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Abstract

We describe and analyze a simple and effec-
tive iterative algorithm for solving the optimiza-
tion problem cast by Support Vector Machines
(SVM). Our method alternates between stochas-
tic gradient descent steps and projection steps.
We prove that the number of iterations required
to obtain a solution of accuraeyis O(1/¢). In
contrast, previous analyses of stochastic gradient
descent methods requif(1/e?) iterations. As

in previously devised SVM solvers, the number
of iterations also scales linearly withy A, where

A is the regularization parameter of SVM. For a
linear kernel, the total run-time of our method
is O(d/(Xe)), whered is a bound on the num-
ber of non-zero features in each example. Since
the run-time doesotdepend directly on the size
of the training set, the resulting algorithm is es-
pecially suited for learning from large datasets.
Our approach can seamlessly be adapted to em-
ploy non-linear kernels while working solely on
the primal objective function. We demonstrate
the efficiency and applicability of our approach
by conducting experiments on large text classi-
fication problems, comparing our solver to ex-
isting state-of-the-art SVM solvers. For exam-
ple, it takes less thah seconds for our solver to
converge when solving a text classification prob-
lem from Reuters Corpus Volume 1 (RCV1) with
800, 000 training examples.

Appearing inProceedings of the2/*" International Conference
on Machine LearningCorvallis, OR, 2007. Copyright 2007 by
the author(s)/owner(s).

NATI @UCHICAGO.EDU

1. Introduction

Support Vector Machines (SVMs) are effective and popu-
lar classification learning tool (Vapnik, 1998; Cristianin

& Shawe-Taylor, 2000). The task of learning a support
vector machine is cast as a constrained quadratic program-
ming problem. However, in its native form, it is in fact an
unconstrained empirical loss minimization with a penalty
term for the norm of the classifier that is being learned.
Formally, given a training se$ = {(x;,y;)}",, where

x; € R" andy; € {+1,—1}, we would like to find the
minimizer of the problem

A 1
m“lrn§||w||2+g Z Uws(x,y)) 1)
(x,y)€S
where
{w; (x,y)) = max{0,1 —y(w,x)} . )

We denote the objective function of Eqg. (1) hyw).

An optimization method finds agaccurate solutiow if
f(W) < miny, f(w) + €. The original SVM problem
also includes a bias term, We omit the bias throughout
the first sections and defer the description of an extension
which employs a bias term to Sec. 4.

We describe and analyze in this paper a simple iterative al-
gorithm, called Pegasos, for solving Eq. (1). The algorithm
performsT iterations and also requires an additional pa-
rameterk, whose role is explained in the sequel. Pegasos
alternates between stochastic subgradient descent siegps a
projection steps. The parametedetermines the number
of examples frons the algorithm uses on each iteration for
estimating the subgradient. Whén= m, Pegasos reduces
to a variant of the subgradient projection method. We show
that in this case the number of iterations that is required in
order to achieve am accurate solution i©)(1/(\e)). At

the other extreme, wheh = 1, we recover a variant of
the stochastic (sub)gradient method. In the stochast cas
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we analyze the probability of obtaining a good approximatetertain general asymptotic convergence properties (Genso
solution. Specifically, we show that with probability of at & Zenios, 1997), the time complexity of most of the algo-
leastl — ¢ our algorithm finds am-accurate solution using rithms in this family is typically super linear in the tramy
only O(1/(6)e)) iterations, while each iteration involves a set sizem. Moreover, since decomposition methods find a
single inner product betweeas andx. This rate of conver- feasible dual solution and their goal is to maximize the dual
gence doesiot depend on the size of the training set andobjective function, they often result in a rather slow canve
thus our algorithm is especially suited for large datasets. gence rate to the optimum of the primal objective function

Before indulging in the description and analysis of Pega—(See also the discussion in (Hush et al., 2006)).

