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Abstract The fact that data is scattered over many tables causes many
problems in the practice of data mining. To deal with this problem, one either
constructs a single table by hand, or one uses a Multi-Relational Data Mining
algorithm. In this paper, we propose a different approach in which the single
table is constructed automatically using aggregate functions, which repeatedly
summarise information from different tables over associations in the datamodel.
Following the construction of the single table, we apply traditional data mining
algorithms. Next to an in-depth discussion of our approach, the paper presents
results of experiments on three well-known data sets.

1� Introduction

An important practical problem in data mining is that we often want to find
models and patterns over data that resides in multiple tables. This is solved by either
constructing a single table by hand (deriving attributes from the other tables) or by
using a Multi-Relational Data Mining or ILP approach. In this paper we propose
another approach, viz., automatic construction of the single mining table using
aggregates.

The motivation for the use of aggregates stems from the observation that the
difficult case in constructing a single table is when there are one-to-many
relationships between tables. The traditional way to summarise such relationships in
Statistics and OLAP is through aggregates that are based on histograms, such as
count, sum, min, max, and avg. We limit ourselves to these aggregates, but note that
they can be applied recursively over a collection of relationships.

The idea of propositionalisation (the construction of one table) is not new. Several
relatively successful algorithms have been proposed in the context of Inductive Logic
Programming (ILP) [6, 12, 7, 1, 2]. A common aspect of these algorithms is that the
derived table consists solely of binary features, each corresponding to a (promising)
clause discovered by an ILP-algorithm. Especially for numerical attributes, our
approach leads to a markedly different search space.

We illustrate our approach on three well-known data sets. The aim of these
experiments is twofold. Firstly, to demonstrate the accuracy in a range of domains.
Secondly, to illustrate the radically different way our approach models structured
data, compared to ILP or MRDM approaches.



The paper is organised as follows. First we discuss propositionalisation and
aggregates in more detail. In particular we introduce the notion of depth, to illustrate
the complexity of the search space. Next we introduce the RollUp algorithm that
constructs the single table. Then we present the results of our experiments and the
paper ends with a discussion and conclusions.

2� Propositionalisation

In this section we describe the basic concepts involved in propositionalisation, and
provide some definitions. In this paper, we define propositionalisation as the process
of transforming a multi-relational dataset, containing structured examples, into a
propositional dataset with derived attribute-value features, describing the structural
properties of the examples. The process can thus be thought of as summarising data
stored in multiple tables in a single table (the target table) containing one record per
example. The aim of this process, of course, is to pre-process multi-relational data for
subsequent analysis by attribute-value learners.

We will be using this definition in the broadest sense. We will make no
assumptions about the datatype of the derived attribute (binary, nominal, numeric,
etc.) nor do we specify what language will be used to specify the propositional
features. Traditionally, propositionalisation has been approached from an ILP
standpoint with only binary features, expressed in first-order logic (FOL)[6, 7, 1, 2].
To our knowledge, the use of other aggregates than existence has been limited. One
example is given in [4], which describes a propositionalisation-step where numeric
attributes were defined for counts of different substructures. [5] also mentions
aggregates as a means of establishing probabilistic relationships between objects in
two tables. It is our aim to analyse the applicability of a broader range of aggregates.

With a growing availability of algorithms from the fields of ILP and Multi-
Relational Data Mining (MRDM), one might wonder why such a cumbersome pre-
processing step is desirable in the first place, instead of applying one of these
algorithms to the multi-relational data directly. The following is a (possibly
incomplete) list of reasons:
• Pragmatic choice for specific propositional techniques. People may wish to apply

their favourite attribute-value learner, or only have access to commercial of-the-
shelf Data Mining tools. Good examples can be found in the contributions to the
financial dataset challenge at PKDD conferences [14].

• Superiority of propositional algorithms with respect to certain Machine Learning
parameters. Although extra facilities are quickly being added to existing ILP
engines, propositional algorithms still have a head-start where it concerns
handling of numeric values, regression, distance measures, cumulativity etc.

• Greater speed of propositional algorithms. This advantage of course only holds if
the preceding work for propositionalisation was limited, or performed only once
and then reused during multiple attribute-value learning sessions.

• Advantages related to multiple consecutive learning steps. Because we are
applying two learning steps, we are effectively combining two search strategies.
The first step essentially transforms a multi-relational search space into a
propositional one. The second step then uses these complex patterns to search



deeper than either step could achieve when applied in isolation. This issue is
investigated in more detail in the remainder of this section.

The term propositionalisation leads to some confusion because, although it
pertains to the initial step of flattening a multi-relational database, it is often used to
indicate the whole approach, including the subsequent propositional learning step.
Because we are mostly interested in the two steps in unison, and for the sake of
discussion, we introduce the following generic algorithm. The name is taken from
Czech, and indicates a two-step dance.

