Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
User Guide — Draft

The Mining Mart User Guide
Timm Euler, Detlef Geppert, Olaf Rem, Martin Scholz

Dortmund, January 20, 2004

Contents

1 The
1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3 The

3.1
3.2

3.3

3.4

Philosophy of MiningMart
The MiningMart approach
Basic notions in MiningMart

Installing the MiningMart system

General issues and downloading
Preparing the database.,
Configuring the system
Plugins
Upgrading from older versions
Remarks L
Appendix: List of operators that use external algorithms

Human Computer Interface

Introduction L
Main Application oL o
3.21 Getting started L oL oo
3.2.2 Main functionality
3.2.3 Closing the application
The Concept Editor
3.3.1 Using the Concept Editor
The Chain Editor
3.4.1 Overview of Functionality
34.2 Insertingachain
343 Insertingastep
3.4.4 Changing properties
3.4.5 Editing the step parameters
3.4.6 Changing Positions
3.4.7 Selecting objects in the graph view
3.4.8 Deleting objects
3.49 Connecting stepso oo
3.4.10 Mergestepstoachain
3.4.11 Unmerge subchains
3.4.12 Cut, Copy, Paste

4 Compiler Constraints and Operator Parameters

4.1 What this chapterisabout
4.2 Compiler constraints on metadata
4.2.1 Naming conventions
4.2.2 Relations
4.3 Operators and their parameters
4.3.1 Generalissues.
4.3.2 Concept operators
4.3.3 Feature selection operators
4.3.4 Feature construction operators
4.3.5 Other Operators

5 The Case Repository

5.1 The Internet Presentation of Cases
5.2 Howtodownloadacase
5.3 How to document acase
54 Howtouploadacase.

CONTENTS

Chapter 1

The Philosophy of
MiningMart

In this chapter you will learn about the basic ideas behind MiningMart. Its
different components and the way they interact will be explained. Basic notions
that will be needed for any MiningMart session are presented. This will also
help you to understand this document and any other documents related to
MiningMart.

MiningMart is a system that supports the development, documentation and
re-use of results in knowledge discovery. It is assumed that you are familiar with
general concepts in Knowledge Discovery (Data Mining). However, we give a few
informal definitions here to provide a common understanding. More information
about Data Mining can be found on the MiningMart webpages:
http://mmart.cs.uni-dortmund.de

e The Knowledge Discovery Process refers to the technical steps of data
acquisition, data cleaning, data preparation as well as data mining and
model testing.

e Data Mining is the step in the knowledge discovery process where a Ma-
chine Learning algorithm is applied to learn a model which is used to make
predictions on new data.

e Preprocessing comprises all steps that are undertaken in order to bring the
data into a format that is accessible for data mining. The result of pre-
processing is the input for data mining without any further modifications.
The input for preprocessing is the data as it is stored in a data warehouse
or even the operational database of an institution.

Section 1.1 gives an overview of the MiningMart approach to the knowledge
discovery process. In section 1.2, basic terms that are used in MiningMart are
defined and explained. Those terms will be used everywhere in the MiningMart
system and documentation, so it is a good idea to familiarize yourself with them.

5

6 CHAPTER 1. THE PHILOSOPHY OF MININGMART
1.1 The MiningMart approach

MiningMart provides support for knowledge discovery applications. Thus the
system is aimed at those people in an institution who actually work with the
institution’s data and process it in various ways in order to gather statistics
or other higher-level information. While the system provides an intuitive ac-
cess to data and easy handling of processing steps, users should have a certain
knowledge about how their data is stored before the application of MiningMart.

MiningMart works with relational databases. It assumes that all input data
is given in tables in a relational database and its output are new tables in this
database. It also stores its own data in relational tables. Thus, there are no
limitations to the amount of data that MiningMart can handle.

Referring to the definitions at the beginning of this chapter, MiningMart
supports the whole knowledge discovery process but focusses clearly on pre-
processing. That is, the system provides a few common data mining algorithms
which can be applied directly from the system, but its main value is the support
for the technical steps that are needed to bring the data into a format which can
be used for data mining. Like the input, the output of the system is a number
of relational database tables, but in the output tables the data is stored in a
representation suitable for data mining. Thus, you can use your favourite data
mining algorithm easily because the input data for it is stored in a table in your
database in exactly the right format after the application of MiningMart.

MiningMart supports preprocessing by applying a number of data process-
ing steps to its input. Each step is graphically represented in the MiningMart
workspace. The complete sequence of steps is stored in the database and can
also be exported to other sites where MiningMart is in use. In this way, a docu-
mentation of the whole knowledge discovery process is achieved. All the details
of a discovery process can be easily saved for later usage, can be modified using
a graphical user interface, and can be transferred from one discovery process to
another.

MiningMart uses a layer of abstraction of the actual data to model the
knowledge discovery process. This abstraction allows to publish successful dis-
covery applications for the benefit of other users, while sensitive details are
hidden. This means that you can benefit easily from the work done by other
MiningMart users. The MiningMart web pages provide a central platform for
the exchange of successful discovery processes, called cases (see section 1.2). On
this platform, such cases are described both in terms of their relevance to a
business and in technical terms, which allows you to find cases which are similar
to the application you have in mind. You can then download such cases into
your MiningMart system and make the necessary modifications towards your
own data.

The following section describes these central ideas in more detail by explain-
ing the basic MiningMart terminology. Once you have become familiar with
those basic notions, you can start your own MiningMart application easily.

1.2. BASIC NOTIONS IN MININGMART 7

1.2 Basic notions in MiningMart

This section explains several terms that are used throughout the MiningMart
system and its documentation. You can use this section for general reference.
Where words are printed in italics, they have their own entry in this section.

Business data This is the data in which knowledge is to be discovered. It
must be stored in a relational database. It can consist of any number of tables,
views and relations between them. The MiningMart system assumes that all
data is stored in one database schema; if this is not the case, a single schema
with database links to the needed tables should be set up (please refer to the
documentation of your DBMS).

Metadata This is “administrative” data which MiningMart uses to store in-
formation about the business data as well as about the knowledge discovery
process. Metadata can be stored in a separate database schema (which can live
in a separate database) from the business data, or in the same schema. Mining-
Mart uses a fixed data model for its metadata, which is called M4 (MiningMart
MetaModel).

M4 (MiningMart MetaModel) This is the fixed data model in which Min-
ingMart stores its own information, called Metadata. M4 consists of several
parts, but it is not important for users of MiningMart to know much about it.

Conceptual level As explained in section 1.1, MiningMart uses a layer of
abstraction of the business data in order to hide sensitive details from other
MiningMart users. This layer is the conceptual level. Its name stems from the
fact that on this level, the data is described in everyday concepts rather than in
terms of its technical representation. For example, many institutions have got
data about their customers. So it could make sense to introduce the common
concept “Customer” on the conceptual level, where it represents the data about
customers. Information about this level forms part of the Metadata described
above.

The conceptual level is the most important one for MiningMart users, be-
cause all the data processing is described in terms of the conceptual level. That
is, whenever the customer data in the above example is accessed, this is done
via the concept “Customer”. In contrast to this level, there is the relational
level which also forms part of the Metadata, but which contains less abstract
information about the business data. Both levels must be connected (see below).

Relational level On this level, the business data is described in terms of
its technical representation. This means that the relational level (being part
of the Metadata) stores exact information about the tables and columns that
contain the business data. While a concept such as “Customer” may be rather
common in several institutions, the way the data about customers is organised

8 CHAPTER 1. THE PHILOSOPHY OF MININGMART

will be different in each institution. Therefore, sharing MiningMart applications
(as explained in section 1.1) makes use only of the conceptual level.

Connections (of the conceptual and relational level) Information about
a concept like “Customer” and about the specific business data table contain-
ing customer data must be linked. Thus, there exist connections in Mining-
Mart between the conceptual and the relational level. Concepts are connected
to columnsets, features are connected to columns (see the definitions of these
terms).

There are two ways to create a connection: the user can create one, or the
MiningMart compiler can do that. The central idea is that there are some con-
cepts, called DB concepts, that represent the input business data for the case. For
these, their connection to the right ColumnSets is defined by the user (with the
help of the concept editor). They must be set up by a user who is familiar with
the information needed for the relational level, that is, the exact information
about the tables and columns in the business data.

Other concepts, called MINING concepts, represent business data that was
created during the execution of a MiningMart step. This execution is done by the
compiler; thus, the compiler creates not only the data but also the connections
to the concepts and features.

Case A case is a knowledge discovery process, or data preprocessing appli-
cation, as modelled in MiningMart. Users work on one case at a time. A case
contains the processing steps which may be organised in chains. Cases can be
exported and imported. They are the unit of knowledge sharing: the web plat-
form mentioned in section 1.1 lists successful cases (knowledge discovery or data
preprocessing applications) which were exported by other MiningMart users and
can be downloaded and imported. (Only the conceptual level is ex- or imported;
after import, you need to connect that information to the relational level.)

Step A step represents a single processing task in a case. In each step, ex-
actly one operator is applied. Steps are represented by icons in the MiningMart
workspace (the case editor). Steps are applied to the data in a certain user-
defined order, where the input of one step depends on the output of the previ-
ous one. These dependencies are represented in the MiningMart workspace by
arrows. They form a Directed Acyclic Graph (DAG), that is, there must not be
any cyclic dependencies. You can give explanatory names to the steps of a case.

Chain Any number of steps can be organised into chains. This provides a
means to organise large cases with many steps so that the functions performed
in that case become clearer. Comprising several steps which together perform
some definable task (like data cleaning, for example) gives a better overview of
the case. You can give explanatory names to the chains of a case.

1.2. BASIC NOTIONS IN MININGMART 9

Operator An operator performs a single, precisely defined task on the busi-
ness data. Each operator is applied in exactly one step. Each operator has pa-
rameters which define its input and output in terms of the data on the conceptual
level. There are two basic kinds of operators: those whose output is a concept
and those that add an extra feature to their input concept. A few operators
do not belong to either of these categories. Examples for tasks that operators
perform are the replacement of missing values in the data that belongs to the
input concept, or the creation of a new view on the data from the input concept,
or the selection of important features from the input concept, etc.

A list of all operators with their technical description and details can be
found in chapter 4.

Parameter Parameters are related to operators; they define their input and
output on the conceptual level. Some parameters that many operators have are:
TheInputConcept, which defines the concept whose data a certain operator uses
as input; TheOutputConcept or TheOutputAttribute, which define the output
of an operator; etc. For every operator, its parameters are listed in detail in
chapter 4.

Concept A concept in MiningMart represents an everyday notion for which
there exists data in the database. For example, as mentioned earlier, a concept
“Customer” may exist in MiningMart and refer to one or more tables in the
database that contain data about customers. Concepts have features which de-
fine them. The MiningMart system provides a concept editor to create, edit and
delete concepts and their features. Concepts belong to the conceptual level and
define the input for every step (or its operator, more precisely). Concepts are
connected to ColumnSets which represent the database contents on the relational
level.

There are two types of concepts: DB and MINING. The first type are con-
cepts whose data exists before any MiningMart step is executed. That is, these
concepts represent the input data for the case. All MINING concepts, in con-
trast, are not connected to any data before the execution (called compilation)
of a MiningMart step. The MiningMart compiler creates the data that belongs
to the MINING concepts and connects it to them. See also under compiler and
connection.

Feature A feature is an attribute of a concept. For example, a concept “Cus-
tomer” may have the features “Age”, “Income”, “Address”, etc. A concept
“Product” may have the features “Price”, “Number of Sales” and others. There
exist two kinds of features in MiningMart: BaseAttributes and MultiColumn-
Features. Like concepts, features can be parameters.

BaseAttribute A BaseAttribute is a feature. It represents a single attribute of
the MiningMart concept it belongs to. BaseAttributes are connected to Columns
which represent a database column on the relational level. For example, the

10 CHAPTER 1. THE PHILOSOPHY OF MININGMART

concept “Customer” may have a BaseAttribute “Age” which is connected to a
column of a table in the database called “cust_age”.

MultiColumnFeature A MultiColumnFeature is a feature. It represents a
conceptual bundle of attributes of a concept. Thus, it consists of at least two
BaseAttributes. For example, a MultiColumnFeature “Address” may be used
to bundle the BaseAttributes “Street”, “City” and “TelephoneNumber”. Mul-
tiColumnFeatures are a conceptual device in MiningMart which may be used
to structure the concepts in order to give a more intuitive view on the business
data.

Relation A relation represents a database link between two tables. It can
either be a l:n-relation or an n:n-relation. Relations in MiningMart store the
information about foreign keys and primary keys as well as (optional) cross
tables so that the operators can use this information. Thus, relations can be
parameters like concepts and features. As such, they should belong to the con-
ceptual level; however, since they also store database-related information, they
might also be said to belong to both levels (conceptual and relational).

ColumnSet ColumnSets are MiningMart objects that directly represent a
database table or view. As such, they belong to the relational level. Each ColumnSet
is connected to exactly one concept (but a concept may have more than one
ColumnSet). Each ColumnSet contains one or more Columns.

Column A Column is a MiningMart object that directly represents a column
in a database table or view. Columns belong to the relational level. Each Column
belongs to exactly one ColumnsSet, but a ColumnSet can contain any positive
number of Columns.

Compiler, compilation The MiningMart compiler performs the central task
in MiningMart: it executes operators. That is, it reads the input parameters of an
operator, applies the operator-specific processing to the data that corresponds
to (is connected to) the input, and creates the output data and connects it to
the concepts or features that are specified by the operator’s output parameters.
The compilation of any step depends on the compilation of previous steps if a
step uses input that is the output of a previous step.

The compiler can be executed in two modes: lazy and eager. This only
makes a difference if there are concepts in the case that have more than one
ColumnSet, which can happen as the result of a segmentation operator (see
sections 4.3.2, 4.3.2 and 4.3.2 in chapter 4). In lazy mode, the compiler executes
the operator-specific task only on the first of the ColumnSets that belong to the
input concept of that operator, which saves time for testing. For full compilation,
the eager mode is needed.

1.2. BASIC NOTIONS IN MININGMART 11

MiningMart workspace This is what you see when MiningMart is started:
the graphical user interface which contains the concept editor and the chain
editor. See chapter 3.

Concept editor In this window you can create, view, or delete concepts and
their relations on both the conceptual and relational level. This editor is de-
scribed in detail in chapter 3.3.

Chain editor In this window you can create, view, or delete steps; you can
arrange them into chains and define the input and output parameters of their
operators. The chain editor shows the currently defined sequence of steps, with
their dependencies represented by arrows. More details can be found in chapter
3.

Export Cases can be exported with the export function. This will store all
the Metadata that defines the case into a single file. This file can then be used
for importing the case into another database (by another user, for example). See
also chapter 5.

Import After exporting, a case can be imported into a new database. After im-
port, all the Metadata of the case is available; however, the connections between
the conceptual and relational level must still be made (see under connections).
See also chapter 5.

InfoLayer InfoLayer is the name of the software that is used to run the web
platform for the exchange of cases. This platform is mentioned in section 1.1.
The InfoLayer software allows to browse through the MiningMart objects that
define a case. At the same time, it allows to link descriptions to these objects
which explain the case to a general audience. These descriptions form the so-
called business layer. In the instance of the InfoLayer running on the MiningMart
web pages, the business layer objects and the MiningMart objects linked. This
instance also has a section called “Downloadable case” where ezported case files
can be put for the benefit of other MiningMart users.

More on the InfoLayer-based web platform for MiningMart can be found in
the chapter 5.

12

CHAPTER 1. THE PHILOSOPHY OF MININGMART

Chapter 2

Installing the MiningMart
system

2.1 General issues and downloading

This chapter contains all installation procedures for the different parts of the
MiningMart system. If you are already running an older version of MiningMart
please skip to section 2.5 to learn about upgrading.

This chapter assumes that there is already an Oracle database set up with
one schema (user) for storing your business data to be processed, and with
another user for storing the metadata. Please do not try to choose the same
database user for these two tasks with version 0.21 of the system!

The first step is to download
e the platform independent base system archive
e the Java archive GraphView.jar
e the Java archive hotdraw jar

from http://mmart.cs.uni-dortmund.de/downloads/

The platform dependent archives contain binaries from other authors and are
not publically available. If you want to use these tools then you should download
them directly from the author’s pages (see 2.4). The two Java archives have to
be downloaded separately because of their license.

Please unzip the platform independent base system to the directory where
you want to have the system installed. On Unix or Linux you may use the
command unzip <filename>. To run the system no write permission to the target
directory is necessary. Especially on multi-user systems it is probably a good
idea to install the base system just once for read-only accesses.

Unpacking the archive will create the sub-directory MiningMart contain-
ing the system files. In the remainder of this section we will assume that you

13

14 CHAPTER 2. INSTALLING THE MININGMART SYSTEM

have already downloaded and unpacked the system. The directory MiningMart
will be referred to as the <base_directory>. The next step is to put the files
GraphView.jar and hotdraw.jar, to the directory <base_directory>/lib
Then the database needs to be prepared by installing a metadata schema
and executable code like stored procedures. This is described in section 2.2.
Finally you should refer to section 2.3 on how to configure the system.

