
Slide 1

'

&

$

%

On-line Learning with Partial Instance Memory

Mark Maloof

Department of Computer Science
Georgetown University

Washington, DC

maloof@cs.georgetown.edu
http://www.cs.georgetown.edu/∼maloof

Based on joint work with:
Ryszard Michalski (GMU & Polish Academy of Science)

IJCAI-01 Workshop on Learning from Temporal and Spatial Data

Seattle, WA

6 August 2001

Slide 2

'

&

$

%

Talk Overview

• On-line learning, concept memory, instance memory

• Algorithm for learning with partial instance memory

• Selecting extreme examples, those on the boundaries of
concept descriptions

• Evaluation and Comparison

– Computer Intrusion Detection

– The stagger Concepts

• Future Work

Copyright c© 2001 Marcus A. Maloof 1



Slide 3

'

&

$

%

On-line Learning

• Training examples distributed over time

• But system must always be able to perform

• Temporal-Batch Learning
1. Learn, say, rules from examples
2. Store rules, store examples
3. Use rules to predict, navigate, etc.
4. When new examples arrive, add to current examples
5. Goto step 1

• Incremental Learning
1. Learn rules from examples
2. Store rules, discard examples
3. Use rules to predict, navigate, etc.
4. When new examples arrive, learn new rules using old rules

and new instances
5. Goto step 2

Slide 4

'

&

$

%

Concept Memory

• Full: Learner stores concept descriptions, changing them only
when new examples arrive (e.g., winnow)

• No: Learner stores no concept descriptions that generalize
training examples (e.g., ib2)

• Partial: Learner stores concept descriptions and modifies them
but not necessarily in response to the arrival of new training
examples, like weight decay (e.g., favorit)

Copyright c© 2001 Marcus A. Maloof 2



Slide 5

'

&

$

%

Instance Memory

• Full: Learner stores all examples from the input stream
(e.g., id5, gem)

• No: Learner stores no examples (e.g., id4, aq11)

• Partial: Learner stores some examples (e.g., lair, hillary,
flora, darling, MetaL(b), MetaL(ib), aq-pm, aq11-pm)

Slide 6

'

&

$

%

Classification of Learning Systems

FAVORIT

AQ11

instance
memory

full instance
memory

partial
instance
memory

partial

memory
full instance

AQ-PM

DARLING
AQ-15c

C4.5

memory
no instance

STAGGER
Winnow

CN2

partial
instance
memory

LAIR

FLORA2, 3, 4

HILLARY

MetaL(B), MetaL(IB)

ID4

full instance
memory

GEM
ID5
ITI

memory
no instance

AQ11-PM, GEM-PM

full concept memory

temporal batch incremental

On-line Learning Systems

IB2
IB1

partial concept memoryno concept memory

incremental

Copyright c© 2001 Marcus A. Maloof 3



Slide 7

'

&

$

%

Algorithm for Learning
with Partial Memory

1. Learn rules from training examples

2. Select a portion of the examples

3. Store rules, store examples

4. Use rules to predict, navigate, etc.

5. When new examples arrive

• if incremental learning, then

– learn new rules using old rules, new instances, and
examples held in partial memory

• if temporal-batch learning, then

– learn new rules using new instances and examples held in
partial memory

6. Combine new instances with those in partial memory

7. Goto step 2

Slide 8

'

&

$

%

Selecting Examples for Partial Memory

• lair: the first positive example only

• hillary: only the negative examples

• darling: examples near the centers of clusters

• ib2: misclassified examples

• MetaL(b), MetaL(ib): sequence over a fixed window of time

• flora: sequence over a changing window, set adaptively

• aq-pm, aq11-pm, gem-pm: examples on the boundaries of
rules (i.e., extreme examples), possibly over a fixed window of
time

Copyright c© 2001 Marcus A. Maloof 4



Slide 9

'

&

$

%

Visualization of Training Examples:
Discrete Version of the Iris Data Set

0

pl

1

sw0 1 2 43 0 1 2 43 0 1 2 43
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
sl

0 1 2 pw

setosa example versicolor example

Slide 10

'

