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ABSTRACT
Rankings of people and items are at the heart of selection-making,

match-making, and recommender systems, ranging from employ-

ment sites to sharing economy platforms. As ranking positions

influence the amount of attention the ranked subjects receive, bi-

ases in rankings can lead to unfair distribution of opportunities and

resources such as jobs or income.

This paper proposes new measures and mechanisms to quantify

and mitigate unfairness from a bias inherent to all rankings, namely,

the position bias which leads to disproportionately less attention

being paid to low-ranked subjects. Our approach differs from re-

cent fair ranking approaches in two important ways. First, existing

works measure unfairness at the level of subject groups while our
measures capture unfairness at the level of individual subjects, and
as such subsume group unfairness. Second, as no single ranking can

achieve individual attention fairness, we propose a novel mecha-

nism that achieves amortized fairness, where attention accumulated

across a series of rankings is proportional to accumulated relevance.

We formulate the challenge of achieving amortized individual

fairness subject to constraints on ranking quality as an online opti-

mization problem and show that it can be solved as an integer linear

program. Our experimental evaluation reveals that unfair attention

distribution in rankings can be substantial, and demonstrates that

our method can improve individual fairness while retaining high

ranking quality.
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1 INTRODUCTION
Motivation and Problem. Rankings of subjects like people, ho-
tels, or songs are at the heart of selection, matchmaking and recom-

mender systems. Such systems are in use on a variety of platforms

that affect different aspects of life – from entertainment and dat-

ing all the way to employment and income. Notable examples of

platforms with a tangible impact on people’s livelihood include two-

sided sharing economy websites, such as Airbnb or Uber, or human-

resource matchmaking platforms, such as LinkedIn or TaskRabbit.
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The ongoing migration to online markets and the growing depen-

dence of many users on these platforms in securing an income have

spurred investigations into the issues of bias, discrimination and

fairness in the platforms’ mechanisms [5, 26].

One aspect in particular has evaded scrutiny thus far – to be

successful on these platforms, ranked subjects need to gain the

attention of searchers. Since exposure on the platform is a prerequi-

site for attention, subjects have a strong desire to be highly ranked.

However, when inspecting ranked results, searchers are susceptible

to position bias, which makes them pay most of their attention to

the top-ranked subjects. As a result, lower-ranked subjects often

receive disproportionately less attention than they deserve accord-

ing to the ranking relevance. Position bias has been studied in

information retrieval in scenarios where subjects are documents

such as web pages (e.g., [8, 10]). It has been shown that top-ranked

documents receive most clicks often irrespective of their actual

relevance [21].

Systemic correction for the bias becomes important when rank-

ing positions potentially translate to financial gains or losses. This

is the case when ranking people on platforms like LinkedIn or Uber,

products on platforms like Amazon, or creative works on platforms

like Spotify. For example, cumulating the exposure on a subset of

drivers in ride-hailing platforms might lead to economic starvation

of others, while low-ranked artists on music platforms might not

get their deserved chance of earning royalties.

Observing that attention is influenced by a human perception

bias, while relevance is not, uncovers a fundamental problem: there

necessarily exists a discrepancy between the attention that sub-

jects receive at their respective ranks and their relevance in a given

search task. For example, attention could decrease geometrically,

whereas relevance scores may decrease linearly as the rank de-

creases. If a ranking is displayed unchanged to many searchers

over time, the lower-ranked subjects might be systematically and

repeatedly disadvantaged in terms of the attention they receive.

Problem Statement. A vast body of ranking models literature

has focused on aligning system relevance scores with the true

relevance of ranked subjects, and in this paper we assume the

two are proportional. What we focus on instead is the relation

between relevance and attention. Since relevance can be thought

of as a proxy for worthiness in the context of a given search task,

the attention a subject receives from searchers should ideally be

proportional to her relevance. In economics and psychology, a

similar idea of proportionality exists under the name of equity [31]

and is employed as a fairness principle in the context of distributive

justice [17]. Thus, in this paper, we make a translational normative

claim and argue for equity of attention in rankings.
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Operationally, the problem we address in this paper is to devise

measures and mechanism which ensure that, for all subjects in the

system, the received attention approximately equals the deserved

attention, while preserving ranking quality. For a single ranking

this goal is infeasible, since attention is influenced by the position

bias, while relevance is not. Therefore, our approach looks at a

series of rankings and aims at measures of amortized fairness.
State of the Art and Limitations. Fairness has become a major

concern for decision-making systems based on machine learning

methods (see, e.g., [9, 29]). Various notions of group fairness have
been investigated [14, 20, 23, 28, 35], with the goal of making sure

that protected attributes such as gender or race do not influence

algorithmic decisions. Fair classifiers are then trained to maximize

accuracy subject to group fairness constraints. These approaches,

however, do not distinguish between different subjects from within

a group. The notion of individual fairness [12, 24, 37] aims at treat-

ing each individual fairly by requiring that subjects who are similar

to each other receive similar decision outcomes. For instance, the

concept of meritocratic fairness requires that less qualified candi-

dates are almost never preferred over more qualified ones when

selecting candidates from a set of diverse populations. Relevance-

based rankings, where more relevant subjects are ranked higher

than less relevant ones, also satisfy meritocratic fairness. A stronger

fairness concept, however, is needed for rankings to be a means of

distributive justice.

