Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
User Guide — Draft

The Mining Mart User Guide
Timm Euler, Detlef Geppert, Olaf Rem, Martin Scholz

Dortmund, April 9, 2003

Contents

1 The
1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6

2.7

2.8

3 The
3.1
3.2
3.3

3.4

3.5

Philosophy of MiningMart
The MiningMart approach
Basic notions in MiningMart

Installing the MiningMart system

General iSSUES L i Lo e e e e e
InstallWizard,
Metadata schema
Compiler
HCI . . e
Database interface
2.6.1 InstallingJBoss.,
2.6.2 Deploying the M4 interface
Starting and stopping the system
2.7.1 Dependencies between modules
2.7.2 Starting and stopping rmiregistry L.
2.7.3 Starting and stopping the M4 compiler
2.7.4 Starting and stopping the JBOSS server
2.7.5 Starting and stopping the HCT
Appendix: List of operators that use external algorithms

Human Computer Interface

Introduction Lo
Architecture L.
Main Application
3.3.1 Getting startedo oo
3.3.2 Main functionality
3.3.3 Closing the application
The Concept Editor,
3.4.1 TUsing the Concept Editor,
The Chain Editor
3.5.1 Overview of Functionality
3.5.2 Imsertingachain
3.5.3 Imsertingastep

3.5.4 Changing properties
3.5.5 Editing the step parameters
3.5.6 Changing Positions
3.5.7 Selecting objects in the graph view
3.5.8 Deleting objects
3.5.9 Connecting steps
3.5.10 Merge stepstoachain
3.5.11 Unmerge sub chains
3.5.12 Cut, Copy, Paste

4 Compiler Constraints and Operator Parameters

4.1 What this chapter isabout
4.2 Compiler constraints on metadata
4.2.1 Naming conventions
4.2.2 Relations,
4.3 Operators and their parameters
4.3.1 Generalissues.
4.3.2 Concept operators
4.3.3 Feature selection operators
4.3.4 Feature construction operators
4.3.5 Other Operators

5 The Case Repository

5.1 The Internet Presentation of Cases
5.2 How todownloadacase
5.3 How todocument acase
54 Howtouploadacase.

CONTENTS

Chapter 1

The Philosophy of
MiningMart

In this chapter you will learn about the basic ideas behind MiningMart. Its
different components and the way they interact will be explained. Basic notions
that will be needed for any MiningMart session are presented. This will also
help you to understand this document and any other documents related to
MiningMart.

MiningMart is a system that supports the development, documentation and
re-use of results in knowledge discovery. It is assumed that you are familiar with
general concepts in Knowledge Discovery (Data Mining). However, we give a few
informal definitions here to provide a common understanding. More information
about Data Mining can be found on the MiningMart webpages:
http://mmart.cs.uni-dortmund.de

e The Knowledge Discovery Process refers to the technical steps of data
acquisition, data cleaning, data preparation as well as data mining and
model testing.

e Data Mining is the step in the knowledge discovery process where a Ma-
chine Learning algorithm is applied to learn a model which is used to make
predictions on new data.

e Preprocessing comprises all steps that are undertaken in order to bring the
data into a format that is accessible for data mining. The result of pre-
processing is the input for data mining without any further modifications.
The input for preprocessing is the data as it is stored in a data warehouse
or even the operational database of an institution.

Section 1.1 gives an overview of the MiningMart approach to the knowledge
discovery process. In section 1.2, basic terms that are used in MiningMart are
defined and explained. Those terms will be used everywhere in the MiningMart
system and documentation, so it is a good idea to familiarize yourself with them.

5

6 CHAPTER 1. THE PHILOSOPHY OF MININGMART
1.1 The MiningMart approach

MiningMart provides support for knowledge discovery applications. Thus the
system is aimed at those people in an institution who actually work with the
institution’s data and process it in various ways in order to gather statistics
or other higher-level information. While the system provides an intuitive ac-
cess to data and easy handling of processing steps, users should have a certain
knowledge about how their data is stored before the application of MiningMart.

MiningMart works with relational databases. It assumes that all input data
is given in tables in a relational database and its output are new tables in this
database. It also stores its own data in relational tables. Thus, there are no
limitations to the amount of data that MiningMart can handle.

Referring to the definitions at the beginning of this chapter, MiningMart
supports the whole knowledge discovery process but focusses clearly on pre-
processing. That is, the system provides a few common data mining algorithms
which can be applied directly from the system, but its main value is the support
for the technical steps that are needed to bring the data into a format which can
be used for data mining. Like the input, the output of the system is a number
of relational database tables, but in the output tables the data is stored in a
representation suitable for data mining. Thus, you can use your favourite data
mining algorithm easily because the input data for it is stored in a table in your
database in exactly the right format after the application of MiningMart.

MiningMart supports preprocessing by applying a number of data process-
ing steps to its input. Each step is graphically represented in the MiningMart
workspace. The complete sequence of steps is stored in the database and can
also be exported to other sites where MiningMart is in use. In this way, a docu-
mentation of the whole knowledge discovery process is achieved. All the details
of a discovery process can be easily saved for later usage, can be modified using
a graphical user interface, and can be transferred from one discovery process to
another.

MiningMart uses a layer of abstraction of the actual data to model the
knowledge discovery process. This abstraction allows to publish successful dis-
covery applications for the benefit of other users, while sensitive details are
hidden. This means that you can benefit easily from the work done by other
MiningMart users. The MiningMart web pages provide a central platform for
the exchange of successful discovery processes, called cases (see section 1.2). On
this platform, such cases are described both in terms of their relevance to a
business and in technical terms, which allows you to find cases which are similar
to the application you have in mind. You can then download such cases into
your MiningMart system and make the necessary modifications towards your
own data.

The following section describes these central ideas in more detail by explain-
ing the basic MiningMart terminology. Once you have become familiar with
those basic notions, you can start your own MiningMart application easily.

1.2. BASIC NOTIONS IN MININGMART 7

1.2 Basic notions in MiningMart

This section explains several terms that are used throughout the MiningMart
system and its documentation. You can use this section for general reference.
Where words are printed in italics, they have their own entry in this section.

Business data This is the data in which knowledge is to be discovered. It
must be stored in a relational database. It can consist of any number of tables,
views and relations between them. The MiningMart system assumes that all
data is stored in one database schema; if this is not the case, a single schema
with database links to the needed tables should be set up (please refer to the
documentation of your DBMS).

Metadata This is “administrative” data which MiningMart uses to store in-
formation about the business data as well as about the knowledge discovery
process. Metadata can be stored in a separate database schema (which can live
in a separate database) from the business data, or in the same schema. Mining-
Mart uses a fixed data model for its metadata, which is called M4 (MiningMart
MetaModel).

M4 (MiningMart MetaModel) This is the fixed data model in which Min-
ingMart stores its own information, called Metadata. M4 consists of several
parts, but it is not important for users of MiningMart to know much about it.

Conceptual level As explained in section 1.1, MiningMart uses a layer of
abstraction of the business data in order to hide sensitive details from other
MiningMart users. This layer is the conceptual level. Its name stems from the
fact that on this level, the data is described in everyday concepts rather than in
terms of its technical representation. For example, many institutions have got
data about their customers. So it could make sense to introduce the common
concept “Customer” on the conceptual level, where it represents the data about
customers. Information about this level forms part of the Metadata described
above.

The conceptual level is the most important one for MiningMart users, be-
cause all the data processing is described in terms of the conceptual level. That
is, whenever the customer data in the above example is accessed, this is done
via the concept “Customer”. In contrast to this level, there is the relational
level which also forms part of the Metadata, but which contains less abstract
information about the business data. Both levels must be connected (see below).

Relational level On this level, the business data is described in terms of
its technical representation. This means that the relational level (being part
of the Metadata) stores exact information about the tables and columns that
contain the business data. While a concept such as “Customer” may be rather
common in several institutions, the way the data about customers is organised

8 CHAPTER 1. THE PHILOSOPHY OF MININGMART

will be different in each institution. Therefore, sharing MiningMart applications
(as explained in section 1.1) makes use only of the conceptual level.

Connections (of the conceptual and relational level) Information about
a concept like “Customer” and about the specific business data table contain-
ing customer data must be linked. Thus, there exist connections in Mining-
Mart between the conceptual and the relational level. Concepts are connected
to columnsets, features are connected to columns (see the definitions of these
terms).

There are two ways to create a connection: the user can create one, or the
MiningMart compiler can do that. The central idea is that there are some con-
cepts, called DB concepts, that represent the input business data for the case. For
these, their connection to the right ColumnSets is defined by the user (with the
help of the concept editor). They must be set up by a user who is familiar with
the information needed for the relational level, that is, the exact information
about the tables and columns in the business data.

Other concepts, called MINING concepts, represent business data that was
created during the execution of a MiningMart step. This execution is done by the
compiler; thus, the compiler creates not only the data but also the connections
to the concepts and features.

Case A case is a knowledge discovery process, or data preprocessing appli-
cation, as modelled in MiningMart. Users work on one case at a time. A case
contains the processing steps which may be organised in chains. Cases can be
exported and imported. They are the unit of knowledge sharing: the web plat-
form mentioned in section 1.1 lists successful cases (knowledge discovery or data
preprocessing applications) which were exported by other MiningMart users and
can be downloaded and imported. (Only the conceptual level is ex- or imported;
after import, you need to connect that information to the relational level.)

Step A step represents a single processing task in a case. In each step, ex-
actly one operator is applied. Steps are represented by icons in the MiningMart
workspace (the case editor). Steps are applied to the data in a certain user-
defined order, where the input of one step depends on the output of the previ-
ous one. These dependencies are represented in the MiningMart workspace by
arrows. They form a Directed Acyclic Graph (DAG), that is, there must not be
any cyclic dependencies. You can give explanatory names to the steps of a case.

Chain Any number of steps can be organised into chains. This provides a
means to organise large cases with many steps so that the functions performed
in that case become clearer. Comprising several steps which together perform
some definable task (like data cleaning, for example) gives a better overview of
the case. You can give explanatory names to the chains of a case.

1.2. BASIC NOTIONS IN MININGMART 9

Operator An operator performs a single, precisely defined task on the busi-
ness data. Each operator is applied in exactly one step. Each operator has pa-
rameters which define its input and output in terms of the data on the conceptual
level. There are two basic kinds of operators: those whose output is a concept
and those that add an extra feature to their input concept. A few operators
do not belong to either of these categories. Examples for tasks that operators
perform are the replacement of missing values in the data that belongs to the
input concept, or the creation of a new view on the data from the input concept,
or the selection of important features from the input concept, etc.

A list of all operators with their technical description and details can be
found in chapter 4.

Parameter Parameters are related to operators; they define their input and
output on the conceptual level. Some parameters that many operators have are:
TheInputConcept, which defines the concept whose data a certain operator uses
as input; TheOutputConcept or TheOutputAttribute, which define the output
of an operator; etc. For every operator, its parameters are listed in detail in
chapter 4.

Concept A concept in MiningMart represents an everyday notion for which
there exists data in the database. For example, as mentioned earlier, a concept
“Customer” may exist in MiningMart and refer to one or more tables in the
database that contain data about customers. Concepts have features which de-
fine them. The MiningMart system provides a concept editor to create, edit and
delete concepts and their features. Concepts belong to the conceptual level and
define the input for every step (or its operator, more precisely). Concepts are
connected to ColumnSets which represent the database contents on the relational
level.

There are two types of concepts: DB and MINING. The first type are con-
cepts whose data exists before any MiningMart step is executed. That is, these
concepts represent the input data for the case. All MINING concepts, in con-
trast, are not connected to any data before the execution (called compilation)
of a MiningMart step. The MiningMart compiler creates the data that belongs
to the MINING concepts and connects it to them. See also under compiler and
connection.

Feature A feature is an attribute of a concept. For example, a concept “Cus-
tomer” may have the features “Age”, “Income”, “Address”, etc. A concept
“Product” may have the features “Price”, “Number of Sales” and others. There
exist two kinds of features in MiningMart: BaseAttributes and MultiColumn-
Features. Like concepts, features can be parameters.

BaseAttribute A BaseAttribute is a feature. It represents a single attribute of
the MiningMart concept it belongs to. BaseAttributes are connected to Columns
which represent a database column on the relational level. For example, the

10 CHAPTER 1. THE PHILOSOPHY OF MININGMART

concept “Customer” may have a BaseAttribute “Age” which is connected to a
column of a table in the database called “cust_age”.

MultiColumnFeature A MultiColumnFeature is a feature. It represents a
conceptual bundle of attributes of a concept. Thus, it consists of at least two
BaseAttributes. For example, a MultiColumnFeature “Address” may be used
to bundle the BaseAttributes “Street”, “City” and “TelephoneNumber”. Mul-
tiColumnFeatures are a conceptual device in MiningMart which may be used
to structure the concepts in order to give a more intuitive view on the business
data.

Relation A relation represents a database link between two tables. It can
either be a l:n-relation or an n:n-relation. Relations in MiningMart store the
information about foreign keys and primary keys as well as (optional) cross
tables so that the operators can use this information. Thus, relations can be
parameters like concepts and features. As such, they should belong to the con-
ceptual level, however, since they also store database-related information, they
might also be said to belong to both levels (conceptual and relational).

ColumnSet ColumnSets are MiningMart objects that directly represent a
database table or view. As such, they belong to the relational level. Each ColumnSet
is connected to exactly one concept (but a concept may have more than one
ColumnSet). Each ColumnSet contains one or more Columns.

Column A Column is a MiningMart object that directly represents a column
in a database table or view. Columns belong to the relational level. Each Column
belongs to exactly one ColumnSet, but a ColumnSet can contain any positive
number of Columns.

Compiler, compilation The MiningMart compiler performs the central task
in MiningMart: it executes operators. That is, it reads the input parameters of an
operator, applies the operator-specific processing to the data that corresponds
to (is connected to) the input, and creates the output data and connects it to
the concepts or features that are specified by the operator’s output parameters.
The compilation of any step depends on the compilation of previous steps if a
step uses input that is the output of a previous step.

The compiler can be executed in two modes: lazy and eager. This only
makes a difference if there are concepts in the case that have more than one
ColumnSet, which can happen as the result of a segmentation operator (see
sections 4.3.2, 4.3.2 and 4.3.2 in chapter 4). In 1lazy mode, the compiler executes
the operator-specific task only on the first of the ColumnSets that belong to the
input concept of that operator, which saves time for testing. For full compilation,
the eager mode is needed.

1.2. BASIC NOTIONS IN MININGMART 11

MiningMart workspace This is what you see when MiningMart is started:
the graphical user interface which contains the concept editor and the chain
editor. See chapter 3.

Concept editor In this window you can create, view, or delete concepts and
their relations on both the conceptual and relational level. This editor is de-
scribed in detail in chapter 3.4.

Chain editor In this window you can create, view, or delete steps; you can
arrange them into chains and define the input and output parameters of their
operators. The chain editor shows the currently defined sequence of steps, with
their dependencies represented by arrows. More details can be found in chapter
3.

Export Cases can be exported with the export function. This will store all
the Metadata that defines the case into a single file. This file can then be used
for importing the case into another database (by another user, for example). See
also chapter 5.

Import After exporting, a case can be imported into a new database. After im-
port, all the Metadata of the case is available; however, the connections between
the conceptual and relational level must still be made (see under connections).
See also chapter 5.

InfoLayer InfoLayer is the name of the software that is used to run the web
platform for the exchange of cases. This platform is mentioned in section 1.1.
The InfoLayer software allows to browse through the MiningMart objects that
define a case. At the same time, it allows to link descriptions to these objects
which explain the case to a general audience. These descriptions form the so-
called business layer. In the instance of the InfoLayer running on the MiningMart
web pages, the business layer objects and the MiningMart objects linked. This
instance also has a section called “Downloadable case” where ezported case files
can be put for the benefit of other MiningMart users.

More on the InfoLayer-based web platform for MiningMart can be found in
the chapter 5.

12

CHAPTER 1. THE PHILOSOPHY OF MININGMART

Chapter 2

Installing the MiningMart
system

2.1 General issues

This chapter contains all installation procedures for the different parts of the
MiningMart system.

MiningMart consists of several modules, which have to be installed sepa-
rately. One part is an Oracle database which this chapter assumes to be already
installed. Into this database, a metadata schema must be installed; see section
2.3. Another central part is the so-called compiler, which runs as a Java-written
server under Unix and whose installation is described in section 2.4. The fourth
part is the graphical interface to the user, the so-called HCI (human-computer
interface), which runs as a Java-written client and has so far been tested under
Windows, Linux and Unix; section 2.5 deals with this module. Finally, there is
a Java-written interface to the database, which runs as a module in a JBoss
server; see section 2.6.

The system can be downloaded from:
http://mmart.cs.uni-dortmund.de/downloads/

For downloading JBOSS please visit:
http://www.jboss.org/downloads.jsp

If you want a standard installation of the MiningMart system, you may find
it much more convenient to use the InstallWizard software. This tool will help
you to download and configure all components necessary to run the system,
except for the database. Moreover, it enables the user to start all modules with
a mouse click. The MM Wizard can be found on the system’s download page.
Section 2.2 describes how to use this tool.

If you prefer a manual installation, or if you want to configure a multi-user
or multi-host installation, please refer to sections 2.3 to 2.7.

13

14 CHAPTER 2. INSTALLING THE MININGMART SYSTEM

2.2 InstallWizard

The MM Wizard is a small JAVA programm, which helps to ease the download
and setup process of the MiningMart system. Up to now it is just suited to set
up simple configurations.

The tool assumes, that you already have a single Oracle database with two
users, one for the M4 meta-data, and one for the business data. Furthermore,
it is assumed that you have JDK 1.4 with the java command in your system’s
search path.

After downloading and unpacking the tool to an arbitrary directory, please
type run.sh on a Unix or Linux machine, and run.bat on Windows. In the first
window you should specify the target directory, the tool shall install the system
to. You can choose from the menue below, which components you want to down-
load from the system website, first. If it is your first installation of MiningMart,
then you should leave the preselected choices and download all components. If
you want to change your setting later on, then you can again use the tool, but
you should select not to download anything in this menue.

Clicking “Continue” takes you to the database settings window.

