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On-line Learning

e Training examples distributed over time
e But system must always be able to perform

e Temporal-Batch Learning
1. Learn, say, rules from examples
2. Store rules, store examples
3. Use rules to predict, navigate, etc.
4. When new examples arrive, add to current examples
5. Goto step 1

e Incremental Learning
1. Learn rules from examples
2. Store rules, discard examples
3. Use rules to predict, navigate, etc.
4

. When new examples arrive, learn new rules using old rules
and new instances

5. Goto step 2

N

Concept Memory

e Full: Learner stores concept descriptions, changing them only
when new examples arrive (e.g., WINNOW)

e No: Learner stores no concept descriptions that generalize
training examples (e.g., IB2)

e Partial: Learner stores concept descriptions and modifies them
but not necessarily in response to the arrival of new training
examples, like weight decay (e.g., FAVORIT)
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Instance Memory

e Full: Learner stores all examples from the input stream
(e.g., ID5, GEM)

e No: Learner stores no examples (e.g., ID4, AQ11)

e Partial: Learner stores some examples (e.g., LAIR, HILLARY,
FLORA, DARLING, METAL(B), METAL(IB), AQ-PM, AQl1-PM)
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Classification of Learning Systems

On-line Learning Systems
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. Combine new instances with those in partial memory

. Goto step 2 /

Algorithm for Learning
with Partial Memory

Learn rules from training examples
Select a portion of the examples
Store rules, store examples

Use rules to predict, navigate, etc.
When new examples arrive

e if incremental learning, then

— learn new rules using old rules, new instances, and
examples held in partial memory

e if temporal-batch learning, then

— learn new rules using new instances and examples held in
partial memory

N
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Selecting Examples for Partial Memory

LAIR: the first positive example only

HILLARY: only the negative examples

DARLING: examples near the centers of clusters

IB2: misclassified examples

METAL(B), METAL(1B): sequence over a fixed window of time
FLORA: sequence over a changing window, set adaptively

AQ-PM, AQl1-PM, GEM-PM: examples on the boundaries of
rules (i.e., extreme examples), possibly over a fixed window of
time
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Visualization of Training Examples:
Discrete Version of the Iris Data Set
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Induced Characteristic Rules

Slide 10 setosa «— [pl = 0] & [pw = 0] &
[sl 0..3] & [sw = 0, 2..4]

versicolor « [pl
[sl

1] & [pw = 1..2] &
1..6] & [sw = 0..4]
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Visualization of Induced Rules
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Visualization of Extreme Examples
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Evaluation of Learning Systems

1B2: Instance-based learner. Selects misclassified examples

FLORA2: Incrementally learns disjunctive rules. Selects
examples over a window of time. Heuristic adjusts window size

AQ1l1: Incrementally learns disjunctive rules. No instance
memory. A lesioned version of AQ11-PM. Pascal
implementation

AQ-BL: Temporal-batch learner. Disjunctive rules. Full
instance memory. A lesioned version of AQ-PM.
C implementation

AQ11-PM: Incrementally learns disjunctive rules. Selects
examples on the boundaries of these descriptions over a fixed
window of time. Wrapper implementation

AQ-PM: Temporal-batch learner. Disjunctive rules. Selects
examples on the boundaries of these descriptions over a fixed
window of time. C implementation /
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Computer Intrusion Detection

Learning behavioral profiles of computing use for detecting
intruders (also misuse)

Derived our data set from the UNIX acctcom command
Three weeks, over 11,200 records, selected 9 of 32 users
Segmented into sessions: logouts and 20 minutes of idle time

For each session, computed minimum, average, and maximum
for seven numeric metrics

Selected 10 most relevant: maximum real time, average and
maximum system and user time, average and maximum
characters transferred, average blocks read and written,
maximum CPU factor, average hog factor

Divided data into 10 partitions, used 1 for testing, 9 for
training, applied methods, and repeated 30 times

/

Copyright @ 2001 Marcus A. Maloof



Computer Intrusion Detection:
Predictive Accuracy
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Examples Maintained
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Computer Intrusion Detection:
Learning Times

Learning Time (s)

Time Step (t)
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The STAGGER Concepts:
Predictive Accuracy
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Observations

e For static concepts, partial-memory learners, as compared to
lesioned versions, tend to:

— decrease predictive accuracy—often slightly

— decrease memory requirements—often significantly
— decrease learning time—often significantly

— can decrease concept complexity

has little effect on performance time

e For changing concepts,

— track concepts better than incremental learners with no
instance memory (e.g., STAGGER, AQ11)

— AQ11-PM tracks concepts comparably to FLORA2
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Future Work

e Better characterization of performance using synthetic data
sets: CNF, DNF, m-of-n, class noise, concept overlap

Scale to larger data sets: Acquiring more audit data

Evaluate effect of skewed data: Rooftop detection

Prove bounds for predictive accuracy and examples maintained

Heuristics to adapt size of forgetting window
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