A Data-Preprocessing Method Enabling
ILP-Systems to Learn CARIN-ALN Rules

Jorg-Uwe Kietz

Swiss Life, Corporate Center, IT Research & Development,
8022 Ziirich, Switzerland,
uwe.kietz@swisslife.ch,

http://research.swisslife.ch/ kietz

Abstract. This paper describes a method which enables the embedding
of CARIN-ALN rule subsumption and learning into datalog rule sub-
sumption and learning. On the theoretical side, this allows us to transfer
the learnability results known for ILP to CARIN-ALN rules. On the
practical side, this gives us a preprocessing method, which enables ILP
systems to learn CARIN-ALN rules just by transforming the data to be
analyzed. We show, that this is not only a theoretical result in a first ex-
periment: learning CARIN-ALN rules with the ILP system CILGG from
the standard ILP MESH-Design dataset.

keywords: description logics, reformulation, polynomial learnability

1 Introduction

CARIN was proposed by [Levy and Rouset, 1998] as a combination of the two
main approaches to represent and reason about relational knowledge, namely
description logic (DL) and first-order horn-logic (HL). In Inductive Logic Pro-
gramming (ILP) learning first-order horn-logic is investigated in depth, for learn-
ing DLs there exist first approaches [Kietz and Morik, 1994; Cohen and Hirsh,
1994b] and theoretical learnability results [Cohen and Hirsh, 1994a; Frazier and
Pitt, 1994]. Recently, it was proposed to use CARIN-ALNas a framework for
learning [Rouveirol and Ventos, 2000]. This is a interesting extension of ILP as
ALN provides a new bias orthogonal to the one used in ILP, i.e. it allows all
quantified descriptions of body-variables, instead of the existential quantified
ones in ILP. This allows to handle the difficult indeterminate relations efficiently
by abstracting them into a determinate summary. It also has atleast and atmost
restrictions, which allow to quantify the amount of indeterminism of these re-
lations. However, up to now there are neither practical nor theoretical results
concerning learning the CARIN-ALN language.

This paper is intended to close this gap, by showing how CARIN-ALN learn-
ing can be embedded into first-order horn-logic learning as done by ILP-methods.
Even, if DL and HL have been shown to be quite incomparable concerning their
expressive power [Borgida, 1996] with respect to their usual semantic interpre-
tation of primitive concepts and roles we show that reasoning in DL can be
simulated by reasoning in horn logic. A simple invertible function translates

normalized concept descriptions into horn clauses using new predicates with an
external semantics (as Borgida has show they are not expressible in horn logic)
to represent the DL terms. The aim of this translation, of course, is not to pro-
vide another algorithm to do deductive reasoning, i.e. subsumption, equivalence
and satisfiability checking, but to show how inductive (i.e. ILP) methods can
be used to learn ALN concept descriptions and CARIN-ALN rules. This also
allows us to transfer the known boarder-line of polynomial learnability for ILP
to CARIN-ALN.

In section 2 we describe the description logic ALN and define the basis
of our translation into horn logic. In section 3 we extend that translation to
CARIN-ALN. In section 4, we investigate in a local closed-world-assumption
(CWA) to overcome the inadmissibility (in the sense of [Shapiro, 1983]) of ground
HL facts to learn CARIN-ALN -rules. In section 5, we characterize the boarder
line of polynomial learnability of CARIN-ALN rules using that translation to
horn logic. Finally in section 6, we demonstrate with a first experiment, that
this transformation can be used to learn CARIN-ALN rule using normal ILP-
systems on extended, i.e. preprocessed data-sets.

2 The Description Logic ALN

Starting with KL-ONE [Brachman and Schmolze, 1985] an increasing effort has
been spent in the development of formal knowledge representation languages to
express knowledge about concepts and concept hierarchies. The basic building
blocks of description logics are concepts, roles and individuals. Concepts describe
the common properties of a collection of individuals and can be considered as
unary predicates which are interpreted as sets of objects. Roles are interpreted
as binary relations between objects. A whole family of knowledge representation
systems, e.g. NIKL [Moser, 1983], KL-Two [Vilain, 1985], KRYPTON [Brachman
et al., 1985], BACK [von Luck et al., 1987; Peltason et al., 1989], CLAssIC [Borgida
et al., 1989], FLEX [Quantz et al., 1996] FACT [Horrocks, 1998], have been built
using these languages and for most of them complexity results for the main
reasoning tasks are known.

Each description logic defines also a number of language constructs that can
be used to define new concepts and roles. In this paper we use the very basic'
description logic ALA under its normal open-world (OWA) semantics, with
the language constructs in table 1. P denotes a primitive concept, i.e. an unary
predicate, R denotes a primitive role, i.e. a binary predicate, n is a positive
integer and the C; are concept terms, i.e. anything in the left row of the table.
These language constructs can be used to build complex terms, e.g. the term
train MV has_car.(car N < 0 has_load) can be used to define empty trains in
Michalski’s well-known train domain.

The main reasoning tasks with description logic terms are subsumption,
equivalence and satisfiability checking. We do not consider classification and

! See http://www-db.research.bell-labs.com/user /pfps/papers/krss-spec.ps for fur-
ther language constructs considered in description logics.

Term (Math)|Term (Classic)|Interpretation

T everything [Af

1 nothing 0

P P P!

-P not P AT\ P!