&

$

%

Induced Characteristic Rules

setosa ← [pl = 0] & [pw = 0] &

[sl = 0..3] & [sw = 0, 2..4]

versicolor ← [pl = 1] & [pw = 1..2] &

[sl = 1..6] & [sw = 0..4]

Copyright c© 2001 Marcus A. Maloof 5



Slide 11

'

&

$

%

Visualization of Induced Rules

0

pl

1

setosa example versicolor example

���
�
�������
�

���
�

���
�
	�		�	




�������
�
���
�
���
�

���
�

�������
�
���
�

���
�
�������
�
���
�

���
�
�� 
 
!�!!�!"
"
##$
$

%%&
&
''(
(
)�))�)*
*
+�++�+,
,
--.
.

/�//�/0�00�0 1
1
22

334
4
556
6
7�77�78�88�8 9

9
::

;;<
<

==>
>
?�??�?@�@@�@ A

A
BB

CCD
D
EEF
F
G�GG�GH�HH�H I

I
JJ

KKL
L
MMN
N
O�OO�OP�PP�P Q

Q
RR

S�SS�ST
T

UUV
V

WWX
X

YYZ
Z[�[[�[\
\
]]^
^

sw0 1 2 43 0 1 2 43 0 1 2 43
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
sl

0 1 2 pw

setosa concept versicolor concept

Slide 12

'

&

$

%

Visualization of Extreme Examples

0

pl

1

sw0 1 2 43 0 1 2 43 0 1 2 43
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
sl

0 1 2 pw

setosa example versicolor example

Copyright c© 2001 Marcus A. Maloof 6



Slide 13

'

&

$

%

Evaluation of Learning Systems

• ib2: Instance-based learner. Selects misclassified examples

• flora2: Incrementally learns disjunctive rules. Selects
examples over a window of time. Heuristic adjusts window size

• aq11: Incrementally learns disjunctive rules. No instance
memory. A lesioned version of aq11-pm. Pascal
implementation

• aq-bl: Temporal-batch learner. Disjunctive rules. Full
instance memory. A lesioned version of aq-pm.
C implementation

• aq11-pm: Incrementally learns disjunctive rules. Selects
examples on the boundaries of these descriptions over a fixed
window of time. Wrapper implementation

• aq-pm: Temporal-batch learner. Disjunctive rules. Selects
examples on the boundaries of these descriptions over a fixed
window of time. C implementation

Slide 14

'

&

$

%

Computer Intrusion Detection

• Learning behavioral profiles of computing use for detecting
intruders (also misuse)

• Derived our data set from the unix acctcom command

• Three weeks, over 11,200 records, selected 9 of 32 users

• Segmented into sessions: logouts and 20 minutes of idle time

• For each session, computed minimum, average, and maximum
for seven numeric metrics

• Selected 10 most relevant: maximum real time, average and
maximum system and user time, average and maximum
characters transferred, average blocks read and written,
maximum cpu factor, average hog factor

• Divided data into 10 partitions, used 1 for testing, 9 for
training, applied methods, and repeated 30 times

Copyright c© 2001 Marcus A. Maloof 7



Slide 15

'

&

$

%

Computer Intrusion Detection:
Predictive Accuracy

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9

Pr
ed

ic
tiv

e 
A

cc
ur

ac
y 

(%
)

Time Step (t)

AQ11-PM
AQ-PM
AQ-BL

AQ11
IB2

Slide 16

'

&

$

%

Computer Intrusion Detection:
Memory Requirements

20
40
60
80

100
120
140
160
180
200
220

1 2 3 4 5 6 7 8 9

E
xa

m
pl

es
 M

ai
nt

ai
ne

d

Time Step (t)

AQ11-PM
AQ-PM
AQ-BL

IB2

(aq11 stores no examples.)

Copyright c© 2001 Marcus A. Maloof 8



Slide 17

'

&

$

%

Computer Intrusion Detection:
Learning Times

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

L
ea

rn
in

g 
T

im
e 

(s
)

Time Step (t)

AQ11-PM
AQ-PM
AQ-BL
AQ-11

IB2

Slide 18

'

&

$

%

The STAGGER Concepts

(size = small) (shape = circle) (size = medium, large)

& ∨

(color = red) (color = green)

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

a. Target concept
for time steps 1–39.

b. Target concept
for time steps 40–79.

c. Target concept
for time steps 80–120.