Prior work on fair rankings is scarce and includes approaches that
perturb results to guarantee various types of group fairness. This

goal is achieved by techniques similar to those for ranking result

diversification [6, 34, 36], or by granting equal ranking exposure to

groups [30]. Individual fairness is inherently beyond the scope of

group-based perturbation.

Approach and Contribution. Our approach in this paper dif-

fers from the prior work in two major ways. First, the measures

introduced here capture fairness at the level of individual subjects,
and subsume group fairness as a special case. Second, as no single

ranking can guarantee fair attention to every subject, we devise a

novel mechanism that ensures amortized fairness, where attention
is fairly distributed across a series of rankings.

For an intuitive example, consider a ranking where all the rele-

vance scores are almost the same. Such tiny differences in relevance

will push subjects apart in the display of the results, leading to a

considerable difference in the attention received from searchers.

To compensate for the position bias, we can reorder the subjects

in consecutive rankings so that everyone who is highly relevant is

displayed at the top every now and then.

Our goal is not just to balance attention, but to keep it pro-

portional to relevance for all subjects while preserving ranking

quality. To this end, we permute subjects in each ranking so as to

improve fairness subject to constraints on quality loss. We cast this

approach to an online optimization problem, formalizing it as an

integer linear program (ILP). We moreover devise filters to prune

the combinatorial space of the ILP, which ensures that it can be

solved in an online system. Experiments with synthetic and real-life

data demonstrate the viability of our method.

This paper makes the following novel contributions:

• To the best of our knowledge, we are the first to formalize the

problem of individual equity-of-attention fairness in rankings,

and define measures that capture the discrepancy between the

deserved and received attention.

• We propose online mechanisms for fairly amortizing attention

over time in consecutive rankings.

• We investigate the properties and behavior of the proposed

mechanisms in experiments with synthetic and real-world data.

2 EQUITY-OF-ATTENTION FAIRNESS
We now formally define equity of attention accounting for position
bias, which determines how attention is distributed over the ranking

positions. We consider a sequence of rankings at different time

points, by different criteria or on request of different users.

2.1 Notation
We use the following notation:

• u1, ...,un is a set of subjects ranked in a system,

• ρ1, ..., ρm is a sequence of rankings,

• r
j
i is the [0..1]-normalized relevance score of subject ui in

ranking ρ j ,

• a
j
i is the [0..1]-normalized attention value received by subject

ui in ranking ρ j ,
• A denotes the distribution of cumulated attention across

subjects, that is, Ai =
∑m
j=1 a

j
i for subject ui ,

• R denotes the distribution of cumulated relevance across

subjects, that is, Ri =
∑m
j=1 r

j
i for subject ui .

2.2 Defining Equity of Attention
Our fairness notion in this work is in the spirit of the individual
fairness proposed by Dwork et. al. [12], which requires that “simi-

lar individuals are treated similarly”, where “similarity” between

individuals is a metric capturing suitability for the task at hand. In

the context of rankings, we consider relevance to be a measure of

subject suitability. Further, in applications where rankings influ-

ence people’s economic livelihood, we can think of rankings not

as an end, but as a means of achieving distributive justice, that

is, fair sharing of certain real-world resources. In the context of

rankings, we consider the attention of searchers to be a resource to

be distributed fairly.

There exist different types of distributive norms, one of them

being equity. Equity encodes the idea of proportionality of inputs

and outputs [31], and might be employed to account for "differences

in effort, in productivity, or in contribution" [33].

Building upon these ideas, we make a translational normative

claim and propose a new notion of individual fairness for rankings

called equity of attention, which requires that ranked subjects receive
attention that is proportional to their worthiness in a given search task.
As a proxy for worthiness, we turn to the currently best available

ground truth, that is, the system-predicted relevance.
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Definition 1 (Eqity of Attention). A ranking offers equity of
attention if each subject receives attention proportional to its relevance:

ai1
ri1
=

ai2
ri2
, ∀ui1,ui2.

Note that this definition is unlikely to be satisfied in any single

ranking, since the relevance scores of subjects are determined by

the data and the query, while the attention paid to the subjects (in

terms of views or clicks) is strongly influenced by position bias. The

effects of this mismatch will be aggravated if multiple subjects are

similarly relevant, yet obviously cannot occupy the same ranking

position and receive similar attention.

To operationalize our definition in practice, we propose an al-

ternative fairness definition that requires attention to be distributed
proportionally to relevance, when amortized over a sequence of rank-
ings.

Definition 2 (Eqity of Amortized Attention). A sequence
of rankings ρ1, ..., ρm offers equity of amortized attention if each
subject receives cumulative attention proportional to her cumulative
relevance, i.e.: ∑m

l=1 a
l
i1∑m

l=1 r
l
i1

=

∑m
l=1 a

l
i2∑m

l=1 r
l
i2

, ∀ui1,ui2.