In the first row you should specify the location of your JDBC driver, which
is part of your Oracle distribution. It is recommended to use a file named
classes12.zip, typically found in a subdirectory like jdbc/lib/ of your Oracle home
directory.

The next two fields to be filled in are again part of your Oracle distribution.
If you can run the commands sqlplus and loadjava from a command line, then
you can just leave the default settings. Otherwise, please enter the path to these
applications.

The next four entries are about details of your database server. Please enter
the “SID” of your database in the first field. The second field specifies the kind
of JDBC driver to use. You should not change the default, here. The next entry
is for the host name or IP of your database server. The last field specifies the
database port, the default is 1521.

Finally, you need to enter user name and password for your M4 user and
business data user.

Clicking “Continue” takes you to the last configuration window. Please enter
host name or IP of your local machine. The default is 127.0.0.1, but on some
machines you will have to enter your external network IP here. The port of
your JBOSS server is by default set to 1299, but if this should conflict with
some other service running on your machine, then you can enter another port
here. Please note, that port 1099 is allocated by the compiler server, using an
RMI interface. The last line of this window contains the command line to run
rmiregistry. This command is part of your JDK. If it is in your search path, then
you do not have to change the default. You can test this by typing rmiregistry
from a shell. If the command is not found, then you should specify the full path
to this application. You will probably find it in the bin/ directory of your JDK.

If you did not find any error messages in the output window up to here, and
if the MM Wizard exits without any errors, then you can try to start the system,

2.3. METADATA SCHEMA 15

now. If this is your first installation, then you will have to run the M4 installer
script, first. You can find it in the subdirectory M4lnstaller of your MiningMart
home directory. Section 2.3 gives some details about installing M4. Please note,
that the script is already configured, so all you have to do is make sure, that
you have no valuable data in your schemas, and then run install.sh (Unix/Linux)
or install.bat (Windows). If you have no error messages (maybe after running
the script twice), then you can start all components of the MiningMart system.
The InstallWizard offers a launch facility, which allows to start all components
in the correct order. First of all you should start the rmiregistry. As soon as
it is running, the M4 compiler is ready to be started. Two successfully set
up database connections should be displayed in the output window. The next
component you should start is the JBOSS server. Please wait for a line like
15:34:18,156 INFO [Server] JBoss (MX MicroKernel) [3.0.0 Date:200205311035]
Started in Om:31s:479ms

Finally you can launch the HCI.

If you want to shut down the system, then you should stop the modules
in opposite order. The HCI can be closed by closing its main window, or by
selecting “Exit” from the “File” menu. For the JBOSS and for the compiler you
can use the kill facility of the InstallWizard’s output window. The rmiregistry
process can currently not be stopped automatically. You can leave it in the
background, kill it with the TaskManager on Windows, or by a shell command
like killall rmiregistry on Unix and Linux.

2.3 Metadata schema

MiningMart makes use of a metamodel to describe the data that the system
deals with. This metamodel is called M4 (MiningMart MetaModel). It is stored
in the database in the form of relational tables.

Please note that the MiningMart system generally handles two schemas.
The first one is called the business data schema. It holds the data you want to
analyse and preprocess with the MiningMart system. The second schema, the
so called M} schema holds meta-data information about your business data and
your preprocessing chains. You should not only reserve sufficient space on disk
for your source business data, but account some extra space for materializing
some of the views. For the M4 schema, on the other hand, 100 MByte should
be sufficient for normal usage. In principle it should be no problem to split the
schemas to two different Oracle databases or to use just one schema, referenced
for both purposes. Please note, that this has never been tested! The standard
installation foresees a separate schema for M4 and business data in the same
database.

After creating the two database schemas, the tables of M4, as well as other
database-related parts of the MiningMart system, can be created by running
an installation script. The scripts can be downloaded from the MiningMart
webpages.

1. Please download the file InstallingM4.zip.

16

CHAPTER 2. INSTALLING THE MININGMART SYSTEM

. Unpack it in a new directory, on Unix or Linux you may use the command

unzip <filename>.

. Edit the start script, this is install.sh on Unix and Linux and install.bat on

Windows. The database connection information must be entered for the
M4 schema. Please adjust the variables MAUSER (database user of M4
schema), M4PASS (password), and M4SID (database server). Then you
should change the according variables for the business schema, namely
BDUSER, BDPASS, and BDSID.

. If your system does not recognize the commands sqlplus and loadjava, then

please set the variable to the absolute path to these ORACLE tools. You
should find them in a subdirectory of your ORACLE software.

. If you have never installed the metamodel before, you can now type

./install.sh on a Unix or Linux machine, or ./install.bat on Windows to
have it installed. Otherwise, before running the installation, make sure
that no data you might need is still in your previous metamodel, because
such data will be lost during installation. If there are compilation errors
during installation, please try to run the script for a second time.

2.4 Compiler

Although the compiler was implemented in Java, it is recommended to install

it on a Unix system!, because some of the external algorithms used by the

compiler run only on Unix. The compiler itself was tested for Unix, Linux and
Windows2000. Only tested external operators are provided in the runtime pack-
ages for each platform. A list of operators using external algorithms can be found

in the appendix (section 2.8).

To run the compiler as a server, please download two files:

e First of all you need the file M4CompilerServer.zip, no matter which oper-

ating system you are using. When you unpack it, a directory compiler/ is
created with the subdirectories runtime/ and classes/.

The second file contains the platform specific runtime environment, namely
binaries of the external algorithms and some configuration files. It cur-
rently is one of the files M4CompilerRuntime_SunQS zip,
M4CompilerRuntime_Linux.zip or M4CompilerRuntime_Windows.zip. Please
unpack the file for your operating system into the runtime runtime/ direc-
tory previously created when unpacking M4CompilerServer.zip.

There are two things to do:

1 For this reason we are going to use the separator character ’/> between subdirectories, as

common on Unix systems.

2.4. COMPILER 17

1. Set up a file compiler/runtime/etc/db.config. You may do so by editing the
file db.config.template in the same directory, or by creating a file with a
similar content. This file contains the connection information for the two
database schemas that are used in MiningMart, that is, the business data
schema and the metadata schema (see section 2.3). In the file, the two
information sets are separated by a blank line; each set contains the name
of the database, the user name, the password, the JDBC driver and the
database location in one line respectively (so there are five lines for each
set). See the template file compiler/runtime/etc/db.config.template and the
example file db.config.example. The resulting file must be consistent with
the one used by the HCI (section 2.5).

2. On Unix/Linux, please edit the file compiler/runtime/etc/properties. On
Windows there is a similar file with the same functionality, namely
compiler\runtime\etc\ properties.bat. These property files contain all paths
and settings for the start and stop scripts/batch files of the compiler server.

The following variables must be adjusted to your own environment. In this
file, for variables defining directories, please do not end the definition by

a W/ (“\77) !

M4C_HOME : The location of the compiler up to the top level directory
compiler/ created when unpacking the file M4CompilerServer.zip.

JDBC_ZIP: The complete path and file name of the Oracle JDBC classes
zip file which should be used. This file is part of your Oracle instal-
lation.

VERBOSITY: A number between 0 and 20 which gives the default
verbosity for logging. This verbosity may be overridden by the HCI.
0 means most verbose, 20 is least verbose.

RMIREGISTRY:

e On Windows: The complete path to the rmiregistry command of
your JDK.

e On Unix/Linux: The command to start an rmiregistry. This vari-
able is not only used to run this service, but also to find a run-
ning instance by grep, looking at the process table. So please
note that specifying the complete path to the binary might not
work. The processes are listed by using the following definition.
Please note that if you should have to change any of these two
variable definitions, then you should have a closer look at the file
${M4C_HOME} /start.sh as well!

PROCESSES: Ouly for Unix/Linux users: The command line to list all
processes of the current user.

NOHUP: Only for Unix/Linux users: The location of the nohup com-
mand. It might be necessary to protect the server process from being
terminated together with its creating shell.

18 CHAPTER 2. INSTALLING THE MININGMART SYSTEM

Usually you should not have to change the default settings of the following
variables, because they are defined relatively to the variable M4C_HOME.

ML_HOME: The complete path to (and including) compiler/
runtime. This is needed to find the algorithms for the external oper-
ators.

DB_CONFIG: The complete path and file name of the file described
above under 1.

COMPILER_JAR: The complete path to the file M4Compiler.jar.

TEMP _DIR: A directory in which temporary files can be written for
handling the server status.

LOGFILE: The complete path and file name of a log file for standard
output messages of the compiler server. For each compilation another
logfile is created, appending the ID of the corresponding case to the
filename. On Unix/Linux the log files can be viewed using the script
compiler/showlog.sh. Without a parameter it shows the standard log
file, e.g. for case unrelated messages. The log messages for a specific
case are shown, if you specify the case id as a parameter.

JAVA _POLICY: The complete path and file name of a file that con-
tains the Java security policy for the server process. All possible
rights are granted to this process. An example file is included as
compiler/classes/java.policy.

PID _FILE: On Unix and Linux machines, only: the complete path and
file name of a file that will contain the process ID (PID) of the server
process. This is used for handling the server status.

Once all the information about configurations is entered, you can start the
compiler. Please note, that you should not run more than one compiler server
for a single M4 schema, because this leads to deadlocks. Usually this should not
be necessary, because you can compile different cases stored in the same M4
schema using a single compiler server. If you cannot ship around accessing data
in another than a single business data schema, however, then you will also have
to set up another separate installation of the M4 schema, of the JBOSS, the
HCI, and of the M4 compiler.

On Unix/Linux the compiler may be started in two ways. If you want to start
it in shell mode, please run rmiregistry and then type ./start.sh in the directory
compiler/classes/. To run the compiler as a background process you may use
the script ./start_daemon.sh. This script starts an rmiregistry on demand. Once
the compiler is running, it can answer requests from the HCI client (section
2.5). Compiler output will be found in the specified log files, but in shell mode
the case independent messages are printed to standard output. To smoothly
shut down the server in shell mode, type ./stop.sh in the same directory (on
the same computer). The compiler process in daemon mode is stopped by the
script . /stop_daemon.sh. Note, that starting a server in daemon mode will start

2.5. HCI 19

an rmiregistry process; if you wish to stop it after shutting down the server, you
need to do so by hand.

On Windows first of all you need to run the batch file rmiregistry.bat in the
directory compiler\. If you see the message RMIregistry is running. you can run the
batch file start.bat in the same directory. After a short delay you should see two
messages of successfully set up JDBC driver connections in the corresponding
window. The server is running and waiting for connections, unless you close the
window. Please do not close the rmiregistry window in the meantime.

The operators using a Support Vector Machine can use an implementation
of the SVM inside the database. To install this software (called mySVM/db), go
to the website http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVMDB/ and
follow the instructions.

Thanks to Bart Goethals (see http://www.cs.helsinki fi/u/goethals/) for mak-
ing available his Apriori implementation!

2.5 HCI

The human-computer interface (HCI) comes in the file hci.zip. The file should be
unpacked in a new directory. Two additional files GraphView.jar and hotdraw.jar,
which are graphics packages distributed under the GNU license; please download
it separately and place it into the subdirectory lib/ of your HCI directory (this
subdirectory will be created when unpacking the first file, hci.zip). been tested
on Windows, Linux and Unix. There are different start scripts for the systems—
file start_hci.bat for Windows, and start_hci.sh for Linux and Unix. Before the
HCI can be used, the start script files must be edited. Three lines have to be
adjusted to your own environment:

1. Set the variable mypath to the directory where you unpacked the HCI.
Example for Windows:
set mypath=C:\HCI
Example for Linux/Unix:
MYPATH=/home/myusername/hci

2. Set the variable compilerServer to the machine where the compiler server
is running (see section 2.4).
Example for Windows: set compilerServer=mycomp.cs.uni-do.de
Example for Linux/Unix: COMPILERSERVER=mycomp.cs.uni-do.de

3. Set the JBoss server name and port (see section 2.6.1) for the JNDI3
variable.
Example for Windows: set jndi3=java.naming.provider.url=jnp://
yourcomp.cs.uni-do.de:1099
Example for Linux/Unix: JNDI3="java.naming.provider.url=jnp://
yourcomp.cs.uni-do.de:1099"

Further, a file db.config must be set up as described in section 2.4 under 1.;
for this, the files db.config.example and db.config.template are provided in the

20 CHAPTER 2. INSTALLING THE MININGMART SYSTEM

HCT directory. The two files (for the HCI and for the compiler) must be kept
consistent.

Finally, parts of the HCI will need your Oracle JDBC drivers. Please copy the
file classes12.zip from your Oracle libraries (for example, oracle/jdbc/lib/ might
be the name of the directory on a Linux or Unix system) to the subdirectory lib
of your HCI directory.

2.6 Database interface

The interface to the database, which the HCI uses, runs on a JBoss application
server. The JBoss software must be installed first.

2.6.1 Installing JBoss

Download JBoss 3.0.0 from http://www.jboss.org/downloads.jsp. Both versions,
Jetty or Tomcat web engine, should do. Unzip the software to the desired loca-
tion; it will be placed in a directory named jboss-3.0.0.

Next, the JBoss software must be configured. The jboss server/ directory
contains different types of JBoss server installations: all, default and minimal.
The all configuration contains all JBoss features whereas the minimal version
only contains the minimally needed set of features.

It makes sense to make a separate server configuration for MiningMart. Sim-
ply copy the contents of the directory jboss-3.0.0/server/default/ to a new direc-
tory jboss-3.0.0/server/mm/.

The connection to the Oracle database that contains the metamodel (M4)
needs to be configured in two steps:

e Configure the file oracle-service.xml (see below) and place it in the directory
jboss-3.0.0/server/mm/deploy.

e Copy the Oracly JDBC library file classes12.zip, which is mentioned in
section 2.5, to the directory jboss-3.0.0/server/mm/lib. This file is part of
your Oracle libraries; for example, oracle/jdbc/lib/ might be the name of
its directory on a Linux or Unix system. Another copy of it is needed by
the HCI (section 2.5).

An example of the file oracle-service.xml| can be found in jboss-3.0.0/
docs/examples/jca. The only section in the file that has to be changed is the
following:

<depends optional-attribute-name="ManagedConnectionFactoryName">
<!--embedded mbean-->
<mbean code="org.jboss.resource.connectionmanager.RARDeployment"
name="jboss.jca:service=LocalTxDS,name=0racleDS">

<attribute name="JndiName">MiningMartDB</attribute>

2.6. DATABASE INTERFACE 21

<attribute name="ManagedConnectionFactoryProperties">
<properties>
<config-property name="ConnectionURL" type="java.lang.String">
jdbc:oracle:thin:@servername:1521:SID
</config-property>
<config-property name="DriverClass" type="java.lang.String">
oracle.jdbc.driver.0OracleDriver
</config-property>

<!--set these only if you want only default logins,
not through JAAS -->

<config-property name="UserName" type="java.lang.String">
user

</config-property>

<config-property name="Password" type="java.lang.String">
passwd

</config-property>

</properties>
</attribute>

The JndiName must be MiningMartDB and further the ConnectionURL
(servername:1521:SID above), UserName (this is the schema name) and Pass-
word should be specified. Note that the user name and password of the metadata
schema must be used, rather than the business data schema.

You may want to run the compiler server and JBoss on the same machine.
In this case, you must make sure that they use different ports. The compiler
server uses the RMI port 1099 which cannot be changed. The port number that
JBoss uses can be changed in the file .../conf/jboss-service.xml.

The server can be started and stopped using the scripts in the directory jboss-
3.0.0/bin. Using ./run.sh or run.bat will start the default server configuration.

To run the newly created mm server configuration use the command ./run.sh
-c¢ mm (Unix) or run.bat -c mm (Windows).

2.6.2 Deploying the M4 interface

The HCI client uses the M4 interface to get access to the M4 metadata schema.
Part of the M4 interface is stored on the client (it is part of the HCI client
software) and another part resides on the JBOSS server. Currently this is the
only part of the MiningMart system that uses the JBOSS server. The server
part for the M4 interface is contained in the file M4InterfaceServer.jar. This file
should be placed in the directory jboss-3.0.0/server/mm/deploy.

22 CHAPTER 2. INSTALLING THE MININGMART SYSTEM

2.7 Starting and stopping the system

This section sums up, how to start a successfully configured MiningMart system.
It is assumed, that you have

e downloaded all of the required modules from the system’s website.

o successfully configured all property files, as described before in this chap-
ter, either by using the InstallWizard, or manually.

e an ORACLE database with an M4 user and a business data user.

e a JAVA environment, at least JDK 1.4. It is recommended to have the
environment variable JAVA_HOME set to your JDK, and to have the JAVA
binaries java and rmiregistry (subdirectory bin) in your search path.

If you have not yet installed the M4 schema, please run the script install.sh on
Unix/Linux, or install.bat on Windows, both found in the subdirectory M4lInstaller.
Please make sure, that you have no valuable data inside your M4 schema, it
would be deleted by the script! You should also be aware, that some tables,
functions, procedures, and a sequence will be created in your business schema.
Please make sure, that none of your database objects are deleted by the script.
For details on installing the schema, please refer to section 2.3.

2.7.1 Dependencies between modules

Before you learn, how to start each of the modules, you should be aware of the
given dependencies. The module you are going to use directly, is the HCI. It
accesses the JBOSS server, to read from and write to the M4 schema. On the
other hand the HCI invokes the M4 compiler server, whenever the user decides to
compile a case, or parts of it. Calculating statistics is also done by the compiler.
A prerequisite for the M4 Compiler server is a running rmiregistry process.

In short terms this means, that you should start rmiregistry before starting
the compiler, and that the HCI cannot work without the M4 compiler server
and JBOSS server started before. To stop the system, please start with the
HCI, then stop JBOSS and the M4 Compiler, and finally stop your rmiregistry
process.

2.7.2 Starting and stopping rmiregistry

On Windows you should find a file named rmiregistry.bat in your compiler direc-
tory. Starting the batch file will open a window with a message, that “RMIreg-
istry is running”. To stop the process it is sufficient to close this window.

On Unix/Linux there is a similar file called rmiregistry.sh. You can start this
command from a shell, and you can stop it by pressing Ctrl + C. However, if you
want to start the compiler as a background process on a Unix/Linux machine,
using the compiler start script start_daemon.sh, then you will not have to start
rmiregistry.sh. Please refer to subsection 2.7.3.