2.2 Preparing the database

The MiningMart system generally handles two database schemas (users). The
first one is called the business data schema. It holds the data you want to
analyse and preprocess with the MiningMart system. The second schema, the
so called M/ schema holds metadata information about your business data and
your preprocessing chains. You should not only reserve sufficient space on disk
for your source business data, but account some extra space for materializing
some of the views. For the M4 schema, on the other hand, 100 MByte should
be sufficient for normal usage. In principle it should be no problem to split the
schemas to two different Oracle databases or to use just one schema, referenced
for both purposes. Please note, that this has never been tested! The standard
installation foresees a separate schema for M4 and business data in the same
database.

Preparing the database for MiningMart means to create the M4 schema in
the database, in the first place. This schema consists of relational tables and a
sequence. M4 is exclusively stored as the M4 user.

Additionally some parts of the M4 compiler make use of executable code
stored directly in the business data schema. For reasons of convenience this
code is installed by the same script as the M4 schema.

To run the installation script please change to the directory <base_directory> /M4
and edit the file install.sh on Unix/Linux machines, or install.bat on Windows
platforms:

1. The database connection information must be entered for the M4 schema.
Please adjust the variables MAUSER (database user of M4 schema), M4PASS
(password), and M4SID (database server). Then you should change the ac-
cording variables for the business schema, namely BDUSER, BDPASS, and
BDSID.

2. If your system does not recognize the commands sqlplus and loadjava, then
please set the variable to the absolute path to these ORACLE tools. You
should find them in a subdirectory of your ORACLE software.

3. If you have never installed the metamodel before, you can now type
./install.sh on a Unix or Linux machine, or ./install.bat on Windows to
have it installed. Otherwise, before running the installation, make sure
that no data you might need is still in your previous metamodel, because
such data will be lost during installation. If there are compilation errors
during installation, please try to run the script for a second time.

2.3. CONFIGURING THE SYSTEM 15

If the script exits without errors, then you should have your database prepared
for running the MiningMart system. The next section will teach you how to
configure the system before the first usage.

2.3 Configuring the system

After you have your database prepared you finally just need to set up the start
script to run the system. The file for Unix/Linux users is <mmart.sh>, on Win-
dows platforms please use the file <mmart.bat>. Edit the file relevant for your
platform with a text editor and change the following variable to the values that
apply to your system:

e MM_HOME should be set to the absolute path to the MiningMart base
directory (referred to as <base_directory> throughout this section).

e MM_LOCAL_DIR is a variable that points to the user’s local directory. If
the directory does not exist, then the system tries to create it. The default
value is <home_directory>/.mmart, which should be fine for Unix/Linux
machines. On Windows you can leave the variable unset to have a com-
parable default behaviour, which should work fine, as long as your system
supports home directories at Java level. Alternatively you can set the vari-
able relatively to a user dependent environment variable like HOME, which
is set properly on your machine, or choose an absolute path to a directory
with write privileges for all users.

e The MiningMart system is a Java application with a recommended version
of at least 1.4.2. If your system does not recognize the command java (i.e.
in shells), then you should set the variable JAVA or JAVA_COMMAND to
the executable java binary.

e Finally the system needs access to a JDBC driver. The default driver,
which is part of Oracle 8.1.6 is classes12.zip. You should find this or a
similar driver in your Oracle directory. If you use the same driver, then you
may simply copy this file to <base_directory>/lib (on Unix/Linux symbolic
links will also do). Alternatively you may set the variable JDBC in the start
script to the absolute path to your Oracle JDBC driver.

If you have completed these steps, then you can start the system by running
the start script. Please note, that the database settings are not yet known to
the system, so the first thing you should do after the main screen comes up is to
select “Tools” — “Edit DB settings” from the menu and enter your connection
data. Afterwards you can directly use the system!

2.4 Plugins

The MiningMart system V0.21 supports some specific implementations of Ma-
chine Learning algorithms by implementing a wrapper approach. Currently the

16 CHAPTER 2. INSTALLING THE MININGMART SYSTEM

following tools are supported if put to the directory
<base_directory> /compiler/runtime/bin/<platform>/ :

o mySVM, a Support Vector Machine by Stefan Rueping
For details please refer to
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/
The wrapper expectes the target files mysvm and predict.

e Apriori, implemetation of Bart Goethals
For details please refer to
http://www.cs.helsinki.fi /u/goethals/software/index.html
The wrapper expects the binary apriori.

e (4.5 by Quinlan (SunOS only):
The software may be downloaded at
http://www.cse.unsw.edu.au/ quinlan/
Expected binaries are c4.5 and c4.5rules.

For Unix additional operators are available. Please download the file
MMart_SunOS_plugins.tar.gz from the MiningMart download page.

To enable a smooth integration between preprocessing, learning, and apply-
ing models a new operator called YaleModelApplier has been implemented to
bridge the gap between MiningMart and the Yale learning toolbox. Yale has a
Weka wrapper, offers automatic parameter setting, and powerful feature selec-
tion and construction algorithms on top of common classifiers as provided by
Weka. After preprocessing raw data within your database you might want to
draw a sample fitting in main memory, which can be read directly by a Yale
operator. Then you are able to train your classifiers (or induce some other kind
of model) based on the samples. Finally you may want to apply the model to
unseen data. In this case MiningMart’s ModelApplier can be used to create a
new database view, holding the predictions for the new data.

Yale can be downloaded at
http://yale.cs.uni-dortmund.de/

All you have to make sure to be able to apply a model is that the two
files yale.jar and weka jar, both to be found in Yale’s lib/ directory are in the
CLASSPATH when starting MiningMart.

2.5 Upgrading from older versions

This section is relevant only, if you have old MiningMart cases (before version
0.2) that you still want to use after upgrading the system. If you do not care
about your old cases, then you can simply install the latest system from scratch.
If you have at least M4 version 0.2, then you can backup your cases to XML
files and run the script(s) for upgrading M4 to the current version.

Otherwise you should make sure first, that all of your cases are stored in
the database. The old export files are no longer supported, because they are
based on the Java serialization mechanism, which is highly sensitive to changes

2.6. REMARKS 17

at the implementation level of the M4 interface. The new import/export format
is based on XML.

After you have all your cases in the M4 schema you can delete the old
system’s components outside the database (if not also used by other applica-
tions). Download the new system as described in section 2.1, just do not run
the database installer script! Please download the scripts for upgrading to the
current version instead, which are available at
http://mmart.cs.uni-dortmund.de/downloads/ .

Please run the scripts in this fashion:

sqlplus -user <dbuser>@database_sid @upgrade_to_v0.2.sql>

If you had a version before 0.2 then you should configure the mmart.sh or
mmart.bat script as described in 2.3, start the system and export (backup) the
cases with the new export format. Afterwards you can upgrade M4 to the current
version.

2.6 Remarks

o If you should ever need to change the base directory of the MiningMart
system in version 0.2 or 0.21, then please delete the automatically gener-
ated file properties in the users’ local directories (i.e. <user_home>/.mmart)
before starting the system anew.

e If you want to increase the verbosity of log messages of the M4 interface
on the console there is a variable VERBOSITY in the file properties in the
users’ local directories. Valid values are integers between 0 and 20. 0 means
most verbose, 20 is least verbose. Changing the compiler verbosity level is
not possible in versions 0.2 and 0.21.

e Although the compiler was implemented in Java some operators using
external algorithms are only available on Unix systems. Please refer to
section 2.4 on how to download these external binaries. The compiler itself
was tested for Unix, Linux and Windows2000. A list of operators using
external algorithms can be found in the appendix (section 2.7).

2.7 Appendix: List of operators that use exter-
nal algorithms

e Apriori

FeatureSelectionWithSVM

GeneticFeatureSelection

StatisticalFeatureSelection

SGFeatureSelection

18

CHAPTER 2. INSTALLING THE MININGMART SYSTEM

MissingValuesWithRegressionSVM
MissingValueWithDecisionTree
MissingValueWithDecisionRules
PredictionWithDecisionTree
PredictionWithDecisionRules
DecisionTreeForRegression
SupportVectorMachineForRegression
Segmentation WithKMean
YaleModelApplier

Chapter 3

The Human Computer
Interface

The Human Computer Interface (HCI) provides an easy way to use the Mining
Mart System. It supports you in doing the work described in chapter 1.1 and
integrates all components.

The HCI consists of two main components, the Concept Editor and the
Chain Editor. The Concept Editor allows to create and manipulate concepts
and connect them to the business data. These concepts are inputs for prepro-
cessing operators that can be specified using the Chain Editor. The Chain Editor
provides support in building preprocessing chains which consist of preprocessing
steps.

This chapter first describes the main application which builds the framework
for the Chain Editor and the Concept Editor, its main functionality and how
it connects the Chain Editor with the Compiler. Then it focuses on the two
components Chain Editor and Concept Editor.

3.1 Introduction

The main objective for the Mining Mart system (see Figure 3.1) is to provide
a user-friendly interface for enhanced preprocessing of data for a knowledge
discovery task. The system architecture (see Figure 3.2) consists of several com-
ponents of which the Concept Editor is one. The other major components are:
Chain Editor, Compiler, Mining Mart Meta Model (M4) Schema, M4 Interface,
and Business Data Schema.

The heart of the Mining Mart system is the M4. It stores meta information
about preprocessing steps and data. The M4 Interface provides a Java object
interface to access the M4. The Concept Editor and Chain Editor act closely
together and are both part of the Mining Mart system HCI. They both use the
M4 Interface to manipulate the M4. They provide a user-friendly way to work
with the meta data. The Concept Editor allows you to work with meta data

19

20 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

Bl Miningart - DM_SALES_PREDICTION HE B
File Edit Insert Compile Window Help

lajole(s] ¥#jv]o] [a/ue

DM_SALES PREDICTION |/ 1/ 7 DM_SALES PREDICTION -~ ol

%% 01 DELETEROWS_MISSING
3 02 GELECT_ITEM

03 STR_SEG_SHOP

04 STR_SEG_ITEM

05 WINDOWING

32 06 MULTIRELFCONS

£ 07 LINEARSCALING!

5 08 UINEARSCALING2

5 09 UINEARSCALING3

S 10 BYM_REG

B4l 11 EVALUATE_S\h

=
01 DELETERDWS MISSING

STL.
w1 st irey
53 $TR_SEG_§HOF

04 sm,sgs\)@
=

2 i
w L\Nmséﬂ{«s— 0F MULTIRELFEONS

=

08 LINEARSCALINGZ

=

B
o uumsc}u{s:
W S G

] Cancepts 10 skﬁ@\
i

G Cl's_a-tree
1 EVALUATE. S\

© ® 5 HOLIDAYS
© @O SHOP_SALES
© @ A SHOP_SALES_01_NO_MY
© @ A SHOP_SALES 03_BY_SHOPS
© ® A SHOP_SALES_04_BY_ITEMS
© @ A SHOP_SALES_05_WINDOWED
© @ A SHOP_SALES_0B_HOLIDAYS
@ [Projections
7 Relationships
© ® |S_HOLIDAY

SHOP_SALES
SHOP
WEEK
SALE
TEM

FiK_HOL 1S_NOLIDAY

ADVENT_48_51
SYLVESTER

=

—
(]

This screen shot of the Mining Mart HCI (human computer interface) depicts
three internal windows. The upper and right windows form the Chain Editor;
the lower left window shows the Concept Editor.

Figure 3.1: Screen shot of the Mining Mart HCL.

about business data. You need this information when working with the Chain
Editor for defining preprocessing steps. The Compiler manages the execution of
preprocessing steps. It triggers operators and writes the results back in the M4.

There are various other sources available that provide more information
about the Mining Mart project and the Mining Mart system. A good place to
start is the Mining Mart website ! which offers a good overview of the available
documentation. Here also many documents can be downloaded directly. The
Mining Mart approach is described in [MS03], [MS02], [KVZ01] and [KVZ00].
Further information about the Mining Mart system can be found in [LRO02]
(M4Interface), [VKZDO01] (the Mining Mart Meta Model), the MiningMart final
report (deliverable 20.4) and the technical reports which can be found on the
website.

Lhttp://mmart.cs.uni-dortmund.de/

3.2. MAIN APPLICATION 21

Presentation Layer Business Layer Database Layer
553 _ Oracle
—
= ——
M4 Meta data

e .| e Mavetadats |

Da‘awarehnusa'\A H !
adminisirator % 4———i| MiRelationalModel | |
Concept i i Business
" / 2 ——»i| MaConceptual Model | | Data
\fi’.‘s Business ! i !
3 A - -Case Model ;
o ’ |
S . i i

Java
/ Logic [+
Case e 5] T
Designer il

Case \
Editor /

H W4 Interface

s A 4 lDalasamv\e
UNIX function eall
WD Compiler i Operators
<
Wrapper Learning
Java-Code Return code, Al ith
SaL Functien e

Java, ©

Schematic view of the Mining Mart components. The Concept Editor and Case
Editor are part of the HCI. The M) Interface provides a Java object interface to
the M. The Compiler executes operators and creates resulting tables and views.
The database (Oracle) contains the Mj and the business data.

Figure 3.2: Mining Mart components.

3.2 Main Application

To give a first impression the next subchapter briefly describes the first steps for
starting the HCI and beginning to work with the application. Then the main
functionality of the framework, which contains the both editors, is described
in more detail. This chapter only focuses on the application frame which con-
tains the two editors, the functionality of the Concept Editor is described in
chapter 3.3 and the Chain Editor’s functionality is shown in chapter 3.4.

3.2.1 Getting started

Since version 0.2 of the MiningMart system the HCI is no longer a separate
application, but it is part of a single Java archive, containing the M4Interface,
the M4Compiler, the Case Editor and the Chain Editor. Please refer to chapter 2
on how to set up MiningMart. After configuring the system you should have a
working mmart.sh or mmart.bat file for starting the system. First of all the main
frame of the application can be seen. Five Buttons are enabled: you can create
a new case, open a case from the database to edit or to view only, import a case
from the file system or call the help system. This functionality is also provided
via the menus File -+ New, File - Open and File — Import. The menus and
tool buttons are illustrated in figure 3.3.

Opening a case is only possible if you have already installed a case in the
database or if anyone has worked with the system previously and created a case.
To import a case you need to have a file which is exported with a MiningMart
system. For more details see the subchapter 3.2.2.

22 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

Bl MiningMart

File Edit Insert Compile Window Help

Jelclglel (a|w|ve (x[a]e] v v« H]

Import Case Help
View Case
Edit Case
Create Case

Edit Insert Compile Window Help Edit Insert Compile Window Help

Open & Concept...

= Case to edit...

%8 Close Case [Relation... % Close Case [3, Case to View...
Import 4 Import r

9 Export... 8 Export...

=[] Exit =~ Exit

The figure shows the first active toolbuttons and how to open or create a case
with the file menu.

Figure 3.3: Getting started

3.2. MAIN APPLICATION 23

vi +i - Mg eSS redi o ase ' == x1

File Edit Insert Compile Window Help Tools
[nja[oe]s| [a/w|w|e| (%] o] (e ee B]

o“ @ (|| 5tep 1 - Treat missing values in CDR

Churn Prediction Case
@ .4, Churn Frediction Case

@ 9 Step 5 - Churn Modeling = B i L Z
©- 3 Step 4 - Create derived attributes and cug Segm by taritt Segm by customer Sl incomplets CORs Sel custom ers having miss wals [
@ =9 Step 1 - Treat missing values in CDR
I Sel incomplete CORs
agm by customer

egm by tariff

uild miss wvals estimation
nSearn by 1ariff

nseam by customer

i Sel complete CDRs

3% B9 MrfConstr

i 91 RowselByRandom

‘i 86 RowSelByRandom

L 87 UnionByKey

=%

Build miss v]\s estimation

P
i=H S0 [
UnSegm by tariff Unsegm by customer 86 RowSelByRandom Sel complete CORs [

i Sel customers having miss vals El3
1} SelectMergedAttributes Mergeftributes
1} mergesrtributes fﬂ
© 4 Step 3 - Transpose REYEMUES from trans =z
@ (@ Step 2 - Transpose COR from transactiong xEE‘iﬁ"iﬂ
31 RowselByRandom 3 MrfConstr SelectM ergedfmributes 87 UnionBykey

. u B A A A A A A A A A e
23 (8 2 3 A B = o S EHE S

=]

Both windows of the Chain Editor. The left window is the tree view, the right
one is the graph view.

Figure 3.4: Chain Editor

After you have opened or created a case, three windows are shown. The one
with the title “Concept Editor” belongs to the Concept Editor (see figure 3.13),
the two others to the Chain Editor. For a new case you have to describe the
conceptual model and build a connection to the business database with the
Concept Editor first. Chapter 3.3 explains how to work with the Concept Editor.

One of the two windows which belong to the Chain Editor has as its title
the name of the case and shows all steps in a tree structure (Tree View); the
other has the name of the chain if a node with a chain name is selected or if a
node which is part of the chain is selected. It shows all steps belonging to the
selected chain (Graph View). Figure 3.4 shows the windows of the Chain Editor.
If a new case is created, the first chain has the same name as the case. How
to change a chain name or the name of a node (step) is described in the next
chapter.