Observe that this modified fairness definition allows us to per-

mute individual rankings so as to satisfy fairness requirements over

time. The deficiency in the attention received by a subject relative

to her relevance in a given ranking instance can be compensated

in a subsequent ranking, where the subject is positioned higher

relative to her relevance.

2.3 Equality of attention
In certain scenarios, it may be desirable for subjects to receive the

same amount of attention, irrespective of their relevance. Such is

the case when we suspect the ranking is biased and cannot confi-

dently correct for that bias, or when the subjects are not shown as

an answer to any query but need to be visually displayed in a ranked

order (e.g., a list of candidates on an informational website for an

election). In such scenarios, the desired notion of fairness would

be equality of attention. We observe that this egalitarian version of

fairness is a special case of equity of attention, where the relevance

distributions are uniform, i.e., ri1 = ri2 ∀ui1,ui2. As equity of at-

tention subsumes equality of attention, we do not explicitly discuss

it further in this paper.

2.4 Relation to group fairness in rankings
To our knowledge, all prior works on fairness in rankings have

focused on notions of group fairness, which define fairness require-

ments over the collective treatment received by all members of a

demographic group like women or men. Our motivation for tack-

ling fairness at the individual level stems from the fact that position

bias affects all individuals, independently of their group member-

ship. It is easy to see, however, that when equity of attention is

achieved for individuals, it will also be achieved at the group level:

the cumulated attention received by all members of a group will be

proportional to their cumulated relevance.

Prior works on fairness in rankings [6, 34, 36] has mostly fo-

cused on diversification of the results. These approaches are geared

for one-time rankings, and, as any static model, will steadily accu-

mulate equity-of-attention unfairness over time. Since they were

developed with a different goal in mind, they are not directly com-

parable to our dynamic approach.

Parallel with our work, Singh and Joachims have explored similar

ideas of how position bias influences fairness of exposure [30] .

Their probabilistic formulations are possibly a counterpart of our

amortization ideas, and it will be interesting to see to what extent

these formulations are interchangeable. In line with other prior

works on fairness in rankings and different from our work, however,

they focus on satisfying constraints on group rather than individual

fairness, and on notions of equality rather than equity.

3 RANKINGS WITH EQUITY OF ATTENTION
3.1 Measuring (un)fairness
To be able to optimize ranking fairness, we need to measure to what

extent a sequence of rankings ρ1, ..., ρm violates Definition 2. Since

the proposed fairness criterion is equivalent to the requirement

that the empirical distributions A and R be equal, we can measure

unfairness as the distance between these two distributions. A vari-

ety of measures can be applied here, including KL-divergence, or

L1-norm distance. In this paper, measure fairness using the latter:

unfairness(ρ1, ..., ρm ) =
n∑
i=1

|Ai − Ri | =
n∑
i=1

������ m∑j=1 aji −
m∑
j=1

r
j
i

������ . (1)

L1-norm is minimized with a value of 0 for distributions satisfy-

ing the fairness criterion from Definition 2, and is thus useful as an

optimization objective. However, since the measure is cumulative

and indifferent to the exact distribution of unfairness among indi-

viduals, other measures could be developed to quantify unfairness

in the system at any given point.

3.2 Measuring ranking quality
Permuting a ranking to satisfy fairness criteria can lead to a qual-

ity loss when less relevant subjects get ranked higher than more

relevant ones. We propose to quantify ranking quality using mea-

sures that draw from IR evaluation. Traditionally, ranking models

are evaluated in comparison with ground-truth rankings based on

human-given relevance labels. Here, we are interested in quanti-

fying the divergence from the original ranking. Thus, we consider

the original ranking ρ to be the ground-truth reference for eval-

uating the quality of a reordered ranking ρ∗. We assume that the

ground truth scores are the relevance scores returned by the system,

and that these scores reflect the best ordering of subjects. These

considerations lead to the following definitions.

Discounted cumulative gain (DCG) quantifies the quality of a

ranking by summing the relevance scores in consecutive positions

with a logarithmic discount for the values at lower positions. The

measure thus puts an emphasis on having higher relevance scores

at top positions.

DCG@k(r ) =
k∑
i=1

2
r (i) − 1

loд2(i + 1)
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This value can be further normalized by the DCG score of a perfect

ranking ordered by the ground truth relevance scores. The normal-

ized discounted cumulative gain (NDCG)-based quality measure

can be thus expressed as:

NDCG-quality@k(ρ, ρ∗) = DCG@k(ρ∗)
DCG@k(ρ) (2)

Thismeasure ismaximizedwith a value of 1 if the rankings do not

differ or if swaps are only made within ties (i.e., subjects with equal

relevance). Other measures, like Kendall’s Tau or appropriately

definedMAP-quality, could be applied as well.

3.3 Optimizing fairness-quality tradeoffs
As discussed in the previous section, there is “no free lunch”: to

improve fairness, we need to perturb relevance-based rankings,

which might lead to lower ranking quality. To address the tradeoff,

we can formulate two types of constrained optimization problems:

one where we minimize unfairness subject to constraints on quality

(i.e., lower-bound the minimum acceptable quality), and another

where we maximize quality subject to constraints on unfairness

(i.e., upper-bound the maximum acceptable unfairness measure).