2.7. STARTING AND STOPPING THE SYSTEM 23

2.7.3 Starting and stopping the M4 compiler

For starting the compiler on Windows, there is a batch file start.bat in the sys-
tem’s compiler subdirectory. It will open a window with messages from a default
database connection. If the message shows two successfully set up connections,
then the compiler is running. Closing the window will stop the compiler. How-
ever, it is recommended to use the stop.bat script in the compiler subdirectory,
instead.

On Unix/Linux there are two different ways of starting the compiler. If you
want to run it in the foreground, please run start.sh in the compiler subdirectory
after rmiregistry is running (see 2.7.2). The script stop.sh in the same directory
will stop the compiler.

To have a compiler server running in the background (e.g. as a daemon), you
will not have to start rmiregistry in advance. Please run the script start_daemon.sh
in the compiler subdirectory. The command ./showlog.sh will show you the out-
put of this process. To stop a compiler server process in the background, please
use the command stop_daemon.sh. If you also want to stop the rmiregistry process
afterwards, please try killall rmiregistry.

2.7.4 Starting and stopping the JBOSS server

For the JBOSS server there are start and stop scripts/batch files in the subdi-
rectory jboss-3.0.0/bin.

The server is started by the script run.sh (Unix/Linux) or run.bat (Windows).
The launching takes some time. You should wait until you see a message like
15:34:18,156 INFO [Server] JBoss (MX MicroKernel) [3.0.0 Date:200205311035]
Started in Om:31s:479ms
before you try to start the HCI. JBOSS can either be stopped by pressing Ctrl
+ C, or by the script shutdown.sh (Unix/Linux) or shutdown.bat (Windows).

2.7.5 Starting and stopping the HCI

If all components mentioned before are running, then you simply start the HCI
by invoking the script start.sh (Unix/Linux) or start.bat (Windows) from the
system’s HCI subdirectory. The HCI can be stopped either by closing its main
window, or by selecting “Exit” from the “File” menu.

24 CHAPTER 2. INSTALLING THE MININGMART SYSTEM

2.8 Appendix: List of operators that use exter-
nal algorithms

e Apriori

e FeatureSelectionWithSVM

o GeneticFeatureSelection

o StatisticalFeatureSelection

e SGFeatureSelection

o MissingValuesWithRegressionSVM
o MissingValueWithDecisionTree

o MissingValueWithDecisionRules

e PredictionWithDecisionTree

e PredictionWithDecisionRules

e DecisionTreeForRegression

e SupportVectorMachineForRegression

o Segmentation WithKMean

Chapter 3

The Human Computer
Interface

The Human Computer Interface (HCI) provides an easy way to use the Mining
Mart System. It supports you in doing the work described in chapter 1.1 and
integrates all components.

The HCI consists of two main components, the Concept Editor and the
Chain Editor. The Concept Editor allows to create and manipulate concepts
and connect them to the business data. These concepts are inputs for prepro-
cessing operators that can be specified using the Chain Editor. The Chain Editor
provides support in building preprocessing chains which consist of preprocessing
steps.

This chapter first describes the main application which builds the framework
for the Chain Editor and the Concept Editor, its main functionality and how
it connects the Chain Editor with the Compiler. Then it focuses on the two
components Chain Editor and Concept Editor.

3.1 Introduction

The main objective for the Mining Mart system (see Figure 3.1) is to provide
a user-friendly interface for enhanced preprocessing of data for a knowledge
discovery task. The system architecture (see Figure 3.2) consists of several com-
ponents of which the Concept Editor is one. The other major components are:
Chain Editor, Compiler, Mining Mart Meta Model (M4) Schema, M4 Interface,
and Business Data Schema.

The heart of the Mining Mart system is the M4. It stores meta information
about preprocessing steps and data. The M4 Interface provides a Java object
interface to access the M4. The Concept Editor and Chain Editor act closely
together and are both part of the Mining Mart system HCI. They both use the
M4 Interface to manipulate the M4. They provide a user-friendly way to work
with the meta data. The Concept Editor allows you to work with meta data

25

26 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

Bl MiningMart - DM_SALES_PREDICTION
Fle Edit Insert Compile Window Help

VOR_WSV_4
Wsv_5
ENDEWSY_3
KARNEVAL
NOV_45
OSTERWOCHE

FK_HOL

ol=lelels] # ¥ ¥
DM_SALES_PREDICTION - ...
=
2 SELECT_ITEM 01 DELETEROW/ S Ml S $ING
3 STR_SEG_SHOP i
4 STR_SEG_ITEM i sagc}w
05 WINDOWING T
¥ 0B MULTIRELFCONS i
7 LINEARSCALINGT 03 3TR_sEG g
3 LINEARSCALING2
5 09 LINEARSCALING3 04 5TR, sas\@
Sy 10 SYM_REG o 2
B 11 EVALUATE_SVM . :
21
0 uNEARsEm{«m 06 MULTIRELFCONS
=
==
o8 LINEARSNIGz
=1
==,
_ o uuws:\;wm
RRRRRRRR R RRRRRRRR R e a \%
3 Concepts " -
¢ C1s_attree jx
© @5 HoLIDArs il
@ ® O SHOP_GALES |SHOP_SALES | 11 EVALUATE. S\t
© ® A SHOP_SALES_01_NO_MY SHOR
© @ A SHOP_SALES_D3_EY_SHOPS WEEK
© @ A SHOP_SALES_D4_BY_ITEMS BALE
© ® A SHOP_SALES_05_WINDOWED TTEM SOMMERF_28_33

© @ A SHOP_SALES_0B_HOLIDAYS
@[] Projections
] Relationships
© @ I5_HOLIDAY

This screen shot of the Mining Mart HCI (human computer interface) depicts
three internal windows. The upper and right windows form the Chain Editor;
the lower left window shows the Concept Editor.

Figure 3.1: Screen shot of the Mining Mart HCI.

about business data. You need this information when working with the Chain
Editor for defining preprocessing steps. The Compiler manages the execution of
preprocessing steps. It triggers operators and writes the results back in the M4.

There are various other sources available that provide more information
about the Mining Mart project and the Mining Mart system. A good place to
start is the Mining Mart website ! which offers a good overview of the available
documentation. Here also many documents can be downloaded directly. The
Mining Mart approach is described in [MS03], [MS02], [KVZ01] and [KVZ00].
Further information about the Mining Mart system can be found in [LR02]
(M4Interface), [VKZDO01] (the Mining Mart Meta Model), the MiningMart final
report (deliverable 20.4) and the technical reports which can be found on the
website.

Lhttp://mmart.cs.uni-dortmund.de/

3.2. ARCHITECTURE 27

Presertation Layer Buginess Layer Database Layer
& - Oracle
.] e eSS s
eew e
4 Meta data

e MdMetadata .

Dalawarehousev\4 : :
administrator I 4— | hld-Relational Model i
H : Business
A / SoncapE \ || MdConceptualModel | | Data
: iy

Business

® ; ;
A 4 e || B ! M4-C ase Model '
AN Ll | :
ol A - £ L cmmmymepepepemepep—: i i
Case &
Designer 5 b Statistics SaL
Case L= Function
Editor /1 FLSql
Java
ima ¥ lna.,mwg
UNIX fanction sall
MD Compiler P i Operators
Wrapper Learning
Java-Code Senm el Algarithm

Java, £,

Schematic view of the Mining Mart components. The Concept Editor and Case
Editor are part of the HCI. The M} Interface provides a Java object interface
to the M4 and is divided over the client (Java Swing) and the application server
(JBoss). The Compiler (Java RMI server) executes operators and creates result-
ing tables and views. The database (Oracle) contains the M4 and the business
data.

Figure 3.2: Mining Mart components.

3.2 Architecture

The Concept Editor and the Case Editor are part of the presentation layer (see
Figure 3.2). The business logic is part of the business layer and handles the com-
munication of the presentation layer with the database layer and the Compiler.
The M4 interface forms a buffer between the business logic and the database.
It provides methods for creating, updating, deleting, and finding information in
an M4 instance.

Figure 3.3 presents the architectural view, showing the three tier model
superimposed on the major Mining Mart components. It shows how the dif-
ferent components are distributed over the client, the application server and
the database server. The M4 Interface consists of two parts: the Client Object
Library (COL) and several session beans. The COL abstracts the data centric
view used in the data layer for the application client and hides the communi-
cation with the application server. Further “down” into the data layer Session
Beans are used to provide access to the data stored in the database.

3.3 Main Application

To give a first impression the next subchapter briefly describes the first steps for
starting the HCI and beginning to work with the application. Then the main
functionality of the framework, which contains the both editors, is described

28 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

Presentation Layer Business Layer Data Layer
i Application Client Application Server Database Server
3 Java Client| | M4 Interface | | RDEMS
R : il i
B i r A
Datawarehouse | - a =
administrator f‘\ Concept | _ | & o
? Editor ‘\1\1 = % o
) : ! ‘*Busiu‘e:ss LlE g s e
; ‘/w Logic =1 Z 2
P e p £l = RS
PRGN 5 B = o
2 | Edite | & g
Case Designer A

The figure shows a conceptual view of the Mining Mart architecture. The case
designer and datewarehouse administrator use the Mining Mart HCI. The HCI
consists of the Chain Editor and the Concept Editor, which are both part of the
presentation layer. The Concept Editor also contains some business logic and
access the database through the Client Object Interface. The COL provides an
object interface and shields the data centric view from the client.

Figure 3.3: Mining Mart architecture.

3.3. MAIN APPLICATION 29

ﬁMiningMart

File Edit Insert Compile Window Help

lojnjgle (sjw|vie| [xiuje] [bue

Import Case Help
iew Case

Edit Case

Create Case
ﬁMiningMart
Edit Insert Compile Window Help

ﬁMiningMart
ile | Edit Insert Compile Window Help

'

Open M B Cancept.

B (;.Iuse Casd . Relation... ta use Case Enasem';_ﬂew,.
mpor nport

. Export.., . Export...

B Ext Bt

The figure shows the first active toolbuttons and how to open or create a case
with the file menu.

Figure 3.4: Getting started

in more detail. This chapter only focuses on the application frame which con-
tains the two editors, the functionality of the Concept Editor is described in
chapter 3.4 and the Chain Editor’s functionality is shown in chapter 3.5.

3.3.1 Getting started

To start the HCI, you have to run the file start_hci.bat for any windows- platform
or start_hci.sh for Unix, Linux or Solaris. For the right settings in these files see
chapter 2.5. After a short moment the main frame of the application can be
seen. Five Buttons are enabled: you can create a new case, open a case from
the database to edit or to view only, import a case from the file system or call
the help system. This functionality is also provided via the menus File — New,
File — Open and File — Import. The menus and tool buttons are illustrated
in figure 3.4.

Opening a case is only possible if you have already installed a case in the
database or if anyone has worked with the system previously and created a case.
To import a case you need to have a file which is exported with a MiningMart

30 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

EMiningMart = churn_case_final i ;lgﬂ

File Edit Insert Compile Window Help

olenfele] (8 7[vo #[o]e |

churn_case_final g Step 1 - Treat missing values in CDR.

L ,d_ churn_case_final
@ = Step 5- Churn Modeling : Sl
© @ Step 2- Transpose COR from transactional to Seqm ty tantt Segm by customer gel incomplete CORs Sel customers hawing miss vals
© = Step 1 - Treat missing values in COR
Selincormplete CORs ,n‘c
Begm by custamer
Segm by tariff
uild riss vals estirnation
nSegrm by tarift
nSeam by customer Unsegm by tanft /
Sel complete CORs lJ‘"‘__’—\—f__ilz:
3% 89 MriConstr 87 Unioh By Key S0l
:Z 91 RowSelByRandom 4 del complete CORs
86 RowSelByRandom
L 87 UnionByKey T
snT. Sel customers having miss vals Meme,f“ﬁbmes
1} SelectMergedAtiributes J
TF MergeAttributes e ¥
@ = Step 4 - Create derived atfributes and customey £l % E
© @ Step 3- Transpase REVENUES from transactl 91 Fowselly Random: B9 hirf Canstr Selentherged ttributes

Bl

f N
Build miss vals sstimation

T
——TnBegm by sustamer 86 RowSelBy Random
rd

e

&=zl @ Bl

q

Both windows of the Chain Editor. The left window is the tree view, the right
one is the graph view.

Figure 3.5: Chain Editor

system. For more details see the subchapter 3.3.2.

After you have opened or created a case, three windows are shown. The one
with the title “Concept Editor” belongs to the Concept Editor (see figure 3.14),
the two others to the Chain Editor. For a new case you have to describe the
conceptual model and build a connection to the business database with the
Concept Editor first. Chapter 3.4 explains how to work with the Concept Editor.

One of the two windows which belong to the Chain Editor has as its title
the name of the case and shows all steps in a tree structure (Tree View); the
other has the name of the chain if a node with a chain name is selected or if a
node which is part of the chain is selected. It shows all steps belonging to the
selected chain (Graph View). Figure 3.5 shows the windows of the Chain Editor.
If a new case is created, the first chain has the same name as the case. How
to change a chain name or the name of a node (step) is described in the next
chapter.

3.3.2 Main functionality

The HCI enables you to create and manipulate cases, to export them into a
file or to import such files. It provides menus for using the integrated compo-
nents, which are the Chain Editor, Concept Editor and Compiler. Some menus
and menu entries belong to one component only, others call the corresponding

3.3. MAIN APPLICATION 31

function for the active editor.
The following lists the possible global actions and menu entries. After that
every use case is discussed in detail. The results are described, too.

e Create a Case

e Open a Case

e Re-use of Cases

e Manipulating objects
e Inserting an object

e Compile

e Window list

e Help

Create a Case

If you are working as a Case Designer, the main object you have to deal with is
a case. To start working from scratch, you have to create a case first. Figure 3.4
shows how the menu looks like. After clicking the button or selecting the corre-
sponding menu item a window is shown to enter a name for the new case and
to select, if the case is in test mode or if it is final. The window is shown in
figure 3.6.

After pressing the ok- button the new case is created in the database and is
opened in the editors. If the name already exists, a message is shown and you
have to enter a different name. Now you are able to build the conceptual data
model (see chapter 3.4) and to create preprocessing chains (see chapter 3.5).

Open a Case

As mentioned before there are two ways to open a Case. A Case can be opened
for editing or for viewing only. After clicking the button for one of this actions
or after selecting the menu item, you get a window for choosing an existing case
(see figure 3.7). The same kind of window is always used if you need to select an
existing M40Object in the Chain Editor, for example a Concept as an input for
a step or the existing operators to insert a step with this operator into a Chain.
If the case is already opened by another user, it is locked for this action and a
message is shown.

Editing means that you as the case designer can change the case. You can
work with the Concept Editor to manipulate the conceptual data and you can
work with the Chain Editor to change chains, steps, any parameter of a step
etc. In the database a write lock is inserted and nobody else is able to open this
case.

32

CHAPTER 3. THE HUMAN COMPUTER INTERFACE

x

Case Mame” |

Mode: [v Test
[_] Final

0K Cancel
Eror X

@ Case already exists!

oK

The figure shows the window to create a new Case (first window). The case
designer has to insert a new name and select, if the case is in test mode or
final. The figure also shows the message if the name already exists.

Figure 3.6: Create new Case

|

hurn_case_final
rugstore
ales_new
ales_prediction

select cancel

The figure shows a window called data chooser. This kind of window is always
used if the user has to select an existing M/ Object. This example shows it for

selecting a case.

Figure 3.7: Select a Case

3.3. MAIN APPLICATION 33

Viewing means that you can only view the case. Every action for changing
something is disabled. Unfortunately this functionality is not supported by the
Concept Editor in this version; in other words, the conceptual level can be
manipulated even if the case is opened for viewing only. Opening a Case for
viewing will insert a read lock in the data base for this Case. Everybody should
be able to view the case, too, but nobody is able to edit the case. But it is not
possible for one user to open one and the same case twice. If you trie to open a
case a second time, you always get a case locked exception.

Re-use of Cases

An important functional possibility is to reuse a Case. You are able to use a
Case from any other user and to make a Case avaible to other users. The HCI
supports this funtionality with two actions, import a Case and export a Case.
There exist menu items in the file menu and tool buttons for both.

After choosing one of the actions you are asked if you want to import (re-
spectively export) the columns and column sets, too. This only makes sense if
the user who has exported (respectively who is going to import) the Case uses
exactly the same tables for his business data. This may only hold if two case
designers are working in the same company with the same business data and
want to exchange cases. After answering this question the standard java file-
chooser is shown to select or to enter a file. This is shown in figure 3.8. After
selecting a file/ entering a file name the import/ the export starts. During the
import all m4- objects are stored as metadata in the database; afterwards you
are able to open the imported Case as described in chapter 3.3.2.

Another sort of reusability is the import of concepts from other cases in the
database into the currently opened case. Figure 3.9 shows how to do this. After
selecting this menu item you have to select a Case from which you want to
import the concept, and then you have to select a concept. Finally you have to
connect the concept with your business data as descriped in chapter 3.4.1.

Manipulating objects

The menu items for manipulating an object are collected in the menu “Edit”.
Which items are selectable depends on the active editor and sometimes on the
objects which are selected in the active editor. In the first group the menu
items “Delete” and “Properties” are active for both editors, the items “Open”
and “Connections” only for the Chain Editor. The second block of menu items
belongs to the Chain Editor and the third block to the Concept Editor. The
functions are described in the chapters 3.5 for the Chain Editor and 3.4 for
the Concept Editor. Figure 3.10 shows an example. In this picture the Concept
Editor is active and a Concept is selected.

Inserting an object

The menu “Insert” is devided in two parts. The first two items belong to the
Concept Editor and are only enabled if the Concept Editor is active and a

34 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

|
Speichernin: ‘Ij cases-old - ‘ @ @ @ @@

D callcenter.m4 D DrugStoreCase.md
D callcenter_m4 D exportet1.m4
[} chainPrediction.m4 [} imported.m4
D ChurnCaseFinalVersionWithoutCols.m4 D sales_prediction.md
[y churnCasewithCols.m4 [} testd.ma
[} ChurnCasewithoutCols.M4
&
Dateiname: | |
Dateltypen: |Alle Dateien b |

Speichern H Abbrechen |

The standard file chooser of java. The user has to select a file for import or save
a file for export via this window.