sos, we would like to draw connections to and put ourSome of the decomposition methods do yield though a re-
work in context of some of the more recent work on SVM. gret bound in the online learning setting. For instance, the
For a more comprehensive and up-to-date overview of relPassive Aggressive (Crammer et al., 2006) applies the ob-
evant work see the references in the papers cited beloyective function of SVM to each example. Online learn-
as well as the web site dedicated to kernel methods ahg algorithms were also suggested as fast alternatives to
http://www.kernel-machines.org . Due to the centrality of SVM (see (Freund & Schapire, 1999)). Such algorithms
the SVM optimization problem, quite a few methods werecan be used to obtain a predictor with low generalization
devised and analyzed. The different approaches can beror using an online-to-batch conversion scheme (Cesa-
roughly divided into the following categories. Bianchi et al., 2004). However, the conversion schemes
do not necessarily yieledraccurate solutions to the original

Interior Point (IP) methods: IP methods (see for instance VM problem and their performance is typically inferior

(Boyd & Vandenberghe, 2004) and the references theremo direct batch optimizers. As noted above, Pegasos shares

cast SVM learning as a quadratic optimization problem o . . )
subject to linear constraints. The constraints are repilace.the simplicity and speed of online learning algonthms but
: . : . is guaranteed to converge to the actual SVM solution.
with a barrier function. The result is a sequence of uncon-
strained problems which can be optimized very efficientlyGradient based methods. Unconstrained gradient meth-
using Newton or Quasi-Newton methods. The advantage abds were very common in optimization until the emergence
IP methods is that the dependence on the accuriogou-  of the ultra-fast IP methods. While gradient based methods
ble logarithmic, namelylog(log(1/¢)). Alas, IP methods are known to exhibit slow convergence rates, the compu-
typically require run time which is cubic in the number of tational demands imposed by large scale classification and
examplesn. Moreover, the memory requirements of IP areregression problems of high dimension feature space, re-
O(m?) which renders a direct use of IP methods very dif-vived the theoretical and applied interest in gradient meth
ficult when the training set has many examples. It shouldds. The Pegasos algorithm is an improved stochastic sub-
be noted that there have been several attempts to redugeadient method. Two concrete algorithms that are closely
the complexity based on additional assumptions (see e.gelated to the Pegasos algorithm that are based on gradient
(Fine & Scheinberg, 2001)). However, the dependence omethods are the NORMA algorithm (Kivinen et al., 2002)
m remains super linear. In addition, while the focus of theand a stochastic gradient algorithm by Zhang (2004). The
paper is the optimization problem cast by SVM, one need#egasos algorithm uses a sub-samplé tfining exam-
to bare in mind that the optimization problem is a proxy ples to compute an approximate sub-gradient. When1l
method for obtaining good classification error on unseerthe Pegasos algorithm becomes very similar to the afore-
examples. Achieving very high accuracy in the optimiza-mentioned methods of Kivienen et. al and Zhang with a few
tion process is usually unnecessary and does not translatemotable and crucial differences. First, after each gradien
a significant increase in generalization accuracy. The timdéased update, Pegasos employs a projection stepooito
spent by IP methods for finding a single accurate solutiorthe L, ball of radiusl/+/). This modification enables the
may, for instance, be better utilized for finding numeroususage of a very aggressive decrease in the learning rate
approximate solutions for multiple choicesaf and yields an improved(1/¢) rate of convergence rather

. ) . thanO(1/€?) rate. This theoretical improvement is also re-
Decomposition methods: To overcome the quadratic . .
flected in our experiments. Whén= m Pegasos results

memory requirement of IP methods, decomposition metth a modified gradient-descent algorithm with an improved
ods such as SMO (Platt, 1998) and SVM-Light (Joachims 9 9 P

1998) switch to the dual representation of the SVM Optl_tonvergence rate. In adqmon o the superior rate Qf con
7 . . vergence, Pegasos can incorporate a bias term (discussed
mization problem, and employ an active set of constraints - .
X : In Sec. 4) and can utilize parallel computation power for
thus working on a subset of dual variables. In the extrem%1 ropriate choices df
case, called row-action methods (Censor & Zenios, 1997 'pp P '

the active set consists of a single constraint. While algoiast, we would like to point to the SVM-Perf algorithm
rithms in this family are fairly simple to implement and en- recently proposed by Joachims (2006) for linear SVMs.
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SVM-Perf uses cutting planes to find a solution with accu- | |npuT: S, )\, T, k

racye in time O(md/(\e?)). The complexity guarantee for | |y TiaLIZE : Choosew; s.t. w1l < 1/V/A
Pegasos avoids the dependence on the data sehsirel FOrR t=1,2,...,T

reduces the dependence on the accuracy to@filye). In ChooseA, C S, where|4,| = k
practice, while SVM-Perf yields very significant improve- SetAf = {(x,y) € Ay 1 y (wy,x) < 1}
ments over decomposition methods for large data sets, ouf Setr;, = %

experiments (see Sec. 5) demonstrate that Pegasos is sulp
stantially faster than SVM-Perf.