CiM...MChland Cy ...C, |C{N...NC},

VR.C all R C {zeAl |vyeA <z,y>e R = yeCh)
>nR atleast n R |{z € A" | ||{y € A |< z,y >€ R'}|| > n}
<nR atmost n R |{zx € A" | |{y € AT |<z,y >€ R"'}|| < n}

Table 1. Concept terms in ALNand their model-theoretic interpretation

instance checking as we neither use a terminological nor an assertional compo-
nent in this paper. From the learning point of view the least common subsumer
(Ics) operation is also important.

Definition 1 (subsumption, equivalence, satisfiability and least com-
mon subsumer). The concept description D subsumes the concept description
C (C T D) iff T C D! for all interpretations I; C is satisfiable if there erists
an interpretation I such that C! # (; C and D are equivalent (C = D) iff
CLC D and D C C; and E is the least common subsumer (lcs) of C and D, iff
C C E and D C E and if there is an E' with C C E' and D C E’, then EC E'.

We have chosen ALN | because subsumption checking between ALN descrip-
tions is polynomial [Donini et al., 1991], and in this paper we always consider
an empty terminological component since subsumption checking between ALN
terms with respect to an acyclic terminological component is coNP-Complete
[Nebel, 1990]2. A polynomial time algorithm for the lcs computation of ALN
concepts can be found in [Cohen et al., 1992].

ALN descriptions are in general not normalized, i.e. there exist several pos-
sibilities to express the same concept, e.g. L = (AN —-A) = (> 2RN < 1R).
However, they can be normalized, e.g. by the following set of rewrite rules.

Definition 2 (Normalization of ALN descriptions). norm(C) = C' iff
sorted(C) — ... = C' and no rewrite rule is applicable to C', i.e as a first
step any conjunction (C1 M ...M Cy) is replaced by its sorted equivalent for a
total order < that respects (P1) < (=P) < ... < (Pp) < (=P,) < (>ZmiRy) <
(miRy) < (VR1.Cy) < ... < (> npRy) < (K myuR,) < (VR,.Cy). Then the
following rewrite rules are applied to all conjunctions not only the top-level one,
as long as possible.

1.(C;n...nCy)— L,ifany C; = L
2. (C’ll_l...l_lCn)»—)ClI_I...I_IC’i_lI_ICi_,_lI_I...I_ICn,ifanyCi:T

2 Practical experiences with DL systems have shown that this normally does not mat-
ter in practise, i.e. in practical applications the results of the paper can be used with
a filled terminological component by using the - only in the worst-case - exponential
larger expanded concept-terms as input.

3. (PMN=P)—

4. (<nR|‘|>mR)»—>J_ if n <m.
5.(CNC)w— C

6. (> 0R) —

7. (> ny RN > nQR) —> mazimum(ny,ny) R
8. (< n1 RN < naR) =< minimum(ni,n2)R
9. (K ORMNVR.C) —»< OR

10. (YR.1) < OR

11. VR.T)—» T

12. (VR.C1 NMVYR.Cy) 5 VYR.(merge?(Cy 11 Cy))

Lemma 1. For any two ALN concept descriptions C; and Cy: C1 = Ca, iff
norm(Ci) = norm(Cs) and norm(C) can be computed in O(n log n), with n
being the size of C'.

Proof. Tt is easy to verify, that all these rewrite rules produce equivalent con-
cepts, i.e. are sound (if norm(C;) = norm(Cz), then C; = C5), The other
direction, i.e. their completeness (if C; = Cs, then norm(Cy) = norm(Cs)), is
less obvious, but follows from the fact that all primitive concepts P; are inde-
pendent and after normalization occur at most once inside any conjunction. The
primitive roles R; are independent as well and for every role there is at most
one set of consistent < n;R;, > m;R; and VR;.C; inside any conjunction. The
complexity O(n log n) is the worst case complexity of sorting C'. Anything else
can be done during a linear scan of the sorted C' as all rules either delete the
whole conjunction or an T inside, or apply to the current term and either it’s
left or right neighbor and they always produce a term that is sorted if inserted in
place of the left-hand-side terms. All rules except rule 10 reduce the size atleast
by 1, i.e. they are applicable atmost n times and rule 10 is also applicable at
most once for any source literal, i.e. there are atmost 2n rule applications. O

As well known in DL, this provides also polynomial O(n log n) algorithms for
subsumption checking (C' E D, iff norm(C 1M D) = norm(C)); and satisfiability
(C is satisfiable, iff norm(C) # 1).

Definition 3 (ALNtranslation to horn logic).
&(C) = h(X) + d(norm(C), X).

B(1,X) = 1(X)
#(P {1 C}, X) = epp(X){, 8(C, X))
¢(-P {NC}HX)=cnp(X){,(C,X)}
S(>nRN<mRNVR.Cr{NC} X)=rrr(X,[n.m],Y),(Cgr,Y){,2(C,X)}
S(<mRNVYR.Cr {N C},X)=rrr(X,[0.m],Y),®(Cgr,Y) }
S(>nRNVYR.Cgr {NC}HX)=rrr(X,[n.x,Y),(Cr,Y){,5(C, X)}
¢(>nR N <mR{NC},X)=rrr(X,[n.m],Y){, &, X)
P(VR.Cr {N C}, X) =rrr(X,[0..4],Y),d(CRr,Y)

3 Merging two sorted lists into one sorted list. During that linear (in the size of the
conjunctions) process these rules should be applied as well.