Polka (DB D; DM M; int r, p)
P := MRDM (D, M, r);
R := PDM (P, p);

The algorithm takes a database D and datamodel M (acting as declarative bias),
and first applies a Multi-Relational Data Mining algorithm MRDM. The resulting
propositional features P are then fed to a propositional Data Mining algorithm PDM,
producing result R. We use the integers r and p very informally to identify the extent
of the multi-relational and propositional search, respectively. Note that the
propositionalisation step is independent of subsequent use in propositional learning.

In order to characterise more formally the extent of the search, we introduce three
measures that are functions of the patterns that are considered. The values of the
measures for the most complex patterns in the search space are then measures for the
extent of the search algorithm. We can thus characterise both individual patterns, as
well as algorithms. The definition is based on the graphical pattern language of
Selection Graphs, introduced in [8], but can be re-written in terms of other languages
such as FOL, relational algebra or SQL. We first repeat our basic definition of
Selection Graphs.

definition A selection graph G is a pair (N, E), where N is a set of pairs (t, C), t is a
table in the data model and C is a, possibly empty, set of conditions on attributes in t
of type t.a operator c; the operator is one of the usual selection operators, =, >, etc. E
is a set of triples (p, q, a) called selection edges, where p and q are selection nodes
and a is an association between p.t and q.t in the data model.  The selection graph
contains at least one node n0 (the root node) that corresponds to the target table t0.

Now assume G is a Selection Graph.

definition variable-depth: dv (G) equals the length of the longest path in G.

definition clause-depth: dc (G) equals the sum of the number of non-root
nodes, edges and conditions in G.

definition variable-width: wv (G) equals the largest sum of the number of
conditions and children per node, not including the root-node.

The intuition of these definitions is as follows. An algorithm searches variable-
deep, if pieces of discovered substructure are refined by adding more substructure,



Child

Parent

Toy

Age > 40

resulting in chains of variables (edges in Selection Graphs). With each new variable,
information from a new table is involved. An algorithm searches clause-deep, if it
considers very specific patterns, regardless of the number of tables involved. Even
propositional algorithms may produce clause-deep patterns that contain many
conditions at the root-node and no other nodes. Rather than long chains of variables,
variable-wide algorithms are concerned with the frequent reuse of a single variable. If
information from a new table is included, it will be further refined by extra
restrictions, either through conditions on this information, or through further
substructure.

example The following Selection Graph,
which refers to a 3-table database
introduced in [8], identifies parents above
40 who have a child and bought a toy. The
measures produce the following complexity
characteristics:

dv(G)=1, dc(G)=5, wv(G)=0

The complexity measures can now be
used to relate the search depth of Polka to
the propositional and multi-relational
algorithm it is made up of.

lemma 1 dv (Polka) = dv (MRDM)
lemma 2 dc (Polka) = dc (MRDM) · dc (PDM)
lemma 3 wv (Polka) = wv (MRDM)

Not surprisingly, the complexity of Polka depends largely on the complexity of
the actual propositionalisation step. However, lemma 2 demonstrates that Polka
considers very clause-deep patterns, in fact deeper than a multi-relational algorithm
would consider in isolation. This is due to the combining of search spaces mentioned
earlier. Later on we will examine the search restrictions that the use of aggregates
have on the propositionalisation step and thus on Polka.

3� Aggregates

In the previous section we observed that an essential element of
propositionalisation is the ability to summarise information distributed over several
tables in the target table. We require functions that can reduce pieces of substructure
to a single value, which describes some aspects of this substructure. Such functions
are called aggregates. Having a set of well-chosen aggregates will allow us to
describe the essence of the structural information over a wide variety of structures.

We define an aggregate as a function that takes as input a set of records in a
database, related through the associations in the data model, and produces a single
value as output. We will be using aggregates to project information stored in several
tables on one of these tables, essentially adding virtual attributes to this table. In the
case where the information is projected on the target table, and structural information



belonging to an example is summarised as a new feature of that example, aggregates
can be thought of as a form of feature construction.