3.2.2 Main functionality

The HCI enables you to create and manipulate cases, to export them into a
file or to import such files. It provides menus for using the integrated compo-
nents, which are the Chain Editor, Concept Editor and Compiler. Some menus
and menu entries belong to one component only, others call the corresponding
function for the active editor.

24 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

The following lists the possible global actions and menu entries. After that
every use case is discussed in detail. The results are described, too.

e Create a Case

e Open a Case

e Re-use of Cases

e Manipulating objects
e Inserting an object

e Compile

o Window list

e Help

Create a Case

If you are working as a Case Designer, the main object you have to deal with is
a case. To start working from scratch, you have to create a case first. Figure 3.3
shows how the menu looks like. After clicking the button or selecting the corre-
sponding menu item a window is shown to enter a name for the new case and
to select, if the case is in test mode or if it is final. The window is shown in
figure 3.5.

After pressing the ok- button the new case is created in the database and is
opened in the editors. If the name already exists, a message is shown and you
have to enter a different name. Now you are able to build the conceptual data
model (see chapter 3.3) and to create preprocessing chains (see chapter 3.4).

Open a Case

As mentioned before there are two ways to open a Case. A Case can be opened
for editing or for viewing only. After clicking the button for one of this actions
or after selecting the menu item, you get a window for choosing an existing case
(see figure 3.6). The same kind of window is always used if you need to select an
existing M4Object in the Chain Editor, for example a Concept as an input for
a step or the existing operators to insert a step with this operator into a Chain.
If the case is already opened by another user, it is locked for this action and a
message is shown.

Editing means that you as the case designer can change the case. You can
work with the Concept Editor to manipulate the conceptual data and you can
work with the Chain Editor to change chains, steps, any parameter of a step
etc. In the database a write lock is inserted and nobody else is able to open this
case.

Viewing means that you can only view the case. Every action for changing
something is disabled. Unfortunately this functionality is not supported by the

3.2. MAIN APPLICATION 25

x

Case Mame" |

Mode: [¥] Test
[_] Final

OK Cancel
Eror x|

e Case already exists!

oK

The figure shows the window to create a new Case (first window). The case
designer has to insert a mew name and select, if the case is in test mode or
final. The figure also shows the message if the name already ezists.

Figure 3.5: Create new Case

x

hurn_case_final
rugstore
ales_new
ales_prediction

select cancel

The figure shows a window called data chooser. This kind of window is always
used if the user has to select an existing M4Object. This example shows it for
selecting a case.

Figure 3.6: Select a Case

26 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

Concept Editor in this version; in other words, the conceptual level can be
manipulated even if the case is opened for viewing only. Opening a Case for
viewing will insert a read lock in the data base for this Case. Everybody should
be able to view the case, too, but nobody is able to edit the case. But it is not
possible for one user to open one and the same case twice. If you trie to open a
case a second time, you always get a case locked exception.

Re-use of Cases

An important functional possibility is to reuse a Case. You are able to use a
Case from any other user and to make a Case avaible to other users. The HCI
supports this funtionality with two actions, import a Case and export a Case.
There exist menu items in the file menu and tool buttons for both.

After choosing one of the actions you are asked if you want to import (re-
spectively export) the columns and column sets, too. This only makes sense if
the user who has exported (respectively who is going to import) the Case uses
exactly the same tables for his business data. This may only hold if two case
designers are working in the same company with the same business data and
want to exchange cases. After answering this question the standard java file-
chooser is shown to select or to enter a file. This is shown in figure 3.7. After
selecting a file/ entering a file name the import/ the export starts. During the
import all m4- objects are stored as metadata in the database; afterwards you
are able to open the imported Case as described in chapter 3.2.2.

Another sort of reusability is the import of concepts from other cases in the
database into the currently opened case. Figure 3.8 shows how to do this. After
selecting this menu item you have to select a Case from which you want to
import the concept, and then you have to select a concept. Finally you have to
connect the concept with your business data as descriped in chapter 3.3.1.

Manipulating objects

The menu items for manipulating an object are collected in the menu “Edit”.
Which items are selectable depends on the active editor and sometimes on the
objects which are selected in the active editor. In the first group the menu
items “Delete” and “Properties” are active for both editors, the items “Open”
and “Connections” only for the Chain Editor. The second block of menu items
belongs to the Chain Editor and the third block to the Concept Editor. The
functions are described in the chapters 3.4 for the Chain Editor and 3.3 for
the Concept Editor. Figure 3.9 shows an example. In this picture the Concept
Editor is active and a Concept is selected.

Inserting an object

The menu “Insert” is devided in two parts. The first two items belong to the
Concept Editor and are only enabled if the Concept Editor is active and a
corresponding object is selected. If a concept (a relation) is selected, you can

3.2. MAIN APPLICATION 27

x|
Speichernin: ‘Ij cases-old v| @ @ @ @E

D callcenter.m4 D DrugStoreCase.m4

D callcenter_m4 D exportet1.m4

[} chainPrediction.m4 [} imported.m4

D ChurnCaseFinalVersionWithoutCols.m4 D sales_prediction.m4

[y churnCasewithCols.m4 [testd.md

[} churnCasewithoutCols.M4

1B [»

Dateiname: | |

Dateitypen: | Alle Dateien |

Speichern || Abbrechen |

The standard file chooser of java. The user has to select a file for import or save
a file for export via this window.

Figure 3.7: Java file chooser

insert a Sub Concept (Sub Relation) by selecting the item. Then you get the
property window for concepts (relations), described in chapter 3.3.

The second part contains the menu items “Chain” and “MiningMart Oper-
ator”. Choosing one of these items inserts a sub chain or an operator step in
the selected chain. This functionality is described in more detail in chapter 3.4.

Compile

One important component of the Mining Mart system is the Compiler. The task
of the Compiler is described in chapter 1.2. The menu “Compile” provides vari-
ous calls to the Compiler, parameter settings and some additional functionality.
The menu is shown in 3.10. The following explains the menu items.

e Validate step, Validate all steps: To be sure that the Compiler can
compile a step without errors, you can test if a step or all steps are valid.
The method for validating a step first checks if all parameters are specified
in the property editor for steps and second if the parameters violate their
constraints. If some parameters are missing, the step cannot be compiled
without an error and no compilation will be started. If a constraint is
violated, the compilation of this step may cause an error. But it is also
possible that the compilation runs without an error. You are asked if you
want to start the compilation despite the violated constraint.

28

CHAPTER 3. THE HUMAN COMPUTER INTERFACE

Bl MiningMart - sales_prediction

- Edit Insert Compile Window Help
Nev dELILAEAI LY IREY
Open J
i Close Case

=[] Exit Al

F rancant Editar -

Selection of the menu item for importing a concept from another Case

Figure 3.8: Import concept

The test for validity uses operator-specific information. To learn more
about the requirements of an operator, you can open the step which uses
the operator, and click on the “Help” button (see also section 3.2.2). Then
you are shown a description of what the operator does, and what param-
eters and conceptual input it expects. You can also refer to chapter 4 of
this document. Most of the constraints that apply for an operator follow
easily from these explanations. Please check that all parameters are in the
right range and the input is correct.

Compile all, Compile from step, Compile step: These menu items
call the Compiler. “Compile all” starts the compileation of all steps. The
Compiler sorts all steps acording to the dependencies between the steps
(see chapter 3.4.9). Then it compiles one step after the other. “Compile
from step” does the same but only for the selected step and all sucessors
of this step. “Compile step” only compiles the selected step. The latter
two items are only enabled if a step is selected. If these two methods are
called, the Compiler assumes that all predecessors of the selected step are
compiled. The HCI checks if the predecessors are compiled and if not, it
will give an error message. In this case a compilation is not started.

These three method calls can be called via the three tool buttons (the
buttons with the toothed wheels), too.

3.2. MAIN APPLICATION 29

Bl ~iningMart - sales_prediction (=1
M Insert Compile Window Help
5] amee o [alule] [@]8]e]8]
e BF Open trg-Eingabe
sale RF connections... AltEingabe
L @Erupeﬂies,_, UmschaltEingabe 3 Concept Editor
% cut a SNCENS ﬁ Sales Data
Is_attree "
W Copy — | |SHOP Holid
e = ® 2 Holidays A weEK WEE;W
Paste ® O Sales Data BETS
) i WO_51
Update Statistics... @ @ A Sales Interesting g | 2| | TEM ADVENT 48 51
o ® : 48
Show Statistics... A Sales pertem o [Fr_HOL SYLVESTER
= @ @ A Sales per Shap i WERF 27
Show Data... o @ A SalesWithouthy | | wealt hak hi RAYMERF_
- & A Windowed Sales D |2 Sggmﬁg\ﬁ_ﬁs_as
@ & A Windowed_with_H Wav 5
e F'I’DJBCtI.DnS : ENDEWSY 5
1 Relationships i KARMEYAL
@ @ week has holiday : MOY_45
i OSTERWOCHE
OSTERN
MUTTERTAG
LUhdRdE] EoLIET

sales_predi n

Only the menu items which belongs to the active editor (in this picture the
Concept Editor) are selectable.

Figure 3.9: Menu “Edit”

30 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

-lolx

File Edit Insert Window Help
Validate step
Validate all step

% Compile all DM_SALES_CHAIN_2

% Compile from selected

]
Delete rows with missing walues Select interesti

[v] Show compiler log |Compile step

TF cre
B add [v] Compile in lazy mode

& sea VerhusilylMin 3:)

Tk Lea
TF Eva| & Bl Compile
2 Delete rows with missing values

Add holiday) information

Concept Editor
[R[~I=le] 2] Bl l=]=]E [

The menu provides the method calls for the Compiler, parameter settings and
some additional functionality

Figure 3.10: Menu “Compile”

3.2. MAIN APPLICATION 31

-ioix
B compierControl_______________

-

DB Query (Read) select all_sqg.nextval from dual —
DB write (ta batch): INSERT INTO COLUMMN_T (COL_ID, COL_MAME, COL_CSID, COL_COLDTID, COL_SaL) wALU
DB Query (Read): select all_sq.nextval from dual
DE wiite (to batch): INSERT INTO ha_column_t (BAC_ID, BAC_COLID, BAC_BAID) WALUES (100004862, 10000485
DB write (ta batch): INSERT INTO M4Trash_T (M4ld, MdTable, Stepld) VALUES (100004861, 'COLUMMN_T", 1000039
h4-DB: Batch executed, updates committed! =
DB Query (Read) select all_sqg.nextval from dual =
DB write (ta batch): INSERT INTO COLUMMN_T (COL_ID, COL_MAME, COL_CSID, COL_COLDTID, COL_SaL) wALU
DB Query (Read): select all_sq.nextval from dual
DE wiite (to batch): INSERT INTO ha_column_t (BAC_ID, BAC_COLID, BAC_BAID) WALUES (100004864, 10000485
DB write (ta batch): INSERT INTO M4Trash_T (M4ld, MdTable, Stepld) VALUES (100004863, 'COLUMMN_T", 1000039
h4-DB: Batch executed, updates committed!

DB Query (Read) select all_sqg.nextval from dual

DB write (ta batch): INSERT INTO COLUMMN_T (COL_ID, COL_MAME, COL_CSID, COL_COLDTID, COL_SaL) wALU
DB Query (Read): select all_sq.nextval from dual
DE wiite (to batch): INSERT INTO ha_column_t (BAC_ID, BAC_COLID, BAC_BAID) WALUES (100004866, 10000485
DB write (ta batch): INSERT INTO M4Trash_T (M4ld, MdTable, Stepld) VALUES (100004865, 'COLUMMN_T', 1000039
h4-DB: Batch executed, updates committed!

h4-DB: Batch executed, updates committed!

DB write (ta batch): INSERT IMTO M4Trash_T (M4ld, M4Table, Stepld) VALUES {0, ', 100003946}

h4-DB: Batch executed, updates committed!

h4-DB: Batch executed, updates committed!

Compilation of step 100003996 done.

- 24.03.2003 12:15:08 -
Execution for Step 100003996 without errars
Made was setta lazy

| Clear | Stop | Restart | Close

[4]

q]

[+

A seperate window to show the compiler messages. It provides buttons to clear
the window, to stop the output of messages, to restart the output of messages
and to close the window.

Figure 3.11: Compiler log Window

e Show compiler log: With this check box you can decide if you want to
see the compiler messages. If selected, a compiler window is opened and
the compiler log messages are displayed. Selecting this check box enables
the spinner verbosity. Here you can specify how specific the displayed
messages should be. The window is shown in figure 3.11.

e Compile in lazy mode: You can decide if the Compiler should compile
the steps in lazy mode or in eager mode. For an explanation of “lazy mode”
see chaper 1.2.

e Kill Compile: If a compilation is running, this menu item is enabled.
It allows you to stop a compilation thread on the compiler server. The
compiler server stops the compilation at the current point, meaning that
the current step compilation is not finished but the steps that were already
compiled remain so.

32 CHAPTER 3. THE HUMAN COMPUTER INTERFACE
ARG il inilnke ki pla e) L= L] (X

> 5

[ERERReny

[Apriari

[} Assigndveragey/al
[y AssignDefaulty aly
[AssionMedianval

[} AssignModalvalue
[y AssignPredictecty’
[AssignStochasticy
[} ComputesyMErro
[} DeleteRecaordswit

[} ExponentiaMoving |

[} Featureselections

' DeleteRecordsWithMissingValues

Puts only those rows into the output Concept that have an
entry which is NOT NULL in the Colurmn for the specified

TheTargetdttribute.

[y GenericFeatureCo| || | |Parametertame |ObjType |Type |Rermarks

[GenetickeatureSell WA 1o/ o iconcept | cON | IN ||inherited

[JoinByiey :

DLinearScaling TheTargetittribute EA IN |may have NULL entries
[Logcaling || ThecutputConcept | CON [QUT |intherited

[Missingyalues it
[y Missingy aluawith(

[} Missingy alueWithd
[]

[4]

4]

This window with a description of the operator is shown if the step editor is
active and the user presses the F1- button.

Figure 3.12: Help system

Window list

The window list shows a list of all windows and indicates which is the active
one. A button for refreshing the active window is provided, too. The list can be
used to switch from one window to another.

Help

The Mining Mart system also provides some help funtionality. The help can be
started with the help- button or with the help menu. For some windows of the
chain editor a context sensitive help is provided. You can use this help by press-
ing the F1- button. The information which is shown in the help window depends
on the active window. For example, if a step editor is active, a description of
the operator is shown in the help window. Figure 3.12 shows an example.

3.3. THE CONCEPT EDITOR 33

3.2.3 Closing the application

The application has to be closed with the menu item “Exit” in the file menu
or using the X- button of the frame. Only this way will ensure that the opened
case is unlocked and openable again. If the application is closed externally (for
example on a windows plattform by closing the cmd window), the case remains
locked. The only way to unlock it again is to delete the lock entry in the database.

3.3 The Concept Editor

The Concept Editor is part of the HCI. It allows to create and manipulate
concepts and connect them to the business data. These concepts are inputs for
preprocessing operators that can be specified using the Chain Editor.

3.3.1 Using the Concept Editor

In this chapter an overview is given about the functionality of the Concept
Editor and it is explained how to use it. The focus will be on the use cases for
the concept editor, starting at a high level and then specifying these use cases
further.

Overview of Functionality

The primary functions of the Concept Editor are to build a Conceptual Data
Model (Concepts, FeatureAttributes and Relationships) and map this to the
Relational Data Model. The editor provides an interface for doing this. It is also
responsible for validation of Conceptual Data Model elements. The editor does
not provide an interface for M4 objects that are not involved in the realization
of the primary goals of the editor (e.g.: Case, Step, Operator).

The following lists the use cases:
e Build Conceptual Data Model

e Map Conceptual Data Model to Relational Data Model

Validate the Conceptual Data Model

Viewing Concept Data

Create and View Statistics

Reuse of Concepts

34 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

‘ Master detail view ‘

\

‘ Concept validity ‘

ﬁ Concept Editol

Concepts "
@ Is_attree ﬁ ; is manager of
@ @ 3 Department :
|_—-S=i O Employee i
‘ Concept type ‘ - @ 8 A EmployeeDeptloin |- Employee
@ @ A EmployeeStratified | | £ Emphlarme Department
wiorks at

@ & A MewConcept : Ermphr / Deptho
& [Projections 3 Jok Hame

=3 Relationships galary. . i e
© @ 5 manager for ormmission /
= Hiredate

& s manager of

/ @ ks at Diepartment
= Manager

[¢]

Relationship
validity

Overview of a Conceptual model in the Concept Editor.

Figure 3.13: Screenshot of the Concept Editor.

Building a Conceptual Data Model

An important part in the work of the case designer is to build a conceptual
data model. The concepts can have relationships to each other, may be ordered
in a hierarchy and will be, together with the operators, the building stones for
preprocessing chains in a case.

Concepts and Relationships can be created by choosing “New Concept” or
“New Relationship” from the menu and filling in the properties for the Concept
or Relationship. Editing and deleting existing concepts is done in a straightfor-
ward way by using the respective menu items in the Mining Mart HCI.

For an example of a Conceptual model see figure 3.13.