Copyright c© 2001 Marcus A. Maloof 9



Slide 19

'

&

$

%

The STAGGER Concepts:
Predictive Accuracy

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Pr
ed

ic
tiv

e 
A

cc
ur

ac
y 

(%
)

Time Step

AQ11-PM
AQ-PM

FLORA2
AQ11

Slide 20

'

&

$

%

The STAGGER Concepts:
Memory Requirements

0

5

10

15

20

25

0 20 40 60 80 100 120

E
xa

m
pl

es
 M

ai
nt

ai
ne

d

Time Step

AQ11-PM
AQ-PM

FLORA2

(aq11 stores no examples.)

Copyright c© 2001 Marcus A. Maloof 10



Slide 21

'

&

$

%

Observations

• For static concepts, partial-memory learners, as compared to
lesioned versions, tend to:

– decrease predictive accuracy—often slightly

– decrease memory requirements—often significantly

– decrease learning time—often significantly

– can decrease concept complexity

– has little effect on performance time

• For changing concepts,

– track concepts better than incremental learners with no
instance memory (e.g., stagger, aq11)

– aq11-pm tracks concepts comparably to flora2

Slide 22

'

&

$

%

Future Work

• Better characterization of performance using synthetic data
sets: cnf, dnf, m-of-n, class noise, concept overlap

• Scale to larger data sets: Acquiring more audit data

• Evaluate effect of skewed data: Rooftop detection

• Prove bounds for predictive accuracy and examples maintained

• Heuristics to adapt size of forgetting window

Copyright c© 2001 Marcus A. Maloof 11



References
Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6, 37–66.

Elio, R., & Watanabe, L. (1991). An incremental deductive strategy for controlling constructive induction in learning from examples.
Machine Learning, 7, 7–44.

Iba, W., Woogulis, J., & Langley, P. (1988). Trading simplicity and coverage in incremental concept learning. In Proceedings of the

Fifth International Conference on Machine Learning (pp. 73–79). San Francisco, CA: Morgan Kaufmann.

Kubat, M., & Krizakova, I. (1992). Forgetting and aging of knowledge in concept formation. Applied Artificial Intelligence, 6, 195–206.

Littlestone, N. (1991). Redundant noisy attributes, attribute errors, and linear-threshold learning using Winnow. In Proceedings of the

Fourth Annual Workshop on Computational Learning Theory (pp. 147–156). San Francisco, CA: Morgan Kaufmann.

Maloof, M. (1996). Progressive partial memory learning. Doctoral dissertation, School of Information Technology and Engineering, George
Mason University, Fairfax, VA.

Maloof, M., & Michalski, R. (2000). Selecting examples for partial memory learning. Machine Learning, 41, 27–52.

Michalski, R., & Larson, J. (1983). Incremental generation of VL1 hypotheses: The underlying methodology and the description of program AQ11

(Technical Report No. UIUCDCS-F-83-905). Department of Computer Science, University of Illinois, Urbana.

Reinke, R., & Michalski, R. (1988). Incremental learning of concept descriptions: A method and experimental results. In J. Hayes,
D. Michie, & J. Richards (Eds.), Machine intelligence 11 (pp. 263–288). Oxford: Clarendon Press.

Salganicoff, M. (1993). Density-adaptive learning and forgetting. In Proceedings of the Tenth International Conference on Machine Learning

(pp. 276–283). San Francisco, CA: Morgan Kaufmann.

Schlimmer, J., & Fisher, D. (1986). A case study of incremental concept induction. In Proceedings of the Fifth National Conference on

Artificial Intelligence (pp. 496–501). Menlo Park, CA: AAAI Press.

Utgoff, P. (1988). ID5: An incremental ID3. In Proceedings of the Fifth International Conference on Machine Learning (pp. 107–120). San
Francisco, CA: Morgan Kaufmann.

Widmer, G. (1997). Tracking context changes through meta-learning. Machine Learning, 27, 259–286.

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine Learning, 23, 69–101.

Copyright c© 2001 Marcus A. Maloof 12