¢(<mR {N C},X) =rrr(X,[0.m],Y){,&(C, X)}

¢(>nR {N C}HLX)=rrr(X,[n.x],Y){,8(C, X)}

where Y is always a new variable not used so far and {1 C'} means, if there are
conjuncts left, recursion on them {,®(C,X)} has to continue.

Let us illustrate our translation function on our train example:
&(train MY has_car.(car N < 0 has_load)) =
hX) « ep_train(X), rr_has_car(X, [0..%],Y), ep_car(Y), rr_has_load(Y, [0..0], Z),
1(Z). Note, that this clause has a very different meaning than the clause h(X)
+ train(X), has_car(X,Y), car(Y), has_load(Y, Z). The first one must be inter-
preted as being true for every set of empty trains, whereas the second one is
true for every single train with a load. That means, that the predicates (and
variables) in the first clauses are meta-predicates (set-variables) over the ones
in the second clause (individual variables), e.g. like findall in Prolog with a
specific call using predicates of the second clause. This difference becomes espe-
cially important in CARIN-ALN, i.e. in the next section, where both kinds of
literals can occur in a single clause.

Nevertheless, we are now nearly able to simulate DL subsumption with 6-
subsumption and lcs with 1gg. There are only two very small and easy extensions
of #-subsumption and lgg (to € -subsumption and lgg;,) needed:

— The handling of subterms representing intervals of numbers, e.g. a term
like [0..x] should #r-subsume a term like [1..5]. More precisely an interval
[Min;..Maz] 8;-subsumes an interval [Mins..Maxs], iff Min; < Mins and
Mazs < Mazy; and the lggy of two intervals [Min,..Maz,] and [Miny..M azs]
is the interval [minimum(Miny, Mins)..mazimum(Mazy, Maxs)]*.

— The handling of nothing, i.e. L(X) should be 8, -subsumed by #(C, X) for
any concept description C, e.g. by any subclause containing the relation-

chains starting with X; and the lgg, of L(X) and #(C, X) is #(C, X).

Theorem 1 (Simulation of subsumption and lcs). A concept description
C subsumes a concept description D (D T C), if and only if the translation
of C 01 -subsumes the translation of D (®(C) ty,, ¥(D)), and les(C,D) =
>~ (1991 (2(C), 8(D)))

This theorem follows from the similarity between the translation ¢ and 6 -
subsumption and the structural subsumption algorithm given in [Cohen et al.,
1992]. There are some more nice properties for learning:

— Any clause which subsumes a set of such clauses, does so deterministically
[Kietz and Liibbe, 1994], i.e. is determinate [Muggleton and Feng, 1992], as
any rrr(X,I,Y) occurs just once for any variable X.

41 use that extension, as it was already present in CILGG [Kietz, 1996] to generalize
numbers. The normal way for ILP is to provide the built-in predicate <, e.g. in FOIL
and ProGoOL, and use a translation into r7r(X, natieast; Matmost, Y), together with
learning Cmin and Cmaz 1N Cmin S Natleasty Matmost S Cmazx -

— The relation chains in the clause (i.e. the chains of rrgr(X,I,Y) literals)
are not only acyclic but even tree-structured (as the DL-Term is a tree),
i.e. subsumption (coverage test), learning, and propositionalisation are very
easy, e.g. the depth limit ¢ needed for the polynomial learnability of (cyclic)
ij-determinate clauses is not needed.

— & is a bijective, invertible function, i.e #~1(®#(C)) = C, i.e. it allows to
retranslate generalized (i.e. learned) clauses: If D is a linked clause®, and
D Fy,, ®(C) for any ALN description C, then ~1(D) is totally invertible
and produces a valid description logic term.

3 CARIN-ALN rules and Horn Logic

CARIN as proposed in [Levy and Rouset, 1998] combines first-order function-
free horn logic with description logic by allowing description logic terms as body
literals® in horn rules. Concept terms represent unary predicates and role-terms”
represent binary predicates. The direct use of primitive concepts and roles is
indistinguishable from the use of unary and binary predicates in FOL, but the use
of concept terms, i.e. descriptions contain all, atleast and atmost adds expressive
power to the language. Here is an example of a CARIN-ALN rule using this
expressive power. Note, that this cannot be expressed in neither horn logic nor

ALN alone.

east_bound_train(X) < has_car(X,Y), has_car(X, Z),same_shape(Y, Z),
(train N < 2 has_car MY has_car.(car N < 0 has_load))(X).

This rule also contains implicit knowledge due to interactions between descrip-
tion logic literals (DL-literals) and normal literals (HL-literals®), i.e. the fol-
lowing literals can be deduced to be true in every model of the rule: car(Y),
car(Z), (> 1 has_car)(X), (< 0 has_load)(Y), (< 0 has_load)(Z). We have to
make such implicit literals explicit, as a reasoning procedure based on substruc-
ture matching like #-subsumption would be incomplete otherwise, e.g. h(X) «
a(X,Y) & h(X) « (> 1la)(X), but i(X) + a(X,Y) Fo,, h(X) + &(> 1la,X)
h(X) + &(> la, X) g, h(X) + a(X,Y).

If the rules were ground, the interaction between HL- and DL-terms would
correspond to what is called ABox reasoning in description logic, i.e. inferring
HL-literals corresponds to ABox completion [Baader and Sattler, 2000] and infer-
ring DL-literals corresponds to computing the most specific concept [Baader and
Kiisters, 1998] for every variable. Goasdoué, Rouveirol and Ventos [2001] have

5 There is no partition of literals such that one partition does not share atleast one
variable with any other partition

5 The head literal must have a predicate, which must not be a terminological concept
of role.

" In ALN there are only primitive roles, but other DLs also have operators for role
terms.