Mapping of Conceptual Data Model to the Relational Data Model

The Conceptual Data Model defined by the case designer has to be mapped to
the Relational Data Model (the database) in order to be able to execute a case.
This is only relevant for Concepts that are indeed based on existing tables in the
database (Concept type DB). For Concepts that are created in one of the Steps
of a Case (Concept type MINING) the corresponding ColumnSets are created
by the Compiler. For Concepts of type BASE no mapping is allowed. See also
chapter 1.2.

For an example of mapping a concept see figure 3.14. Double-clicking on a
concept will present the concept dialogue. Choose the “Connect” option and
click on “Create Connection”. This will present you with a list of possible

3.3. THE CONCEPT EDITOR 35

' Concept dialo P in
Curmenth connected Columnset (<11 =..s| P g :utlis”‘"m' Choose table...
| CleMe Camnection,. | LBNTiwe COnnacalon | q LI SHe
Lo
Create connection... *

&l ~p wasearmibaees foi akemns
Cliek it & Chllpn cadl And Seineta Collmn fram e e

=l ERT I Culurn Prirmirghiy
c GO [}
)) [T]
W wend e nelea o wling 1 LT b L
a3k 3 £ 218773 COlL MPESEAT D L0 T 18 wll E6 Graa 1HraSE g U3 3405 daze EMCHO

bl

STRINL. 5

Canni b ol CobominBel: - [ShE ‘

(ZT S
mnan

RIGE
MGR

Map Attributes to Columns...

Ready, ColumnSet created

Schematic view of connecting a Concept with the Business data using the Con-
cept Editor.

Figure 3.14: Connecting a concept.

database objects (tables or views) to connect the current concept to. After
choosing an object, the relational-level metadata for it is automatically created
and you need to link it to the conceptual level; this means to link every column
of the database object to the corresponding BaseAttribute of the concept.

If you have Relationships in your conceptual model, you need to link them
to the relational level, too. Again, double-click on the Relationship and go to
“connect”. After choosing your type of Relationship (1:n or n:m), you must
identify the primary and foreign keys of the columnsets involved and the cross
table in the database (for n:m). Each Relationship holds between two concepts
and these concepts are called “FromConcept” and “ToConcept” respectively.
For the cross table, there is no concept.

36 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

Validity of Objects

The case designer needs to know if the current conceptual data model is valid or
not. The validity of a conceptual data model can be summarized in the following
way:

The Conceptual Data Model is valid if:

1. All Concepts are valid.

2. All FeatureAttributes are valid.

3. All Relationships are valid.

A Concept is valid if:

1. Tt is generated by an operator or based on a ColumnSet,
2. at least one included FeatureAttribute exists, and

A FeatureAttribute is valid if:

1. Tt is connected to a Concept.
2. It is generated by an operator or based on a Column.

3. (for MultiColumnFeature) at least two BaseAttributes exist, which belong
to the same Concept as this MultiColumnFeature.

A Relationship is valid if:
1. both related Concepts exist.

2. it is based on Keys or a ColumnSet.

The HCI implements validation checking when creating, editing or deleting
Concepts, FeatureAttributes or Relationships. The GUI shows the validity using
a red icon (invalid) or green icon (valid) (see figure 3.13). Note that concepts
of type MINING remain invalid until the compiler has created the relational
metadata for them.

Viewing Data

You might want to see the data that is associated with a concept. This can be of
importance in making decisions for preprocessing. Therefore the concept editor
provides an option for viewing the data that is associated with a concept. The
Mining Mart HCI provides a method for showing the data for a concept. Figure
3.15 shows an example of the dialog that is presented after choosing this option.

Creating and Viewing Statistics

Concept data statistics concerning cardinality, missing values, minimum, max-
imum, average and distribution blocks are helpful in making preprocessing de-
cisions. These statistics can be generated by choosing the “update statistics”
menu item in the HCI. They can be viewed by choosing the “view statistics”
menu item. Figure 3.16 shows an example the statistics dialog.

3.3. THE CONCEPT EDITOR 37

|
EMPRO EbAME JCOB MGR HIREDATE SAL O bl DEPTHO
[EED ShITH CLERK Tanz 1980-12-1... (800 20
7499 ALLER SALESMAN 7698 1981-02-2... 1600 300 30
Ta21 WARD SALESMAN 7698 1981-02-2... 1250 A00 30
THEE JOMES MAMAGER 78349 1981-04-0... |2974 20
TES4 MARTIMN SALESMAN 7698 1981-09-2... 1250 1400 30
TEI8 BLAKE MAMAGER 78349 1981-05-0... |2850 30
Tre? CLARK MAMAGER 78349 1981-06-0... |2450 10
7re8 SCOTT ARALYST sl 2087-04-1... |3000 20
78349 KIMG FRESIDENT 1981-11-1... 5000 10
Tad44 TURMNER SALESMAN 7698 1981-09-0... [1500 0 30
TE7E ADAMS CLERK Treg 2087-05-2... 1100 20
7800 JAMES CLERK TE98 1981-12-0... (950 30
TH02 FORD ARALYST sl 1981-12-0... 3000 20
TH34 MILLER CLERK Tre? 1982-01-2... 1300 10
oK

Viewing the data that is associated with a concept in the Concept Editor.

Figure 3.15: Screenshot of viewing data for a concept.

all | ord | norm I tirne
14 5 12 1

Column Statistics 1

column na.) unigue | missing| min | max avy stddey variance median modal |
EMPRO 14 a
EMAME 14 a ADAMS WARD KING ADAMS
JOB] a AMALYST [SALESMARN MANAGER |CLERK
MGR G 1 TH66 Fa02 7738.307.. 103.71466010756.73... |7752.00000|7698.0000
HIREDATE |13 a 17-12-80 |23-05-87 1981 1981
SAL 12 a g00 5000 2073214 [1182503.. [1398313.. [1600.00000[1250.00000]
Column Statistics 2

column name | distralue | distcount distmin distmax |
EMPMO
EMAME ADAMS 1
EMAME ALLEM 1
EMAME BLAKE 1
EMAME CLARK 1
EMAME KIMG 1

oK

Viewing the statistics from data that is associated with a concept in the Concept
Editor.

Figure 3.16: Screenshot of viewing statistics for data from a concept.

38 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

Re-using Concepts

You can also reuse an existing Conceptual Data Model from another case. You
can select a Conceptual Data Model from another case, import it into the Con-
cept Editor and adapt it to your wishes. For adapting the imported Concepts,
FeatureAttributes and Relationships you can use the functionality which has
been mentioned in “build Conceptual Data Model” (see Section 3.3.1).

Cases can be exported by the HCI to a file using the export option in the
file menu. Via the import menu you can import a case from a file (from another
database) or import concepts from another case (in the same database). See
section 3.2.2.

3.4 The Chain Editor

In this chapter the editor for pre-processing chains (Chain Editor) is described.
Other parts of the HCI are the editor for concepts and relationships (Concept
Editor - see chapter 3.3), which is integrated in a common environment with
the Chain Editor, the M4 Interface, which is used by both editors and the M4
Compiler which can be called by the HCI. For a short explanation of these
components see chapter 1.2. We discuss the usage of the Chain Editor, starting
with a list of the functionality and then giving a more detailed view of how this
functionality is provided.

3.4.1 Overview of Functionality

The primary goal for the Chain Editor is to support the creation of valid pre-
processing chains. The preprocessing chain is made visible in two windows, the
tree view, where all elements of the chain are shown in a tree structure and in a
graph view, where only one (sub)chain is visualised. Some methods can be used
with both windows and some are only usable with one of the window. Some
methods can be called via tool buttons, some via menu items and some with
both.

The following lists all actions you can perform with the Chain Editor. Here
only the use cases for building and changing chains are listed, the other func-
tionality is described in other chapters (for example how to start the Compiler).

e Creating or inserting a (sub)chain into the Mining Mart workspacce or
into a chain.

Inserting a step (with an Mining Mart operator) into a chain.

Changing properties for a step or a chain

Editing the step parameter

Changing position of a step or folder (subchain)

Connecting steps

3.4. THE CHAIN EDITOR 39

HMiningMart - sales_prediction

File Edit I_nserl| Compile Window Help

EIEl IE

sales_p

Chain
@ s i
® Mining | zort chain |F * i
i Selectinteresting iterns m E
egmentation by shops . ..

Inserting a chain can be done by using the menu item or by clicking the toolbut-
ton.

Figure 3.17: Inserting a chain

Deleting steps, chains or connections
e Merging steps to a subchain (folder)

e Unmerge a subchain

Cut, copy and paste parts of a chain

3.4.2 Imserting a chain

A chain can be inserted into a workspace or into another chain. If the tree view
is the active view, then a chain can be inserted by selecting the workspace or
the chain where the subchain should be inserted and then pressing the button
“Insert chain” in the tool bar at the bottom of the HCI or using the menu “In-
sert”. Both is shown in the figure 3.17. If the selected node is not the workspace
or a chain, the button and the menu entry are disabled. After that a folder-
symbol is inserted in both views.

If the graph view is active, then a chain can be inserted via clicking the tool
button mentioned above. After clicking the button a cross is shown and you
can click anywhere in the graph view. After that a folder icon is shown at this
position and the folder gets this position.

The new chain receives an automatically generated name and all information
is stored in the M4- Schema immediately.

3.4.3 Inserting a step

Inserting a step can be done analogous to “Inserting a chain” described in
chapter 3.4.2. A step can be inserted only into a chain, so in the tree view a
chain has to be selected. Figure 3.18 shows how the menu structure for inserting

40 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

?jMiningMart - sales_prediction
File Edit |Insert| Compile Window Help

@@’: Sub Concept... [

Sub Relationship...

(%[6]6] % % e

DM_SALES_CHAIN_

I} GenericOperator

4T Selectinterasting items & MrfConstr e

#% Segmentation by shops| % JoinByKey 7+, PredWDecRules | with mizsing v:
: Segmentation by tems |)\ jnionByiey <. PredWDecTree

T Create time windows =

5 Add holiday information |~ ShecStat

& Seale values far SYM Row Selection He

Fore—

Add holiday] information

T Learn model with Suppdg

Missing Values
Tk Evaluate leamed madel

Segmentation

Time Series

Concept Editor

[1 Cancepts |5
@ 7 1s_a‘tree

@ = Hnlidaws

Scaling

The menu structure to insert a step with a specific operator

Figure 3.18: Select a operator

The tool buttons to insert a step with a specific operator

Figure 3.19: Insert step- tool buttons

3.4. THE CHAIN EDITOR 41

&l select operator

Apriori

AssignAveragevalue

mssignDefault

AssignMedianValue

AssignModalvalue
mssignPredictedyalueCategorial
mssignStochasticvalue

ComputeSYMError
DeleteRecordsWwithMissingValues
EquidistantDiscretizati nGhrenNuOﬂntenralls
1B [*]

select | cancel

Selecting an operator by using the generic operator

Bl |1x

[4]

Figure 3.20: Generic Operator

a step looks like. You select an operator and a step with this operator will be
inserted. Figure 3.19 shows the corresponding tool buttons for inserting a step.

Some operators have their own menu item and toolbutton to insert them.
Every operator can be inserted with the menu entry and the toolbutton Generic
Operator. If you click on the generic operator button, the window shown in
figure 3.20 is opened. Here you see a list of all specified operators and you can
select one operator. Perhaps the term “Generic Operator” is a bit misleading. It
means the parameter editor is generated automatically, while the other operators
have their fixed editor window. This mechanism provides an easy way to expand
the list of operators in the Mining Mart system.

3.4.4 Changing properties

With the window shown in figure 3.21 you can change the name of a step or a
chain and can enter or change the description. In the current version the field
“URL” isn’t stored and the button “Open URL” isn’t used.

You get this window by selecting the object you want to change and then
using the menu item “Properties” in the edit menu or by clicking the corre-
sponding button.

3.4.5 Editing the step parameters

One important issue in the Chain Editor is the possibility to enter the parameter
for a step. In general, a step and the included operator has some input parame-
ters and one or more output parameters. There is an editor for every operator,
in which you can specify these parameters. Figure 3.22 shows the editor for one
of the most complex operators, the Support Vector Machine for Regression. In
the following the main aspects of the parameters and the editor are listed. If an

42 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

Bl pelete rows with missing values x|

EamE=|Delete rows with missing values |

Description: This step removes all rows in the table connected with [
concept"Sales Data" with missing values in the
column connected with the base attribute "SALE". It
huilds the concept "Sales Without M.

4]

URL: |

Save H Open URL || Close |

Window to enter or change a description or change the name of a selected object

Figure 3.21: Change Properties

example is mentioned, this refers to this editor.

Loopable Operator

Some operators are loopable (see chapter 4.3.1 for an explanation of this term).
In this case the upper box in the step editor is shown. You can enter a number
of loops (0 means the steps isn’t applied in loops) by typing the number and
pressing the change- button and you can select the shown loop via the spinner
on the right side. In the generic editor only the loopable parameters are shown
if you select a loop number greater than 1. For example, in the step shown in
figure 3.22 the Input Concept isn’t shown for loop numbers greater than 1.

Choosing M4Objects

For input parameters which contain an M4Object (for example Input Concept
or Target Attribute) you can change this object by pressing the change button
next to the parameter. Then you get a data chooser with the possible objects
(for the parameter “Input Concept” all concepts which are created so far and
all concepts of Type “DB” or all base attributes from the input concept for the
parameter “Target Attribute”). Changes are stored immediately.

Output Parameters and Values

For output parameters and values the editor provides fields to enter a string
as a name for the new object. In the shown example such a parameter is the
OutputAttribute and the parameters for values like “C”,”Epsilon” etc. These
objects are created after you have pressed the “Save” button at the bottom of
the step editor.

3.4. THE CHAIN EDITOR 43

Bl MiningMart - sales_prediction 18l x|

File Edit Insert Compile Window Help
Gla|nj@[6] (w/w/¥in [xc]e] (s v e (@]

Learn model with SupportYectorMachine - SupportYectorMachineForRegression

Number of loops: ’E change | Show loop humber Ij

c 1 |
LossFunctionPos |1 |
ThelnputConcept |Wind0wed_with_HDIidays | Change
ThePredictingttribut...

Thekey | | ’Wﬂ
o T |nalynamial |]W
TheTargetattrioute | SCALED_WWINDOWS | ’W

TheOutputtttribute [PREDICTED_SALE

|
Epsilah |D.1 |
LozsFunctiontleg |5 |
SampleSize |QDD |
UzeDB 1] |IE.|5.E | Chande |
| save | | cancel | | close | | valiar |

The editor to enter the parameters for the operator Support Vector Machine For
Regression. The window shows the different parts of the editor and parameters
of different kinds.

Figure 3.22: An example editor for the step parameter

44 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

List Parameters

For parameters with a list of objects you can see a list of corresponding objects
(in the example window: ThePredictingAttributes). You can change the list with
the buttons “Add” and “Remove”. If the parameter is an input parameter using
the “Add”- button will provide a data chooser (see chapter 3.4.5); for output
parameters you get a box to enter a name for the new object. Other things
mentioned in chapter 3.4.5 hold for list parameters, too.

Buttons
The step editor has four buttons at the bottom of the window.

e Save - All new objects (objects for the output parameters or values for
value parameters) are created and every parameter is stored.

e Cancel - The output- and value parameters are set to the values after the
last “save”. Every parameter is read from the database again.

e Close - Closes the step editor without any changes.

e Validate - The validity of the step is tested (see chapter 3.2.2).

3.4.6 Changing Positions

Every object in the Chain Editor has a position which is stored and retreived
from the database during opening a case. The position depends on the chain
the object (step or subchain) belongs to. If an object belongs to a subchain,
the position is stored as a position within this subchain. After unmerging the
subchain or putting the object into another subchain, the step has a different
position. To change the position of an object (step or subchain) in the graph
view, you can press the left mouse button over this object and drag it to the
new position. The position is stored automatically.

3.4.7 Selecting objects in the graph view

The graph view provides a method for selecting more than one object. Please
click on the button for the Selection Tool (second button from left at the bottom
of the HCI). Pressing the left mouse button and moving it in the graph view
will show a rectangle and after releasing the mouse button all elements in the
rectangle are selected. This also includes connections between steps. To select a
single object, just click on it.

3.4.8 Deleting objects

Deleting objects can be done in different ways. An object (subchain, step) can
be deleted by selecting the object in the tree view or graph view and pressing
the delete- button or using the menu item “Delete” in the menu “Edit”. If the

3.4. THE CHAIN EDITOR 45

graph view is active a delete can be enforced by pressing the “Del”- button on
the keyboard, too.

In the graph view it is possible to delete more than one object at once.
Selecting one or more objects is described in chapter 3.4.7. Deleting the selected
objects is done like deleting a single object.

For deleting a connection you can click on the connection in the graph view
and then use one of the methods mentioned above or you can use the connection
window described in chapter 3.4.9.

3.4.9 Connecting steps

Connecting steps means to insert a connection from step A to step B. In Mining
Mart this means to make step B dependent on step A, or step B is a successor
of step A. This is necessary if step B uses an output (base attribute or concept)
from step A as input and if step A isn’t a predecessor of step B yet. Here
predecessor means any predecessor, not only direct ones.