Our broad definition includes aggregates of a great variety of complexity. An
important aspect of the complexity of an aggregate is the number of (associations
between) tables it involves. As each aggregate essentially considers a subset of the
data model, we can use our 3 previously defined complexity-measures for data
models to characterise aggregates. Specifically variable-depth is useful to classify
aggregates. An aggregate of variable-depth 0 involves just one table, and is hence a
case of propositional feature construction. In their basic usage, aggregates found in
SQL (count, min, sum, etc.) have a variable-depth of 1, whereas variable-deeper
aggregates represent some form of Multi-Relational pattern (benzene-rings in
molecules, etc.). Using this classification of variable-depth we give some examples to
illustrate the range of possibilities.

dv (A) = 0:
• Propositions (adult == (age ������

• Arithmetic functions (area == width⋅length)

dv (A) = 1:
• Count, count with condition
• Count distinct
• Min, max, sum, avg
• Exists, exists with condition
• Select record (eldest son, first contract)
• Predominant value

dv (A) > 1:
• Exists substructure
• Count substructure
• Conjunction of aggregates (maximum count of children)

Clearly the list of possible classes of aggregates is long, and the number of instances
is infinite. In order to arrive at a practical and manageable solution for
propositionalisation we will have to drastically limit the range of classes and
instances. Apart from deterministic and heuristic rules to select good candidates,
pragmatic limitations to a small set of aggregate classes are unavoidable. In this paper
we have chosen to restrict ourselves to the classes available in SQL, and combinations
thereof. The remainder of this paper further investigates the choice of instances.

4� Summarisation

We will be viewing the propositionalisation process as a series of steps in which
information in one table is projected onto records in another table successively. Each
association in the data model gives rise to one such step. The specifics of such a step,
which we will refer to as summarisation, are the subject of this section.



Let us consider two tables P and Q, neither of which needs to be the target table,
that are joined by an association A. By summarising over A, information can be added
to P about the structural properties of A, as well as the data within Q. To summarise
Q, a set of aggregates of variable-depth 1 are needed.

As was demonstrated before in [8], the multiplicity of association A influences the
search space of multi-relational patterns involving A. The same is true for
summarisation over A using aggregates. Our choice of aggregates depends on the
multiplicity of A. In particular if we summarise Q over A only the multiplicity on the
side of Q is relevant. This is because an association in general describes two
relationships between the records in both tables, one for each direction. The following
four options exist:
1 For every record in P there is but a single record in Q. This is basically a

look-up over a foreign key relation and no aggregates are required. A simple
join will add all non-key attributes of Q to P.

0..1 Similar to the 1 case, but now a look-up may fail because a record in P may
not have a corresponding record in Q. An outer join is necessary, which fills
in NULL values for missing records.

1..n For every record in P, there is at least one record in Q. Aggregates are
required in order to capture the information in the group of records
belonging to a single record in P.

0..n Similar to the 1..n case, but now the value of certain aggregates may be
undefined due to empty groups. Special care will need to be taken to deal
with the resulting NULL values.

Let us now consider the 1..n case in more detail. A imposes a grouping on the
records in Q. For m records in P there will be m groups of records in Q. Because of
the set-semantics of relational databases every group can be described by a collection
of histograms or data-cubes. We can now view an aggregate instance as a function of
one of these types of histograms. For example the predominant aggregate for an
attribute Q.a simply returns the value corresponding to the highest count in the
histogram of Q.a. Note that m groups will produce m histograms and thus m values
for one aggregate instance, one for each record in P. The notion of functions of
histograms helps us to define relevant aggregate classes.

count The count aggregate is the most obvious aggregate through its direct relation to
histograms. The most basic instance without conditions simply returns the single
value in the 0-dimensional histogram. Adding a single condition requires a 1-
dimensional histogram of the attribute involved in the condition. For example the
number of sons in a family can be computed from a histogram of gender of that
family. An attribute with a cardinalty c will produce c aggregate instances of count
with one condition. It is clear that the number of instances will explode if we allow
even more conditions. As our final propositional dataset will then become
impractically large we will have to restrict the number of instances. We will only
consider counts with no condition and counts with one condition on nominal
attributes. This implies that for the count aggregate wv ����

There is some overlap in the patterns that can be expressed by using the count
aggregate and those expressed in FOL. Testing for a count greater than zero obviously
corresponds to existence. Testing for a count greater than some threshold t however,



requires a clause-depth of O(t2) in FOL. With the less-than operator things become
even worse for FOL representations as it requires the use of negation in a way that the
language bias of many ILP algorithms does not cater for. The use of the count
aggregate is clearly more powerful in these respects.

min and max The two obvious aggregates for numeric attributes, min and max,
exhibit similar behaviour. Again there is a trivial way of  computing min and max
from the histogram; the smallest and largest value for which there is a non-zero count,
respectively. The min and max aggregates support another type of constraint
commonly used in FOL-based algorithms, existence with a numeric constraint. The
following proposition describes the correspondence between the minimum and
maximum of a group of numbers, and the occurrence of particular values in the group.

proposition Let B be a bag of real numbers, and t some real, then
max (B) > t    iff       ∃ v ∈ B : v > t,
min (B) < t     iff       ∃ v ∈ B : v < t.