8 Primitive roles and concepts strictly belong to both classes, but we will reference
and handle primitive roles and primitive concepts as HL-literals

put them together as completion rules to formalize example saturation for learn-
ing under OI-subsumption. The adaptation of their rules to #-subsumption lead
to the following completion rules to be applied on the body B of CARIN-ALN -
rules H < B.

1. apply atleast restriction: if there exists a substitution o such that ((
n 17)(Xo))o € B for an > 1 and ({r(Xo,X1)})o ¢ B then B := B
({r(Xo,a)})o, and « is a new unique constant.

2. apply value restriction: if there exists a substitution o such that
({(Vr.C)(Xo),r(X0,X1)})o € B and C(X;)o & B then B := BU{C(X;)o}.

3. infer atleast restriction: If there exists a substitution ¢ such that

B ({T(X07X1)a ce ,T(Xo,Xn)})U g Ba and
— ((>nr)(Xo))o & B and
— for all pairs {X;, X;}0 C {Xy1,...,X,}0, i # j either X;0 and X0 are
not unifiable terms, or {C;(X;),C;(X;)}e C B and C;NC; = 1L,
then B := BU ({(>n r)(Xo)})o.

4. infer value restriction: If there exists a substitution ¢ such that
(£ n r)(Xo),r(Xo, X1),.-., (X0, Xn),C1(X1),..., Cp(Xy)})o C B and
((Vr.C)(Xo))o & B then B := BU ({(Vr.les(Ch,...,Cpn)(Xo0)})o,

5. collect description logic terms over the same variable: if C(X,) € B
and D(Xy) € B with C and D are DL-terms then B := B\{C(Xy), D(Xo)}U
(C'T1 D)(Xo)

2
U

Theorem 2 (Simulation of subsumption). Let depth(C) the depth of the
deepest ¥ mesting in C, let o(D,i) denote the completion of D up to depth
i, i.e. the application of the rules 1-5 as often as possible, without generating
a ¥ mnesting deeper than i and &, the extension of ¢ to rules, such that all
DL-literals DL(X) in the rule are translated with ®(norm(DL), X) and every-
thing else is returned unchanged. A non-recursive CARIN-ALN rule C implies
a non-recursive CARIN-ALN rule D (C = D), if and only if the translation
&, of C 01, -subsumes the translation @, of the completion ¢ of D (®,.(C) bg,,
8,((D, depth(C))).

Proof. For a set of CARIN-ALN literals like {(> 2rMVr.(> 2r)N. . .NVr....Vr .(>
N—_——’

n
2r))(a)}, we don’t generate the whole (exponential in n) binary tree with rule 1,
but just one path from the root to a leave (linear in n), as all these paths in the
tree are indistinguishable under #-subsumption, and any clause without these
new unique constants subsumes the clause with the whole tree, if and only if it
subsumes the clause with only one path. Also the application of rule 2 and rule
3 is polynomial (depth of DL-terms times number of literals) in the length of the
CARIN-ALN rule, if applied to ground facts. Rule 3 is more complex in the case
of variables, but we do not need that. The unrestricted application of rule 4 may
lead to an infinite term for cyclic FOL-literals, e.g. h(X) + r(X, X), (< 1r)(X)
implies the infinite term < 1r NVr.(< 1r OV (< 1Ir OVr.(...)))(X). In general
there are two solutions, the use of cyclic definitions in the TBox as in [Baader
and Kiisters, 1998], or the one we use as we do not have a TBox, to restrict the

depth of the terms to be generated. This does not lead to an incompleteness of
the subsumption test if we choose the depth with respect to the clause we test
subsumption against, i.e. greater than the deepest present DL-term. Rule 4 is
polynomial (number of literals times depth limit i) as well. Rule 5 is needed to
collect all terms together for normalization. O

As & and ¢ are polynomial for ground clauses, the complexity of C' |= D is
that of §-subsumption, if C' is ground as in our learning setting. From [Kietz
and Liibbe, 1994] we know, that §-subsumption is NP-complete in general and
polynomial for an arbitrary horn clause D, if C = Cy + Cpgr, LOCh,...,LOC,
is a horn clause where Cy < Cppgr is determinate with respect to D and each
LOC;,1 < i < n, is a k-local’. In that case, C Fy D can be decided with
O(IC|| * |ICper|l * |D|| + |LOCY, ..., LOCy||* + n = (k* = ||D]|)) unification
attempts.

Theorem 3 (Simulation oflgg). Let E = &, lggr, (®,(p(C, 1)), P, (p(D,1))).
E is the least general generalization (lgg) with depth atmost i of C and D, i.e.
E =C and E = D and if there is an E' with depth at most i with E' = C and
E' =D, then E' |= E.1°

4 The admissibility of ground facts to learn CARIN-ALN

Note, that under the open-world-assumption (OWA) used in description logics
and in this paper up to this point, no atmost restriction can be inferred from
HL-literals. Therefore it is impossible to learn atmost and value restrictions from
HL-literals only under the open-world-assumption used in the completion rules
1-5. Even if there are only n fillers of a role r present, we do not infer < nr and
if the n role fillers share a common property C, we only infer Vr.C, if an < nr is
already present. This, of course, is not a deficiency of the rules, but a consequence
of the semantics, i.e. as long as no atmost restriction forbid further role fillers,
there are models with more role fillers, and therefore the atmost restriction is not
true in all models and must not be inferred. To summarize ground HL-literals are
not admissible [Shapiro, 1983] to learn CARIN-ALN rules under OWA. There
are two ways out. We require that the user provides the necessary facts about
atmost restrictions. We assume a (locally) closed world (CWA), i.e. we change
the semantics, such that the needed atmost restrictions can be deduced.