Figure 3.8: Java file chooser

corresponding object is selected. If a concept (a relation) is selected, you can
insert a Sub Concept (Sub Relation) by selecting the item. Then you get the
property window for concepts (relations), described in chapter 3.4.

The second part contains the menu items “Chain” and “MiningMart Oper-
ator”. Choosing one of these items inserts a sub chain or an operator step in
the selected chain. This functionality is described in more detail in chapter 3.5.

Compile

One important component of the Mining Mart system is the Compiler. The task
of the Compiler is described in chapter 1.2. The menu “Compile” provides vari-
ous calls to the Compiler, parameter settings and some additional functionality.
The menu is shown in 3.11. The following explains the menu items.

e Validate step, Validate all steps: To be sure that the Compiler can
compile a step without errors, you can test if a step or all steps are valid.
The method for validating a step first checks if all parameters are specified
in the property editor for steps and second if the parameters violate their
constraints. If some parameters are missing, the step cannot be compiled
without an error and no compilation will be started. If a constraint is
violated, the compilation of this step may cause an error. But it is also
possible that the compilation runs without an error. You are asked if you

3.3. MAIN APPLICATION 35

ﬁMiningMart - sales_ prediction
le| Edit Insert Compile Window Help

New

meInnee

=
9
€

Open k
9 Close Case

=Bl Exit FAISTS

il F rancont Editar

Selection of the menu item for importing a concept from another Case

Figure 3.9: Import concept

want to start the compilation despite the violated constraint.

The test for validity uses operator-specific information. To learn more
about the requirements of an operator, you can open the step which uses
the operator, and click on the “Help” button (see also section 3.3.2). Then
you are shown a description of what the operator does, and what param-
eters and conceptual input it expects. You can also refer to chapter 4 of
this document. Most of the constraints that apply for an operator follow
easily from these explanations. Please check that all parameters are in the
right range and the input is correct.

Compile all, Compile from step, Compile step: These menu items
call the Compiler. “Compile all” starts the compileation of all steps. The
Compiler sorts all steps acording to the dependencies between the steps
(see chapter 3.5.9). Then it compiles one step after the other. “Compile
from step” does the same but only for the selected step and all sucessors
of this step. “Compile step” only compiles the selected step. The latter
two items are only enabled if a step is selected. If these two methods are
called, the Compiler assumes that all predecessors of the selected step are
compiled. The HCI checks if the predecessors are compiled and if not, it
will give an error message. In this case a compilation is not started.

These three method calls can be called via the three tool buttons (the

36 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

AlEElngahe i
Eingabe] ConceptEd o
?5 Concepts ﬁ Sales Data -
b [1s_attree SHOP i Holidays
&0 Holidays WEEK WEER
® O Sales Data SALE e
@ @ A Fales Interesting Ite. ITEM e R
@ @ A Sales per fterm Fl HOL SYLVESTER
@ @ A Sales perShop = Sl
@ @ A Sales Without My e iina ﬁﬂlgfgmggi_g £

@ @ < Windowed Sales D]
@ @ A Windowed_with_Hg¢
© [Projections
1 Relationships
@ @ week has haliday

VOR_WSY_4
WSY_5
EMNDEWSY_3
KARMEWAL
MOY_45
DSTERWOCHE
DSTERN
MUTTERTAG

HihdhiEL EAHET

Only the menu items which belongs to the active editor (in this picture the
Concept Editor) are selectable.

Figure 3.10: Menu “Edit”

3.3. MAIN APPLICATION 37

Teg

5L

-
Delete rows with missing walues Select interzsti

Add holiday) information

-

Seale values for 5

The menu provides the method calls for the Compiler, parameter settings and
some additional functionality

Figure 3.11: Menu “Compile”

38 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

-ipix
 Compiecr Conrol_

DB Query (Read) select all_sq.nextval from dual
DB write (to batch): INSERT INTO COLUMMN_T (COL_ID, COL_MAME, COL_CSID, COL_COLDTID, CoL_SaL) WALLS
DB Query (Read): select all_sg.hextval from dual
DB wiite (ta batch): INSERT INTO ha_column_t (BAC_ID, BAC_COLID, BAC_BAID) WALUES (100004862, 100004 55
DB write (to batch): INSERT INTO M4Trash_T (M4ld, M4Table, Stepld) VALUES (100004861, 'COLUMM_T', 1000039
M4-DB: Batch executed, updates committed!

DB Query (Read) select all_sq.nextval from dual
DB write (to batch): INSERT INTO COLUMMN_T (COL_ID, COL_MAME, COL_CSID, COL_COLDTID, CoL_SaL) WALLS
DB Query (Read): select all_sg.hextval from dual
DB wiite (ta batch): INSERT INTO ha_column_t (BAC_ID, BAC_COLID, BAC_BAID) WALUES (100004864, 10000455
DB write (to batch): INSERT INTO M4Trash_T (M4ld, M4Table, Stepld) VALUES (100004863, 'COLUMMN_T', 1000039
M4-DB: Batch executed, updates committed!

DB Query (Read) select all_sq.nextval from dual

DB write (to batch): INSERT INTO COLUMMN_T (COL_ID, COL_MAME, COL_CSID, COL_COLDTID, CoL_SaL) WALLS
DB Query (Read): select all_sg.hextval from dual
DB wiite (ta batch): INSERT INTO ha_column_t (BAC_ID, BAC_COLID, BAC_BAID) WALUES (100004866, 100004 55
DB write (to batch): INSERT INTO M4Trash_T (M4ld, M4Table, Stepld) VALUES (100004865, 'COLUMM_T', 1000039
M4-DB: Batch executed, updates committed!

h4-DB: Batch executed, updates committed!

DB write (to batch): INSERT INTO MaTrash_T (M4ld, M4Tahle, Stepld) VALUES (0, ', 100003996)

M4-DB: Batch executed, updates committed!

h4-DB: Batch executed, updates committed!

Compilation of step 100003996 done.

-

k- 24032003 121508 ---
Execution for Step 100003996 without errars
Mode was setta lazy

|
| Clear | Stop | Restart | fCI_u_sg_

A seperate window to show the compiler messages. It provides buttons to clear
the window, to stop the output of messages, to restart the output of messages
and to close the window.

[4]

4 | D

3|

Figure 3.12: Compiler log Window

buttons with the toothed wheels), too.

e Show compiler log: With this check box you can decide if you want to
see the compiler messages. If selected, a compiler window is opened and
the compiler log messages are displayed. Selecting this check box enables
the spinner verbosity. Here you can specify how specific the displayed
messages should be. The window is shown in figure 3.12.

¢ Compile in lazy mode: You can decide if the Compiler should compile
the steps in lazy mode or in eager mode. For an explanation of “lazy mode”
see chaper 1.2.

¢ Kill Compile: If a compilation is running, this menu item is enabled.
It allows you to stop a compilation thread on the compiler server. The
compiler server stops the compilation at the current point, meaning that
the current step compilation is not finished but the steps that were already

3.3. MAIN APPLICATION 39

T
AREE

|

2, Mininghtart
D Introduction to kininht

@ [Operators

D Apriari

D AssignAveragetal

D AssignDefaultvalug

D AssignMedianialu :

D Assigndodalvalue

D AssignPredictedys

D AssignStochasticl i

[computesvMETor | |ParameterMame | OiType | Type |Rernarks

[y DeleteRecordsivitt ||

D ExponentialMoving 3

[FeatureSelectionk TheTargetattribute | BA I | may have MULL entries

[GenericFeaturecon ||4

D GeneticFeatureSel

| DeleteRecordsWithMissingValues

Putz only those rows into the output Concept that have an entry which iz
MOT MULL it the Colunn for the specified The DargetAttribute.

ThelnputConcept Cor I | inherited

TheOutputConcept | COMN | OUT |inherited

This window with a description of the operator is shown if the step editor is
active and the user presses the F1- button.

Figure 3.13: Help system

compiled remain so.

Window list

The window list shows a list of all windows and indicates which is the active
one. A button for refreshing the active window is provided, too. The list can be
used to switch from one window to another.

Help

The Mining Mart system also provides some help funtionality. The help can be
started with the help- button or with the help menu. For some windows of the
chain editor a context sensitive help is provided. You can use this help by press-
ing the F1- button. The information which is shown in the help window depends
on the active window. For example, if a step editor is active, a description of
the operator is shown in the help window. Figure 3.13 shows an example.

3.3.3 Closing the application

The application has to be closed with the menu item “Exit” in the file menu
or using the X- button of the frame. Only this way will ensure that the opened

40 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

case is unlocked and openable again. If the application is closed externally (for
example on a windows plattform by closing the cmd window), the case remains
locked. The only way to unlock it again is to delete the lock entry in the database.

3.4 The Concept Editor

The Concept Editor is part of the HCI. It allows to create and manipulate
concepts and connect them to the business data. These concepts are inputs for
preprocessing operators that can be specified using the Chain Editor.

3.4.1 Using the Concept Editor

In this chapter an overview is given about the functionality of the Concept
Editor and it is explained how to use it. The focus will be on the use cases for
the concept editor, starting at a high level and then specifying these use cases
further.

Overview of Functionality

The primary functions of the Concept Editor are to build a Conceptual Data
Model (Concepts, FeatureAttributes and Relationships) and map this to the
Relational Data Model. The editor provides an interface for doing this. It is also
responsible for validation of Conceptual Data Model elements. The editor does
not provide an interface for M4 objects that are not involved in the realization
of the primary goals of the editor (e.g.: Case, Step, Operator).

The following lists the use cases:
e Build Conceptual Data Model

e Map Conceptual Data Model to Relational Data Model

Validate the Conceptual Data Model

Viewing Concept Data
e Create and View Statistics

e Reuse of Concepts

Building a Conceptual Data Model

An important part in the work of the case designer is to build a conceptual
data model. The concepts can have relationships to each other, may be ordered
in a hierarchy and will be, together with the operators, the building stones for
preprocessing chains in a case.

Concepts and Relationships can be created by choosing “New Concept” or
“New Relationship” from the menu and filling in the properties for the Concept

3.4. THE CONCEPT EDITOR 41

Master detail view ‘

\

‘ Concept validity ‘

ﬁ Concept Editor

BB

Concepts
@ Is_attree is manager of
© @ 3 Department ;
| =i O Employee :
‘ Concept type ‘] o ®x employeeDepiioin} | Emplayee
@ @ A EmployeeStratified | | EmpNarne Department

warks at

@ @ A MewConcept i Emphr / Deplio
@ [Projections : Joh Mame

I3 Relationships galary e is ranager for Location
& @ iz manager far : Hior;ndrgtlessmn

@ iz manager of

/ @ warks at Department
i Manager
S

Relationship
validity

Overview of a Conceptual model in the Concept Editor.

Figure 3.14: Screenshot of the Concept Editor.

or Relationship. Editing and deleting existing concepts is done in a straightfor-
ward way by using the respective menu items in the Mining Mart HCI.
For an example of a Conceptual model see figure 3.14.

Mapping of Conceptual Data Model to the Relational Data Model

The Conceptual Data Model defined by the case designer has to be mapped to
the Relational Data Model (the database) in order to be able to execute a case.
This is only relevant for Concepts that are indeed based on existing tables in the
database (Concept type DB). For Concepts that are created in one of the Steps
of a Case (Concept type MINING) the corresponding ColumnSets are created
by the Compiler. For Concepts of type BASE no mapping is allowed. See also
chapter 1.2.

For an example of mapping a concept see figure 3.15. Double-clicking on a
concept will present the concept dialogue. Choose the “Connect” option and
click on “Create Connection”. This will present you with a list of possible
database objects (tables or views) to connect the current concept to. After
choosing an object, the relational-level metadata for it is automatically created
and you need to link it to the conceptual level; this means to link every column
of the database object to the corresponding BaseAttribute of the concept.

If you have Relationships in your conceptual model, you need to link them
to the relational level, too. Again, double-click on the Relationship and go to
“connect”. After choosing your type of Relationship (1:n or n:m), you must

42 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

LS A 11 LAULLL
rassinese e
AFATF 4N ARSTAR F (TR Fy

el RDSS TABLE ERT' DENT{TABLE| R
Ll ;i B! AHLE:

oL st LM _IRAL_ I [1AuLL

P——

CurTeHy conneoted Columarset (< sz, CO ncept dIaIOQ nﬁ:'é;;;"‘mmm : Choose table ..

| Glaaa ConnerTion.. | Bt cannecilan | q

. 4

Create connection...

&l ~\p Hasearnibaies fn i nkmns 5

Cllek nn A Coliirmn cxdl Aned Sniect & Colmi ram the s

A Cuurmn Pyl
(eI | (]
FERTu O
0 L7 bl]
Ifalsase Caleita Lolu WFESEArd Lo it 18 il b eraaie 3 aprsse b s dalssase EMCHN
b2l N |
Irman |
) : = : jm}
Faut v b iz ol CobaninBils | [ShP — 1

ST S
A

e
BGR

Map Attributes to Columns...

Ready, ColumnSet created

Schematic view of connecting a Concept with the Business data using the Con-
cept Editor.

Figure 3.15: Connecting a concept.

identify the primary and foreign keys of the columnsets involved and the cross
table in the database (for n:m). Each Relationship holds between two concepts
and these concepts are called “FromConcept” and “ToConcept” respectively.
For the cross table, there is no concept.

Validity of Objects

The case designer needs to know if the current conceptual data model is valid or
not. The validity of a conceptual data model can be summarized in the following
way:

The Conceptual Data Model is valid if:

1. All Concepts are valid.

3.4. THE CONCEPT EDITOR 43

2. All FeatureAttributes are valid.

3. All Relationships are valid.

A Concept is valid if:

1. Tt is generated by an operator or based on a ColumnSet,
2. at least one included FeatureAttribute exists, and

A FeatureAttribute is valid if:

1. Tt is connected to a Concept.

2. It is generated by an operator or based on a Column.

3. (for MultiColumnFeature) at least two BaseAttributes exist, which belong
to the same Concept as this MultiColumnFeature.

A Relationship is valid if:
1. both related Concepts exist.

2. it is based on Keys or a ColumnSet.

The HCI implements validation checking when creating, editing or deleting
Concepts, FeatureAttributes or Relationships. The GUI shows the validity using
a red icon (invalid) or green icon (valid) (see figure 3.14). Note that concepts
of type MINING remain invalid until the compiler has created the relational
metadata for them.

Viewing Data

You might want to see the data that is associated with a concept. This can be of
importance in making decisions for preprocessing. Therefore the concept editor
provides an option for viewing the data that is associated with a concept. The
Mining Mart HCI provides a method for showing the data for a concept. Figure
3.16 shows an example of the dialog that is presented after choosing this option.

Creating and Viewing Statistics

Concept data statistics concerning cardinality, missing values, minimum, max-
imum, average and distribution blocks are helpful in making preprocessing de-
cisions. These statistics can be generated by choosing the “update statistics”
menu item in the HCI. They can be viewed by choosing the “view statistics”
menu item. Figure 3.17 shows an example the statistics dialog.

44 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

Bl vicw data for busdabt.EMP {14 rows)] i ﬂ
_EMPHO ERAME. JOB | MGR | HIREDATE BAL | cOMM | DEPTHO
7369 SMITH CLERK |02 1980-12-1... |g00 20

7499 ALLEMN SALESMAMN |TES9E 1981-02-2... [1600 300 i

7821 WARD SALESMAMN |TES9E 1981-02-2... |1250 500 i

7566 JONES MANAGER |TE3Y 1981-04-0... |2975 20

TES4 MARTIMN SALESMAMN |TES9E 1981-09-2... |1250 1400 i

TE98 BLAKE MANAGER [TE39 1981-05-0... |2880]

7782 CLARK MANAGER [TE3Y 1981-06-0... |2450 10

7Tee SCOTT AMALYET |TEEG 2087-04-1... |3000 20

7839 KING FRESIDENT | 1981-11-1... |5000 10

7844 TURMER SALESMAMN |TES9E 1981-09-0... [1500 1] i

TE7E ADAMS CLERK |7reg 2087-05-2... (1100 20

7900 JAMES CLERK |TE98 1981-12-0... {950 i

7902 FORD AMALYET |TEER 1981-12-0... [3000 20

7934 MILLER CLERK |Tre2 1982-01-2.. [1300 10

OK

Viewing the data that is associated with a concept in the Concept Editor.

Figure 3.16: Screenshot of viewing data for a concept.

11
all] ord I nom [tirrie i
14 |5 12 [1 i
Column Statistics 1 ; [
column na.] unigue | missing i | roax Ay stdiey yariance riedian ‘miodal |
[EMPNO 14 0
ERAME 14 0 ADAMS WWARD KIMG ADAMS
OB 4 0 AMALYST |SALESHAN B MANAGER |CLERK
MR fi 1 7ak6 7402 7739307 103 71466010756.73. [7782.000007698.00000
HIREDATE (13 0 17-12-80 [23-05-87 1981 1981
SAL 12 0 200 a000 |2073.214 . 11826803 1398213 [1600.00000{1250.00000)]
“Column Statistics 2 |
columnname | distvalue] disteouint [distmin . distrax []
EMPMO | | al
EMAME ADAMS 1 |
EMAME ALLEM 1 |
EMAME BLAKE 1 |
EMAME CLARK 1 |
EMAME KIM G 1 | -

Viewing the statistics from data that is associated with a concept in the Concept
Editor.

Figure 3.17: Screenshot of viewing statistics for data from a concept.

3.5. THE CHAIN EDITOR 45

Re-using Concepts

You can also reuse an existing Conceptual Data Model from another case. You
can select a Conceptual Data Model from another case, import it into the Con-
cept Editor and adapt it to your wishes. For adapting the imported Concepts,
FeatureAttributes and Relationships you can use the functionality which has
been mentioned in “build Conceptual Data Model” (see Section 3.4.1).

Cases can be exported by the HCI to a file using the export option in the
file menu. Via the import menu you can import a case from a file (from another
database) or import concepts from another case (in the same database). See
section 3.3.2.