In this paper, we focus on the former, since at the moment ranking

quality measures are more interpretable, and so are the constraints

on quality.

3.3.1 Offline optimization. Let ρ1, ..., ρm be a sequence of rank-

ings where the subjects are ordered by the relevance scores. These

rankings induce zero quality loss. We wish to reorder them into

ρ1∗, ..., ρm∗
so as tominimize the distance between the distributions

A and R with constraints on NDCG-quality loss in each ranking:

minimize

∑
i
|Ai − Ri |

subject to NDCG-quality@k(ρ j , ρ j∗) ≥ θ , j = 1, . . . ,m.

where Ai and Ri denote the cumulated attention and relevance

scores that subject ui has gained across all them rankings.

Instead of thresholding the loss in each individual ranking, an

alternative would be to threshold the average loss overm rankings.

3.3.2 Online optimization. In practice, ranking amortization

needs to be done in an online manner, one query at a time. Without

the knowledge of future query loads, the goal is then to reorder the

current ranking so as to minimize unfairness over the cumulative

attention and relevance distributions in rankings seen so far, subject

to a constraint on the quality of the current ranking. Thus, in the

l-th ranking we want to :

minimize

∑
i
|Al−1i + ali − (Rl−1i + r li )|

subject to NDCG-quality@k(ρl , ρl∗) ≥ θ

whereAl−1i and Rl−1i denote the cumulated attention and relevance

scores that subject ui has gained up to and including ranking ρl−1.

3.4 An ILP-based fair ranking mechanism
3.4.1 ILP for online attention amortization. The optimization

problem defined in Sec. 3.3.2 can be solved as an integer linear

program (ILP). Assume we are to rerank the l-th ranking in a series

of rankings. We introduce n2 decision variables Xi, j which are set

to 1 if subject ui is assigned to the ranking position j, and set to 0

otherwise. At the time of reordering the l-th ranking, the following

values are constants:

• relevance scores for each subject ui in the current ranking:

r li ,
• attention values assigned to ranking positions:w j ,

• relevance scores accumulated up to (and excluding) the cur-

rent ranking for each subject: Rl−1i ,

• attention values accumulated up to (and excluding) the cur-

rent ranking for each subject: Al−1i ,

• IDCG@k value computed over the current ranking ρl , which
is used as a normalization score for NDCG-quality@k.

For each subject ui , the accumulated attention and relevance are

initialized as A0

i = 0 and R0i = 0 for all ui .
The ILP is then defined as follows:

minimize

n∑
i=1

n∑
j=1

|Al−1i +w j − (Rl−1i + r li )| · Xi, j

subject to

k∑
j=1

n∑
i=1

2
r li − 1

loд2(j + 1)
Xi, j ≥ θ · IDCG@k

Xi, j ∈ {0, 1}, ∀i, j∑
i
Xi, j = 1, ∀j∑

j
Xi, j = 1, ∀i

(3)

The first constraint bounds the loss in ranking quality, in terms of

the NDCG-quality measure, by the multiplicative threshold 0 ≤
θ ≤ 1. The other constraints ensure that the solution is a bijective

mapping of subjects onto ranking positions. The terms Al−1i +w j

and Rl−1i + r li encode the updates of the cumulative attention and

relevance, respectively, if and only if ui is mapped to position j.
It is worth noting that:

• When θ = 1, we do not allow any quality loss. This, how-

ever, does not mean that the ranking will remain unchanged.

Subjects can be reordered within ties to minimize unfairness.

• When θ = 0, any permutation of the ranking is allowed

striving to minimize unfairness in the current iteration.

3.4.2 ILP with candidate pre-filtering. The ILP operates on a

huge combinatorial space, with the number of binary variables

being quadratic in the number of subjects. Real systems deal with

millions of subjects, and the optimization needs to be carried out

each time a new ranking is requested. Such a problem size is a

bottleneck for ILP solvers, and in practice the optimization needs

to use approximation algorithms, such as LP relaxations or greedy-

style heuristics. This is one of the directions for further research.

To deal with the issue in this paper, instead of reranking all

subjects in each iteration, we rerank only subjects from a prefiltered

candidate set. Different strategies are possible for selecting the

candidate sets. On the one hand, prefiltering the top-ranked subjects

by relevance scores would let us satisfy the quality constraints,

but may entail small fairness gains, especially for near-uniform
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relevance distributions. On the other hand, prefiltering based on

the objective function might lead to situations where the ILP cannot

find any solution without violating the constraints.
1

Our strategy thus is as follows. Assume we want to select a

subject candidate subset D of size t to be reranked, and we con-

strain the quality in Eq. 3 at rank k . Since the attention weightsw j
are positive, the biggest contributors to the objective function are

the subjects with the smallest values of Ai − (Ri + ri ). These are
the subjects with the highest deficit (negative value) of fair-share

attention. We always select k subjects with the highest relevance

scores in r l , to make sure we satisfy the quality constraint, plus

other t − k subjects with the lowest Ai − (Ri + ri ) values, who are

most worthy of being promoted to high ranks. As a result, when

no feasible solution can be found by reranking the most worthy

subjects, the ILP will default to choosing the top-k candidates by

relevance scores.