The easiest way to build a connection is to use the connection tool from the
graph view, which is called with the tool button from the tool bar at the bottom
of the HCI. The button can be identified by the double arrow on it. To do so
the graph view has to be active. Then you can click the button, press the left
mouse button over step A, then move the mouse cursor to step B and release
the button. While doing you can see if step B can be a sucessor of step A. If step
B can’t be a direct sucessor of step A, the arrow remains grey and isn’t inserted
after releasing the mouse button, otherwise is gets black and is inserted.

The second way is using the “Edit Connections”- menu item in the edit menu.
First you need to select step A and then use this menu item or the corresponding
tool button. Then select step B from the tree in the window shown in figure 3.23
and a connection is inserted after clicking “add”. The button “Add” only gets
enabled if step B is allowed to be a sucessor of step A. Important: Steps in
different folders can be connected only via the Connection Window shown in
figure 3.23. If they depend on each other in the above sense, these connections
between different folders must not be omitted, otherwise the compilation of the
chain will run into problems.

3.4.10 Merge steps to a chain

As described in chapter 1.1, steps can be organised in chains. There are two
ways to achieve this. First, you can create a new chain and insert new steps
in it; second, you can merge existing steps of a chain to a subchain. To do so,
please use the graph view. First, press the button “Merge to chain” (fourth
button from left at the bottom of the HCI), then select all steps and other
subchains that you want to put in the new sub chain (see chapter 3.4.7). After
releasing the mouse button a box is shown where you have to enter a unique
name for the chain. As a result a folder object is shown instead of the selected
objects in the graph view and a new node with this chain is inserted into the
tree view.

46 CHAPTER 3. THE HUMAN COMPUTER INTERFACE

5egn1entatinn by items

|I'u|ude| Connections V” Output Connections ¥ | : 7 Z sales_prediction
: § B DM_SALES_CHAIN_Z2
Type | Directian | Destination gi SDT_ Select interesting items
User |Dutput |Create time wi... Segrmentation by shops
i #z Seamentation by items
TF Create time windows
3 Add holiday infarmation
& Srale values far SWh

TF Evaluate learned madel
=t Delete rows with missing values
§ B Mew Chain 11
41 13 RowSelByQuery

| Add... H Remove H Close

TF Learn model with Supportvectardaching

Window for adding or removing connections between two steps.

Figure 3.23: Edit Connections

3.4.11 Unmerge sub chains

In a chain a subchain can be replaced with the objects it contains. You need to
click on the fifth button (“Unmerge”) of the tool bar at the bottom of the HCI
and then click on the folder symbol which represents the subchain you want
to expand. After that the subchain is removed and all objects it contains are
inserted instead of it.

3.4.12 Cut, Copy, Paste

This functionality is only provided in the graph view. You select one or more
objects you want to copy (cut) and press the corresponding tool button in the
top tool bar or use the menu item “Copy” (“Cut”) in the menu “Edit”. After
that the menu item “Paste” and the corresponding tool button are enabled and
you can open the chain where you want to paste the objects to in the graph
view. Pressing the “Paste” button will insert the previously marked objects.

Chapter 4

Compiler Constraints and
Operator Parameters

4.1 What this chapter is about

This chapter explains two things in detail: Firstly, section 4.2 describes some
details about how the MiningMart compiler expects the metadata for a case
description to be set up. Secondly, section 4.3 describes the current operators
and their parameters.

4.2 Compiler constraints on metadata

This section explains in detail some issues in describing a case in such a way
that it is operational for the MiningMart compiler.

4.2.1 Naming conventions
Operator names

The name of an operator (entry op-name in M4 table Operator._T) corresponds
exactly (respecting case!) to the Java class that implements this operator in the
compiler. This is only important to know if you want to implement additional
operators. What is more generally important is that the names of the parameters
of an operator are also fixed, because the compiler recognizes the type of a
parameter by its name. This is described in more detail in section 4.3.1.

BaseAttribute names

Some operators have as their output on the conceptual level a Concept rather
than a BaseAttribute (see section 4.3.1). This output Concept will generally
be similar to the input Concept, in the sense that it copies some of the input

47

48CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

BaseAttributes without changing them. To find out which BaseAttribute in the
output Concept corresponds to which BaseAttribute in the input concept, their
names are used. They must match exactly, ignoring case. This also means that it
is necessary to give the output BaseAttribute in a feature construction operator
(see section 4.3.1) a name which is different from all BaseAttribute names in the
input Concept, so that no names are mixed up. If the output of the operator
is a Concept, and a BaseAttribute in this output concept has no corresponding
BaseAttribute in the input concept, it will be ignored by the compiler, because
it may be needed for later steps. Ignoring means that no Column is created for
it.

A similar mechanism is applied when Relations are used (see following sec-
tion 4.2.2).

4.2.2 Relations

Relations are defined by the user between the initial Concepts of a case. In a case,
the Concepts may then be modified. If later in the chain an operator is applied
that makes use of relations, it must be able to find the Columns that realize the
keys. To this end, again the names of the BaseAttributes are used. Currently only
MultiRelationalFeatureConstruction (MRFC) uses relations. This means
that in the Concepts used by MRFC, the BaseAttributes that correspond to the
key BaseAttributes in the initial Concepts must have the same name (ignoring
case).

Example: Suppose there are initial Concepts Customer and Product linked by
a relation buys which is realized by a foreign link from the Customer to the
Product table. The foreign key Column in the Customer table is named fk_prod
and its BaseAttribute is named CustomerBuys. The Concept Customer may
be the input to a chain which results in a new Concept PrivateCustomer. This
new Concept must still have a BaseAttribute named CustomerBuys, which must
not be the result of a feature construction, but must be copied from Concept
to Concept in the chain!. Then the compiler can find the Column fk_prod by
comparing the BaseAttributes of the current input concept PrivateCustomer
and of the Concept which is linked to the relation buys (this relation is an input
to the MRFC operator). The Column can be used to join the two Concepts
PrivateCustomer and Product, although the first is a subconcept of Customer.

4.3 Operators and their parameters

This section explains the current MiningMart operators and the exact way of
setting their parameters.

1Copying is done by simply having a BaseAttribute of this name in every output Concept
in the chain.

4.3. OPERATORS AND THEIR PARAMETERS 49

4.3.1 General issues

There are two kinds of operators, distinguished by their output on the con-
ceptual level: those that have an output Concept (Concept Operators, listed in
section 4.3.2), and those that have an output BaseAttribute (Feature Construc-
tion Operators, listed in section 4.3.4).

All operators have parameters, such as input Concept or output BaseAt-
tribute. The name of such a parameter is fixed, for instance ThelnputConcept is
used for the input Concept for all operators. This means that the entry for this
parameter in par name in the M4 table Parameter_T must be ThelnputConcept,
respecting case. The parameter specification for each operator is stored in the
M4 table OP_PARAMS_T (see MiningMart deliverable D18).

Some operators have an unspecified number of parameters of the same
type. For example, the learning operators take as input a number of BaseAt-
tributes of the same concept and use them to construct their training examples.
All these BaseAttributes use the same prefix for their parameter name (here
ThePredictingAttributes) in Parameter_T. Since all parameters for one step are
expected to have different names (for HCI use), number suffixes are added to
these prefixes (ThePredictingAttributesl, ThePredictingAttributes2, etc). The
compiler uses ORDER BY par nr when reading them. Such parameters, which
may contain a list, are marked with the word List in the operator descriptions
in sections 4.3.2 and 4.3.4.

Special attention is needed if an operator is applied in a loop. All feature con-
struction operators are loopable; further, the concept operator RowSelectionBy-
Query is loopable. Feature construction operators are applied to one target at-
tribute of an input concept and produce an output attribute. Looping means
that the operator is applied to several target attributes (one after the other)
and produces the respective number of output attributes, but the input concept
is the same in all loops.

To decide whether an operator must be applied in a loop, the compiler checks
the field st_loopnr in the M4 table Step_T, which gives the number of loops to
be executed. If 0 or NULL is entered here, the operator is still executed once!
If a number z (greater than 0) is entered here, the compiler looks for z sets of
parameters for this operator in Parameter_T, excluding the parameters that are
the same for all loops, which need to be entered only once. Thus, the parameter
ThelnputConcept must be declared only once, with the field par_stloopnr in
the table Parameter_T set to 0, while the other parameters are given for every
loop, with the respective loop number set in the field par_stloopnr, starting
with 1. If no looping is intended, this field must be left NULL or 0. Note: Again,
all parameters that are given for more than one loop must have a number suffix
to their name, like the List parameters, to ensure that parameter names are uni
que within one step.

For the concept operator RowSelectionByQuery, looping means that several
query conditions are formulated using the parameters of this operator (one set
of parameters for each condition), and that they are connected with AND. See
the description of this operator.

50CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

In the following sections, all current operators are listed with their exact
name (see section 4.2.1), a short description and the names of their parameters.
In general, all input BaseAttributes belong to the input Concept, and all output
BaseAttributes belong to the output Concept.

4.3.2 Concept operators

All Concept operators take an input Concept and create at least one new
ColumnSet which they attach to the output Concept. The output Concept must
have all its Features attached to it before the operator is compiled. All Concept
operators have the two parameters ThelnputConcept and TheOutputConcept,
which are marked as inherited in the following parameter descriptions.

MultiRelationalFeatureConstruction

Takes a list of concepts which are linked by relations, and selects specified Fea-
tures from them which are collected in the output Concept, via a join on the
concepts of the chain. To be more precise: Recall (section 4.2.2) that Rela-
tions are only defined by the user between initial Concepts of a Case. Suppose
there is a chain of initial Concepts C4,...,C, such that between all C; and
Cit1,1 < i < n, C; is the FromConcept of the i-th Relation and C;41 is its
ToConcept. These Concepts may be modified in the Case being modelled, to
result in new Concepts C7,...,C)], where some C} may be equal to C;. How-
ever, as explained in section 4.2.2, the BaseAttributes that correspond to the
Relation keys are still present in the new Concepts C}. By using their names,
this operator can find the key Columns and join the new Concepts C|.

The parameter table below refers to this explanation. Note that all input
Concepts are the new Concepts Cj, but all input Relations link the original
Concepts Cj.

ParameterName ObjectType Type | Remarks
ThelnputConcept CON IN | Concept Cj (inherited)
TheConcepts CON List IN | Concepts Cj,...,C,
TheRelations REL List IN they link Cy,...,C,
TheChainedFeatures | BA or MCF List | IN | from Cf,...,C),
TheOutputConcept CON OUT | inherited

JoinByKey

Takes a list of concepts, plus attributes indicating their primary keys, and joins
the concepts. In TheOutputConcept, only one of the keys must be present. Each
BaseAttribute specified in TheKeys must be a primary key of one of TheCon-
cepts; thus, the number of entries in TheConcepts and TheKeys must be equal.

If several of the input concepts contain a BaseAttribute (or a MultiColumn-
Feature) with the same name, a special mapping mechanism is needed to re-
late them to different features in TheQutputConcept. For this, the parameters
MapInput and MapQOutput exist. Use MapInput to specify any feature in one

4.3. OPERATORS AND THEIR PARAMETERS 51

of TheConcepts, and use MapQutput to specify the corresponding feature in
TheOutputConcept. To make sure that for each MapInput the right Map Output
is found by this operator, it uses the looping mechanism. Although the param-
eter is not looped, the loop numbers in the parameter table in M4 are used to
ensure the correspondence between MapInput and MapOutput. However, these
two parameters only need to be specified for every pair of equally-named fea-
tures in TheConcepts. So there are not necessarily as many “loops” as there are
features in TheQutputConcept.

The field par_stloopnr in the M4 parameter table must be set to the number
of pairs of MapInput/ MapQOutput parameters (may be 0). Each of these pairs
gets a different loop number while all the other parameters get loop number 0.

ParameterName ObjectType | Type | Remarks

TheConcepts CON List IN | no ThelnputConcept!

TheKeys BA List IN

MapInput BA or MCF | IN “looped”!

MapOutput BA or MCF | OUT | “looped”!

TheOutputConcept CON OUT | inherited
UnionByKey

Takes a list of concepts, plus attributes indicating their primary keys, and unifies
the concepts. In contrast to the operator JoinByKey (section 4.3.2), the output
columnset is a union of the input columnsets rather than a join. For each value
occuring in one of the key attributes of an input columnset a tuple in the output
columnset is created. If a value is not present in all key attributes of the input
columnsets, the corresponding (non-key) attributes of the output columnset are
filled by NULL values.

In TheOutputConcept, only one of the keys must be present. Each Base-
Attribute specified in TheKeys must be a primary key of one of TheConcepts;
thus, the number of entries in TheConcepts and TheKeys must be equal.

If several of the input concepts contain a BaseAttribute (or a MultiColumn-
Feature) with the same name, a special mapping mechanism is needed to re-
late them to different features in TheOutputConcept. For this, the parameters
MapInput and MapOutput exist. Use MapInput to specify any feature in one
of TheConcepts, and use MapQutput to specify the corresponding feature in
TheOutputConcept. To make sure that for each MapInput the right Map Output
is found by this operator, it uses the looping mechanism. Although the param-
eter is not looped, the loop numbers in the parameter table in M4 are used to
ensure the correspondence between MapInput and MapOutput. However, these
two parameters only need to be specified for every pair of equally-named fea-
tures in TheConcepts. So there are not necessarily as many “loops” as there are
features in TheOutputConcept.

The field par_stloopnr in the M4 parameter table must be set to the number
of pairs of MapInput/ MapOutput parameters (may be 0). Each of these pairs
gets a different loop number while all the other parameters get loop number 0.

52CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjectType | Type | Remarks

TheConcepts CON List IN | no ThelnputConcept!

TheKeys BA List IN

MaplInput BA or MCF IN “looped”!

MapOutput BA or MCF | OUT | “looped”!

TheOutputConcept CON OUT | inherited
SpecifiedStatistics

An operator which computes certain statistical values for the TheInputConcept.
The computed values appear in a ColumnSet which contains exactly one row
with the statistical values per group of tuples, and which belongs to TheOut-
putConcept. Groups of tuples are built by listing attributes with the GroupBy
parameter. Each combination of values of the underlying BaseAttributes forms
one group. If no attributes are listed with the parameter list GroupBy, then the
operator will output a single tuple with the statistics of all the ColumnSet.

The sum of all values of a numerical attribute can be computed by specifying
a BaseAttribute with the parameter AttributesComputeSum. There can be
more such attributes; the sum is computed for each. TheOutputConcept must
contain a BaseAttribute for each sum which is computed; their names must be
those of the input attributes, followed by the suffix “_.SUM”. The total number
of entries in an attribute can be computed by specifying a BaseAttribute with
the parameter AttributesComputeCount. There can be more such attributes;
the number of entries is computed for each. TheOutputConcept must contain a
BaseAttribute for each count which is computed; their names must be those
of the input attributes, followed by the suffix “_COUNT”.

The number of unique values in an attribute can be computed by specifying
a BaseAttribute with the parameter AttributesComputeUnique. There can be
more such attributes; the number of unique values is computed for each. The-
OutputConcept must contain a BaseAttribute for each number of unique values
which is computed; their names must be those of the input attributes, followed
by the suffix “_UNIQUE”.

For ordinal attributes the parameter lists AttributesComputeMin and
AttributesComputeMax exists. The operator writes the minimum and maximum
values of the corresponding attributes to the output BaseAttributes with the
suffixes “ MIN” and “_MAX”.

Further, for a BaseAttribute specified with AttributesComputeDistrib, the
distribution of its values is computed. For example, if a BaseAttribute contains
the values 2, 4 and 6, three output BaseAttributes will contain the number
of entries in the input where the value was 2, 4 and 6, respectively. For each
BaseAttribute whose value distribution is to be computed, the possible values
must be given with the parameter DistribValues. One entry in this parameter
is a comma-separated string containing the different values; in the example, the
string would be “2,4,6”. Thus, the number of entries in AttributesComputeDis-
trib and Distrib Values must be equal. TheOutputConcept must contain the corre-
sponding number of BaseAttributes (three in the example); their names must

4.3. OPERATORS AND THEIR PARAMETERS 53

be those of the input attributes, followed by the suffix “_<value>”. In the ex-
ample, TheOutputConcept would contain the BaseAttributes “inputBaName 2’

) s
?

inputBaName 4” and “inputBaName 6”.

ParameterName ObjectType | Type | Remarks
ThelnputConcept CON IN | inherited
AttributesComputeSum BA List IN | numeric
AttributesComputeCount BA List IN (see
AttributesComputeUnique BA List IN
AttributesComputeMin BA List IN
AttributesComputeMax BA List IN
AttributesComputeDistrib BA List IN text)
GroupBy BA List IN | as GROUP BY in SQL
DistribValues V List IN
TheOutputConcept CON OUT | inherited
UnSegment

This operator is the inverse to any segmentation operator (see 4.3.2,4.3.2,4.3.2).
While a segmentation operator segments its input concept’s ColumnSet into sev-
eral ColumnSets, UnSegment joins several ColumnSets into one. This operator
makes sense only if a segmentation operator was applied previously in the chain,
because it exactly reverses the function of that operator. To do so, the param-
eter UnsegmentAttribute specifies indirectly which of the three segmentation
operators is reversed:

If a SegmentationStratified operator is reversed (section 4.3.2), this parame-
ter gives the name of the BaseAttribute that was used for stratified segmenta-
tion. Note that this BaseAttribute must belong to TheOutputConcept of this
operator, because the re-unified ColumnSet contains different values for this at-
tribute (whereas before the execution of this operator, the different ColumnSets
did not contain this attribute, but each represented one of its values).