3.5 The Chain Editor

In this chapter the editor for pre-processing chains (Chain Editor) is described.
Other parts of the HCT are the editor for concepts and relationships (Concept
Editor - see chapter 3.4), which is integrated in a common environment with
the Chain Editor, the M4 Interface, which is used by both editors and the M4
Compiler which can be called by the HCI. For a short explanation of these
components see chapter 1.2. We discuss the usage of the Chain Editor, starting
with a list of the functionality and then giving a more detailed view of how this
functionality is provided.

3.5.1 Overview of Functionality

The primary goal for the Chain Editor is to support the creation of valid pre-
processing chains. The preprocessing chain is made visible in two windows, the
tree view, where all elements of the chain are shown in a tree structure and in a
graph view, where only one (sub)chain is visualised. Some methods can be used
with both windows and some are only usable with one of the window. Some
methods can be called via tool buttons, some via menu items and some with
both.

The following lists all actions you can perform with the Chain Editor. Here
only the use cases for building and changing chains are listed, the other func-
tionality is described in other chapters (for example how to start the Compiler).

e Creating or inserting a (sub)chain into the Mining Mart workspacce or
into a chain.

e Inserting a step (with an Mining Mart operator) into a chain.
e Changing properties for a step or a chain

¢ Editing the step parameter

e Changing position of a step or folder (subchain)

e Connecting steps

46 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

MiningMart - sales_prediction

File Edit @aﬁﬁ, Compile Window Help
Bl = { ancept. J B
sales_pi e

o - oo |

¢ ¢ Mining |zor chain F il

41 Selectinteresting items
: Segmentation by shops ——

Inserting a chain can be done by using the menu item or by clicking the toolbut-
ton.

Figure 3.18: Inserting a chain

Deleting steps, chains or connections

Merging steps to a subchain (folder)

e Unmerge a subchain

Cut, copy and paste parts of a chain

3.5.2 Inserting a chain

A chain can be inserted into a workspace or into another chain. If the tree view
is the active view, then a chain can be inserted by selecting the workspace or
the chain where the subchain should be inserted and then pressing the button
“Insert chain” in the tool bar at the bottom of the HCI or using the menu “In-
sert”. Both is shown in the figure 3.18. If the selected node is not the workspace
or a chain, the button and the menu entry are disabled. After that a folder-
symbol is inserted in both views.

If the graph view is active, then a chain can be inserted via clicking the tool
button mentioned above. After clicking the button a cross is shown and you
can click anywhere in the graph view. After that a folder icon is shown at this
position and the folder gets this position.

The new chain receives an automatically generated name and all information
is stored in the M4- Schema immediately.

3.5.3 Inserting a step

Inserting a step can be done analogous to “Inserting a chain” described in
chapter 3.5.2. A step can be inserted only into a chain, so in the tree view a
chain has to be selected. Figure 3.19 shows how the menu structure for inserting

3.5. THE CHAIN EDITOR 47

File Ed'lt- Compile Window Help
(o] 5]

Sub Concept.. || @| | X ||) ||] | |%" @,

@ | | om_saLEs_cHam.

Sub Belationship...
Chain

 GenericOperatar |
Feat ' | b 1= mrfconstr S
el PJ‘EMEE‘RHIB‘S with mizsing wi
“». PredWDecTree

Selectinterasting items |
egmentation by shops
egmentation by items
Tk Create time windows

& Add haliday information

i JainByKey
- UnionByey

=2 Seale values for SWM 'Row Selection » Ne
Tk Learn model with SUPRS missing Values * E"—
sngm o “:m i Add holiday) informatior
Time Series *
] cencept Editor i ‘Scaling »

[Concepts
? O 1s_attree

& @ 5 Hnlidaws hk
The menu structure to insert a step with a specific operator
Figure 3.19: Select a operator
e
&) BlwTe]wEE EE) Bl : w) ZlElE]E] Bl

The tool buttons to insert a step with a specific operator

Figure 3.20: Insert step- tool buttons

48 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

11

Apriori i
AssignAverageWalue e
AssignDefault
AssignMedianYalue
AssignModalvalue
AssignPredictedyalueCategorial
AssignStochasticYalue
ComputeSYMEMmor
DeleteRecordsWithMissingWalues
EquidistanDiscretizationGivenNoOfintervals >

|] 1y

e e R e R

select cancel

Selecting an operator by using the generic operator

Figure 3.21: Generic Operator

a step looks like. You select an operator and a step with this operator will be
inserted. Figure 3.20 shows the corresponding tool buttons for inserting a step.

Some operators have their own menu item and toolbutton to insert them.
Every operator can be inserted with the menu entry and the toolbutton Generic
Operator. If you click on the generic operator button, the window shown in
figure 3.21 is opened. Here you see a list of all specified operators and you can
select one operator. Perhaps the term “Generic Operator” is a bit misleading. It
means the parameter editor is generated automatically, while the other operators
have their fixed editor window. This mechanism provides an easy way to expand
the list of operators in the Mining Mart system.

3.5.4 Changing properties

With the window shown in figure 3.22 you can change the name of a step or a
chain and can enter or change the description. In the current version the field
“URL” isn’t stored and the button “Open URL” isn’t used.

You get this window by selecting the object you want to change and then
using the menu item “Properties” in the edit menu or by clicking the corre-
sponding button.

3.5.5 Editing the step parameters

One important issue in the Chain Editor is the possibility to enter the parameter
for a step. In general, a step and the included operator has some input parame-
ters and one or more output parameters. There is an editor for every operator,
in which you can specify these parameters. Figure 3.23 shows the editor for one
of the most complex operators, the Support Vector Machine for Regression. In
the following the main aspects of the parameters and the editor are listed. If an

3.5. THE CHAIN EDITOR 49

Delete rows with missing values |

HamElDelete rows with missing values |

Description: [This step removes all rows inthe table connected with | =
concept"Sales Data” with missing values in the
column connected with the base atiribute "SALE" It
huilds the concept"Sales Without bW,

URL: |

Save || Open URL H Close |

Window to enter or change a description or change the name of a selected object

Figure 3.22: Change Properties

example is mentioned, this refers to this editor.

Loopable Operator

Some operators are loopable (see chapter 4.3.1 for an explanation of this term).
In this case the upper box in the step editor is shown. You can enter a number
of loops (0 means the steps isn’t applied in loops) by typing the number and
pressing the change- button and you can select the shown loop via the spinner
on the right side. In the generic editor only the loopable parameters are shown
if you select a loop number greater than 1. For example, in the step shown in
figure 3.23 the Input Concept isn’t shown for loop numbers greater than 1.

Choosing M40Objects

For input parameters which contain an M4Object (for example Input Concept
or Target Attribute) you can change this object by pressing the change button
next to the parameter. Then you get a data chooser with the possible objects
(for the parameter “Input Concept” all concepts which are created so far and
all concepts of Type “DB” or all base attributes from the input concept for the
parameter “Target Attribute”). Changes are stored immediately.

Output Parameters and Values

For output parameters and values the editor provides fields to enter a string
as a name for the new object. In the shown example such a parameter is the
OutputAttribute and the parameters for values like “C”,” Epsilon” etc. These
objects are created after you have pressed the “Save” button at the bottom of
the step editor.

50 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

ﬁMiningMart - sales_prediction - ;LE_".ZI

File Edit Insert Compile Window Help
BEIRNCI O O DR ETEYEE)

Learn model with SupportVectorMachine - SupportectorMachineForRegression

Numh_eri':flupps:_ E change | Show loop number Ij

= I |
LossFunctioniPos [|
ThelputConcept [Wiindowed_with_Holidays || Change
ThePredictingAttribut...

Thekey | | ’ng
KerneiType [polynarmial | ’W
TheTargetatiribute |SCALED_WINDOWS | ’m

TheOutputAttrioite |PREDICTED_SALE

|
Epsilan 0.1 |
LossFunctionile |5 |
SapleSize. [200 |
LIseDE Sy |_f___a|_e | ch:ahae.|
| save | | cancel | | close | | vaiar |

The editor to enter the parameters for the operator Support Vector Machine For
Regression. The window shows the different parts of the editor and parameters
of different kinds.

Figure 3.23: An example editor for the step parameter

3.5. THE CHAIN EDITOR 51

List Parameters

For parameters with a list of objects you can see a list of corresponding objects
(in the example window: ThePredictingAttributes). You can change the list with
the buttons “Add” and “Remove”. If the parameter is an input parameter using
the “Add”- button will provide a data chooser (see chapter 3.5.5); for output
parameters you get a box to enter a name for the new object. Other things
mentioned in chapter 3.5.5 hold for list parameters, too.

Buttons
The step editor has four buttons at the bottom of the window.

e Save - All new objects (objects for the output parameters or values for
value parameters) are created and every parameter is stored.

e Cancel - The output- and value parameters are set to the values after the
last “save”. Every parameter is read from the database again.

e Close - Closes the step editor without any changes.

e Validate - The validity of the step is tested (see chapter 3.3.2).

3.5.6 Changing Positions

Every object in the Chain Editor has a position which is stored and retreived
from the database during opening a case. The position depends on the chain
the object (step or subchain) belongs to. If an object belongs to a subchain,
the position is stored as a position within this subchain. After unmerging the
subchain or putting the object into another subchain, the step has a different
position. To change the position of an object (step or subchain) in the graph
view, you can press the left mouse button over this object and drag it to the
new position. The position is stored automatically.

3.5.7 Selecting objects in the graph view

The graph view provides a method for selecting more than one object. Please
click on the button for the Selection Tool (second button from left at the bottom
of the HCI). Pressing the left mouse button and moving it in the graph view
will show a rectangle and after releasing the mouse button all elements in the
rectangle are selected. This also includes connections between steps. To select a
single object, just click on it.

3.5.8 Deleting objects

Deleting objects can be done in different ways. An object (subchain, step) can
be deleted by selecting the object in the tree view or graph view and pressing
the delete- button or using the menu item “Delete” in the menu “Edit”. If the

52 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

graph view is active a delete can be enforced by pressing the “Del”- button on
the keyboard, too.

In the graph view it is possible to delete more than one object at once.
Selecting one or more objects is described in chapter 3.5.7. Deleting the selected
objects is done like deleting a single object.

For deleting a connection you can click on the connection in the graph view
and then use one of the methods mentioned above or you can use the connection
window described in chapter 3.5.9.

3.5.9 Connecting steps

Connecting steps means to insert a connection from step A to step B. In Mining
Mart this means to make step B dependent on step A, or step B is a successor
of step A. This is necessary if step B uses an output (base attribute or concept)
from step A as input and if step A isn’t a predecessor of step B yet. Here
predecessor means any predecessor, not only direct ones.

The easiest way to build a connection is to use the connection tool from the
graph view, which is called with the tool button from the tool bar at the bottom
of the HCI. The button can be identified by the double arrow on it. To do so
the graph view has to be active. Then you can click the button, press the left
mouse button over step A, then move the mouse cursor to step B and release
the button. While doing you can see if step B can be a sucessor of step A. If step
B can’t be a direct sucessor of step A, the arrow remains grey and isn’t inserted
after releasing the mouse button, otherwise is gets black and is inserted.

The second way is using the “Edit Connections”- menu item in the edit menu.
First you need to select step A and then use this menu item or the corresponding
tool button. Then select step B from the tree in the window shown in figure 3.24
and a connection is inserted after clicking “add”. The button “Add” only gets
enabled if step B is allowed to be a sucessor of step A. Important: Steps in
different folders can be connected only via the Connection Window shown in
figure 3.24. If they depend on each other in the above sense, these connections
between different folders must not be omitted, otherwise the compilation of the
chain will run into problems.

3.5.10 Merge steps to a chain

As described in chapter 1.1, steps can be organised in chains. There are two
ways to achieve this. First, you can create a new chain and insert new steps
in it; second, you can merge existing steps of a chain to a subchain. To do so,
please use the graph view. First, press the button “Merge to chain” (fourth
button from left at the bottom of the HCI), then select all steps and other
subchains that you want to put in the new sub chain (see chapter 3.5.7). After
releasing the mouse button a box is shown where you have to enter a unique
name for the chain. As a result a folder object is shown instead of the selected
objects in the graph view and a new node with this chain is inserted into the
tree view.

3.5. THE CHAIN EDITOR 53

SEgmentatinn by items

|Mudel Connections ¥ || Output Connections ¥ 19 Z sales_prediction
$ 2 DM_SALES_CHAIN_Z2

Selectinteresting items
egmentation by shops
egmentation by items
Tt Create time windows
3% Add haliday information
=5 Beale values for SYM

Type | Direction | Destination
Lser Cutput |Create time wi...

TF Evaluate learned macdel
=5 Delete rows with missing values
@ & Mew Chain 11
113 RowSelByQuery

‘ Add... |! Remove | Close

TF Learn model with Supportvectardaching

Window for adding or removing connections between two steps.

Figure 3.24: Edit Connections

3.5.11 Unmerge sub chains

In a chain a subchain can be replaced with the objects it contains. You need to
click on the fifth button (“Unmerge”) of the tool bar at the bottom of the HCI
and then click on the folder symbol which represents the subchain you want
to expand. After that the subchain is removed and all objects it contains are
inserted instead of it.

3.5.12 Cut, Copy, Paste

This functionality is only provided in the graph view. You select one or more
objects you want to copy (cut) and press the corresponding tool button in the
top tool bar or use the menu item “Copy” (“Cut”) in the menu “Edit”. After
that the menu item “Paste” and the corresponding tool button are enabled and
you can open the chain where you want to paste the objects to in the graph
view. Pressing the “Paste” button will insert the previously marked objects.

54

CHAPTER 3. THE HUMAN COMPUTER INTERFACE

Chapter 4

Compiler Constraints and
Operator Parameters

4.1 What this chapter is about

This chapter explains two things in detail: Firstly, section 4.2 describes some
details about how the MiningMart compiler expects the metadata for a case
description to be set up. Secondly, section 4.3 describes the current operators
and their parameters.

4.2 Compiler constraints on metadata

This section explains in detail some issues in describing a case in such a way
that it is operational for the MiningMart compiler.

4.2.1 Naming conventions
Operator names

The name of an operator (entry op_name in M4 table Operator._T) corresponds
exactly (respecting case!) to the Java class that implements this operator in the
compiler. This is only important to know if you want to implement additional
operators. What is more generally important is that the names of the parameters
of an operator are also fixed, because the compiler recognizes the type of a
parameter by its name. This is described in more detail in section 4.3.1.

BaseAttribute names

Some operators have as their output on the conceptual level a Concept rather
than a BaseAttribute (see section 4.3.1). This output Concept will generally
be similar to the input Concept, in the sense that it copies some of the input

55

56CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

BaseAttributes without changing them. To find out which BaseAttribute in the
output Concept corresponds to which BaseAttribute in the input concept, their
names are used. They must match exactly, ignoring case. This also means that it
is necessary to give the output BaseAttribute in a feature construction operator
(see section 4.3.1) a name which is different from all BaseAttribute names in the
input Concept, so that no names are mixed up. If the output of the operator
is a Concept, and a BaseAttribute in this output concept has no corresponding
BaseAttribute in the input concept, it will be ignored by the compiler, because
it may be needed for later steps. Ignoring means that no Column is created for
it.

A similar mechanism is applied when Relations are used (see following sec-
tion 4.2.2).

4.2.2 Relations

Relations are defined by the user between the initial Concepts of a case. In a case,
the Concepts may then be modified. If later in the chain an operator is applied
that makes use of relations, it must be able to find the Columns that realize the
keys. To this end, again the names of the BaseAttributes are used. Currently only
MultiRelationalFeatureConstruction (MRFC) uses relations. This means
that in the Concepts used by MRFC, the BaseAttributes that correspond to the
key BaseAttributes in the initial Concepts must have the same name (ignoring
case).

Example: Suppose there are initial Concepts Customer and Product linked by
a relation buys which is realized by a foreign link from the Customer to the
Product table. The foreign key Column in the Customer table is named fk_prod
and its BaseAttribute is named CustomerBuys. The Concept Customer may
be the input to a chain which results in a new Concept Private Customer. This
new Concept must still have a BaseAttribute named CustomerBuys, which must
not be the result of a feature construction, but must be copied from Concept
to Concept in the chain!. Then the compiler can find the Column fk_prod by
comparing the BaseAttributes of the current input concept PrivateCustomer
and of the Concept which is linked to the relation buys (this relation is an input
to the MRFC operator). The Column can be used to join the two Concepts
PrivateCustomer and Product, although the first is a subconcept of Customer.

4.3 Operators and their parameters

This section explains the current MiningMart operators and the exact way of
setting their parameters.

1Copying is done by simply having a BaseAttribute of this name in every output Concept
in the chain.

4.3. OPERATORS AND THEIR PARAMETERS 57

4.3.1 General issues

There are two kinds of operators, distinguished by their output on the con-
ceptual level: those that have an output Concept (Concept Operators, listed in
section 4.3.2), and those that have an output BaseAttribute (Feature Construc-
tion Operators, listed in section 4.3.4).

All operators have parameters, such as input Concept or output BaseAt-
tribute. The name of such a parameter is fixed, for instance TheInputConcept is
used for the input Concept for all operators. This means that the entry for this
parameter in par name in the M4 table Parameter T must be ThelnputCon-
cept, respecting case. The parameter specification for each operator is stored
in the M4 table OP_.PARAMS_T (see MiningMart technical report TR18.1 and
TR18.2).

Some operators have an unspecified number of parameters of the same
type. For example, the learning operators take as input a number of BaseAt-
tributes of the same concept and use them to construct their training examples.
All these BaseAttributes use the same prefix for their parameter name (here
ThePredictingAttributes) in Parameter_T. Since all parameters for one step are
expected to have different names (for HCI use), number suffixes are added to
these prefixes (ThePredictingAttributesl, ThePredictingAttributes2, etc). The
compiler uses ORDER BY par nr when reading them. Such parameters, which
may contain a list, are marked with the word List in the operator descriptions
in sections 4.3.2 and 4.3.4.

Special attention is needed if an operator is applied in a loop. All feature con-
struction operators are loopable; further, the concept operator RowSelectionBy-
Query is loopable. Feature construction operators are applied to one target at-
tribute of an input concept and produce an output attribute. Looping means
that the operator is applied to several target attributes (one after the other)
and produces the respective number of output attributes, but the input concept
is the same in all loops.