The CWA is quite natural for learning as learning can be formalized as de-
duction under CWA [Helft, 1989]. We do not want to close the world totally,
but just locally as in KLUSTER [Kietz and Morik, 1994], i.e we assume that if
an object is described at all it is described completely (as far as relevant for
learning), but we don’t want to assume that we know about all objects of any
world. Formally, this can be seen as looking at all models which describe all

9 It does not share variables with another local, which not also occur in Cp or Cprr
and it has atmost k literals (k-literal local) or atmost k variables (k—variable local)
10 Without depth limit the lgg may not exist, i.e. is infinite due to rule 4.

objects in the minimal models (i.e. the models considered under CWA) as they
are described in the minimal model, but may contain and describe other objects
as well. The rules 1-5 are correct, but (as intended) incomplete for this revised
semantic. The following two non-monotonic rules are missing to complete sets of
ground facts (B here denotes the set of ground facts in the background knowl-
edge) under local CWA. Theorem 2 and 3 hold correspondingly with rule 1-7 for
Fiewa-

6. infer atmost restriction: If there exists a substitution o, such that
- ({r(Xo,X1),...,7(Xo,Xn)})o C B, and
— for all pairs {X;, X;}0 C {X1,...,X,}0, 1 # j, X;0 and X0 are not
unifiable terms, and
— there isno ¢ ¢ {X;,..., X, }o such that 7(Xo,c)o € B, and
— m is the greatest m such that (> m r)(Xo))o € B or 0 if none is present,
then B := B U ({(< mazimum(n,m) r)(Xo)})o.
7. infer concept negation: Let ¢ be a constant appearing in some literal of
B, and P be any primitive concept, if P(¢) ¢ B, then B := B U —P(c).

Given N constants (or variables) in the rule, and M primitive concepts, only
N x M additional literals are introduced at the literal level by the local CWA rule
7, i.e. only a polynomial amount. An Vr.—P can only be added, by rule 4 out of
the introduced literals. But Vr.— P does not follow for every role under CWA, i.e
under CWA only the literal —=P(b) is added by rule 7 to R(a,b), R(a,c), P(c), but
(Vr.=P)(a) is obviously not true and not added. Theorem 2 proves polynomial
complexity in the size of the input of rule 4 under OWA. Therefore the complexity
under CWA is polynomial as well.

5 Learning CARIN-ALN

We use the normal ILP definition of learning to describe learning in CARIN-ALN .

Definition 4 (Learning Problem). Given: a logical interpretation with a con-
sequence relation =, background knowledge B in a Language LB, positive and
negative examples E = E* U E~ in a language LE consistent with B (B,E [O)
and not a consequence of B (B |~ E), and a hypothesis language LH. Find a
hypothesis h € LH such that:

(I) (B,h,E [~ 0), h is consistent with B and E.
(IT) (B,h = E*), h and B explain ET.
(III) (B, h £ E~), h and B do not explain E~.

The tuple (=, LB,LE,LH) is called the learning problem. Deciding whether
there exists such an h € LH, is called the consistency problem. An algorithm
which accepts any B € LB and E € LE as input and computes such an h € LH
if it exists, or "no” if it does not exist is called a learning-algorithm.

With this definition of learning and theorem 2 we can immediately conclude
the learnability of CARIN-ALN rules.

Theorem 4. The CARIN-ALN rule learning problems (Eow a ,ground HL& DL
facts, ground HL facts, CARIN-ALN rules) resp. (Ficwa ,ground HL facts,
ground HL facts, CARIN-ALN rules)) are polynomially learnable, if and only if
the corresponding ILP learning problems (=, ®,.1_5(p(ground HL& DL facts,i),
ground HL facts, ®,(o(CARIN-ALN rules,i)) resp (E, $1-7(p(ground HL
facts,i), ground HL facts, ®,(p(CARIN-ALN rules,i))is polynomial learnable.

As the boarder line of polynomial learnability is quite well known for ILP [Ki-
etz, 1996] due to a lot of positive and negative learnability results (see [Kietz and
Dzeroski, 1994; Cohen and Page, 1995] for overviews), we are now able to char-
acterize it for CARIN-ALN rules as well. One of the most expressive (single horn
clause) ILP-problem that is polynomial learnable, is learning a ij-determinate-k-
literal-local horn clause (see [Kietz and Liibbe, 1994] for definitions and discus-
sions of these restrictions). So a CARIN-ALN rule hypothesis space is polynomial
learnable, if its translation produces such horn clauses. As shown in section 2
the translation of every DL-literals produces a (acyclic, tree-structured) determi-
nate subclause, the subclause is determinate with respect to the overall clause,
if it starts with a determinate variable. We can conclude, that a CARIN-ALN
rule is polynomially learnable, if the HL-literals are ij-determinate-k-literal-local
and the DL-literals occur only on determinate variables. If a DL-literal occurs
on an indeterminate variable, the number of primitive roles and concepts in it
count against the k of the k-literal-local restriction. The depth bound i of the
DL-terms, is only needed to ensure the finiteness of the DL-terms, it is not nec-
essary to fix it for polynomial learnability, i.e. does not count against the ¢ in
ij-determinate due to the acyclic tree-structure of the translation.