If a SegmentationByPartitioning operator is reversed (section 4.3.2), this
parameter must have the value “(Random)”.

If a SegmentationWithKMean operator is reversed (section 4.3.2), this pa-
rameter must have the value “(KMeans)”.

Note that the segmentation to be reversed by this operator can be any
segmentation in the chain before this operator.

ParameterName ObjectType | Type | Remarks

ThelnputConcept CON IN | inherited

UnsegmentAttribute BA OUT | see text

TheOutputConcept CON OUT | inherited
RowSelectionByQuery

The output Concept contains only records that fulfill the SQL condition formu-
lated by the parameters of this operator. This operator is loopable! If applied

54CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

in a loop, the conditions from the different loops are connected by AND. Every
condition consists of a left-hand side, an SQL operator and a right-hand side.
Together, these three must form a valid SQL condition. For example, to specify
that only records (rows) whose value of attribute sale is either 50 or 60 should
be selected, the left condition is the BaseAttribute for sale, the operator is IN,
and the right condition is (50, 60).

If this operator is applied in a loop, only the three parameters modelling the
condition change from loop to loop, while input and output Concept remain the
same.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited (same in all loops)
TheLeftCondition BA IN any BA of input concept
TheConditionOperator v IN | an SQL operator: <, =, ...
TheRightCondition A% IN

TheOutputConcept CON OUT | inherited (same in all loops)

RowSelectionByRandomSampling

Puts atmost as many rows into the output Concept as are specified in the
parameter HowMany. Selects the rows randomly.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
HowMany \% IN | max. no. of rows
TheOutputConcept CON OUT | inherited

DeleteRecordsWithMissing Values

Puts only those rows into the output Concept that have an entry which is NOT
NULL in the Column for the specified TheTargetAttribute.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | may have NULL entries
TheOutputConcept CON OUT | inherited

SegmentationStratified

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented according to the values of the specified attribute,
so that each resulting Columnset corresponds to one value of the attribute.
For numeric attributes, intervals are built automatically (this makes use of the
statistics tables and the functions that compute the statistics).

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttribute BA IN

TheOutputConcept CON OUT | inherited

4.3. OPERATORS AND THEIR PARAMETERS 55

SegmentationByPartitioning

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented randomly into as many Columnsets as are specified
by the parameter HowManyPartitions.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN inherited
HowManyPartitions v IN positive integer
TheOutputConcept CON OUT | inherited

SegmentationWithKMean

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented according to the clustering method KMeans (an ex-
ternal learning algorithm). The number of ColumnSets in the output concept
is therefore not known before the application of this operator. However, the
parameter HowManyPartitions specifies a maximum for this number. The pa-
rameter OptimizePartitionNum is a boolean that specifies if this number should
be optimized by the learning algorithm (but it will not exceed the maximum).
The parameter SampleSize gives a maximum number of learning examples for
the external algorithm. The algorithm (KMeans) uses ThePredictingAttributes
for clustering; these attributes must belong to ThelnputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
HowManyPartitions \% IN | positive integer
OptimizePartitionNum A% IN | true or false
ThePredictingAttributes | BA List IN
SampleSize A% IN | positive integer
TheOutputConcept CON OUT | inherited
Windowing

Windowing is applicable to time series data. It takes two BaseAttributes from
the input Concept; one of contains time stamps, the other values. In the output
Concept each row gives a time window; there will be two time stamp BaseAt-
tributes which give the beginning and the end of each time window. Further,
there will be as many value attributes as specified by the WindowSize; they con-
tain the values for each window. Distance gives the distance between windows
in terms of number of time stamps.

While TimeBaseAttrib and ValueBaseAttrib are BaseAttributes that be-

long to ThelnputConcept, Output TimeStartBA, Output TimeEndBA and the Win-
dowedValuesBAs belong to TheQutputConcept.

56CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TimeBaseAttrib BA IN | time stamps
ValueBaseAttrib BA IN | values
WindowSize A% IN | positive integer
Distance A% IN | positive integer
OutputTimeStartBA BA OUT | start time of window
OutputTimeEndBA BA OUT | end time of window
WindowedValuesBA | BA List | OUT | as many as WindowSize
TheOutputConcept CON OUT | inherited
SimpleMovingFunction

This operator combines windowing with the computation of the average value
in each window. There is only one QutputValueBA which contains the average
of the values in a window of the given WindowSize; windows are computed
with the given Distance between each window. See also the description of the
Windowing operator in section 4.3.2.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN
InputValueBA BA IN
WindowSize \% IN
Distance A% IN
OutputTimeStartBA BA ouT
OutputTimeEndBA BA ouT
OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

WeightedMovingFunction

This operator works like SimpleMovingFunction (section 4.3.2), but the weighted
average is computed. The window size is not given explicitly, but is determined
from the number of Weights given. The sum of all Weights must be 1.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN

InputValueBA BA IN

Weights V List IN | sum must be 1
Distance A% IN | positive integer
OutputTimeStartBA BA ouT
OutputTimeEndBA BA ouT

OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

4.3. OPERATORS AND THEIR PARAMETERS 57

ExponentialMovingFunction

A time series smoothing operator. For two values with the given Distance, the
first one is multiplied with TailWeight and the second one with Head Weight.
The resulting average is written into OutputValueBA and becomes the new tail
value. Head Weight and Tail Weight must sum to 1.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN

InputValueBA BA IN

HeadWeight A% IN

TailWeight A% IN

Distance A% IN | positive integer
OutputTimeBA BA ouT
OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

SignalToSymbolProcessing

A time series abstraction operator. Creates intervals, their bounds are given
in QutputTimeStartBA and QutputTimeEndBA. The average value of every
interval will be in AverageValueBA. The average increase in that interval is in
IncreaseValueBA. Tolerance determines when an interval is closed and a new one
is opened: if the average increase, interpolated from the last interval, deviates
from a value by more than Tolerance, a new interval begins.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

InputTimeBA BA IN

InputValueBA BA IN

Tolerance \% IN non-negative real number
AverageValueBA BA ouT

IncreaseValueBA BA ouT

OutputTimeStartBA BA ouT

OutputTimeEndBA BA ouT

TheOutputConcept CON OUT | inherited

Apriori

An implementation of the well known Apriori algorithm for the data mining
step. It works on a sample read from the database. The sample size is given by
the parameter SampleSize.

The input format is fixed. There is one input concept (ThelnputConcept)
having a BaseAttribute for the customer ID (parameter: CustID), one for the
transaction ID (TransID), and one for an item part of this customer /transaction’s
itemset (Item). The algorithm expects all entries of these BaseAttributes to
be integers. No null values are allowed.

58CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

It then finds all frequent (parameter: MinSupport) rules with at least the
specified confidence (parameter: MinConfidence). Please keep in mind that these
settings (especially the minimal support) are applied to a sample!

The output is specified by three parameters. TheOutputConcept is the con-
cept the output table is attached to. It has two BaseAttributes, PremiseBA for
the premises of rules and ConclusionBA for the conclusions. Each entry for one
of these attributes contains a set of whitespace-separated item IDs (integers).

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

CustID BA IN | customer id (integer, not NULL)
TransID BA IN | transaction id (integer, not NULL)
Item BA IN | item id (integer, not NULL)
MinSupport A% IN | minimal support (integer)
MinConfidence A% IN | minimal confidence (in [0, 1])
SampleSize \% IN | the size of the sample to be used
PremiseBA BA OUT | premises of rules

ConclusionBA BA OUT | conclusions of rules
TheOutputConcept CON OUT | inherited

Feature Construction with TF/IDF

This operator calulates term frequencies / inverse document frequencies, a mea-
sure known from information retrieval. In this setting the operator is applied
for time series with binary attributes, instead.

The parameter TheSelectedAttributes contains a list of attributes, for which
the TF/IDF values should be calculated. TheKey is the primary key attribute
of this time series, while The TimeStamp is the attribute holding the time infor-
mation of the tuple.

Unlike other Feature Construction operators this one yields a concept, not
a single feature.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheSelectedAttributes | BA List | IN | attrib. to cal. TF/IDF for
TheTimeStamp BA IN | type TIME
TheKey BA IN | key attribute
TheOutputConcept CON OUT | inherited

Union

This operator implements the normal UNION functionality known from SQL,
thus the different Concepts specified as input need to be union-compatible.
There is one “main” InputConcept, which specifies the BaseAttributes of the
OutputConcept. If features of this InputConcept are deselected, then the fea-
tures will also be deselected in the output. The features of all attributes in
TheInputConcept. All further attributes in these Concepts will be ignored, all

4.3. OPERATORS AND THEIR PARAMETERS 59

missing attributes will be replaced by artificially added “named NULL values”,
which does not work for all datatypes!

Please note, that if you have no primary keys defined and you have multiple
occurences of the same tuples, then SQL will usually remove all duplicates when
applying a UNION-operation. In some cases you may prefer a “bag” or “multi-
set” semantics. For this reason the parameter DataMode allows to switch between
set and multi-set.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

FurtherConcepts CON List | IN | Union compatible Concepts
DataMode A% IN | set or multi-set mode?
TheOutputConcept CON OUT | inherited

4.3.3 Feature selection operators

Feature selection operators are also concept operators in that their output is a
Concept, but they are listed in their own section since they have some common
special properties. All of them (except FeatureSelectionByAttributes, see 4.3.3)
use external algorithms to determine which features are taken over to the output
concept. This means that at the time of designing an operating chain, it is not
known which features will be selected. How can a complete, valid chain be
designed then, since the input of later operators may depend on the output of
a feature selection operator, which is only determined at compile time?

The answer is that conceptually, all possible features are present in the out-
put concept of a feature selection operator, while the compiler creates Columns
for only some of them (the selected ones). This means that in later steps, some of
the features that are used for the input of an operator may not have a Column.
If the operator depends on a certain feature, the compiler checks whether a
Column is present, and shows an error message if no Column is found. If the
operator is executable without that Column, no error occurs.

All feature selection operators have a parameter TheAttributes which speci-
fies the set of features from which some are to be selected. (Again this is not true
for FeatureSelectionByAttributes, see 4.3.3.) The parameter is needed because
not all of the features of ThelnputConcept can be used, as they may include a
key attribute or the target attribute for a data mining step, which should not
be deselected. This means that all attributes from ThelnputConcept that are
not listed as one of TheAttributes will be present in TheOutputConcept both on
the conceptual and on the relational level.

FeatureSelectionByAttributes

This operator can be used for manual feature selection, which means that the
user specifies all features to be selected. This is done by providing all and only
the features that are to be selected in TheOutputConcept. The operator then
simply copies those features from ThelnputConcept to TheOutputConcept which
are present in TheQutputConcept. It can be used to get rid of features that are

60CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

not needed in later parts of the operator chain. All features in TheOutputConcept
must have a corresponding feature (with the same name) in ThelnputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheOutputConcept CON OUT | inherited

StatisticalFeatureSelection

A Feature Selection operator. This operator uses the stochastic correlation mea-
sure to select a subset of TheAttributes. All of TheAttributes must be present in
TheOutputConcept. The parameter Threshold is a real number between 0 and 1
(default is 0.7). SampleSize specifies a maximum number of examples that are
fed into the external algorithm.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 4.3.3
SampleSize A% IN | positive integer
Threshold \% IN | real between 0 and 1
TheOutputConcept CON OUT | inherited

GeneticFeatureSelection

A Feature Selection operator.This operator uses a genetic algorithm to select a
subset of TheAttributes. It calls C4.5 to evaluate the individuals of the genetic
population. TheTargetAttribute specifies which attribute is the target attribute
for the learning algorithm whose performance is used to select the best fea-
ture subset. PopDim gives the size of the population for the genetic algorithm.
StepNum gives the number of generations. The probabilities of mutation and
crossover are specified with ProbMut and ProbCross.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheAttributes BA list IN | see section 4.3.3

SampleSize A% IN | positive integer

PopDim \% IN positive integer; try 30
StepNum \% IN | positive integer; try 20
ProbMut \% IN | real between 0 and 1; try 0.001
ProbCross \% IN | real between 0 and 1; try 0.9
TheOutputConcept CON OUT | inherited

SGFeatureSelection

A Feature Selection operator. This operator is a combination of StochasticFea-
tureSelection (see 4.3.3), which is applied first, and GeneticFeatureSelection (see
4.3.3), applied afterwards. The parameter descriptions can be found in the sec-
tions about these operators (4.3.3 and 4.3.3).

4.3. OPERATORS AND THEIR PARAMETERS 61

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 4.3.3
SampleSize v IN

PopDim A% IN

StepNum vV IN

ProbMut v IN

ProbCross v IN

Threshold Vv IN | real, between 0 and 1
TheOutputConcept CON OUT | inherited

FeatureSelectionWithSVM

A Feature Selection operator. This operator uses the {a-estimator as computed
by a Support Vector Machine training run to compare the classification perfor-
mance of different feature subsets. Searching either forward or backward, it finds
the best feature subset according to this criterion. Thus it performs a simple
beam search of width 1.

TheTargetAttribute must be binary as Support Vector Machines can only
solve binary classification problems. (The £a-estimator can only be computed
for classification problems.) The parameter PositiveTargetValue specifies the
class label of the positive class. There are some SVM-specific parameters; the
table gives reasonable values to choose if nothing is known about the data or
SVMs. For the Kernel Type, only the following values (Strings) are possible: dot,
polynomial, neural, radial, anova. Dot is the linear kernel and can be taken as
default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String
true. When this version is used, an additional parameter TheKey is needed
which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
TheInputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. It can also use the
parameter SampleSize.

62CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheAttributes BA list IN | see section 4.3.3
TheTarget Attribute BA IN | must be binary
PositiveTarget Value A% IN | the positive class label
KernelType \% IN | see explanation above
SampleSize A% IN | see explanation above

C A% IN | positive real; try 1.0
Epsilon A% IN | positive real; try 0.1
UseDB_SVM v IN | optional; one of true, false
TheKey BA IN | optional

SearchDirection A% IN | one of forward, backward
TheOutputConcept CON OUT | inherited

SimpleForwardFeatureSelectionGivenNoOfAttributes

A Feature Selection operator. This operator adds one feature a time start-
ing from the empty set until the required number of features NoOfAttributes
is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Use this operator if only
a small number of original attributes is to be selected. The selection is done
from the set of TheAttributes, attributes not specified in this set are selected
automatically.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 4.3.3
TheClassAttribute BA IN | must be categorial
NoOfAttributes A% IN | positive integer
SampleSize A% IN | positive integer
TheOutputConcept CON OUT | inherited

SimpleBackwardFeatureSelectionGivenNoOfAttributes

A Feature Selection operator. This operator removes one feature a time start-
ing from all attributes until the required number of features NoOfAttributes
is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Use this operator if a
large number of original attributes is to be selected. The selection is done from
the set of TheAttributes, attributes not specified in this set are selected auto-
matically.

4.3. OPERATORS AND THEIR PARAMETERS 63

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheAttributes BA list IN | see section 4.3.3

TheClassAttribute BA IN | must be categorial

NoOfAttributes A% IN | positive integer

SampleSize A% IN | positive integer
TheOutputConcept CON OUT | inherited

FloatForwardFeatureSelectionGivenNoOfAtt

A Feature Selection operator. This operator adds one feature a time starting
from empty set until the required number of features NoOfAttributes is reached.
The attributes are selected with respect to TheClassAttribute, the group opti-
mises the information dependence criterion. Unlike the simple operator, after
adding a feature a check is performed if another feature should be removed. Use
this operator if only a small number of original attributes is to be selected. The
selection is done from the set of TheAttributes, attributes not specified in this
set are selected automatically.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 4.3.3
TheClassAttribute BA IN | must be categorial
NoOfAttributes A% IN | positive integer
SampleSize A% IN | positive integer
TheOutputConcept CON OUT | inherited

FloatBackwardFeatureSelectionGivenNoOfAtt

A Feature Selection operator. This operator removes one feature a time start-
ing from all attributes until the required number of features NoOfAttributes
is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Unlike the simple oper-
ator, after removing a feature a check is performed if another feature should be
added. Use this operator if a large number of original attributes is to be selected.
The selection is done from the set of TheAttributes, attributes not specified in
this set are selected automatically.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section 4.3.3
TheClassAttribute BA IN | must be categorial
NoOfAttributes A% IN | positive integer
SampleSize A% IN | positive integer
TheOutputConcept CON OUT | inherited

64CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

UserDefinedFeatureSelection

A Feature Selection operator. This operator copies exactly those features from
TheInputConcept to TheOutputConcept that are specified in TheSelectedAt-
tributes. It can be used for the same task as the operator FeatureSelection-
ByAttributes, see 4.3.3, namely when the user knows which features to select.
The difference is that FeatureSelectionByAttributes copies all features that are
present in TheOQutputConcept, while this operator copies those that are specified
in the extra parameter TheSelectedAttributes.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheSelectedAttributes | BA list IN | the user’s selection
TheOutputConcept CON OUT | inherited

4.3.4 Feature construction operators

All operators in this section are loopable. For loops, ThelnputConcept remains
the same (par_stloopnr = 0) while TheTargetAttribute, TheOutputAttribute
and further operator-specific parameters change from loop to loop (loop numbers
start with 1).

AssignAverageValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by the average value of that Column. The operator computes the column statis-
tics if they are not computed yet, which may take some time.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | must be numeric
TheOutputAttribute BA OUT | inherited

AssignModalValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by the modal value of that Column. The operator computes the column statistics
if they are not computed yet, which may take some time.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN

TheOutputAttribute BA OUT | inherited

AssignMedianValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by the median of that Column. The operator computes the column statistics if
they are not computed yet, which may take some time.

4.3. OPERATORS AND THEIR PARAMETERS 65
ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN inherited

TheTargetAttribute BA IN

TheOutputAttribute BA OUT | inherited

AssignDefaultValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced

by the DefaultValue.

ParameterName ObjType | Type | Remarks
TheInputConcept CON IN | inherited
TheTargetAttribute BA IN | inherited
DefaultValue A% IN

TheOutputAttribute BA OUT | inherited

AssignStochasticValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by a value which is randomly selected according to the distribution of present
values in this attribute. For example, if half of the entries in TheTargetAttribute
have a specific value, this value is chosen with a probability of 0.5. The operator
computes the column statistics if they are not computed yet, which may take
some time.

ParameterName ObjType | Type | Remarks
TheInputConcept CON IN | inherited
TheTargetAttribute BA IN | inherited

TheOutputAttribute BA OUT | inherited

MissingValuesWithRegressionSVM

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by a predicted value. For prediction, a Support Vector Machine (SVM) is trained
in regression mode from ThePredictingAttributes (taking TheTargetAttribute
values that are not missing as target function values). All ThePredictingAt-
tributes must belong to ThelnputConcept. TheOutputAttribute contains the orig-
inal values, plus the predicted values where the original ones were missing.

There are some SVM-specific parameters; the table gives reasonable values
to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,
anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String
true. When this version is used, an additional parameter TheKey is needed

66CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
TheInputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. It can also use the
parameter SampleSize.

With the parameters LossFunctionPos and LossFunctionNeg, the loss func-
tion that is used for the regression can be biased such that predicting too high
is more expensive (LossFunctionPos > LossFunctionNeg) or less expensive
(LossFunctionNeg > LossFunctionPos)than predicting too low. If both val-
ues are equal, no bias is used. The parameter C balances training error against
generalisation quality; positive values between 0.01 and 1000 have been used
successfully in the literature. Epsilon limits the allowed error an example may
produce; small values under 0.5 should be used.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN
KernelType A% IN | see explanation above
SampleSize A% IN | see explanation above
LossFunctionPos A% IN | positive real; try 1.0
LossFunctionNeg Vv IN | positive real; try 1.0
C vV IN | positive real; try 1.0
Epsilon v IN | positive real; try 0.1
UseDB_SVM v IN | optional; one of true, false
TheKey BA IN | optional
TheOutputAttribute BA OUT | inherited
LinearScaling

A scaling operator. Values in TheTargetAttribute are scaled to lie between
NewRangeMin and NewRangeMaz.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
NewRangeMin A% IN | new min value
NewRangeMax A% IN | new max value
TheOutputAttribute BA OUT | inherited

LogScaling

A scaling operator. Values in TheTargetAttribute are scaled to their logarithm
to the given LogBase.

4.3. OPERATORS AND THEIR PARAMETERS 67

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN inherited
TheTargetAttribute BA IN | inherited
LogBase A% IN

TheOutputAttribute BA OUT | inherited

SupportVectorMachineForRegression

A data mining operator. Values in TheTargetAttribute are used as target func-
tion values to train the SVM on examples that are formed with ThePredicting-
Attributes. All ThePredictingAttributes must belong to ThelnputConcept. The-
OutputAttribute contains the predicted values.

There are some SVM-specific parameters; the table gives reasonable values
to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,
anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String
true. When this version is used, an additional parameter TheKey is needed
which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
TheInputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. It can also use the
parameter SampleSize.

With the parameters LossFunctionPos and LossFunctionNeg, the loss func-
tion that is used for the regression can be biased such that predicting too high
is more expensive (LossFunctionPos > LossFunctionNeg) or less expensive
(LossFunctionNeg > LossFunctionPos)than predicting too low. If both val-
ues are equal, no bias is used. The parameter C balances training error against
generalisation quality; positive values between 0.01 and 1000 have been used
successfully in the literature. Epsilon limits the allowed error an example may
produce; small values under 0.5 should be used.

68CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

KernelType A% IN | see explanation above
SampleSize A% IN | see explanation above
LossFunctionPos A% IN | positive real; try 1.0
LossFunctionNeg A% IN | positive real; try 1.0
C A% IN | positive real; try 1.0
Epsilon v IN | positive real; try 0.1
UseDB_SVM v IN | optional; one of true, false
TheKey BA IN | optional
TheOutputAttribute BA OUT | inherited

SupportVectorMachineForClassification

A data mining operator. Values in TheTargetAttribute are used as target func-
tion values to train the SVM on examples that are formed with ThePredicting-
Attributes. The TargetAttribute must be binary as Support Vector Machines can
only solve binary classification problems. The parameter PositiveTargetValue
specifies the class label of the positive class. All ThePredictingAttributes must
belong to ThelnputConcept. TheOutputAttribute contains the predicted values.

There are some SVM-specific parameters; the table gives reasonable values
to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,
anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to
determine a maximum number of training examples. The other runs in the
database; it is used if the optional parameter UseDB_SVM is set to the String
true. When this version is used, an additional parameter TheKey is needed
which gives the BaseAttribute whose column is the primary key of Theln-
putConcept. (TheKey can be left out only if the ColumnSet that belongs to
ThelnputConcept represents a table rather than a view.) The database algo-
rithm restricts the possible kernel types to dot and radial. It can also use the
parameter SampleSize.

The parameter C balances training error against generalisation quality; pos-
itive values between 0.01 and 1000 have been used successfully in the literature.
Epsilon limits the allowed error an example may produce; small values under
0.5 should be used.

4.3. OPERATORS AND THEIR PARAMETERS 69
ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | inherited; must be binary
ThePredictingAttributes | BA List IN
KernelType v IN | see explanation above
SampleSize A% IN | see explanation above
C A% IN | positive real; try 1.0
Epsilon \% IN | positive real; try 0.1
UseDB_SVM A% IN | optional; one of true, false
TheKey BA IN | optional
PositiveTargetValue A% IN | the positive class label
TheOutputAttribute BA OUT | inherited

MissingValueWithDecisionRules

A Missing value operator. Each missing value (NULL value) in TheTargetAt-
tribute is replaced by a predicted value. For prediction, a set of Decision Rules is
learned from ThePredictingAttributes, which must belong to ThelnputConcept.

The pruning confidence level is given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
TheInputConcept CON IN | inherited
TheTargetAttribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize A% IN | positive integer
PruningConf A% IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

MissingValueWithDecisionTree

A Missing value operator. Each missing value (NULL value) in TheTargetAt-
tribute is replaced by a predicted value. For prediction, a Decision Tree is
learned from ThePredictingAttributes, which must belong to ThelnputConcept.

The pruning confidence level is given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
TheInputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize A% IN | positive integer
PruningConf v IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

PredictionWithDecisionRules

A Feature Construction operator. Decision rules are learned using ThePredicting-
Attributes as learning attributes and TheTargetAttribute as label. TheOutpu-
tAttribute contains the labels that the decision rules predict. The operator may

T0CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

be used to compare predicted and actual values, or in combination with the
operator AssignPredictedValueCategorial (see section 4.3.4). All ThePredictin-
gAttributes must belong to ThelnputConcept. The pruning confidence level is
given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize A% IN | positive integer
PruningConf A% IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

PredictionWithDecisionTree

A Feature Construction operator. A Decision Tree is learned using ThePredicting-
Attributes as learning attributes and TheTargetAttribute as label. TheOutpu-
tAttribute contains the labels that the decision tree predicts. The operator may
be used to compare predicted and actual values, or in combination with the
operator AssignPredictedValueCategorial (see section 4.3.4). All ThePredictin-
gAttributes must belong to ThelnputConcept. The pruning confidence level is
given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List IN

SampleSize v IN | positive integer
PruningConf A% IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

AssignPredictedValueCategorial

A Missing Value operator. Any missing value of The TargetAttribute is replaced
by the value of the same row from ThePredictedAttribute. The latter may have
been filled by the operator PredictionWithDecisionRules (4.3.4) or Prediction-
WithDecisionTree (4.3.4). It must belong to TheInputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredicted Attribute BA IN

TheOutputAttribute BA OUT | inherited

GenericFeatureConstruction

This operator creates an output attribute on the basis of a given SQL definition
(Parameter SQL_String). The definition must be well-formed SQL defining how

4.3. OPERATORS AND THEIR PARAMETERS 71

values for the output attribute are computed based on one of the attributes in
TheInputConcept. To refer to the attributes in ThelnputConcept, the names of
the BaseAttributes are used—and not the names of any Columns. For example,
if there are two BaseAttributes named “INCOME” and “TAX” in Thelnput-
Concept, this operator can compute their sum if SQL_String is defined as “(IN-
COME + TAX)”. Since the operator must resolve names of BaseAttributes,
it cannot be used if there are two or more BaseAttributes in ThelnputConcept
with the same name.

TheTargetAttribute is needed to have a blueprint for TheQutputAttribute.
The operator ignores TheTargetAttribute, except that it uses the relational
datatype of its column to specify the relational datatype for the column of
TheOQutputAttribute.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN inherited; specifies datatype
SQL_String A% IN | see text
TheOutputAttribute BA OUT | inherited

DateToNumeric

This operator extracts numerical parts of database fields in DATE format. This is
useful if you need to perform arithmetic operations on time stamps, for example
when you need to represent the time as days since a given start date. Parameters
are simply an ThelnputConcept, TheTargetAttribute of type DATE, and Output-
Format, currently one of Year YYYY, Year_YY, Month of_Year, Day_of Month,
Hour_of Day, Minute_of Hour, and Second_of Minute. The result is stored in
TheOQutputAttribute.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | inherited; type: DATE
OutputFormat A% IN | see text
TheOutputAttribute BA OUT | inherited

TimelntervalManualDiscretization

This operator can be used to discretize a time attribute manually. The looped
parameters specify a mapping to be performed from TheTargetAttribute, a
BaseAttribute of type TIME to a set of user specified categories. As for all
FeatureConstruction operators a BaseAttribute TheOutputAttribute is added to
the ThelnputConcept.

The mapping is defined by looped parameters. An interval is specified by
its lower bound IntervalStart, its upper bound IntervalEnd and two additional
parameters StartIncExc and EndIncEzc, stating if the interval bounds are in-
cluded (value: “I”) or excluded (value: “E”). The value an interval is mapped
to is given by the looped parameter MapTo. If an input value does not belong
to any interval, it is mapped to the value Default Value.

T2CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

To be able to cope with various time formats (e.g. '"HH-MI-SS’) the operator
reads the given format from the parameter TimeFormat (ORACLE-specific).

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited, type: TIME
IntervalStart A% IN “looped”, lower bound of interval
IntervalEnd A% IN “looped”, upper bound of interval
MapTo A% IN | value to map time interval to
StartIncExc A% IN one of “I” and “E”

EndIncExc A% IN one of “I” and “E”

DefaultValue A% IN value if no mapping applies
TimeFormat v IN ORACLE specific time format
TheOutputAttribute BA OUT | inherited

NumericIntervalManualDiscretization

This operator can be used to discretize a numeric attribute manually. It is very
similar to the operator TimelntervalManualDiscretization described in 4.3.4.
The looped parameters IntervalStart, IntervalEnd, StartIncEzc, EndIncEzxc, and
Map To. again specify a mapping to be performed. If an input value does not be-
long to any interval, it is mapped to the value Default Value. The TargetAttribute
needs to be of type ordinal.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited, type: ORDINAL
IntervalStart A% IN “looped”, lower bound of interval
IntervalEnd A% IN “looped”, upper bound of interval
MapTo Vv IN | value to map time interval to
StartIncExc A% IN one of “I” and “E”

EndIncExc A% IN one of “I” and “E”

DefaultValue v IN | value if no mapping applies
TimeFormat vV IN ORACLE specific time format
TheOutputAttribute BA OUT | inherited

EquidistantDiscretizationGivenWidth

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals with given width Interval Width starting at StartPoint. The first
and the last interval cover also the values out of range.

4.3. OPERATORS AND THEIR PARAMETERS 73
ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN inherited
TheTargetAttribute BA IN | must be numeric
StartPoint A% IN optional
Interval Width A% IN a positive real number
ClosedTo A% IN | one of LEFT or RIGHT
TheOutputAttribute BA OUT | should be categorial

EquidistantDiscretizationGivenNoOfIntervals

A discretization operator. Numeric attributes are discretized and the output is a
categorial attribute. This operator divides the range of TheTargetAttribute into
the given number of intervals NoOfIntervals with the same width. The first and
the last interval cover also the values out of range. Values of TheOutputAttribute

can be specified in the parameter Label.

ParameterName ObjType | Type | Remarks
TheInputConcept CON IN | inherited
TheTargetAttribute BA IN | must be numeric
NoOfIntervals A% IN | integer

ClosedTo A% IN | one of LEFT or RIGHT
Label V List IN optional
TheOutputAttribute BA OUT | should be categorial

EquifrequentDiscretizationGivenCardinality

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals with given Cardinality (number of examples whose values are in
the interval). The first and the last interval cover also the values out of range.
CardinalityType decides how the parameter Cardinality is to be interpreted.
Values of TheOutputAtiribute can be specified in the parameter Label (this makes
sense only if CardinalityType is RELATIVE).

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
CardinalityType v IN | ABSOLUTE or RELATIVE
Cardinality A% IN | positive

ClosedTo A% IN | one of LEFT or RIGHT
Label V List IN optional
TheOutputAttribute BA OUT | should be categorial

EquifrequentDiscretizationGivenNoOfIntervals

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into the given number of intervals NoOfIntervals. The intervals have the same

TACHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

cardinality (number of examples with values within the interval). The first and
the last interval cover also the values out of range. Values of TheOutputAttribute
can be specified in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
NoOfIntervals A% IN | positive integer > 1
ClosedTo v IN | one of LEFT or RIGHT
Label V List IN | optional
TheOutputAttribute BA OUT | should be categorial

UserDefinedDiscretization

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals according to user given cutpoints TheCutpoints, which is a list of
values which each give a cutpoint for the intervals to be created. The cutpoints
must be given in ascending order. Values of TheOutputAttribute can be specified
in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheCutpoints A% IN | see text

ClosedTo A% IN | one of LEFT or RIGHT
Label V List IN | optional
TheOutputAttribute BA OUT | should be categorial

ImplicitErrorBasedDiscretization

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals by merging subsequent values with the same majority class (or
classes) given in TheClassAttribute. TheClassAttribute contains the labels of an
example as in a Machine Learning setting. The resulting intervals minimize the
classification error. If FullMerge is set to YES, then an interval with two or more
majority classes is merged with its neighbour, if both intervals share the same
majority class. The parameter SampleSize gives a maximum number of learning
examples for the external algorithm.

4.3. OPERATORS AND THEIR PARAMETERS 75
ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN inherited
TheTargetAttribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
ClosedTo A% IN | one of LEFT or RIGHT
FullMerge A% IN | one of YES or NO
SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

ErrorBasedDiscretizationGivenMinCardinality

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute
into intervals with cardinality greater or equal to MinCardinality. MinCardinal-
ity Type decides if MinCardinality values are read as absolute values (integers)
or relative values (real, between 0 and 1). TheTargetAttribute is divided into
intervals with respect to TheClassAttribute, but unlike the implicit discretiza-
tion, intervals with single majority class are further merged if they do not have
the required cardinality. This will increase the classification error. TheClassAt-
tribute contains the labels of an example as in a Machine Learning setting. The
parameter SampleSize gives a maximum number of learning examples for the
external algorithm.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
MinCardinality Type A% IN | ABSOLUTE or RELATIVE
MinCardinality A% IN | positive

ClosedTo A% IN | oneof LEFT or RIGHT
SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

ErrorBasedDiscretizationGivenNoOfInt

A discretization operator. Numeric attributes are discretized and the output is a
categorial attribute. This operator divides the range of TheTargetAttribute into
at most NoOflIntervals intervals. TheTargetAttribute is divided into intervals
with respect to TheClassAttribute, but unlike the implicit discretization, if the
number of interval exceeds NoOfIntervals, intervals are further merged. This
will increase the classification error. TheClassAttribute contains the labels of an
example as in a Machine Learning setting. Values of TheOutputAttribute can be
specified in the parameter Label. The parameter SampleSize gives a maximum
number of learning examples for the external algorithm.

