptions over a fixed
window of time. Wrapper implementation

• aq-pm: Temporal-batch learner. Disjunctive rules. Selects
examples on the boundaries of these descriptions over a fixed
window of time. C implementation
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Computer Intrusion Detection

• Learning behavioral profiles of computing use for detecting
intruders (also misuse)

• Derived our data set from the unix acctcom command

• Three weeks, over 11,200 records, selected 9 of 32 users

• Segmented into sessions: logouts and 20 minutes of idle time

• For each session, computed minimum, average, and maximum
for seven numeric metrics

• Selected 10 most relevant: maximum real time, average and
maximum system and user time, average and maximum
characters transferred, average blocks read and written,
maximum cpu factor, average hog factor

• Divided data into 10 partitions, used 1 for testing, 9 for
training, applied methods, and repeated 30 times

Copyright c© 2001 Marcus A. Maloof 7



Slide 15

'

&

$

%

Computer Intrusion Detection:
Predictive Accuracy
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Computer Intrusion Detection:
Memory Requirements
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Computer Intrusion Detection:
Learning Times
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The STAGGER Concepts
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a. Target concept
for time steps 1–39.

b. Target concept
for time steps 40–79.

c. Target concept
for time steps 80–120.
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The STAGGER Concepts:
Predictive Accuracy
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The STAGGER Concepts:
Memory Requirements
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Observations

• For static concepts, partial-memory learners, as compared to
lesioned versions, tend to:

– decrease predictive accuracy—often slightly

– decrease memory requirements—often significantly

– decrease learning time—often significantly

– can decrease concept complexity

– has little effect on performance time

• For changing concepts,

– track concepts better than incremental learners with no
instance memory (e.g., stagger, aq11)

– aq11-pm tracks concepts comparably to flora2
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Future Work

• Better characterization of performance using synthetic data
sets: cnf, dnf, m-of-n, class noise, concept overlap

• Scale to larger data sets: Acquiring more audit data

• Evaluate effect of skewed data: Rooftop detection

• Prove bounds for predictive accuracy and examples maintained

• Heuristics to adapt size of forgetting window
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