3.4.3 Extensions.

Granularity. The presented model assumes that attention and

relevance are aggregated per ranked subject. It is straightforward

to extend it to handle higher-level actors such as product brands or

Internet domains, by summing the relevance and attention scores

over the corresponding subjects. As a consequence of this modifica-

tion, bigger organizations would obtain higher exposure. Deciding

whether this effect is fair is a policy issue.

Handling dynamics. In a real-world system, the size of the popu-

lation will vary over time, with new subjects joining and existing

ones dropping out. Our model is capable of handling this kind of dy-

namics, since new users starting with no deserved attention will be

positioned in between the users who got more than they deserved

and those who got less. Moreover, ranking quality constraints will

prevent such users from being positioned too low in rankings where

they are highly relevant.

4 EXPERIMENTS
4.1 Data
The datasets we use are either synthetically generated or derived

from other publicly available resources. They are freely available

to other researchers.

4.1.1 Synthetic datasets. We create 3 synthetic datasets to an-

alyze the performance of the model in a controlled setup under

different relevance distributions. We assume the following distribu-

tion shapes: (i) uniform, where every user has the same relevance

score, (ii) linear, where the scores decrease linearly with the rank

position, and (iii) exponential, where the scores decrease expo-
nentially with the rank position. Each dataset has 100 subjects.

4.1.2 Airbnb datasets. To analyze the model in a real-world sce-

nario, we construct rankings based on Airbnb
2
apartment listings

from 3 cities located in different parts of the world: Boston, Geneva,

and Hong Kong. Airbnb is a two-sided sharing economy platform

allowing people to offer their free rooms or apartments for short-

term rental. It is a prime example of a platform where exposure and

1
Without prefiltering, the ILP always has at least one feasible solution (the original

ranking).

2
https://www.airbnb.com/

attention play a crucial role in the subjects’ financial success. The

data we use is freely available for research.
3

Rankings are constructed using the attribute id as a subject

identifier, and various review ratings as the ranking criteria, with

the rating scores serving as relevance scores. Such crowd-sourced

judgments serve as a good worthiness-of-attention proxy on this

particular platform, although one has to have in mind that rating

distributions tend to be skewed towards higher scores, which is

confirmed by our experimental analysis.

For each of the 3 datasets, we run the amortization model on

two types of ranking sequences:

(1) Single-query: We examine the amortization effects when

a single ranking is repeated multiple times. To construct

the rankings, we use the values of the review_scores_ratinд
attribute, which corresponds to the overall quality of the

listing.

(2) Multi-query: We examine the behavior of the model when

a sequence of rankings, each with a different relevance distri-

bution, is repeated multiple times. To this end, for each city,

we construct 7 rankings based on different rating attributes:

review_scores_ratinд,
review_scores_accuracy, review_scores_cleanliness ,
review_scores_checkin, review_scores_communication,
review_scores_location, and review_scores_value .

The datasets for Boston, Geneva, and Hong Kong contain 3944,

1728, and 4529 subjects, respectively.

Note that, for the purpose of model performance evaluation,

the queries themselves become irrelevant once the relevance is

computed. Since the values of the aforementioned attributes serve

as relevance scores, the queries are abstracted out.

4.1.3 StackExchange dataset. We create another dataset from a

querylog and a document collection synthesized from the StackEx-

change dump by Biega et al. [4], please refer to the original paper for

details. We choose a radom subset of users and order their queries

by timestamps, creating a workload of around 20K queries. We use

Indri
4
to retrieve 500 most relevant answers for each query, and

treat the author of the answer as the subject to be ranked. Using

this dataset helps us gain an insight into the performance of the

method in core IR tasks and with different sets of subjects ranked

in each iteration.

4.2 Position bias
Our model requires that we assign a weight to each ranking posi-

tion, denoting the fraction of the total attention the position gets.

These weights will depend on the application and platform, and

may be estimated from historical click data. In this paper we study

the behavior of the equity-of-attention mechanism under generic

models of attention distribution. We focus on the following distri-

butions:

(1) Geometric: The weights of the positions are distributed

geometrically with the parameter p up to the position k , and
are 0 for positions lower than k . Geometrically distributed

weights are a special case of the cascade model [10], where

3
Downloaded from http://insideairbnb.com/

4
https://www.lemurproject.org/indri/

https://www.airbnb.com/
http://insideairbnb.com/
https://www.lemurproject.org/indri/
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each subject has the same probability p of being clicked.

Setting the weights of lower positions to 0 is based on an

assumption that low-ranked subjects are not inspected.

w j =

{
p(1 − p)j−1 j ≤ k

0 j > k
(4)

(2) Singular: The top-ranked subject receives all the attention.

This is a special case of the geometric attention model with

parameters p = 1,k = 1. Studying this attention model is

motivated by systems such as Uber, which present only top-1

matches to the searchers by default.

w j =

{
1 j = 1

0 j > 1

(5)

Before being passed on to the model, the weights are rescaled such

that

∑
j w j = 1. Studying the effects of position bias on individual

fairness under more complex attention models is future work.