Setw, 1 = (I—nA)wy+ % Z(x,y)eAj yx
Setw;;1 = min {1, va/ﬁu
. s
2. The Pegasos Algorithm OUTPUT: wr

Wt—&-%

In this section we describe the Pegasos algorithm for solv-

ing the optimization problem given in Eq. (1). The algo- Figure 1.The Pegasos Algorithm.
rithm receives as input two paramete¥s: the number of
iterations to performk - the number of examples to use for
calculating sub-gradients. Initially, we s&f to any vector
whose norm is at most/+/X. On iterationt of the algo-
rithm, we first choose a set, C S of sizek. Then, we We conclude this section with a short discussion of imple-

replace the objective in Eq. (1) with an approximate objec-mentation details when the instances are sparse, namely,

gradient method. In general, we allody to be a set ok
examples sampled i.i.d. from.

tive function, when each instance has very few non-zero elements. In this
case, we can represewtas a triplet(v, a, v) wherev is a
f(w;Ay) = 5||W||2 + 1 Z o(w; (x,y)) . dense vector and, v are scalars. The vecter is defined
2 k (x.)e A, through the triplet as followsw = av andv stores the

squared norm ofv, v = ||w||%. Using this representation,
Note that we overloaded our original definition ¢fas it is easily verified that the total number of operations re-
the original objective can be denoted eitherféss) or as  quired for performing one iteration of Pegasos witk= 1
f(w; S). We interchangeably use both notations dependings O(d), whered is the number of non-zero elementsxin
on the context . Next, we set the learning rate= 1/(\t)
and defineA;" to be the set of examples for whieh suf- 3
fers a non-zero loss. We now perform a two-step update as
follows. We scalew, by (1 — 7, A) and for all examples |n this section we analyze the convergence properties of
(x,y) € A we add tow the vector’J x. We denote the Pegasos. Throughout this section we denote
resulting vector bywH%. This step can be also written as . )
Wil =Wi— n:V;, where w* = argmin f(w) . (5)

w

. Analysis

Vi=Aw; — ﬁ D xyyear YX- (3) Recall that on each iteration of the algorithm, we focus on
an instantaneous objective functigiw; A;). We start by
The definition of the hinge-loss implies th&, is a sub-  bounding the average instantaneous objective of the algo-
gradient of f(w; A;) at w,. Last, we setw,;; to be the rithm relatively to the average instantaneous objective of

projection ofw,, 1 onto the set the optimal solution. We first need the following lemma
which generalizes a result from (Hazan et al., 2006). The
B = {w:||w]| <1/V)}. (4)  lemma relies on the notion of strongly convex functions.

) ) ) ) A detailed proof and further explanations can be found in
That is, wyy; is obtained by scallngthr% by (Shalev-Shwartz & Singer, 2007).

min {17 1/ (VAW 1 ||)}- As we show in our analysis be- |emmal. Letf,, ..., fr be asequence ofstrongly con-
low, the optimal solution of SVMis in the sé. Informally ~ vex functions w.r.t. the functiofl| - ||*. Let B be a closed
speaking, we can always project back onto thelsas we  convex set and defiféz (w) = arg ming e p |w — w'||.
only get closer to the optimum. The output of Pegasos idetwy, ..., wr,1 be asequence of vectors such that e
the last vectowr, 1. The pseudo-code of Pegasos is givenB and fort > 1, wy1 = I p(w, — . Vy), whereV, is a
in Fig. 1. subgradient off; at w; andn; = 1/(\t). Assume that for

. < G.
Note that if we choosel; = S on each round then we allt, |[Vi]| < G. Then, for allu € 5 we have

obtain the subgradient projection method. On the other ex- T T 2
! : : 1 1 G*(1+In(T))
treme, if we choosed, to contain a single randomly se- = E filwy) < = g fi(u) + ———==
. . T T 2T
lected example, then we recover a variant of the stochastic t=1 t=1
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Based on the above lemma, we are now ready to bound theonstants. We therefore obtain a significant improvement
average instantaneous objective of Pegasos. with a simpler algorithm.