T6CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
NoOfIntervals A% IN | positive integer > 1
ClosedTo A% IN | one of LEFT or RIGHT
Label V List IN | optional

SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

GroupingGivenMinCardinality

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator groups values of TheTargetAttribute by iteratively merging in each
step two groups with the lowest frequencies until all groups have the cardinality
(number of examples with values within the interval) at least MinCardinality.
The algorithm has been inspired by hierarchical clustering. MinCardinality Type
decides if MinCardinality values are read as absolute values (integers) or relative
values (real, between 0 and 1).

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
MinCardinality Type A% IN | ABSOLUTE or RELATIVE
MinCardinality v IN | positive
TheOutputAttribute BA OUT | should be categorial

GroupingGivenNoOfGroups

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator groups values of The TargetAttribute by iteratively merging in each step
two groups with the lowest frequencies until the number of groups NoOfGroups
is reached. The algorithm has been inspired by hierarchical clustering. Values
of TheOutputAttribute can be specified in the parameter Label.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric

NoOfGroups v IN | positive integer

Label V List IN optional

TheOutputAttribute BA OUT | should be categorial
UserDefined Grouping

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This

4.3. OPERATORS AND THEIR PARAMETERS 7

operator creates groups of TheTargetAttribute according to specifications given
by the user in TheGroupings, which is a list of values. Each of the values in
the list in turn is a String that lists values of TheTargetAttribute which should
be grouped together, separating them with a comma. Values not specified for
grouping retain their original values. Values of TheOutputAttribute can be spec-
ified in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | must be numeric
TheGroupings V List IN | see text

Label V List IN optional
TheOutputAttribute BA OUT | should be categorial

UserDefined GroupingWithDefault Value

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheQutputAttribute, which must be categorial. This
operator creates groups of TheTargetAttribute values according to specifications
given by the user in TheGroupings, which is a list of values. Each of the values in
the list in turn is a String that lists values of TheTargetAttribute which should
be grouped together, separating them with a comma. Values not specified for
grouping are grouped into default group Default. Values of TheOutputAttribute
can be specified in the parameter Label.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTargetAttribute BA IN | must be numeric
Default A% IN | default group

Label V List IN optional
TheOutputAttribute BA OUT | should be categorial

ImplicitErrorBased Grouping

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into groups with the same
majority class (or classes) given in TheClassAttribute. If FullMerge is set to yes,
then a group with two or more majority classes is merged with a group that
has the same majority class. The resulting grouping minimizes the classifica-
tion error. TheClassAttribute contains the labels of an example as in a Machine
Learning setting. The parameter SampleSize gives a maximum number of learn-
ing examples for the external algorithm.

T8CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
FullMerge A% IN | one of YES or NO
SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

ErrorBasedGroupingGivenMinCardinality

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into groups with the cardi-
nality above the given threshold MinCardinality. MinCardinality Type decides if
MinCardinality values are read as absolute values (integers) or relative values
(real, between 0 and 1). The grouping is performed with respect to TheClas-
sAttribute, but unlike implicit grouping, groups with a single majority class are
further merged if they do not have the required cardinality. This will increase
the classification error. TheClassAttribute contains the labels of an example as
in a Machine Learning setting. The parameter SampleSize gives a maximum
number of learning examples for the external algorithm.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
SampleSize A% IN | optional; positive integer
MinCardinality Type A% IN | ABSOLUTE or RELATIVE
MinCardinality A% IN | positive
TheOutputAttribute BA OUT | should be categorial

ErrorBasedGroupingGivenNoOfGroups

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into at most NoOfGroups
groups. The grouping is performed with respect to TheClassAttribute, but un-
like the implicit discretization, if the number of groups exceeds NoOfGroups,
groups are further merged. This will increase the classification error. Values of
TheOutputAttribute can be specified in the parameter Label. TheClassAttribute
contains the labels of an example as in a Machine Learning setting. The param-
eter SampleSize gives a maximum number of learning examples for the external
algorithm.

4.3. OPERATORS AND THEIR PARAMETERS 79
ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN inherited
TheTargetAttribute BA IN | must be numeric
TheClassAttribute BA IN | must be categorial
NoOfGroups A% IN | integer > 1
Label V List IN optional
SampleSize A% IN | optional; positive integer
TheOutputAttribute BA OUT | should be categorial

4.3.5 Other Operators

Materialize

This operator is a normal ConceptOperator, but it is a pure technical construc-
tion to enforce materialization of ColumnSets. The table name of the output can
(optionally) be specified as a parameter, which is useful if you want to access
the preprocessed data afterwards. If multiple ColumnSets exist, then each of
the correspodning table names will be extended by a numerical suffix like “_1”.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TableName A% IN name of output table

TheOutputConcept BA IN | inherited
ComputeSVMError

A special evaluation operator used for obtaining some results for the regres-
sion SVM. Values in TheTarget ValueAttribute are compared to those in The-
PredictedValueAttribute. The average loss is determined taking the asymmet-
ric loss function into account. That is why the SVM parameters are needed
here as well. Note that they must have the same value as for the operator
SupportVectorMachineForRegression, which must have preceded this evalu-
ation operator in the chain.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget ValueAttribute BA IN | actual values
ThePredictedValueAttribute BA IN | predicted values
LossFunctionPos A% IN (same values
LossFunctionNeg \% IN as in SVM-
Epsilon A% IN ForRegression)
SubgroupMining

A special operator without output on the conceptual level. The output of the
algorithm is a textual description of discovered subgroups which will be printed
to the compiler output (log file). The operator is only applicable to a table which
is suitable for spatial subgroup discovery. Thus, ThePredictingAttributes must

80CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

only contain categorial data. Therefore only features with a finite (and small)
number of distinct values should be selected.

TheTargetAttribute and TheKey must belong to ThelnputConcept; TheKey
must refer to the primary key column. ThePredictingAttributes are used to learn
from. TargetValue is one value from TheTargetAttribute. SearchDepth limits the
search for generating hypotheses. MinSupport and MinConfidence give minimum
values between 0 and 1 for support and confidence of the generated subgroups.
NumHypotheses specifies the number of hypotheses to be generated. RuleClus-
ters is a boolean parameter specifying whether or not clustering should be per-
formed on the generated rules.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN

TheKey BA IN

ThePredictingAttributes | BA List IN

TargetValue A% IN | from TheTargetAttribute

SearchDepth A% IN | positive integer

MinSupport A% IN | real between 0 and 1

MinConfidence A% IN | real between 0 and 1

NumHypotheses A% IN | positive integer

RuleClusters A% IN | one of YES, NO
YaleModelApplier

This operator is able to apply a model written by the learning toolbox Yale to
an example set as given by a database table. The result is available as a database
view. Please refer to section 2.4 on how to prepare integration of Yale models
technically. The first thing you need to have at the operator’s parameter level is a
PrimaryKey feature in your example set view, represented by TheInputConcept.
Unlike other operators this operator will not work correctly if the specified pri-
mary key attribute is not unique. Usually not all of the available attributes will
be available for prediction, so an array of PredictingAttributes has to be
specified. Please note that the primary key must not be part of this list. The
model is referenced by an absolute path in your file system to the model file writ-
ten by Yale. Finally the base attribute to be predicted (PredictedAttribute)
and TheQOutputConcept need to be specified.

Up to version 0.21 the order of predicting attributes needs to be the same
as during learning. If you want to induce a model with Yale using a database
view, then please give an explicit list of attributes in the SELECT part of the
DatabaseExampleSource operator of Yale. The order of attributes in MiningMart
is given by the order in the array PredictingAttributes.

It is possible to apply this operator in loops. The input and output concept,
and the predicting attributes will be the same for all loops, while the model file
and the output base attribute should change for each loop.

4.3. OPERATORS AND THEIR PARAMETERS 81
ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
PrimaryKey BA IN a unique attribute
PredictingAttributes | BA List IN | attribute list as during learning
ModelFile \% IN absolute path to model file
Predicted Attribute BA OUT | new attribute to be predicted
TheOutputConcept CON OUT | inherited

CreatePrimaryKey

Simple concept operator for creating a view representing the same concept with
an additional primary key. If the original concept has duplicates, then the ability
of this operator to remove (SELECT DISTINCT ...) or keep these duplicates
might be interesting. This operator is also applicable to views that already have
a primary key. In the database the newly created attribute will be used for
indexing in the output view.

Parameters are TheInputConcept and TheOutputConcept, the PrimaryKey
to be added, and a flag AllowDuplicates, indicating whether the created view
should explicitly make sure that the same tuple will not appear multiple times
in the output concept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
PrimaryKey BA IN the new primary key
AllowDuplicates A% IN | one of “true” or “false”
TheOutputConcept CON OUT | inherited

Repeat

The repeat operator will create the same view of TheInputConcept as often
as specified by HowOften in the OutputConcept, which leads to repeated ap-
plications of the following steps. This is e.g. useful to apply the same chain on

different samples, drawn in one of the succeeding steps.

ParameterName ObjType | Type | Remarks
TheInputConcept CON IN | inherited
HowOften vV IN | number of views to create
TheOutputConcept CON OUT | inherited

82CHAPTER 4. COMPILER CONSTRAINTS AND OPERATOR PARAMETERS

Chapter 5

The Case Repository

One of the basic ideas behind MiningMart is the aspect of sharing knowledge
about successful cases. The MiningMart project has set up a central web plat-
form which allows the public exchange and documentation of exported cases.
The platform makes use of a special software called Infolayer. This chapter
describes how the platform can be used to benefit from other users’ work and
to let others benefit from one’s own work.

The web address for the case base is:
http://kiss.cs.uni-dortmund.de:8080/mmart/

5.1 The Internet Presentation of Cases

As soon as an efficient chain of preprocessing has been found, it can easily
be exported and added to an Internet repository of best-practice MiningMart
cases. Only the conceptual meta-data is submitted, so even if a case handles
sensitive information, as is true for most medical or business applications, it is
still possible to distribute the valuable meta-data for re-use, while hiding all the
sensitive data and even the local database schema.

To support users in finding the most relevant cases, their inherent structure
is exploited. An according Internet interface is accessible that visualizes the
conceptual meta-data. It will be possible to navigate through the case-base and
to investigate single steps, to see which operators were used on which kind of
concepts. The Internet interface reads the data directly from the M4 tables in
the database, avoiding additional efforts and redundancies.

Additionally to the data explicitly represented in M4, a business level has
been added. This level aims at relating the case to business goals and to give sev-
eral kinds of additional descriptions, like which success criteria were important
for the case. This allows other users to easily relate the work done in one case
to their own goals, rather than getting too much involved in technical details at
an early stage. Figure 5.1 shows the ontology of the business level.

To use the internet case repository, please use an ordinary web browser

83

84 CHAPTER 5. THE CASE REPOSITORY

‘ DomainUnderstanding | ‘ ProblemDescription ‘

‘ ConceptualDataModel ‘ I@I } PreprocessingDescription ‘
BusinessDomain ﬂ‘ [———
PreprocessingChain

Application | ApplicationDescription |

DataUnderstanding

BusinessType —
SuccessCriteria } DataExplorationRemark
ApplicationType MethodSelection
Evaluation

Figure 5.1: The ontology of the business layer, used to describe M4 cases in business
terms.

and go to the address given at the beginning of this chapter. You can click
through the metadata of the cases which are already there. The business level
descriptions can be found on the same page and reached via their links to the
cases present.

The following sections describe what to do if you have found a case that you
would like to download and modify in your own MiningMart system, and what
to do if you want to contribute a case to the internet repository.

5.2 How to download a case

In the InfoLayer there is a section called “Downloadable Case”. Here all cases
in the repository are listed. If you click on the one you chose, you get a short
overview description of the case together with a file. You need to download this
file (usually the extension .m4 is used to mark it as a MiningMart file).

Using your MiningMart system, you can find the menu item “Import” in
your “File”-menu. You are then asked whether you would like to import only
the conceptual level, or the relational level, too. Usually you will only want to
import the conceptual level, especially when you have downloaded a case from
the internet repository because they include only the conceptual level. After
this, you are prompted with a file browsing dialogue. Choose the downloaded
file. Then you can give a name to the case you are about to import. Please wait
until all M4 objects are imported.

At this moment, you have access to the conceptual level of the case. If
you want to execute the case or a modified version of it, you now have to
link the concepts of type DB to your own database tables or views. This may
mean that you have to adjust the exact form of concepts to the structure of

5.3. HOW TO DOCUMENT A CASE 85

your database objects, or that you have to insert additional steps to the case
which bring your data into a suitable format. For every concept, use the concept
editor and its “connect”-function as explained in section 3.3. Then continue with
the relationships between the concepts, if there are any. Once these items are
connected to your database objects, you can continue by compiling the steps or
making adjustments to the case.

5.3 How to document a case

For the documentation of your case, which is especially important if you want
to publish its conceptual level in the internet case repository, you have two
basic possibilities. First there exists a documentation or description field for
every step, chain, concept, baseattribute etc. which can be edited directly in
the HCI, that is, in the concept editor and the case editor. Entries made here
are stored together with the metadata in M4 which means that they will be
available in the InfoLayer software should the case be published. However, these
documentations allow only to describe the M4 objects that make up the case. If
the more general aspects of a case (its goal, way of processing, success criteria
etc.) are to be documented, this can be done using the InfoLayer software on
the MiningMart webpages if the case has been uploaded.

The next subsection describes how to upload a case to the MiningMart repos-
itory. Let us assume that this has already been done. Then the M4 objects of
your case are present in the InfoLayer. You would be given a user name and
password which allows you to use the editing functionality of the InfoLayer soft-
ware. Click on “Login” at the low end of the left-hand side navigation bar at the
web address given above (under “Administration”). Enter your user name and
password. Afterwards you can add instances to the business level by clicking on
“create instance” in any category. It is a good idea to start with the Business-
LayerObject “Application”. From here you find links to the most important M4
and business level objects for which you can add descriptions using the “edit”
button. Any description you enter will be immediately available over the web
to other users. You may want to refer to figure 5.1 in this document in order to
understand how the different objects in the business level are linked.

The general idea of business level descriptions is that they should allow other
users to understand what the particular purpose of your knowledge discovery
application was. That is, you should abstract away from technical details and
describe what benefits your institution had when applying your case, what the
success criteria were and so on. Other users should be able to decide whether
your type of case is suitable for their own processing needs.

5.4 How to upload a case

If you have developed a successful knowledge discovery case, you have the option
to let other users benefit from your work by publishing its conceptual metadata

86 CHAPTER 5. THE CASE REPOSITORY

in the internet case repository. MiningMart allows you to export all conceptual
metadata into a single file. After you have opened a case, choose “Export” from
the “File” menu. You are then asked whether you would like to export only
the conceptual level, or the relational level, too. Usually you will only want to
export the conceptual level, especially when you want to upload a case to the
internet repository. The relational level would give away the structure of your
business data!

You are then shown a file browsing dialogue with which you can choose
a name for the exported file. It is common to use the file extension .m4 for
exported MiningMart files. Please wait until all M4 objects are exported.

You can now send the exported file to the following email address:
mmcoord@ls8.cs.uni-dortmund.de
The MiningMart team will then import the case into the central repository
database and do some technical tests to check its consistency and executability.
As soon as the case is accepted, its metadata is available on the above web
address via the InfoLayer software.

Then you will be sent a user name and password and are kindly asked to fill
in some general descriptions of your case in the business level of the InfoLayer.
This allows other users to judge the relevance of your case for their own needs.
Please refer to the explanations in section 5.3.

Bibliography

[KVZ00]

[KVZ01]

[LRO2]

[MS02]

[MS03]

[VKZDO1]

Jorg-Uwe Kietz, Anca Vaduva, and Regina Ziicker. Mining Mart:
Combining Case-Based-Reasoning and Multi-Strategy Learning into
a Framework to reuse KDD-Application. In R.S. Michalki and
P. Brazdil, editors, Proceedings of the fifth International Workshop
on Multistrategy Learning (MSL2000), Guimares, Portugal, May
2000.

Jorg-Uwe Kietz, Anca Vaduva, and Regina Ziicker. MiningMart:
Metadata-driven preprocessing. In Proceedings of the ECML/PKDD
Workshop on Database Support for KDD, September 2001.

Bert Laverman and Olaf Rem. Description of the M4 Interface used
by the HCI of WP12. Deliverable D12.2, IST Project MiningMart,
IST-11993, 2002.

Katharina Morik and Martin Scholz. The MiningMart Approach. In
Workshop Management des Wandels der 82. GI Jahrestagung, 2002.

Katharina Morik and Martin Scholz. The MiningMart Approach
to Knowledge Discovery in Databases. In Ning Zhong and Jiming
Liu, editors, Intelligent Technologies for Information Analysis. ja
href="http:/ /www.springer.de/” ; Springer-Verlagj/a;, 2003. to ap-
pear.

Anca Vaduva, Jorg-Uwe Kietz, Regina Ziicker, and Klaus R. Dit-
trich. M4 — the MiningMart meta model. Technical Report ifi-
2001.02, Institute for Computer Science, Univ. Ziirich, 2001.

87