4.3 Implementation and parameters
We implement the ILP-based amortization defined in Section 3.4

using the Gurobi software.
5
Constraints are set to be satisfied up

to a feasibility threshold of 1e − 7. We prefilter 100 candidates for

reranking in each iteration, as described in Section 3.4.2.

In the singular attention model, since all the attention is assumed

to go to the first ranking position, the ILP constrains the NDCG-

quality at rank k = 1. We construct the geometric attention model

with p = 0.5 and k = 5, and in this case the ILP constraints the

NDCG-quality at rank k = 5.

In the single-query mode, where a single ranking is repeated

multiple times, we set the number of iterations to 20K . In the multi-

query mode, with a repeated sequence of different rankings, we

repeat the whole sequence 3K times, which leads to a total of 21K
rankings.

Relevance scores in the framework need to be normalized to

form a distribution. In this paper, we assume relevance is a direct

proxy for worthiness and rescale the rating scores linearly. Note,

however, that if additional knowledge is available to the platform

regarding the correspondence between relevance and worthiness,

other transformations can be applied as well.

4.4 Mechanisms under comparison
We compare the performance of the ILP-based online mechanism

against two baseline heuristics.

(1) Relevance: The first heuristic is to allow only relevance-

based ranking, completely disregarding fairness.

(2) Objective: The second heuristics is an objective-driven rank-
ing strategy, which orders subjects by the increasing priority

value: Ai − Ri − ri (see Sec. 3.4.2) for each ranking. Since all

position weightsw j are positive, assigning highest weights

to subjects with the lowest preference value is in line with

the minimization goal. This ranking strategy aims at strong

fairness amortization without any quality constraints, and

is expected to perform similarly to the ILP with θ = 0.

5
http://www.gurobi.com/

4.5 Data characteristics: relevance vs. attention
Figure 1 shows the relevance score distributions in the single-query

Airbnb datasets for Boston, Geneva, and Hong Kong. The seemingly

flatter shape of the Boston and Hong Kong distributions is the

result of a bigger size of these datasets when compared to the

Geneva dataset, where each individual has, on average, a larger

fraction of the total relevance. Overall, the distributions have a

shape which complements the uniform, linear, and exponential

shapes of distributions in the synthetic datasets.

Figure 2 presents an example strongly motivating our research.

Namely, it compares the distribution of relevance in the Geneva

dataset with the distribution of attention according to the geometric

model with p = 0.5, where the weights closely follow the empirical

observations made in previous position bias studies [21]. Observe

that the relevance distribution plotted in green is the same as that

in Figure 1. There is a huge discrepancy between these two distri-

butions, while, as argued in this paper, they should ideally be equal

to ensure individual fairness. Similar discrepancy exists in the two

other Airbnb datasets.

4.6 Performance on synthetic data
Singular attention model. Figure 3 reveals a number of interesting

properties of the mechanism for the Uniform relevance distribution.

We plot the iteration number on the x-axis, and the value of the

Figure 1: Relevance distributions in the Airbnb datasets.

Figure 2: Comparison of the attention and relevance dis-
tributions for the top-10 ranking positions in the Geneva
dataset. Note that the relevance distribution presented here
is the same as in Fig. 1. To satisfy equity-of-attention fair-
ness, the two distributions would have to be the same.

http://www.gurobi.com/
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unfairness measure defined by Equation 1 on the y-axis. First, since

reshuffling does not lead to any quality loss when all the relevance

scores are equal, all the reshuffling methods perform equally well

irrespective of θ . Their amortizing behavior should be contrasted

with the black line denoting the relevance baseline. Unfairness for

this method always increases linearly by a constant factor incurred

by the single ranking. Second, amortization methods periodically

bring unfairness to 0. Theminimumoccurs everyn iterations, where
n is the number of subjects in the dataset. Within the cycle, each

subject is placed in the top position (receiving all the attention)

exactly once.

Figure 4 with the results for the Linear dataset, confirms another

anticipated behavior. With no ties in the relevance scores, it is not

possible to improve fairness without incurring quality loss. Thus,

all methods with θ > 0 lead to higher unfairness when compared

to the Objective baseline, although the unfairness is still lower in

ILP with θ < 0.8 than in the Relevance baseline.

When the relevance scores decrease exponentially (Figure 5),

the ILP is not able to satisfy the quality constraint with any θ >=
0.5, and thus these rerankings become equivalent to those of the

Relevance heuristic.

Geometric attention model. As shown in Figures 6, 7, and 8, the

periodicity effect becomes less pronounced under the general geo-

metric attention model. Figure 9 helps to understand this behavior

by showing the unfairness values achieved by the Objective heuris-

tic with different values of the attention cut-off k (see Equation 4).

With k = 1, the model is equivalent to Singular. As we increase k ,
the distribution of the position weights becomes smoother, smooth-

ing also the periodicity of the unfairness values.