Theorem 1. Assume that for al(x,y) € S the norm of \when 4, + S, Corollary 1 no longer holds. In addition,
x is at mostR. Letw* be as defined in Eq. (5) and let the final hypothesis we use in Fig. 1¥s, rather than

¢ = (VA+R)?. Then, forT > 3, the average hypothesis. The next theorem bridges this gap
T T as it implies that the same convergence rate still holds in
1 3 flwi; A 1 Z Flw*s Ay + cIn(T) expectation if we randomly choose a stopping time.
T AT Theorem 2. Assume that the conditions stated in Thm. 1

hold and for allt, A; is chosen i.i.d. fronf. Letr be an
Proof. To simplify our notation we use the shorthand integer picked uniformly at random frof#]. Then,
fe(w) = f(w; A¢). The update of the algorithm can be ¢In(T)
rewritten asw;, = Ip(w; — V), whereV, is de- Eay .. a:Er[f(w,)] < f(W5)+ .
fined in Eq. (3) andB is defined in Eq. (4). Thus, for AT
proving the theorem it suffices to show that the condi-
tions stated in Lemma 1 hold. Singeis a sum of a\-
strongly convex function||w||?) and a convex function
(the average hinge-loss ovdg), it is alsoA-strongly con-

Proof. To simplify our notation, denote b&{ the sequence
of sets(4;, ..., A;). Taking expectation of the inequality
given in Thm. 1 we obtain

vex (see Lemma 1 in (Shalev-Shwartz & Singer, 2007)). 1 L 1 L
Next, we derive a bound ofiV,||. Using the facts that ~ Ear[ > flwi Ay < Early D F(wr A
[we]| < 1/v/X and that||x|| < R combined with the tri- t=1 t=1 (6)
angle inequality we obtaiiV,|| < v'A + R. Finally, we n cIn(T)
need to prove thawv* € B. To do so, we use the fact that AT
there exists a vectax* € [0, 1]™ such that We now analyze the two expectations given in Eq. (6).
Sincew* does not depend on the choice4f, we have,
)‘ w* A 1|2 Ha*Hl
4 3 bt o)) =~ w P | L
" xaes E 47 [f Z f(w* Ay)] = T ZEAIT [f(w™; Ay)]
(The above equality is derived by applying the strong dual- =t t?
ity theorem to the SVM optimization problem.) Rearrang- 1 ZE Fw*s A (7
ing the above and using the non-negativity of the hinge-loss T A T
gives that|w*|| < 1/v/A. The bound in the theorem fol- t::
lows now using simple algebraic manipulations. O = fw).
Next, we analyze the expectation at the left-hand side of
Note that the convexity of implies that Eq. (6). Note thatv; only depends oml!™!. Thus,
T
f (% Zthl wt) = % Zf:l fwi) - ]EAlT[% Zf(wt;At = ZEAf (wi; Ag)] . (8)
t=1

Using the above inequality and Thm. 1, we immediately
obtain the following corollary which gives a convergence .
! Wing y WhICh gves verd for any two random variablesX,Y, Ex[f(X)] =

analysis for the casg, = S. .
4 ¢ EyEx[f(X)|Y]. SettingX = A} andY = A~ we get
Corollary 1. Assume the conditions stated in Thm. 1 andy,5¢

that A, = S for all t. Letw = w;. Then, _
b RNERS Eas[f(wi; A)] = Eqeo1[Eac[f(wes A A7)
cln(T)

fW) < fOW)+ = E i [f(we)] = Ear[f(we)] -

Recall that the law of total expectation implies that

Combining the above with Eq. (8) we obtain
Based on the above corollary, the number of itera- ) )
tions required for achieving a solution of accuraey Ear[= Y f(wiA)] = Ear[= Y f(wy)]
is O(R?/(\¢)). Joachims (2006) recently suggested a AT Z AT Z
method, called SVM-Perf, which requir€§ R* /(A ¢*)) it ———— B -
erations. The cost of each iteration of SVM-Peign d), Seemingly, to calculater we need additionaD(n) opera-