6 Learning MESH-Design in CARIN-ALN

This translation does not only produce theoretical results it also works in prac-
tise. Let us demonstrate this with the ILP dataset (available from MLNet) for
MESH-Design [Dzeroski and Dolsak, 1992]. We have chosen MESH-Design as it
only contains unary and binary predicates, i.e. perfectly fits description logic
without the need for further preprocessing. We have chosen CILGG [Kietz, 1996]
as the ILP-systems to learn the translated descriptions as it has interval han-
dling, is optimized for determinate literals (e.g. like Golem [Muggleton and Feng,
1992]) and is able to learn k-literal-local clauses completely for small k.

As depth limit we had chosen 1 for HL-literals. In MESH-Design this produces
4-literal-local ground starting (bottom) clauses. We restricted DL-terms to the
head variable/object as this is the only determinate one and to the depth of 3,
as deeper terms are very difficult to understand. We have made three experi-
ments, one with only the literals generated from the DL-term, one with only the
HL-literals, and one with both (CL). CiLGG [Kietz, 1996] has two possibilities
to use the learned rules for testing, the normal deductive one for most general
discriminations (generated similar as in Golem from the learned lggs), and a
k-nearest neighbor classification (20-NN in this case) using the learned lggs. The

results are in table 2 together with the results reported in [Dzeroski and Dolsak,
1992] (i.e. their average CPU-Time is measured on computers from 1992!) and
Indigo [personal note from P. Geibel, 1996]. The table gives the number of cor-
rectly classified edges per object using rules learned from the other objects. The
results seem to indicate that the extended language helps to learn better rules in
MEsH-Design. This one experiment however says nothing about the usefulness
of CARIN-ALN as HL, it only shows, that the theoretical translation defined in
this paper is applicable in practical applications as well.

A B C D E| 5|%|Avg.
Maximum 52 38 28 57 89|268] |CPU
Default 9 9 6 13 23] 60|23 Time
Foil 17 5 7 9 5| 43[16] (5m)
mFoil 22 12 9 6 10| 59|22 (2h)
Golem 17 9 5 11 10| 52/20| (1h)
Indigo (1996) 21 14 9 18 33| 95|36 (9h)
Claudien 31 9 5 19 15| 79(30|(16m)
CILGG(1996) 19 16 6 10 9| 60|22| (85s)
CILGG DL 16 8 5 10 12| 51|19 8s
CrLge HL 22 14 8 13 5| 6223 11s
CiLaa CL 19 16 7 14 23| 79|30 22s
CiLGG 20-NN DL| 20 12 9 16 38| 95/36] 19s
CiLgG 20-NN HL| 17 14 9 18 41| 9938| 23s
CiLgc 20-NN CL| 26 12 10 18 37[103|39| 52s

Table 2. Comparison of ILP-Approaches learning the MESH-Data set

7 Summary and Outlook

We have characterizes the boarder line of polynomial learnability of CARIN-ALN
rules from ground facts by reducing it to the well investigated boarder-line of
polynomial learnability in ILP. This work should be extended to more expres-
sive forms of background knowledge, e.g. terminological axioms (an ontology)
and CARIN-ALN rules. We also showed in a first experiment, that this theoret-
ical transformation is applicable in practice. However, careful experimentation
about the usefulness of using CARIN-ALN as hypothesis language is still miss-
ing. But, we provided a data preprocessing method, that allows us to do that
with a broad range of ILP-systems on a broad range of ILP-applications.

Acknowledgements: This work has been partially founded by the Swiss Gov-
ernment (BBW Nr.99.0158) as part of the European commission Research Project
Mining Mart (IST-1999-11993). I thank Francois Goasdoué, Céline Rouveirol and
Véronique Ventos for very helpful and interesting discussions and especially for
supporting me with a preprint of their inspiring CARIN-ALN completion rules.

References

[Baader and Kiisters, 1998] Baader, F. and R. Kiisters: 1998, ‘Computing the least
common subsumer and the most specific concept in the presence of cyclic ALN-
concept descriptions’. In: O. Herzog and A. Giinter (eds.): Proc. of the 22nd Annual
German Conference on AI, KI-98. pp. 129-140, Springer—Verlag.

[Baader and Sattler, 2000] Baader, F. and U. Sattler: 2000, ‘Tableau Algorithms for
Description Logics’. In: R. Dyckhoff (ed.): Proc. of the Int. Conf. on Automated
Reasoning with Tableauzr and Related Methods (Tableauz 2000). pp. 1-18, Springer-
Verlag.

[Borgida, 1996] Borgida, A.: 1996, ‘On the relative expressiveness of description logics
and predicate logics’. Artificial Intelligence 82, 353 — 367.

[Borgida et al., 1989] Borgida, A., R. J. Brachman, D. L. McGuinness, and L. A.
Resnick: 1989, ‘Classic: A structural data model for objects’. In: Proc. ACM
SIGMOD-89. Portland, Oregon, pp. 58 — 67.

[Brachman et al., 1985] Brachman, R. J., V. P. Gilbert, and H. J. Levesque: 1985, ‘An
Essential Hybrid Reasoning System’. In: IJCAI-85. pp. 532 — 539.

[Brachman and Schmolze, 1985] Brachman, R. J. and J. G. Schmolze: 1985, ‘An
Overview of the KL-ONE Knowledge Representation System’. Cognitive Science
9(2), 171 — 216.