The very good performance of the ILP-based rerankings with

any θ < 1 in Figure 8, stems from the fact that the relevance and

attention distributions are almost the same (the only difference

being that the scores in the relevance distribution are non-zero

for more positions). Our results show that in this case the ILP

performs a reordering only every now and then, when the subjects

ranked lower than position 5 in the original ranking gather enough

deserved attention. This causes the unfairness to go up and down

periodically.

4.7 Performance on Airbnb data
4.7.1 Single-query, singular attention. Wefirst analyze themodel

performance on the Airbnb datasets where a single ranking is re-

peated multiple times, and the attention model is set to singular.

The results are shown in Figures 10, 11, 12 for Boston, Geneva, and

Hong Kong, respectively. As in the analysis with the synthetic data,

we plot the iteration number on the x-axis, and the value of the

unfairness measure defined by Equation 1 on the y-axis. There are

a number of observations:

• As noted before, the loss in the Relevance baseline (plotted

in black) increases linearly by the constant unfairness factor

incurred by the single ranking.

• Relaxing the quality constraint by decreasing θ allows us

to achieve lower unfairness values in the corresponding

ranking iterations.

• The Objective heuristic with no quality constraints and the

ILP where θ = 0 are able to amortize fairness over time well,

with no significant growth of unfairness over time.

• The periodicity effect we observed on synthetic uniform data

appears here as well. This is due to the relative closeness of

the relevance distributions in the Airbnb data to the uniform

distribution. Unfairness achieved by the amortizing methods

is close to 0 everyn iterations. The frequency of theminimum

indeed corresponds to the size of the respective datasets.

• In some methods unfairness starts to grow linearly after

a certain number of iterations (see, e.g., the blue curve in

Figure 10). This is a side effect of the candidate prefiltering

heuristic we chose.When the ILP receives a filtered candidate

set where no subjects filtered based on the objective can be

placed at the top of the ranking without violating the quality

constraint, the ILP defaults to placing the most relevant

subjects at the top, which causes the quality loss to be 0 and

the unfairness growing linearly. This effect persists until

some of the more relevant subjects gather enough deserved

attention to be pre-selected - note the variability that occurs

in the blue curve again starting around the 17K-th iteration.

• For a number of iterations at the beginning (equal to the

number of ties at the top of the ranking), all the methods per-

form the same, irrespective of the quality constraints. This

is due to the fact that unfairness is minimized by reshuffling

the most deserving relevant subjects first, which does not

incur any quality loss.

4.7.2 Multi-query, singular attention. Our methods amortize

fairness better (achieving lower unfairness) on the Airbnb multi-

query datasets (Figures 13, 14, and 15) when compared to the single-

query datasets for two reasons. First, the variability in subject rel-

evance and ordering in different iterations is a factor helpful in

smoothing the deserved attention distributions over time. Second,

distributions of the rating attributes in the Airbnb datasets used

to construct the rankings are more uniform than the global rating

score, and have more ties at the top of the ranking. These relevance

distribution characteristics enable methods with conservative qual-

ity constraints (even the ILP with θ = 1) to perform very well.

4.7.3 Single-query, geometric attention. The general geometric

attention distribution is closer to the relevance distributions in the

Airbnb datasets than the singular distribution is. As noted in the

analysis with synthetic data, the closeness of the two distributions

helps amortize fairness at a lower quality loss. We can observe a

similar effect in Figure 16, with more ILP-based methods reaching

the performance of the Objective heuristic. Note, however, that the

improved performance here is also partly due to the fact that we

constrain the quality at a higher rank when assuming the geometric

attention, which is easier to satisfy.

4.7.4 Unfairness vs. quality loss. The results presented so far

show the performance of the ILP-based fairness amortization un-

der different quality thresholds. Since the thresholds bound the

maximum quality loss over all iterations, the actual loss in most

cases might be lower. To investigate these effects, we plot the actual

NDCG-quality values of the rerankings done by different methods
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Figure 3: Model performance on the
synthetic Uniform dataset. Attention
singular.

Figure 4: Model performance on the
synthetic Linear dataset. Attention
singular.

Figure 5: Model performance on the
synthetic Exponential dataset. Atten-
tion singular.

Figure 6: Model performance on the
synthetic Uniform dataset. Attention
geometric.

Figure 7: Model performance on the
synthetic Linear dataset. Attention
geometric.

Figure 8: Model performance on the
synthetic Exponential dataset. Atten-
tion geometric.

on the Boston dataset under the Singular attention model in Fig-

ure 17. The results confirm that the actual loss is often lower than

the threshold enforced by the ILP. Observe that NDCG-quality is 1

for a number of initial iterations in all the methods. This is where

reshuffling of the top ties happens. The quality starts decreasing

as less relevant subjects gather enough deserved attention, and

periodically goes back to 1, when the top-relevant subjects gain

priority again. Similar conclusions regarding the absolute loss hold

under the general geometric attention model.

4.8 Performance on StackExchange data
The relative trends in the performance of our method are the same

here as in the results for other datasets. One of the characteristics

Figure 9: Performance of the Objective heuristic on the syn-
thetic Uniform dataset under the geometric attentionmodel
with different attention cut-off points.

that distinguish the StackExchange dataset is that each individual

subject occurs in relatively few rankings. An observation that fol-

lows is that longer amortization timeframe is necessary under such

conditions - a subject obviously needs to appear in a number of

rankings so that the model can reposition them to fairly distribute

attention.