wherem is the number of examples aads the effective tions at each iteration, whereis the dimension ofv. However,
m p if n > md we can also savev; as a linear combination of the

dimension of the examples. The complexity of a single iter-;, instances in the training set and update only the coefficients.
ation of Pegasos whefy, = S'is alsoO(m d), with smaller  Thus, the cost of each iteration never exce@ds: d).
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Combining the above with Eq. (7) and Eq. (6), and notingof 1/e, we know that with probability of at leadt— 1/e
thatE, [f(w,)] = + Zthl f(w) we conclude our proof. we have that
O

. o _ celn(T ceIn(T) [In (%
| | ) ) < D) cen@) Ty
The above theorem states that, in expectation, the stochas- /s
tic version of th_e algorithm will converge as fast as the qe'Therefore, the probability that faall runs the above in-
terministic version. The next theorem provides a very sim- . . 5
. equality does not hold is at most® < ¢. In other words,
ple concentration bound.

- _ with probability of at least — 4, at least one of the vectors
Theorem 3. Assume that the conditions stated in Thm. 2, satisfies Eq. (9). We have therefore shown a method

. 9)

hold. Letd & (0,1). Then, with probability of atleast—0  that usesd(2(1/2)) iterations for constructingin(1/5)]
over the choices dfA,, ..., Ar) and the index- we have  \yeight vectors, where at least one of theme-accurate.
that Finally, we need to pick am-accurate vector from the set

In(T ) . .
C;\(T) of s vectors. This requwe@(riz) examples in the general
case, since estimating the objective of eschup to accu-

Proof. Let Z be the random variablg(w,) — f(w*). 'ac%y ofe re_quiresO_(ﬁ) examples. Note however_ that if

From the definition ofw* as the minimizer off(w) we we would like to simply choose the best perforr_mng vec-
clearly have thatZ is a non-negative random variable. tor with respect to the zero-one error over a validation set
Thus, from Markov inequalitP[Z > o] < E[Z]/a. (rather than based on the objective value of SVM), we only

1 . .

SettingE[Z]/a = 6 and using Thm. 2 we obtain that N€8dO(5) examples. Thatis, we gain a factorigit. We
E[Z] o clIn(T) 0 leave further exploration of this issue to future work.

) — AT

flwr) < f(w7) +

a =

Let us now discuss the implications of Thm. 3. First, by4- EXtensions
takingT = oo we immediately obtain from Thm. 3 con-
vergence in the limit. In addition, we can use Thm. 3
for analyzing the convergence of the last weight vector
We do so by viewingl" as a random index drawn from
{1,...,T}, whereT > T. Sincewr does not depend
onAryy,..., Az, we can terminate the algorithm aftér
iterations and retursvy. Using Thm. 3 we know that

In this section we discuss a few extensions to our basic clas-
sification learning algorithm. These extensions broaden th
'set of applications that can be tackled by our approach. Due
to the lack of space we confine ourselves to a rather high
level overview of two extensions and defer the complete de-
tails to a long version of this paper. We would like to note
though that we have devised generalizations of Pegasos to
. ln(T) cIn(T) comple>_< deci.sion problems, from multiclass categorizatio
— < to learning with structured data.
ONT OAT

fwr) = f(w) <

Incorporating a bias term: In many applications, the
We conclude this section with a discussion on the depenweight vectorw is augmented with a bias term which is
dence of the convergence rate on the confidence parametarscalar, typically denoted @&s The prediction for an in-
§ and on the accuracy parameterFrom Thm. 3 we ob- stancex becomes(w,x) + b and the loss is accordingly
tain that to achieve accuraeywith confidencel — § we  defined as,
needé(ﬁ) iterations. In contrast, by applying previ-
ously studied conversions of online algorithms in the PAC ¢ (W, 0); (x,)) = max{0,1 — y({w,x) + b)} . (10)

setting (e.g. (Cesa-Bianchi et al., 2004; Cesa-Bianchi & . . .
Gentile, 2006)) one can obtain accuracyeofiith confi- The bias term often plays a crucial role when the distribu-

dencel — & usingO(l“ile/;”) iterations. Thus, as long as tion of the labels is uneven as is typically the case in text

the desired confidence is not too high, our convergence rafg 0cessINg applications where the negative examplesyvastl