[Cohen and Page, 1995] Cohen, W. and C. Page: 1995, ‘Polynomial Learnability and
Inductive Logic Programming: Methods and Results’. New Generation Computing,
Special issue on Inductive Logic Programming 13(3-4), 369-410.

[Cohen et al., 1992] Cohen, W. W., A. Borgida, and H. Hirsh: 1992, ‘Computing Least
Common Subsumers in Description Logic’. In: Proc. of the 10th National Conference
on Artificial Intelligence. San Jose, California, MIT—Press.

[Cohen and Hirsh, 1994a] Cohen, W. W. and H. Hirsh: 1994a, ‘The Learnability of
Description Logics with Equality Constraints’. Machine Learning 17, 169-199.

[Cohen and Hirsh, 1994b] Cohen, W. W. and H. Hirsh: 1994b, ‘Learning the CLASSIC
Description Logic: Theoretical and Experimental Results’. In: Proc. of the Int. Conf.
on Knowledge Representation (KR94).

[Donini et al., 1991] Donini, F., M. Lenzerini, C. Nardi, and W. Nutt: 1991, ‘Tractable
Concept Languages’. In: Proc. IJCAI-91. pp. 458—463.

[Dzeroski and Dolsak, 1992] Dzeroski, S. and B. Dolsak: 1992, ‘A Comparision of Re-
lation Learning Algorithms on the Problem of Finite Element Mesh Design’. In:
Proc. of the ISEEK Workshop. Ljubljana, Slovenia.

[Frazier and Pitt, 1994] Frazier, M. and L. Pitt: 1994, ‘Classic Learning’. In: Proc. of
the Tth Annual ACM Conference on Computational Learning Theory. pp. 23-34.
[Goasdoué et al., 2001] Goasdoué, F., C. Rouveirol, and V. Ventos: 2001, ‘Optimized
Coverage Test for Learning in CARIN-ALN”. Technical report, L.R.I, C.N.R.S and

Université Paris Sud. Work in progress.

[Helft, 1989] Helft, N.: 1989, ‘Induction as nonmonotonic inference’. In: Proceedings of
the 1st International Conference on Knowledge Representation and Reasoning.

[Horrocks, 1998] Horrocks, I.: 1998, ‘The FaCT System’. In: H. de Swart (ed.): Auto-
mated Reasoning with Analytic Tableauz and Related Methods: International Con-
ference Tableauz’98. pp. 307-312, Springer-Verlag, Berlin.

[Kietz, 1996] Kietz, J.-U.: 1996, ‘Induktive Analyse Relationaler Daten’. Ph.D. thesis,
Technical University Berlin. (in german).

[Kietz and Dzeroski, 1994] Kietz, J.-U. and S. Dzeroski: 1994, ‘Inductive Logic Pro-
gramming and Learnability’. SIGART Bulletin 5(1).

[Kietz and Liibbe, 1994] Kietz, J.-U. and M. Liibbe: 1994, ‘An Efficient Subsumption
Algorithm for Inductive Logic Programming’. In: Proc. of the Eleventh International
Conference on Machine Learning (ML94).

[Kietz and Morik, 1994] Kietz, J.-U. and K. Morik: 1994, ‘A polynomial approach to
the constructive Induction of Structural Knowledge’. Machine Learning 14(2), 193—
217.

[Levy and Rouset, 1998] Levy, A. Y. and M.-C. Rouset: 1998, ‘Combining horn rules
and description logic in CARIN’. Artificial Intelligence 104, 165-209.

[Moser, 1983] Moser, M. G.: 1983, ‘An Overview of NIKL, the New Implementation
of KL-One’. In: Bolt (ed.): Research in Knowledge Representation and Natural
Language Understanding. Cambridge, Mass., pp. 7 — 26, Beranek and Newman Inc.
BBN Technical Report 5421.

[Muggleton and Feng, 1992] Muggleton, S. H. and C. Feng: 1992, ‘Efficient induction of
logic programs’. In: S. H. Muggleton (ed.): Inductive Logic Programming. Academic
Press.

[Nebel, 1990] Nebel, B.: 1990, ‘Terminological reasoning is inherently intractable’. Ar-
tificial Intelligence 43, 235 — 249.

[Peltason et al., 1989] Peltason, C., A. Schmiedel, C. Kindermann, and J. Quantz:
1989, ‘The BACK System revisited’. KIT-REPORT 75, Techn. Univ. Berlin, Berlin,
W. Germany.

[Quantz et al., 1996] Quantz, J., G. Dunker, F. Bergmann, and I. Keller: 1996, ‘Th
flex system’. Technical report, KIT-Report, Technical University, Berlin, Germany.

[Rouveirol and Ventos, 2000] Rouveirol, C. and V. Ventos: 2000, ‘Towards learning in
CARIN-ALN’. In: J. Cussens and A. M. Frisch (eds.): Proc. Tenth International
Conference on Inductive Logic Programming, ILP’00. Berlin, Springer Verlag.

[Shapiro, 1983] Shapiro, E. Y.: 1983, Algorithmic Program Debugging, ACM Distin-
guished Doctoral Dissertations. Cambridge, Mass.: The MIT Press.

[Vilain, 1985] Vilain, M.: 1985, ‘The Restricted Language Architecture of a Hybrid
Reasoning System’. In: IJCAI-85. pp. 547 — 551.

[von Luck et al., 1987] von Luck, K., B. Nebel, C. Peltason, and A. Schmiedel: 1987,
‘The Anatomy of the BACK System’. KIT-Report 41, Techn. Univ. Berlin, Berlin,
West Germany.