5 RELATEDWORK
Fairness. The growing ubiquity of data-driven learning models in

algorithmic decision-making has recently boosted concerns about

the issues of fairness and bias (see, e.g., [9] and the pointers there).

The problem of discrimination in data mining and machine learning

has been studied for a number of years (e.g., [23, 28, 29]). The

goal there is to analyze and counter data bias and unfair decisions

that may lead to discrimination. Much prior work has centered

around various notions of group fairness: preserving certain ratios

of members of protected vs. unprotected groups in the decision

making outcomes, with the groups derived from discrimination-

prone attributes like gender, race, nationality, etc. [14, 20]. For

example, the criterion of statistical parity requires that a classifier’s

outcomes do not depend on the membership in the protected group.

State-of-the-art mechanisms for dealing with such group fairness

requirements are to solve constrained optimization, e.g. maximize

prediction accuracy subject to certain bounds on groupmembership

in the output labels. This has led to classification models with

fairness-aware regularization (e.g., [35]). Beyond the fairness of

outcomes, researchers have looked into the fairness of process in

the decision-making systems [18].
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Figure 10: Model performance on the
single-query Boston dataset. Atten-
tion singular.

Figure 11: Model performance on the
single-query Geneva dataset. Atten-
tion singular.

Figure 12: Model performance on the
single-query Hong Kong dataset. At-
tention singular.

Figure 13: Model performance on the
multi-query Boston dataset. Atten-
tion singular.

Figure 14: Model performance on the
multi-query Geneva dataset. Atten-
tion singular.

Figure 15: Model performance on the
multi-query Hong Kong dataset. At-
tention singular.

Individual fairness [12] requires that individual subjects who

have similar attributes should, with high probability, receive the

same prediction outcomes. Literature to this end has so far focused

on classification and selection problems [24, 37].

Other lines of work investigate mechanisms for fair division

of resources [1], or how automated systems can assist humans in

decision making [25].

Fairness in rankings. Prior work on fair rankings is scarce and

recent. Some proposals show how to incorporate various notions of

group fairness into ranking quality measures [34]. There have been

approaches that diversify the ranking results in terms of presence

of members of different groups in ranking prefixes, at the same time

Figure 16: Model performance on the single-query Boston
dataset. Attention geometric. Results are similar for the
Geneva and Hong Kong datasets.

keeping the ranking quality high [36]. This problem has also been

studied from a theoretical perspective with the results provided

for the computational complexity of the problem [6]. All of these

approaches consider static rankings only, and all focus on group

fairness. Parallel with our work, Singh and Joachims [30] have

proposed a notion of group fairness based on equality of exposure

for demographic groups. While technically complementary and

similar in spirit to our approach, this method is also geared for

a purpose different than individual fairness, and does not aim at

binding attention to relevance.

Bias in IR. The existence of position bias in rankings of search

results has been revealed by a number of eye-tracking and other

Figure 17: Actual values of ranking quality. Boston dataset,
attention singular.
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empirical studies [10, 11, 19]. Top-ranked answers have a much

higher probability of being viewed and clicked than those at lower

ranks. The effect persist even if the elements at different ranks are

randomly permuted [21]. These observations have led to a variety

of click models (see [8] for a survey), and several methods for bias-

aware re-ranking (e.g., [22, 32]). However, position bias has been

primarily studied in the context of document ranking and no prior

work has investigated the influence of the bias on the fairness

of ranked results. A large search engine has been investigated for

presence of differential quality of results across demographic groups

[27]. Similar studies have been carried out on other kinds of tasks

such as credit worthiness or recidivism prediction [2].

Relation to other models. Fairness dimension has been consid-

ered for job dispatching at the OS level, for packet-level network

flows [15], for production planning in factories [16], and even for

two-sided matchmaking in call centers [3]. Fairness understood

as envy-freeness is also investigated in computational advertising,

including generalized second-price auctions [13]. In the context

of rankings, a potential connection between fair rankings and fair

queuing has recently been suggested [7].

6 CONCLUSION
This paper argues for equity of attention – a new notion of fair-

ness in rankings, which requires that the attention ranked subjects

receive from searchers is proportional to their relevance. As this

definition cannot be satisfied in a single ranking because of the po-

sition bias, we propose to amortize fairness over time by reordering

consecutive rankings, and formulate a constrained optimization

problem which achieves this goal.

Our experimental study using real-world data shows that the

discrepancy between the attention received from searchers and the

deserved attention can be substantial, and that many subjects have

equal relevance scores. These observations suggest that improving

equity of attention is crucial and can often be done without sacri-

ficing much quality in the rankings. Incorporating such fairness

mechanisms is especially important on sharing economy or two-

sidedmarket platformswhere rankings influence people’s economic

livelihood, and our work addresses this gap.

Equity of attention opens a number of interesting directions for

future work, including calibration of ranker scores in economically-

themed applications, all the way down the IR stack to properly

training judges to provide relevance labels with fairness in mind.
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