C . -~ ~outnumber the positive ones. We now briefly describe three
is significantly better. If we would like to have a very high . ;
different approaches to learn the bias term and underscore

confidence, we can use a simple amplification techniqu?he advantages and disadvantages of each aporoach
(a.k.a. boosting the confidence), to construct a few candi- 9 g PP '

date vectors such that with confidente- ¢ at least one The first approach is rather well known and its roots go
of the vectors has accuracy@f(%). Lets denote the back to early work on pattern recognition (Duda & Hart,
smallestinteger larger than(1/4). We run the algorithm 1973). This approach simply amounts to adding one more
times while setting the number of iterations for each run tofeature to each instaneethus increasing the dimension to
T/s. We then randomly choose one vector from the vectors: + 1. The artificially added feature always take the same
constructed by each run. Denotewy, ..., w, theresult- value. We assume w.l.0.g that the value of the constant fea-
ing weight vectors. Using Thm. 3 with a confidence valueture is1. Once the constant feature is added the rest of the
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algorithm remains intact, thus the bias term is not exgyicit
introduced. The analysis can be repeated verbatim and we
therefore obtain the same convergence rate for this modifi-

Table 1.Training time in CPU-seconds
| Pegasog SVM-Perf | SVM-Light

. : CCAT 2 77 20,075
cation. Note however that by equating the 1 component
of w with b, the norm-penalty counterpart ¢gf becomes Covertype 6 85 25,514
! astro-ph 2 5 80

|lwl||? + v*. The disadvantage of this approach is thus that
we solve a slightly different optimization problem. On the
other hand, an obvious advantage of this approach is that it
requires no modifications to the algorithm itself rathentha The above adaptation indeed work for the cAge- S and

a modest increase in the dimension and it thus can be us¢¥e obtain the same rate of convergence as in the no-bias
without any restriction on,. case. However, wheA,; # S we cannot apply the analysis

) o o from the previous section to our case since the expectation
The second approach incorporatesxplicitly by defining ¢ #(w; A;) over the choice of4, is no longer equal to
the loss as given in Eq. (10) whileot penalizing forb.  r(w; S). When 4, is large enough, we can use more in-
Formally, the task is to find an approximate solution to theyg|yed measure concentration tools to show that the expec-
following problem, tation of f(w; A;) is close enough tgf(w; S). We again
A\ 1 omit the details due to the lack of space.
min 2w+ — 37 [L-y(w.x) +b)], . (1)

w,b s Using Mercer kernels: One of the main benefits of support
X,Y)€E

vector machines is their ability to incorporate and corgitru
non-linear predictors using kernels which satisfy Mercer’
conditions. The crux of this property stems from the rep-
resenter theorem (Kimeldorf & Wahba, 1971), which im-
plies that the optimal solution of SVM can be expressed
as a linear combination of its constraints. In the classifi-

Note that all the sub-gradients calculations war.temain
intact. The sub-gradient with respectttis also simple to
compute. For a samplé; it amounts to,‘;‘—il Z(x,y)eAj y
and thus requires onli additions and subtractions and a

single devision. This approach is also very simple to im- i bl th ter th implies this
plement and can be used with any choicef in par- cation problem, the representer theorem implies

ticular, sets consisting of a single instance. The caveat of linear comblpatlon of the !nstgnc:es The common ap-
this approach is that the functigh ceases to be strongly proach for solving the qpt|m|zaF|on problem for SVM when
convex. This is due to the fact that with the incorporationk_erneIS are employed is to SW'tCh o the d“?" problem and
of b, the objective functiorf becomes piece-wise linear in find th? optimal set Qf dual variables. F°”°W'T‘9 (Fre_und &
the direction ofb and is thus no longer strongly convex. Schapire, 1999; Kivinen et al., 2002), we outline a différen