To decide whether an operator must be applied in a loop, the compiler checks
the field st_loopnr in the M4 table Step_T, which gives the number of loops to
be executed. If 0 or NULL is entered here, the operator is still executed once!
If a number z (greater than 0) is entered here, the compiler looks for z sets of
parameters for this operator in Parameter_ T, excluding the parameters that are
the same for all loops, which need to be entered only once. Thus, the parameter
ThelInputConcept must be declared only once, with the field par_stloopnr in
the table Parameter T set to 0, while the other parameters are given for every
loop, with the respective loop number set in the field par_stloopnr, starting
with 1. If no looping is intended, this field must be left NULL or 0. Note: Again,
all parameters that are given for more than one loop must have a number suffix
to their name, like the List parameters, to ensure that parameter names are uni
que within one step.

For the concept operator RowSelectionByQuery, looping means that several
query conditions are formulated using the parameters of this operator (one set
of parameters for each condition), and that they are connected with AND. See

58CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

the description of this operator.

In the following sections, all current operators are listed with their exact
name (see section 4.2.1), a short description and the names of their parameters.
In general, all input BaseAttributes belong to the input Concept, and all output
BaseAttributes belong to the output Concept.

4.3.2 Concept operators

All Concept operators take an input Concept and create at least one new
ColumnSet which they attach to the output Concept. The output Concept must
have all its Features attached to it before the operator is compiled. All Concept
operators have the two parameters ThelnputConcept and TheOQutputConcept,
which are marked as inherited in the following parameter descriptions.

MultiRelationalFeatureConstruction

Takes a list of concepts which are linked by relations, and selects specified Fea-
tures from them which are collected in the output Concept, via a join on the
concepts of the chain. To be more precise: Recall (section 4.2.2) that Rela-
tions are only defined by the user between initial Concepts of a Case. Suppose
there is a chain of initial Concepts Ci,...,C, such that between all C; and
Cit1,1 < i < n, C; is the FromConcept of the i-th Relation and C;41 is its
ToConcept. These Concepts may be modified in the Case being modelled, to
result in new Concepts C1,...,C), where some C] may be equal to C;. How-
ever, as explained in section 4.2.2, the BaseAttributes that correspond to the
Relation keys are still present in the new Concepts C}. By using their names,
this operator can find the key Columns and join the new Concepts C;.

The parameter table below refers to this explanation. Note that all input
Concepts are the new Concepts C7, but all input Relations link the original
Concepts C;.

ParameterName ObjectType Type | Remarks
ThelnputConcept CON IN | Concept C] (inherited)
TheConcepts CON List IN | Concepts C,...,C],
TheRelations REL List IN they link Cy,...,C,
TheChainedFeatures | BA or MCF List | IN | from Cj,...,C},
TheOutputConcept CON OUT | inherited

JoinByKey

Takes a list of concepts, plus attributes indicating their primary keys, and joins
the concepts. In TheOutputConcept, only one of the keys must be present. Each
BaseAttribute specified in TheKeys must be a primary key of one of TheCon-
cepts; thus, the number of entries in TheConcepts and TheKeys must be equal.

If several of the input concepts contain a BaseAttribute (or a MultiColumn-
Feature) with the same name, a special mapping mechanism is needed to re-
late them to different features in TheOutputConcept. For this, the parameters

4.3. OPERATORS AND THEIR PARAMETERS 59

MapInput and MapQOutput exist. Use MapInput to specify any feature in one
of TheConcepts, and use MapQutput to specify the corresponding feature in
TheOutputConcept. To make sure that for each MapInput the right Map Output
is found by this operator, it uses the looping mechanism. Although the param-
eter is not looped, the loop numbers in the parameter table in M4 are used to
ensure the correspondence between MapInput and MapOutput. However, these
two parameters only need to be specified for every pair of equally-named fea-
tures in TheConcepts. So there are not necessarily as many “loops” as there are
features in TheOutputConcept.

The field par_stloopnr in the M4 parameter table must be set to the number
of pairs of MapInput/ MapOutput parameters (may be 0). Each of these pairs
gets a different loop number while all the other parameters get loop number 0.

ParameterName ObjectType | Type | Remarks

TheConcepts CON List IN | no ThelnputConcept!

TheKeys BA List IN

MaplInput BA or MCF | IN “looped”!

MapOutput BA or MCF | OUT | “looped”!

TheOutputConcept CON OUT | inherited
UnionByKey

Takes a list of concepts, plus attributes indicating their primary keys, and unifies
the concepts. In contrast to the operator JoinByKey (section 4.3.2), the output
columnset is a union of the input columnsets rather than a join. For each value
occuring in one of the key attributes of an input columnset a tuple in the output
columnset is created. If a value is not present in all key attributes of the input
columnsets, the corresponding (non-key) attributes of the output columnset are
filled by NULL values.

In TheOutputConcept, only one of the keys must be present. Each Base-
Attribute specified in TheKeys must be a primary key of one of TheConcepts;
thus, the number of entries in TheConcepts and TheKeys must be equal.

If several of the input concepts contain a BaseAttribute (or a MultiColumn-
Feature) with the same name, a special mapping mechanism is needed to re-
late them to different features in TheOutputConcept. For this, the parameters
MapInput and MapOutput exist. Use MapInput to specify any feature in one
of TheConcepts, and use MapQutput to specify the corresponding feature in
TheOutputConcept. To make sure that for each MapInput the right Map Output
is found by this operator, it uses the looping mechanism. Although the param-
eter is not looped, the loop numbers in the parameter table in M4 are used to
ensure the correspondence between MapInput and MapQutput. However, these
two parameters only need to be specified for every pair of equally-named fea-
tures in TheConcepts. So there are not necessarily as many “loops” as there are
features in TheQutputConcept.

The field par_stloopnr in the M4 parameter table must be set to the number
of pairs of MapInput/ MapOutput parameters (may be 0). Each of these pairs
gets a different loop number while all the other parameters get loop number 0.

60CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjectType | Type | Remarks

TheConcepts CON List IN | no ThelnputConcept!

TheKeys BA List IN

MaplInput BA or MCF | IN “looped”!

MapQutput BA or MCF | OUT | “looped”!

TheOutputConcept CON OUT | inherited
SpecifiedStatistics

An operator which computes certain statistical values for the ThelnputConcept.
The computed values appear in a ColumnSet which contains exactly one row
with the statistical values, and which belongs to TheQutputConcept.

The sum of all values in an attribute can be computed by specifying a
BaseAttribute with the parameter AttributesComputeSum. There can be more
such attributes; the sum is computed for each. TheQutputConcept must contain
a BaseAttribute for each sum which is computed; their names must be those
of the input attributes, followed by the suffix “_SUM”.

The total number of entries in an attribute can be computed by specifying
a BaseAttribute with the parameter AttributesComputeCount. There can be
more such attributes; the number of entries is computed for each. TheOutput-
Concept must contain a BaseAttribute for each count which is computed; their
names must be those of the input attributes, followed by the suffix “_COUNT”.

The number of unique values in an attribute can be computed by specifying
a BaseAttribute with the parameter AttributesComputeUnique. There can be
more such attributes; the number of unique values is computed for each. The-
OutputConcept must contain a BaseAttribute for each number of unique values
which is computed; their names must be those of the input attributes, followed
by the suffix “_UNIQUE”.

Further, for a BaseAttribute specified with AttributesComputeDistrib, the
distribution of its values is computed. For example, if a BaseAttribute contains
the values 2, 4 and 6, three output BaseAttributes will contain the number
of entries in the input where the value was 2, 4 and 6, respectively. For each
BaseAttribute whose value distribution is to be computed, the possible values
must be given with the parameter DistribValues. One entry in this parameter
is a comma-separated string containing the different values; in the example, the
string would be “2,4,6”. Thus, the number of entries in AttributesComputeDis-
trib and Distrib Values must be equal. TheOutputConcept must contain the corre-
sponding number of BaseAttributes (three in the example); their names must
be those of the input attributes, followed by the suffix “_<value>”. In the ex-
ample, TheOQutputConcept would contain the BaseAttributes “inputBaName 2’

) s
’

inputBaName 4” and “inputBaName 6”.

4.3. OPERATORS AND THEIR PARAMETERS 61

ParameterName ObjectType | Type | Remarks
ThelnputConcept CON IN | inherited
AttributesComputeSum BA List IN | numeric
AttributesComputeCount BA List IN (see
AttributesComputeUnique BA List IN
AttributesComputeDistrib BA List IN text)
DistribValues V List IN
TheOutputConcept CON OUT | inherited
UnSegment

This operator is the inverse to any segmentation operator (see 4.3.2,4.3.2,4.3.2).
While a segmentation operator segments its input concept’s ColumnSet into sev-
eral ColumnSets, UnSegment joins several ColumnSets into one. This operator
makes sense only if a segmentation operator was applied previously in the chain,
because it exactly reverses the function of that operator. To do so, the param-
eter UnsegmentAttribute specifies indirectly which of the three segmentation
operators is reversed:

If a SegmentationStratified operator is reversed (section 4.3.2), this parame-
ter gives the name of the BaseAttribute that was used for stratified segmenta-
tion. Note that this BaseAttribute must belong to TheOQutputConcept of this
operator, because the re-unified ColumnSet contains different values for this at-
tribute (whereas before the execution of this operator, the different ColumnSets
did not contain this attribute, but each represented one of its values).

If a SegmentationByPartitioning operator is reversed (section 4.3.2), this
parameter must have the value “(Random)”.

If a SegmentationWithKMean operator is reversed (section 4.3.2), this pa-
rameter must have the value “(KMeans)”.

Note that the segmentation to be reversed by this operator can be any
segmentation in the chain before this operator.

ParameterName ObjectType | Type | Remarks

ThelnputConcept CON IN | inherited

UnsegmentAttribute BA OUT | see text

TheOutputConcept CON OUT | inherited
RowSelectionByQuery

The output Concept contains only records that fulfill the SQL condition formu-
lated by the parameters of this operator. This operator is loopable! If applied
in a loop, the conditions from the different loops are connected by AND. Every
condition consists of a left-hand side, an SQL operator and a right-hand side.
Together, these three must form a valid SQL condition. For example, to specify
that only records (rows) whose value of attribute sale is either 50 or 60 should
be selected, the left condition is the BaseAttribute for sale, the operator is IN,
and the right condition is (50, 60).

62CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

If this operator is applied in a loop, only the three parameters modelling the
condition change from loop to loop, while input and output Concept remain the
same.

ParameterName ObjType | Type | Remarks

ThelInputConcept CON IN | inherited (same in all loops)
TheLeft Condition BA IN any BA of input concept
TheConditionOperator A% IN an SQL operator: <, =, ...
TheRightCondition A% IN

TheOutputConcept CON OUT | inherited (same in all loops)

RowSelectionByRandomSampling

Puts atmost as many rows into the output Concept as are specified in the
parameter HowMany. Selects the rows randomly.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
HowMany A% IN | max. no. of rows
TheOutputConcept CON OUT | inherited

DeleteRecordsWithMissing Values

Puts only those rows into the output Concept that have an entry which is NOT
NULL in the Column for the specified TheTargetAttribute.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | may have NULL entries
TheOutputConcept CON OUT | inherited

SegmentationStratified

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented according to the values of the specified attribute,
so that each resulting Columnset corresponds to one value of the attribute.
For numeric attributes, intervals are built automatically (this makes use of the
statistics tables and the functions that compute the statistics).

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttribute BA IN

TheOutputConcept CON OUT | inherited

SegmentationByPartitioning

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented randomly into as many Columnsets as are specified
by the parameter HowManyPartitions.

4.3. OPERATORS AND THEIR PARAMETERS 63

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
HowManyPartitions A% IN positive integer
TheOutputConcept CON OUT | inherited

SegmentationWithKMean

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented according to the clustering method KMeans (an ex-
ternal learning algorithm). The number of ColumnSets in the output concept
is therefore not known before the application of this operator. However, the
parameter HowManyPartitions specifies a maximum for this number. The pa-
rameter OptimizePartitionNum is a boolean that specifies if this number should
be optimized by the learning algorithm (but it will not exceed the maximum).
The parameter SampleSize gives a maximum number of learning examples for
the external algorithm. The algorithm (KMeans) uses ThePredictingAttributes
for clustering; these attributes must belong to ThelnputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
HowManyPartitions A% IN | positive integer
OptimizePartitionNum \% IN true or false
ThePredictingAttributes | BA List IN
SampleSize \% IN | positive integer
TheOutputConcept CON OUT | inherited
Windowing

Windowing is applicable to time series data. It takes two BaseAttributes from
the input Concept; one of contains time stamps, the other values. In the output
Concept each row gives a time window; there will be two time stamp BaseAt-
tributes which give the beginning and the end of each time window. Further,
there will be as many value attributes as specified by the WindowSize; they con-
tain the values for each window. Distance gives the distance between windows
in terms of number of time stamps.

While TimeBaseAttrib and ValueBaseAttrib are BaseAttributes that be-
long to ThelnputConcept, Output TimeStartBA, Output TimeEndBA and the Win-
dowedValuesBAs belong to TheQutputConcept.

64CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TimeBaseAttrib BA IN | time stamps
ValueBaseAttrib BA IN | values
WindowSize A% IN | positive integer
Distance A% IN | positive integer
OutputTimeStartBA BA OUT | start time of window
OutputTimeEndBA BA OUT | end time of window
WindowedValuesBA | BA List | OUT | as many as WindowSize
TheOutputConcept CON OUT | inherited
SimpleMovingFunction

This operator combines windowing with the computation of the average value
in each window. There is only one QutputValueBA which contains the average
of the values in a window of the given WindowSize; windows are computed
with the given Distance between each window. See also the description of the
Windowing operator in section 4.3.2.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN
InputValueBA BA IN
WindowSize A% IN
Distance A% IN
OutputTimeStartBA BA ouT
OutputTimeEndBA BA ouT
OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

WeightedMovingFunction

This operator works like SimpleMovingFunction (section 4.3.2), but the weighted
average is computed. The window size is not given explicitly, but is determined
from the number of Weights given. The sum of all Weights must be 1.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN

InputValueBA BA IN

Weights V List IN | sum must be 1
Distance A% IN | positive integer
OutputTimeStartBA BA ouT
OutputTimeEndBA BA ouT

OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

4.3. OPERATORS AND THEIR PARAMETERS 65

ExponentialMovingFunction

A time series smoothing operator. For two values with the given Distance, the
first one is multiplied with TailWeight and the second one with Head Weight.
The resulting average is written into OutputValueBA and becomes the new tail
value. Head Weight and Tail Weight must sum to 1.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN

InputValueBA BA IN

HeadWeight A% IN

TailWeight A% IN

Distance A% IN | positive integer
OutputTimeBA BA ouT
OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

SignalToSymbolProcessing

A time series abstraction operator. Creates intervals, their bounds are given
in OutputTimeStartBA and OutputTimeEndBA. The average value of every
interval will be in AverageValueBA. The average increase in that interval is in
IncreaseValueBA. Tolerance determines when an interval is closed and a new one
is opened: if the average increase, interpolated from the last interval, deviates
from a value by more than Tolerance, a new interval begins.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

InputTimeBA BA IN

InputValueBA BA IN

Tolerance A% IN | non-negative real number
AverageValueBA BA ouT

IncreaseValueBA BA ouT

OutputTimeStartBA BA ouT

OutputTimeEndBA BA ouT

TheOutputConcept CON OUT | inherited

Apriori

An implementation of the well known Apriori algorithm for the data mining
step. It works on a sample read from the database. The sample size is given by
the parameter SampleSize.

The input format is fixed. There is one input concept (ThelInputConcept)
having a BaseAttribute for the customer ID (parameter: CustID), one for the
transaction ID (TransID), and one for an item part of this customer /transaction’s
itemset (Item). The algorithm expects all entries of these BaseAttributes to
be integers. No null values are allowed.

66CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

It then finds all frequent (parameter: MinSupport) rules with at least the
specified confidence (parameter: MinConfidence). Please keep in mind that these
settings (especially the minimal support) are applied to a sample!

The output is specified by three parameters. The OutputConcept is the con-
cept the output table is attached to. It has two BaseAttributes, PremiseBA for
the premises of rules and ConclusionBA for the conclusions. Each entry for one
of these attributes contains a set of whitespace-separated item IDs (integers).

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

CustID BA IN | customer id (integer, not NULL)
TransID BA IN | transaction id (integer, not NULL)
Item BA IN | item id (integer, not NULL)
MinSupport A% IN | minimal support (integer)
MinConfidence v IN | minimal confidence (in [0, 1])
SampleSize \% IN | the size of the sample to be used
PremiseBA BA OUT | premises of rules

ConclusionBA BA OUT | conclusions of rules
TheOutputConcept CON OUT | inherited

4.3.3 Feature selection operators

Feature selection operators are also concept operators in that their output is a
Concept, but they are listed in their own section since they have some common
special properties. All of them (except FeatureSelectionByAttributes, see 4.3.3)
use external algorithms to determine which features are taken over to the output
concept. This means that at the time of designing an operating chain, it is not
known which features will be selected. How can a complete, valid chain be
designed then, since the input of later operators may depend on the output of
a feature selection operator, which is only determined at compile time?

The answer is that conceptually, all possible features are present in the out-
put concept of a feature selection operator, while the compiler creates Columns
for only some of them (the selected ones). This means that in later steps, some of
the features that are used for the input of an operator may not have a Column.
If the operator depends on a certain feature, the compiler checks whether a
Column is present, and shows an error message if no Column is found. If the
operator is executable without that Column, no error occurs.

All feature selection operators have a parameter TheAttributes which speci-
fies the set of features from which some are to be selected. (Again this is not true
for FeatureSelectionByAttributes, see 4.3.3.) The parameter is needed because
not all of the features of ThelnputConcept can be used, as they may include a
key attribute or the target attribute for a data mining step, which should not
be deselected. This means that all attributes from ThelnputConcept that are
not listed as one of TheAttributes will be present in TheQutputConcept both on
the conceptual and on the relational level.