A. Appendix

A.1 Schema for background knowledge to learn CARIN-ALN

This little piece of code should enable any ILP-system (with intervals, but see
footnote 2) to learn CARIN-ALN rules from ground facts under local CWA
(But the CWA rule 6. is not applied to the HL-facts, only it’s consequences for
DL-Terms is coded), when it is added as background knowledge directly, or in
form of the ground facts it produces. Make sure that your program makes only
mode compatible calls to it, and that you limit the depth of the relation chain
of your starting clauses or facts. The extension that everything subsumes L (X)
is already coded into it, as everything (every predicate) succeeds, if called with
[], i.e. no instances. The first modeb declaration and the first line of code for
rr_.<R> ’connects’ the DL-term with the HL-Terms.

Mode declarations are in Progol notation. <Name> indicates that we have
to apply string concatenation to build the predicate or type name. Except for
count_solutions - unifying the second argument with the number of solutions of
the call in the first arg - and minimum (maximum) - get the minimum (maxi-
mum) out of a list of numbers - everything is normal Prolog. Dom and Range are
(sorted) lists of terms, they should be treated like atoms, i.e. only their equality
is important.

For every primitive concept <C> with a modeb(_,C(+<In>) add:
:— modeb(1,cn_<C>(+set_<In>)).

:— modeb(1,cp_<C>(+set_<In>)).

cn_<C>(Dom) : - nonvar (Dom), forall(member (D,Dom),\+ <C>(D)),!.
cp_<C>(Dom) : - nonvar (Dom), forall (member (D,Dom),<C>(D)), !.

For every primitive role <R> with a modeb(_,<R>(+<In>,-<0ut>) add:
:— modeb(1,rr_<R>(+<In>,#,-set_<0ut>)).
:— modeb(1,rr_<R>(+set_<In>,#,-set_<0ut>)).
rr_<R>(Dom,Card,Range) : -
(atom(Dom) ,\+ Dom = [] -> DomL = [Dom] | Dom = DomL),
findall (R, (member (D,DomL) ,<R>(D,R)) ,RangeD),
sort (RangeD,Range) ,
findall(C, (member(D,DomL),
count_solutions (<R>(D,_),C)
) ,Cards),
min(Cards,Atleast), max(Cards,Atmost),
Card = [Atleast .. Atmost], !.

A.2 A MesH-example as produced by the method

Examples as the following are used in the experiment in section 5. The first 4
line are the HL-literals up to depth 1, the rest are the deterministic DL-literals
up to depth 3. For CiLaa HL only the first part is used, for CiLGG DL only the
second part, and for CiLaa CL both parts. Note that this representation uses
cycles, but these cycles could be broken up into a tree, up to the specified depth
limit.
pos:mesh(a2,1) : - not_important(a2), fixed(a2), not_loaded(a2),
neighbour(a2,al), long(al), fixed(al), not_loaded(al),
neighbour(a2,ab4), long(ab4), fixed(ab4), one_side_loaded(ab4),
neighbour(a2,a3), usual(a3), fixed(a3), not_loaded(a3),

rr_neighbour (a2, [3..3], [al,a3,ab4]),
cp_fixed([al,a3,a54]), cp_normal([al,a3,ab4]),
rr_neighbour([al,a3,ab4], [3..4],
[al,a2,a24,a34,ad,ad41,a44,ab4]),
rr_neighbour([al,a2,a24,a34,a4,adl,ad4,ab4],
[3..4],
[al1,a2,a23,a24,a3,a34,a35,a36,a39,a4,
a40,a41,a42,a44,a5,ab4]),
rr_opposite([al,a2,a24,a34,a4,a41,a44,ab4],
[0..6],
[a13,a15,al17,a19,a22,a23,a34,ab4]),
rr_opposite([al,a3,ab4], [1..6],[al1,a13,a15,a17,a19,a22,a23,a34,a9]),
rr_neighbour([all,al3,a15,a17,a19,a22,a23,a34,a9], [3..5],
[a10,a12,al14,a16,a18,a20,a21,a22,a23,a24,a3,a35,a38,
a4,ad40,a42,a43,a47,a48,a49,ab0,ab1,ab2,ab3,ab5,a8]),
rr_opposite([all,al3,al5,al7,al19,a22,a23,a34,a9], [1..2],
[a1,a3,a32,a33,ab4]),
c_fixed([al,a3,a32,a33,ab4]),
% The next one (depth 4) is present as is has no new output.
rr_opposite([al,a3,a32,a33,ab4],[1..6],
[al1,a13,al15,al17,al19,a22,a23,a34,a9]),
rr_opposite(a2, [0..0], [1),
% Everything is true on the Bottom concept []

c_acircuit([]), c_circuit([]), c_circuit_hole([]),
c_cont_loaded([]), c_fixed([]1), c_free([]1),
c_half_circuit([1), c_half_circuit_hole([]), c_hole([]),

c_long([]), c_long_for_hole([]), c_normal([]),
c_not_important ([]1), c_not_loaded([]), c_one_side_fixed([]),
c_one_side_loaded([]), c_quarter_circuit([]), c_quarter_circuit_hole([]),
c_short([]), c_short_for_hole([]), c_two_side_fixed([]),

c_two_side_loaded([]), c_usual([l),
rr_neighbour([], [0..0]1, [1),
rr_opposite([], [0..0], [1).