Therefore, the analysis presented in the previous sectioﬂppmaCh and directly minimize the p”!’”a' .p“’b'e'.”” yvh|le
still using kernels. The main observation is thatif is

no longer holds. An alternative proof technique yields a>".. . )
slower convergence rate df(l/ﬁ). |n|t|al_|zed to be the zero vector, then at each iteratiorhef t
algorithmw, can be written asv, = Zie 1, XX, where
The last method entertains the advantages of the two metly; is a subset of 1, ..., m}. The above claim can be eas-
ods above at the price of a more complex algorithm thaily proved using an inductive argument. Therefore, we can
is applicable only for large values @ The main idea is store the sef, and the coefficients; instead of storingv,.
to rewrite the optimization problem given in Eq. (11) as It is now easy to verify that the algorithm in Fig. 1 can be
miny %IIWH2 + g(w; S) where used in conjunction with kernels, by representiag us-
ing I; andq;, calculating inner product operations using
g(w;5) = min o Deepes L= y(W,x) +0)], . (12)  (w, x,) = S ier, @i (Xi,%;), and evaluating the norm of
wy using [[we[|> = 37, i) @i (xi,%;). Based on the
Based on the above, we redefifigv; 4;) to be3||w|> +  analysis in previous sections, Pegasos finds-ancurate
g(w; A). On each iteration of the algorithm, we find a solution usingO(1/(d\e)) iterations, while each iteration
subgradient off (w; A;) and subtract it (multiplied by;;) involves a single inner product betweenandx. Note
from w;. Finally, we project the resulting vector so that its however that each inner product operation betweesind
norm will not exceed /v/X. The problem however is how x may requirenin{m, O(1/(d)e)}) evaluations of the ker-
to find a subgradient of(w; A;), asg(w; A;) is defined  nel function.
through a minimization problem oveér It can be shown
that_the complexity of findi_ng a subgradientgifvy;_At_) is_ 5. Experiments
equivalent to the complexity of solving the minimization
problem in Eqg. (12). The latter problem is a generalizedin this section we present experimental results that demon-
weighted median problem that can be solved efficiently instrate different merits of our algorithm and its accompa-
time O(k). We omit the details due to the lack of space.nying analysis. We start by showing that Pegasos is in-
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deed a practical tool for solving large scale problems. In
particular, we compare its runtime to a new state-of-the- | .
art solver (Joachims, 2006) on three large datasets. Nex™
we compare Pegasos to two previously proposed method .
that are based on stochastic gradient descent, namely t°| ™"~
Norma (Kivinen et al., 2002) and to the method given in
(Zhang, 2004). Finally, we explore the empirical behavior * | i i 3 ]
of the algorithm with respect to the parameterin all of T T
the experiments we did not incoprorate a bias term since _
(Joachims, 2006; Kivinen et al., 2002; Zhang, 2004) do//9ure 2.Comparisons of Pegasos to Norma (left) and Pegasos to
. . o stochastic gradient descent with a fixed learning rate (right) on the

not incorporate that term either. Additionally, we used the ; - ;

lqorith in Fig. 1 Hing the st f boosting th Astro-Physics datset. In the left plot, the solid lines designate the
ago!" mas in Fg. 1, omi ing es agg 0 OO_S m_g eobjective value and the dashed lines depict the loss on the test set.
confidence, as we found empirically that in practice it was
not necessary.

In our first experiment we compared Pegasos to the SVMthe number of examples but rather on the value..ofn-

Perf algorithm (Joachims, 2006). We used the followingyeeq the runtime of Pegasos for the Covertype dataset is

datasets, which were provided to us by T. Joachims. larger than its runtime for CCAT, although the latter datase
(1) The binary text classification task CCAT from the is larger.

Reuters RCV1 collection. There are 804,414 examples

and there are 47,236 features with sparsity 0.16% in thi$n our next experiment, we compared Pegasos to
dataset. Norma (Kivinen et al., 2002) and to a variant of stochastic
(2) Classification of abstracts of scientific papers from thegradient descent described in (Zhang, 2004). Both meth-
Physics ArXiv according to whether they are in the Astro-0ds are similar to Pegasos when setting= 1 with two
physics section. There are 99,757 features of high sparsitfifferences. First, there is no projection step. Second,
(0.08%). There are 62,369 examples in this dataset. the scheduling of the learning rate, is different. In