4.3. OPERATORS AND THEIR PARAMETERS 67

FeatureSelectionByAttributes

This operator can be used for manual feature selection, which means that the
user specifies all features to be selected. This is done by providing all and only
the features that are to be selected in TheOQutputConcept. The operator then
simply copies those features from ThelnputConcept to TheOutputConcept which
are present in TheQutputConcept. It can be used to get rid of features that are
not needed in later parts of the operator chain. All features in TheOQutputConcept
must have a corresponding feature (with the same name) in TheInputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheOutputConcept CON OUT | inherited

StatisticalFeatureSelection

A Feature Selection operator. This operator uses the stochastic correlation mea-
sure to select a subset of TheAttributes. All of TheAttributes must be present in
TheOQutputConcept. The parameter Threshold is a real number between 0 and 1
(default is 0.7). SampleSize specifies a maximum number of examples that are

fed into the external algorithm.

ParameterName ObjType | Type | Remarks
TheInputConcept CON IN | inherited
TheAttributes BA list IN | see section 4.3.3
SampleSize A% IN | positive integer
Threshold v IN | real between 0 and 1
TheOutputConcept CON OUT | inherited

GeneticFeatureSelection

A Feature Selection operator.This operator uses a genetic algorithm to select a
subset of TheAttributes. It calls C4.5 to evaluate the individuals of the genetic
population. TheTargetAttribute specifies which attribute is the target attribute
for the learning algorithm whose performance is used to select the best fea-
ture subset. PopDim gives the size of the population for the genetic algorithm.
StepNum gives the number of generations. The probabilities of mutation and
crossover are specified with ProbMut and ProbCross.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheAttributes BA list IN | see section 4.3.3

SampleSize A% IN | positive integer

PopDim A% IN positive integer; try 30
StepNum A% IN | positive integer; try 20
ProbMut A% IN | real between 0 and 1; try 0.001
ProbCross v IN | real between 0 and 1; try 0.9
TheOutputConcept CON OUT | inherited

68CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

SGFeatureSelection

A Feature Selection operator. This operator is a combination of StochasticFea-
tureSelection (see 4.3.3), which is applied first, and GeneticFeatureSelection (see
4.3.3), applied afterwards. The parameter descriptions can be found in the sec-
tions about these operators (4.3.3 and 4.3.3).

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN see section 4.3.3
SampleSize A% IN

PopDim \% IN

StepNum A% IN

ProbMut A% IN

ProbCross A% IN

Threshold A% IN real, between 0 and 1
TheOutputConcept CON OUT | inherited

FeatureSelectionWithSVM

A Feature Selection operator. This operator uses the {a-estimator as computed
by a Support Vector Machine training run to compare the classification perfor-
mance of different feature subsets. Searching either forward or backward, it finds
the best feature subset according to this criterion. Thus it performs a simple
beam search of width 1.

TheTargetAttribute must be binary as Support Vector Machines can only
solve binary classification problems. (The £a-estimator can only be computed
for classification problems.) The parameter PositiveTargetValue specifies the
class label of the positive class. There are some SVM-specific parameters; the
table gives reasonable values to choose if nothing is known about the data or
SVMs. For the KernelType, only the following values (Strings) are possible: dot,
polynomial, neural, radial, anova. Dot is the linear kernel and can be taken as
default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String
true. When this version is used, an additional parameter TheKey is needed
which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
ThelInputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. It can also use the
parameter SampleSize.

4.3. OPERATORS AND THEIR PARAMETERS 69
ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 4.3.3
TheTarget Attribute BA IN | must be binary
PositiveTarget Value A% IN | the positive class label
KernelType A% IN | see explanation above
SampleSize A% IN | see explanation above
C v IN positive real; try 1.0
Epsilon \% IN positive real; try 0.1
UseDB_SVM v IN optional; one of true, false
TheKey BA IN optional
SearchDirection v IN one of forward, backward
TheOutputConcept CON OUT | inherited

SimpleForwardFeatureSelectionGivenNoOfAttributes

A Feature Selection operator. This operator adds one feature a time start-
ing from the empty set until the required number of features NoOfAttributes
is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Use this operator if only
a small number of original attributes is to be selected. The selection is done
from the set of TheAttributes, attributes not specified in this set are selected

automatically.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 4.3.3
TheClassAttribute BA IN | must be categorial
NoOfAttributes A% IN | positive integer
SampleSize A% IN | positive integer
TheOutputConcept CON OUT | inherited

SimpleBackwardFeatureSelectionGivenNoOfAttributes

A Feature Selection operator. This operator removes one feature a time start-
ing from all attributes until the required number of features NoOfAttributes
is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Use this operator if a
large number of original attributes is to be selected. The selection is done from
the set of TheAttributes, attributes not specified in this set are selected auto-
matically.

T0CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 4.3.3
TheClassAttribute BA IN | must be categorial
NoOfAttributes A% IN | positive integer
SampleSize A% IN | positive integer
TheOutputConcept CON OUT | inherited

FloatForwardFeatureSelectionGivenNoOfAtt

A Feature Selection operator. This operator adds one feature a time starting
from empty set until the required number of features NoOfAttributes is reached.
The attributes are selected with respect to TheClassAttribute, the group opti-
mises the information dependence criterion. Unlike the simple operator, after
adding a feature a check is performed if another feature should be removed. Use
this operator if only a small number of original attributes is to be selected. The
selection is done from the set of TheAttributes, attributes not specified in this

set are selected automatically.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 4.3.3
TheClassAttribute BA IN | must be categorial
NoOfAttributes A% IN | positive integer
SampleSize A% IN | positive integer
TheOutputConcept CON OUT | inherited

FloatBackwardFeatureSelectionGivenNoOfAtt

A Feature Selection operator. This operator removes one feature a time start-
ing from all attributes until the required number of features NoOfAttributes
is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Unlike the simple oper-
ator, after removing a feature a check is performed if another feature should be
added. Use this operator if a large number of original attributes is to be selected.
The selection is done from the set of TheAttributes, attributes not specified in
this set are selected automatically.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 4.3.3
TheClassAttribute BA IN | must be categorial
NoOfAttributes A% IN | positive integer
SampleSize A% IN | positive integer
TheOutputConcept CON OUT | inherited

4.3. OPERATORS AND THEIR PARAMETERS 71

UserDefinedFeatureSelection

A Feature Selection operator. This operator copies exactly those features from
TheInputConcept to TheOutputConcept that are specified in TheSelectedAt-
tributes. It can be used for the same task as the operator FeatureSelection-
ByAttributes, see 4.3.3, namely when the user knows which features to select.
The difference is that FeatureSelectionByAttributes copies all features that are
present in TheOutputConcept, while this operator copies those that are specified
in the extra parameter TheSelected Attributes.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheSelectedAttributes | BA list IN | the user’s selection
TheOutputConcept CON OUT | inherited

4.3.4 Feature construction operators

All operators in this section are loopable. For loops, ThelnputConcept remains
the same (par_stloopnr = 0) while TheTargetAttribute, TheOutputAttribute
and further operator-specific parameters change from loop to loop (loop numbers
start with 1).

AssignAverageValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by the average value of that Column. The operator computes the column statis-
tics if they are not computed yet, which may take some time.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN inherited

TheTargetAttribute BA IN | must be numeric

TheOutputAttribute BA OUT | inherited
AssignModalValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by the modal value of that Column. The operator computes the column statistics
if they are not computed yet, which may take some time.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTargetAttribute BA IN

TheOutputAttribute BA OUT | inherited
AssignMedianValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by the median of that Column. The operator computes the column statistics if
they are not computed yet, which may take some time.

72CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN

TheOutputAttribute BA OUT | inherited

AssignDefault Value

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by the DefaultValue.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
DefaultValue v IN

TheOutputAttribute BA OUT | inherited

AssignStochasticValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by a value which is randomly selected according to the distribution of present
values in this attribute. For example, if half of the entries in TheTargetAttribute
have a specific value, this value is chosen with a probability of 0.5. The operator
computes the column statistics if they are not computed yet, which may take
some time.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
TheOutputAttribute BA OUT | inherited

MissingValuesWithRegressionSVM

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by a predicted value. For prediction, a Support Vector Machine (SVM) is trained
in regression mode from ThePredictingAttributes (taking TheTargetAttribute
values that are not missing as target function values). All ThePredictingAt-
tributes must belong to ThelnputConcept. TheOutputAttribute contains the orig-
inal values, plus the predicted values where the original ones were missing.

There are some SVM-specific parameters; the table gives reasonable values
to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,
anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String
true. When this version is used, an additional parameter TheKey is needed

4.3. OPERATORS AND THEIR PARAMETERS 73

which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
ThelnputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. It can also use the
parameter SampleSize.

With the parameters LossFunctionPos and LossFunctionNeg, the loss func-
tion that is used for the regression can be biased such that predicting too high
is more expensive (LossFunctionPos > LossFunctionNeg) or less expensive
(LossFunctionNeg > LossFunctionPos)than predicting too low. If both val-
ues are equal, no bias is used. The parameter C balances training error against
generalisation quality; positive values between 0.01 and 1000 have been used
successfully in the literature. Epsilon limits the allowed error an example may
produce; small values under 0.5 should be used.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | inherited
ThePredictingAttributes | BA List IN
KernelType A% IN | see explanation above
SampleSize A% IN | see explanation above
LossFunctionPos \% IN | positive real; try 1.0
LossFunctionNeg A% IN | positive real; try 1.0
C A% IN | positive real; try 1.0
Epsilon A% IN | positive real; try 0.1
UseDB_SVM \% IN | optional; one of true, false
TheKey BA IN | optional
TheOutputAttribute BA OUT | inherited
LinearScaling

A scaling operator. Values in TheTargetAttribute are scaled to lie between
NewRangeMin and NewRangeMax.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
NewRangeMin A% IN | new min value
NewRangeMax A% IN | new max value
TheOutputAttribute BA OUT | inherited

LogScaling

A scaling operator. Values in TheTargetAttribute are scaled to their logarithm
to the given LogBase.

TACHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
LogBase A% IN

TheOutputAttribute BA OUT | inherited

SupportVectorMachineForRegression

A data mining operator. Values in The TargetAttribute are used as target func-
tion values to train the SVM on examples that are formed with ThePredicting-
Attributes. All ThePredictingAttributes must belong to ThelnputConcept. The-
OutputAttribute contains the predicted values.

There are some SVM-specific parameters; the table gives reasonable values
to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,
anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String
true. When this version is used, an additional parameter TheKey is needed
which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
TheInputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. Tt can also use the
parameter SampleSize.

With the parameters LossFunctionPos and LossFunctionNeg, the loss func-
tion that is used for the regression can be biased such that predicting too high
is more expensive (LossFunctionPos > LossFunctionNeg) or less expensive
(LossFunctionNeg > LossFunctionPos)than predicting too low. If both val-
ues are equal, no bias is used. The parameter C balances training error against
generalisation quality; positive values between 0.01 and 1000 have been used
successfully in the literature. Epsilon limits the allowed error an example may
produce; small values under 0.5 should be used.

4.3. OPERATORS AND THEIR PARAMETERS 75

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

KernelType A% IN | see explanation above
SampleSize A% IN | see explanation above
LossFunctionPos \% IN | positive real; try 1.0
LossFunctionNeg \% IN | positive real; try 1.0
C v IN | positive real; try 1.0
Epsilon A% IN | positive real; try 0.1
UseDB_SVM A% IN | optional; one of true, false
TheKey BA IN | optional
TheOutputAttribute BA OUT | inherited

SupportVectorMachineForClassification

A data mining operator. Values in TheTargetAttribute are used as target func-
tion values to train the SVM on examples that are formed with ThePredicting-
Attributes. TheTargetAttribute must be binary as Support Vector Machines can
only solve binary classification problems. The parameter PositiveTargetValue
specifies the class label of the positive class. All ThePredictingAttributes must
belong to ThelnputConcept. TheOutputAttribute contains the predicted values.

There are some SVM-specific parameters; the table gives reasonable values
to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,
anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String
true. When this version is used, an additional parameter TheKey is needed
which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
TheInputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. It can also use the
parameter SampleSize.

The parameter C balances training error against generalisation quality; pos-
itive values between 0.01 and 1000 have been used successfully in the literature.

Epsilon limits the allowed error an example may produce; small values under
0.5 should be used.

T6CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited; must be binary
ThePredictingAttributes | BA List IN

KernelType A% IN | see explanation above
SampleSize A% IN | see explanation above

C Vv IN | positive real; try 1.0
Epsilon A% IN | positive real; try 0.1
UseDB_SVM Vv IN | optional; one of true, false
TheKey BA IN | optional
PositiveTargetValue A% IN | the positive class label
TheOutputAttribute BA OUT | inherited

MissingValueWithDecisionRules

A Missing value operator. Each missing value (NULL value) in TheTargetAt-
tribute is replaced by a predicted value. For prediction, a set of Decision Rules is
learned from ThePredictingAttributes, which must belong to ThelnputConcept.
The pruning confidence level is given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize v IN | positive integer
PruningConf A% IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

MissingValueWithDecisionTree

A Missing value operator. Each missing value (NULL value) in TheTargetAt-
tribute is replaced by a predicted value. For prediction, a Decision Tree is
learned from ThePredictingAttributes, which must belong to ThelnputConcept.

The pruning confidence level is given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize v IN | positive integer
PruningConf A% IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

PredictionWithDecisionRules

A Feature Construction operator. Decision rules are learned using ThePredicting-
Attributes as learning attributes and TheTargetAttribute as label. TheOutpu-
tAttribute contains the labels that the decision rules predict. The operator may

4.3. OPERATORS AND THEIR PARAMETERS 7

be used to compare predicted and actual values, or in combination with the
operator AssignPredictedValueCategorial (see section 4.3.4). All ThePredictin-
gAttributes must belong to ThelnputConcept. The pruning confidence level is
given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize A% IN | positive integer
PruningConf A% IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

PredictionWithDecisionTree

A Feature Construction operator. A Decision Tree is learned using ThePredicting-
Attributes as learning attributes and TheTargetAttribute as label. TheOutpu-
tAttribute contains the labels that the decision tree predicts. The operator may
be used to compare predicted and actual values, or in combination with the
operator AssignPredictedValueCategorial (see section 4.3.4). All ThePredictin-
gAttributes must belong to ThelnputConcept. The pruning confidence level is
given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize A% IN | positive integer
PruningConf v IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

AssignPredictedValueCategorial

A Missing Value operator. Any missing value of The TargetAttribute is replaced
by the value of the same row from ThePredictedAttribute. The latter may have
been filled by the operator PredictionWithDecisionRules (4.3.4) or Prediction-
WithDecisionTree (4.3.4). It must belong to ThelnputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | inherited
ThePredicted Attribute BA IN

TheOutputAttribute BA OUT | inherited

GenericFeatureConstruction

This operator creates an output attribute on the basis of a given SQL definition
(Parameter SQL_String). The definition must be well-formed SQL defining how

7T8S8CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

values for the output attribute are computed based on one of the attributes in
TheInputConcept. To refer to the attributes in ThelnputConcept, the names of
the BaseAttributes are used—and not the names of any Columns. For example,
if there are two BaseAttributes named “INCOME” and “TAX” in Thelnput-
Concept, this operator can compute their sum if SQL_String is defined as “(IN-
COME + TAX)”. Since the operator must resolve names of BaseAttributes,
it cannot be used if there are two or more BaseAttributesin ThelnputConcept
with the same name.

TheTargetAttribute is needed to have a blueprint for TheOQutputAttribute.
The operator ignores TheTargetAttribute, except that it uses the relational
datatype of its column to specify the relational datatype for the column of
TheOutputAttribute.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited; specifies datatype
SQL_String A% IN | see text
TheOutputAttribute BA OUT | inherited

TimelIntervalManualDiscretization

This operator can be used to discretize a time attribute manually. The looped
parameters specify a mapping to be performed from TheTargetAttribute, a
BaseAttribute of type TIMFE to a set of user specified categories. As for all
FeatureConstruction operators a BaseAttribute TheOutputAttribute is added to
the ThelnputConcept.

The mapping is defined by looped parameters. An interval is specified by
its lower bound IntervalStart, its upper bound IntervalEnd and two additional
parameters StartIncExc and EndIncEzc, stating if the interval bounds are in-
cluded (value: “I”) or excluded (value: “E”). The value an interval is mapped
to is given by the looped parameter MapTo. If an input value does not belong
to any interval, it is mapped to the value DefaultValue.

To be able to cope with various time formats (e.g. "HH-MI-SS’) the operator
reads the given format from the parameter TimeFormat (ORACLE-specific).

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited, type: TIME
IntervalStart v IN “looped”, lower bound of interval
IntervalEnd A% IN “looped”, upper bound of interval
MapTo A% IN | value to map time interval to
StartIncExc A% IN | one of “I” and “E”

EndIncExc A% IN one of “I” and “E”

DefaultValue A% IN | value if no mapping applies
TimeFormat A% IN | ORACLE specific time format
TheOutputAttribute BA OUT | inherited

4.3. OPERATORS AND THEIR PARAMETERS 79

NumericIntervalManualDiscretization

This operator can be used to discretize a numeric attribute manually. It is very
similar to the operator TimelntervalManualDiscretization described in 4.3.4.
The looped parameters IntervalStart, IntervalEnd, StartIncExc, EndIncExc, and
Map To. again specify a mapping to be performed. If an input value does not be-
long to any interval, it is mapped to the value Default Value. The TargetAttribute
needs to be of type ordinal.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTargetAttribute BA IN | inherited, type: ORDINAL
IntervalStart A% IN “looped”, lower bound of interval
IntervalEnd A% IN “looped”, upper bound of interval
MapTo A% IN value to map time interval to
StartIncExc \% IN one of “I” and “E”

EndIncExc \% IN one of “I” and “E”

DefaultValue \% IN value if no mapping applies
TimeFormat v IN ORACLE specific time format
TheOutputAttribute BA OUT | inherited

EquidistantDiscretizationGivenWidth

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals with given width Interval Width starting at StartPoint. The first
and the last interval cover also the values out of range.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
StartPoint \% IN optional

Interval Width A% IN a positive real number
ClosedTo A% IN | one of LEFT or RIGHT
TheOutputAttribute BA OUT | should be categorial

EquidistantDiscretizationGivenNoOfIntervals

A discretization operator. Numeric attributes are discretized and the output is a
categorial attribute. This operator divides the range of TheTargetAttribute into
the given number of intervals NoOfIntervals with the same width. The first and
the last interval cover also the values out of range. Values of TheOutputAttribute
can be specified in the parameter Label.

80CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
NoOfIntervals A% IN | integer

ClosedTo A% IN | one of LEFT or RIGHT
Label V List IN | optional
TheOutputAttribute BA OUT | should be categorial

EquifrequentDiscretizationGivenCardinality

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals with given Cardinality (number of examples whose values are in
the interval). The first and the last interval cover also the values out of range.
CardinalityType decides how the parameter Cardinality is to be interpreted.
Values of TheOutputAttribute can be specified in the parameter Label (this makes
sense only if CardinalityType is RELATIVE).

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN inherited

TheTarget Attribute BA IN | must be numeric
Cardinality Type A% IN | ABSOLUTE or RELATIVE
Cardinality v IN | positive

ClosedTo A% IN | one of LEFT or RIGHT
Label V List IN | optional
TheOutputAttribute BA OUT | should be categorial

EquifrequentDiscretizationGivenNoOfIntervals

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into the given number of intervals NoOfIntervals. The intervals have the same
cardinality (number of examples with values within the interval). The first and
the last interval cover also the values out of range. Values of TheOQutputAttribute

can be specified in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
NoOfIntervals A% IN | positive integer > 1
ClosedTo A% IN | one of LEFT or RIGHT
Label V List IN | optional
TheOutputAttribute BA OUT | should be categorial

UserDefinedDiscretization

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute

4.3. OPERATORS AND THEIR PARAMETERS 81

into intervals according to user given cutpoints TheCutpoints, which is a list of
values which each give a cutpoint for the intervals to be created. The cutpoints
must be given in ascending order. Values of TheOutputAttribute can be specified
in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | must be numeric
TheCutpoints A% IN see text

ClosedTo \% IN one of LEFT or RIGHT
Label V List IN | optional
TheOutputAttribute BA OUT | should be categorial

ImplicitErrorBasedDiscretization

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals by merging subsequent values with the same majority class (or
classes) given in TheClassAttribute. TheClassAttribute contains the labels of an
example as in a Machine Learning setting. The resulting intervals minimize the
classification error. If FullMerge is set to YES, then an interval with two or more
majority classes is merged with its neighbour, if both intervals share the same
majority class. The parameter SampleSize gives a maximum number of learning
examples for the external algorithm.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
ClosedTo A% IN one of LEFT or RIGHT
FullMerge A% IN | one of YES or NO
SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

ErrorBasedDiscretizationGivenMinCardinality

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals with cardinality greater or equal to MinCardinality. MinCardinal-
ity Type decides if MinCardinality values are read as absolute values (integers)
or relative values (real, between 0 and 1). TheTargetAttribute is divided into
intervals with respect to TheClassAttribute, but unlike the implicit discretiza-
tion, intervals with single majority class are further merged if they do not have
the required cardinality. This will increase the classification error. TheClassAt-
tribute contains the labels of an example as in a Machine Learning setting. The
parameter SampleSize gives a maximum number of learning examples for the
external algorithm.

82CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
MinCardinality Type A% IN | ABSOLUTE or RELATIVE
MinCardinality A% IN | positive

ClosedTo A% IN | one of LEFT or RIGHT
SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

ErrorBasedDiscretizationGivenNoOfInt

A discretization operator. Numeric attributes are discretized and the output is a
categorial attribute. This operator divides the range of TheTargetAttribute into
at most NoOfIntervals intervals. TheTargetAttribute is divided into intervals
with respect to TheClassAttribute, but unlike the implicit discretization, if the
number of interval exceeds NoOflIntervals, intervals are further merged. This
will increase the classification error. TheClassAttribute contains the labels of an
example as in a Machine Learning setting. Values of The OQutputAttribute can be
specified in the parameter Label. The parameter SampleSize gives a maximum
number of learning examples for the external algorithm.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
NoOfIntervals A% IN | positive integer > 1
ClosedTo A% IN | one of LEFT or RIGHT
Label V List IN | optional

SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

GroupingGivenMinCardinality

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator groups values of TheTargetAttribute by iteratively merging in each
step two groups with the lowest frequencies until all groups have the cardinality
(number of examples with values within the interval) at least MinCardinality.
The algorithm has been inspired by hierarchical clustering. MinCardinality Type
decides if MinCardinality values are read as absolute values (integers) or relative
values (real, between 0 and 1).

4.3. OPERATORS AND THEIR PARAMETERS 83
ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | must be numeric
MinCardinality Type A% IN | ABSOLUTE or RELATIVE
MinCardinality A% IN | positive
TheOutputAttribute BA OUT | should be categorial

GroupingGivenNoOfGroups

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOQutputAttribute, which must be categorial. This
operator groups values of The TargetAttribute by iteratively merging in each step
two groups with the lowest frequencies until the number of groups NoOfGroups
is reached. The algorithm has been inspired by hierarchical clustering. Values

of TheOutputAttribute can be specified in the parameter Label.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTargetAttribute BA IN | must be numeric

NoOfGroups A% IN positive integer

Label V List IN optional

TheOutputAttribute BA OUT | should be categorial
UserDefinedGrouping

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOQutputAttribute, which must be categorial. This
operator creates groups of TheTargetAttribute according to specifications given
by the user in TheGroupings, which is a list of values. Each of the values in
the list in turn is a String that lists values of TheTargetAttribute which should
be grouped together, separating them with a comma. Values not specified for
grouping retain their original values. Values of TheOutputAttribute can be spec-
ified in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | must be numeric
TheGroupings V List IN | see text

Label V List IN optional
TheOutputAttribute BA OUT | should be categorial

UserDefinedGroupingWithDefault Value

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOQutputAttribute, which must be categorial. This
operator creates groups of TheTargetAttribute values according to specifications
given by the user in TheGroupings, which is a list of values. Each of the values in
the list in turn is a String that lists values of TheTargetAttribute which should

84CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

be grouped together, separating them with a comma. Values not specified for
grouping are grouped into default group Default. Values of TheQutputAttribute

can be specified in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | must be numeric
Default A% IN | default group

Label V List IN optional
TheOutputAttribute BA OUT | should be categorial

ImplicitErrorBased Grouping

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into groups with the same
majority class (or classes) given in TheClassAttribute. If FullMerge is set to yes,
then a group with two or more majority classes is merged with a group that
has the same majority class. The resulting grouping minimizes the classifica-
tion error. TheClassAttribute contains the labels of an example as in a Machine
Learning setting. The parameter SampleSize gives a maximum number of learn-
ing examples for the external algorithm.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
FullMerge A% IN | one of YES or NO
SampleSize v IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

ErrorBasedGroupingGivenMinCardinality

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into groups with the cardi-
nality above the given threshold MinCardinality. MinCardinality Type decides if
MinCardinality values are read as absolute values (integers) or relative values
(real, between 0 and 1). The grouping is performed with respect to TheClas-
sAttribute, but unlike implicit grouping, groups with a single majority class are
further merged if they do not have the required cardinality. This will increase
the classification error. TheClassAttribute contains the labels of an example as
in a Machine Learning setting. The parameter SampleSize gives a maximum
number of learning examples for the external algorithm.

4.3. OPERATORS AND THEIR PARAMETERS 85
ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN must be categorial
SampleSize A% IN | optional; positive integer
MinCardinality Type A% IN | ABSOLUTE or RELATIVE
MinCardinality A% IN | positive
TheOutputAttribute BA OUT | should be categorial

ErrorBasedGroupingGivenNoOfGroups

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into at most NoOfGroups
groups. The grouping is performed with respect to TheClassAttribute, but un-
like the implicit discretization, if the number of groups exceeds NoOfGroups,
groups are further merged. This will increase the classification error. Values of
TheOutputAttribute can be specified in the parameter Label. TheClassAttribute
contains the labels of an example as in a Machine Learning setting. The param-
eter SampleSize gives a maximum number of learning examples for the external
algorithm.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
NoOfGroups A% IN | integer > 1

Label V List IN optional

SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

4.3.5 Other Operators
ComputeSVMError

A special evaluation operator used for obtaining some results for the regres-
sion SVM. Values in TheTarget ValueAttribute are compared to those in The-
PredictedValueAttribute. The average loss is determined taking the asymmet-
ric loss function into account. That is why the SVM parameters are needed
here as well. Note that they must have the same value as for the operator
SupportVectorMachineForRegression, which must have preceded this evalu-
ation operator in the chain.

86CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetValueAttribute BA IN | actual values
ThePredictedValueAttribute BA IN | predicted values
LossFunctionPos A% IN (same values
LossFunctionNeg A% IN as in SVM-
Epsilon \Y% IN ForRegression)
SubgroupMining

A special operator without output on the conceptual level. The output of the
algorithm is a textual description of discovered subgroups which will be printed
to the compiler output (log file). The operator is only applicable to a table which
is suitable for spatial subgroup discovery. Thus, ThePredictingAttributes must
only contain categorial data. Therefore only features with a finite (and small)
number of distinct values should be selected.

TheTargetAttribute and TheKey must belong to ThelnputConcept; TheKey
must refer to the primary key column. ThePredictingAttributes are used to learn
from. TargetValue is one value from The TargetAttribute. SearchDepth limits the
search for generating hypotheses. MinSupport and MinConfidence give minimum
values between 0 and 1 for support and confidence of the generated subgroups.
NumHypotheses specifies the number of hypotheses to be generated. RuleClus-
ters is a boolean parameter specifying whether or not clustering should be per-
formed on the generated rules.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN

TheKey BA IN
ThePredictingAttributes | BA List IN

TargetValue A% IN | from TheTargetAttribute
SearchDepth A% IN | positive integer
MinSupport A% IN | real between 0 and 1
MinConfidence A% IN | real between 0 and 1
NumHypotheses Vv IN | positive integer
RuleClusters A% IN | one of YES, NO

Chapter 5

The Case Repository

One of the basic ideas behind MiningMart is the aspect of sharing knowledge
about successful cases. The MiningMart project has set up a central web plat-
form which allows the public exchange and documentation of exported cases.
The platform makes use of a special software called InfoLayer. This chapter
describes how the platform can be used to benefit from other users’ work and
to let others benefit from one’s own work.

The web address for the case base is:
http://kissen.cs.uni-dortmund.de:8080/mmart/index.html

5.1 The Internet Presentation of Cases

As soon as an efficient chain of preprocessing has been found, it can easily
be exported and added to an Internet repository of best-practice MiningMart
cases. Only the conceptual meta-data is submitted, so even if a case handles
sensitive information, as is true for most medical or business applications, it is
still possible to distribute the valuable meta-data for re-use, while hiding all the
sensitive data and even the local database schema.

To support users in finding the most relevant cases, their inherent structure
is exploited. An according Internet interface is accessible that visualizes the
conceptual meta-data. It will be possible to navigate through the case-base and
to investigate single steps, to see which operators were used on which kind of
concepts. The Internet interface reads the data directly from the M4 tables in
the database, avoiding additional efforts and redundancies.

Additionally to the data explicitly represented in M4, a business level has
been added. This level aims at relating the case to business goals and to give sev-
eral kinds of additional descriptions, like which success criteria were important
for the case. This allows other users to easily relate the work done in one case
to their own goals, rather than getting too much involved in technical details at
an early stage. Figure 5.1 shows the ontology of the business level.

To use the internet case repository, please use an ordinary web browser

87

88 CHAPTER 5. THE CASE REPOSITORY

‘ DomainUnderstanding | ‘ ProblemDescription ‘

ConceptualDataModel ‘Pre rocessingDescription
‘ B ‘ Problem ‘ 2 < 2 ‘

Goal

BusinessDomain -

|::| PreprocessingChain
Application | ApplicationDescription |

DataUnderstanding

BusinessType
SuccessCriteria ‘ DataFExplorationRemark
ApplicationType MethodSelection
Evaluation

Figure 5.1: The ontology of the business layer, used to describe M4 cases in business
terms.

and go to the address given at the beginning of this chapter. You can click
through the metadata of the cases which are already there. The business level
descriptions can be found on the same page and reached via their links to the
cases present.

The following sections describe what to do if you have found a case that you
would like to download and modify in your own MiningMart system, and what
to do if you want to contribute a case to the internet repository.

5.2 How to download a case

In the InfoLayer there is a section called “Downloadable Case”. Here all cases
in the repository are listed. If you click on the one you chose, you get a short
overview description of the case together with a file. You need to download this
file (usually the extension .m4 is used to mark it as a MiningMart file).

Using your MiningMart system, you can find the menu item “Import” in
your “File”’-menu. You are then asked whether you would like to import only
the conceptual level, or the relational level, too. Usually you will only want to
import the conceptual level, especially when you have downloaded a case from
the internet repository because they include only the conceptual level. After
this, you are prompted with a file browsing dialogue. Choose the downloaded
file. Then you can give a name to the case you are about to import. Please wait
until all M4 objects are imported.

At this moment, you have access to the conceptual level of the case. If
you want to execute the case or a modified version of it, you now have to
link the concepts of type DB to your own database tables or views. This may
mean that you have to adjust the exact form of concepts to the structure of

5.3. HOW TO DOCUMENT A CASE 89

your database objects, or that you have to insert additional steps to the case
which bring your data into a suitable format. For every concept, use the concept
editor and its “connect”-function as explained in section 3.4. Then continue with
the relationships between the concepts, if there are any. Once these items are
connected to your database objects, you can continue by compiling the steps or
making adjustments to the case.

5.3 How to document a case

For the documentation of your case, which is especially important if you want
to publish its conceptual level in the internet case repository, you have two
basic possibilities. First there exists a documentation or description field for
every step, chain, concept, baseattribute etc. which can be edited directly in
the HCI, that is, in the concept editor and the case editor. Entries made here
are stored together with the metadata in M4 which means that they will be
available in the InfoLayer software should the case be published. However, these
documentations allow only to describe the M4 objects that make up the case. If
the more general aspects of a case (its goal, way of processing, success criteria
etc.) are to be documented, this can be done using the InfoLayer software on
the MiningMart webpages if the case has been uploaded.

The next subsection describes how to upload a case to the MiningMart repos-
itory. Let us assume that this has already been done. Then the M4 objects of
your case are present in the InfoLayer. You would be given a user name and
password which allows you to use the editing functionality of the InfoLayer soft-
ware. Click on “Login” at the low end of the left-hand side navigation bar at the
web address given above (under “Administration”). Enter your user name and
password. Afterwards you can add instances to the business level by clicking on
“create instance” in any category. It is a good idea to start with the Business-
LayerObject “Application”. From here you find links to the most important M4
and business level objects for which you can add descriptions using the “edit”
button. Any description you enter will be immediately available over the web
to other users. You may want to refer to figure 5.1 in this document in order to
understand how the different objects in the business level are linked.

The general idea of business level descriptions is that they should allow other
users to understand what the particular purpose of your knowledge discovery
application was. That is, you should abstract away from technical details and
describe what benefits your institution had when applying your case, what the
success criteria were and so on. Other users should be able to decide whether
your type of case is suitable for their own processing needs.

5.4 How to upload a case

If you have developed a successful knowledge discovery case, you have the option
to let other users benefit from your work by publishing its conceptual metadata

90 CHAPTER 5. THE CASE REPOSITORY

in the internet case repository. MiningMart allows you to export all conceptual
metadata into a single file. After you have opened a case, choose “Export” from
the “File” menu. You are then asked whether you would like to export only
the conceptual level, or the relational level, too. Usually you will only want to
export the conceptual level, especially when you want to upload a case to the
internet repository. The relational level would give away the structure of your
business datal

You are then shown a file browsing dialogue with which you can choose
a name for the exported file. It is common to use the file extension .m4 for
exported MiningMart files. Please wait until all M4 objects are exported.

You can now send the exported file to the following email address:
mmcoord@ls8.cs.uni-dortmund.de
The MiningMart team will then import the case into the central repository
database and do some technical tests to check its consistency and executability.
As soon as the case is accepted, its metadata is available on the above web
address via the InfoLayer software.

Then you will be sent a user name and password and are kindly asked to fill
in some general descriptions of your case in the business level of the InfoLayer.
This allows other users to judge the relevance of your case for their own needs.
Please refer to the explanations in section 5.3.

Bibliography

[KVZ00]

[KVZ01]

[LR02]

[MS02]

[MS03]

[RZ01a]

[RZO1b]

[VKZDO1]

Jorg-Uwe Kietz, Anca Vaduva, and Regina Ziicker. Mining Mart:
Combining Case-Based-Reasoning and Multi-Strategy Learning into
a Framework to reuse KDD-Application. In R.S. Michalki and
P. Brazdil, editors, Proceedings of the fifth International Workshop
on Multistrategy Learning (MSL2000), Guimares, Portugal, May
2000.

Jorg-Uwe Kietz, Anca Vaduva, and Regina Ziicker. MiningMart:
Metadata-driven preprocessing. In Proceedings of the ECML/PKDD
Workshop on Database Support for KDD, September 2001.

Bert Laverman and Olaf Rem. Description of the M4 Interface used
by the HCI of WP12. Deliverable D12.2, IST Project MiningMart,
IST-11993, 2002.

Katharina Morik and Martin Scholz. The MiningMart Approach. In
Workshop Management des Wandels der 32. GI Jahrestagung, 2002.

Katharina Morik and Martin Scholz. The MiningMart Approach to
Knowledge Discovery in Databases. In Ning Zhong and Jiming Liu,
editors, Handbook of Intelligent IT. I0OS Press, 2003. to appear.

Regina Ziicker. Description of the m4-relational metadata-schema
within the database. Deliverable D7a, IST Project MiningMart,
IST-11993, 2001.

Regina Ziicker. Description of the metadata-compiler using the m4-
relational metadata-schema. Deliverable D7b, IST Project Mining-
Mart, IST-11993, 2001.

Anca Vaduva, Jorg-Uwe Kietz, Regina Ziicker, and Klaus R. Dit-
trich. M4 — the MiningMart meta model. Technical Report ifi-
2001.02, Institute for Computer Science, Univ. Ziirich, 2001.

91