(3) Class 1 in the Covertype dataset of Blackard, Jock &orma (Thm. 4), it is suggested to set = p/(AV/1),
Dean, which is comparably low-dimensional with 54 fea-Wherep € (0,1). Based on the bound given in Thm.
tures and a sparsity of 22.22%. There are 581,012 examplés of (Kivinen et al., 2002), the optimal choice ofis

in this dataset. 0.5(2 + 0.57—/2)1/2 which fort > 100 is in the range

, . 0.7,0.716]. Plugging the optimal value gfinto Thm. 4 in
Table 4 lists the cpu-time of Pegasos and SVM-Perf on th Kivinen et al., 2002) yields the bour@d(1/(\v/T)). We

datasets described above. SVM-Perf (Joachims, 2006) fherefore hypothesized that Pegasos would converge much
a cutting plane _algorlthm for solving SVM that is based faster than Norma. In Fig. 5 (left) we compare Pegasos to
on a refo.rmulat|on of the SVM pro*?'em- It was Shown norma on the Astro-Physics dataset. We split the dataset
n (Joach|m§, 2006) t.haF SVM-Pert is substantially fastef,, , training set with 29,882 examples and a test set with
than SVM-Light, achieving a speedup of several ordersy; 457 ayamples and report the final objective value and
of magnitude on most datasets. We run both Pegasqge ayerage hinge-loss over the test set. As in (Joachims,
and SVM-Perf on the three datasets with values\ds 2006), we seh — 2-10~*. As can be seen, Pegasos clearly

. : ) o , . ,
given in (‘JjaCh'mS' 2006),_namely,f 1076 for CCAT, outperforms Norma. In fact, Norma fails to converge even
A = 2107 for Astro-physics, and = 1077 for COVer-  aar 106 jterations. This can be attributed to the fact that
type. We used the latest version of SVM-perf, implementedy 4 ye of) here is rather small. As mentioned before,
in C, as provided by T. Joachims. We implemented Pegasqge gifterences between Pegasos and Norma are both the
in C++ and run all the experiments on a 2.8GHz Intel Xeonjgterent learning rate and the projection step which is ab-
processor with 4GB of main memory under _L|nux. FOT sent in Norma. We also experimented with a version of
cpmpleteness, we. added tq the table the runtime of SV'V_lPegasos: without the projection step and with a version of
Light as reported in (Joachlms, 20,06)' As can be seen Norma that includes a projection step. We found that the
the table, although SVM-Perfis by itself very fast, Pegasos, yiection step is important for the convergence of Pegasos
still achieves a significant improvement in run-time. We especially wherT is small, and that a projection step also
calculated the objective value of the solutions obtained b¥mproves the performance of Norma. However, Pegasos
l?egasos and SVM-Perf. For all three datasets, the ObJe<é'till outperforms the version of Norma that includes an ad-
tive value of Pegasos never exceeded that ,Of S_VM-Perf b)ﬁitional projection step. We omit the graphs due to the lack
more than 0.001. In addition, the generalization error ofmc space. We now turn to comparing Pegasos to the algo-
both methods was virtually identical. It is interesting to i from (Zhang, 2004) which simply sefs — 7, where
note that the performance of Pegasos does not depend 9fs 5 (fixed) small number. A major disadvantage of this
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tion of SVM. The algorithm, called Pegasos, is a modified
stochastic gradient method in which every gradient descent
step is accompanied with a projection step. We derived fast
rate of convergence results and experimented with the algo-
rithm. Our empirical results indicate that for linear kdme
Pegasos achieves state-of-the-art results, despite angec
of its simplicity. We plan to investigate all the questions w
K ' surfaced in this paper as well as to conduct thorough exper-
iments with non-linear kernels. In addition, we have sthrte
Figure 3.The effect ofk on the objective value of Pegasos on the jnvestigating the usage of similar paradigms in other learn
Astro-Physics dataset. Leff? is fixed. Right:kT is fixed. ing problems such ak;-SVM and other loss functions.

—6-T=1250
—T=31250]
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approach is that finding an adequate valuerfas a diffi-
cult task on its own. Based on the analysis given in (Zhang
2004) we started by settingto be10~°. Surprisingly, this
turned out to be a poor choice and the optimal choice of
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