This simply states that testing whether the maximum is greater than some
threshold is equivalent to testing whether any value is greater than t. Analogous for
min. It is important to note the combination of max and >, and min and < respectively.
If max were to be used in combination with < or = then the FOL equivalent would
again require the use of negation. Such use of the min and max aggregate gives us a
natural means of introducing the universal quantor ∀: all values are required to be
above the minimum, or below the maximum. Another advantage of the min and max
aggregate is that they each replace a set of binary existence aggregate instances (one
for each threshold), making the propositional representation a lot more compact.

In short we can conclude that on the level of summarisation (dv = 1) aggregates
can express many of the concepts used in FOL. They can even express concepts that
are hard or impossible to express in FOL. The most important limitation of our choice
of aggregate instances is the number of attributes involved: wv �����7KLV� UHVWULFWLRQ

prevents the use of combinations of attributes which cause a combinatorial explosion
of features [10].

5� The RollUp Algorithm

With the basic operations provided in the previous sections we can now define a
basic propositionalisation algorithm. The algorithm will traverse the data model graph
and repeatedly use the summarisation operation to project data from one table onto
another, until all information has been aggregated at the target table. Although this
repeated summarisation can be done in several ways, we will describe a basic
algorithm, called RollUp.

The RollUp algorithm performs a depth-first search (DFS) through the data model,
up to a specified depth. Whenever the recursive algorithm reaches its maximum depth
or a leaf in the graph, it will “roll up” the relevant table by summarising it on the
parent in the DFS tree. Internal nodes in the tree will again be summarised after all its
children have been summarised. This means that attributes considered deep in the tree
may be aggregated multiple times. The process continues until all tables are



summarised on the target table. In combination with a propositional learner we have
an instance of Polka. The following pseudo code describes RollUp more formally:

RollUp (Table T, Datamodel M, int d)
V := T;
if d > 0

for all associations A from T in M
W := RollUp(T.getTable(A), M, d-1);
S := Summarise(W, A);
V.add(S);

return V;

The effect of RollUp is that each attribute appearing in a table other than the target
table will appear several times in aggregated form in the resulting view. This multiple
occurrence happens for two reasons. The first reason is that tables may occur multiple
times in the DFS tree because they can be reached through multiple paths in the
datamodel. Each path will produce a different aggregation of the available attributes.
The second reason is related to the choices of aggregate class at each summarisation
along a path in the datamodel. This choice, and the fact that aggregates may be
combined in longer paths produces multiple occurrences of an attribute per path.

The variable-depth of the deepest feature is equal to the parameter d. Each feature
corresponds to at most one attribute aggregated along a path of depth dv. The clause-
depth is therefore a linear function of the variable-depth. As each feature involves at
most one attribute, and is aggregated along a path with no branches, the variable-
width will always be either 0 or 1. This produces the following characteristics for
RollUp. Use lemmas 1 to 3 to characterise Polka instantiated with RollUp.

lemma 4   dv (RollUp) = d
lemma 5   dc (RollUp) = 2⋅dv (RollUp) + 1
lemma 6   wv (RollUp) = 1

6� Experiments

In order to acquire empirical knowledge about the effectiveness of our approach,
we have tested RollUp on three well-known multi-relational datasets. These datasets
were chosen because they show a variety of datamodels that occur frequently in many
multi-relational problems. They are Musk [3], Mutagenesis [11], and Financial [14].

Each dataset was loaded in the RDBMS Oracle. The data was modelled in UML
using the multi-relational modelling tool Tolkien (see [9]) and subsequently translated
to CDBL. Based on this declarative bias, the RollUp module produced one database
view for each dataset, containing the propositionalised data. This was then taken as
input for the common Machine Learning procedure C5.0.

For quantitative comparison with other techniques, we have computed the average
accuracy by leave-one-out cross-validation for Musk and Mutagenesis, and by 10-fold
cross-validation for Financial.



6.1 Musk

The Musk database [3] describes molecules occurring in different conformations.
Each molecule is either musk or non-musk and one of the conformations determines
this property. Such a problem is known as a multiple-instance problem, and will be
modelled by two tables molecule and conformation, joined by a one-to-many
association. Confirmation contains a molecule identifier plus 166 continuous
features. Molecule just contains the identifier and the class. We have analysed two
datasets, MuskSmall, containing 92 molecules and 476 confirmations, and
MuskLarge, containing 102 molecules and 6598 confirmations. The resulting table
contains a total of 674 features.

Table 1 shows the results of RollUp compared to other, previously published
results. The performance of RollUp is comparable to Tilde, but below that of special-
purpose algorithms.

Algorithm MuskSmall MuskLarge
Iterated-discrim APR 92.4% 89.2%
GFS elim kde APR 91.3% 80.4%
RollUp 89.1% 77.5%
Tilde 87.0% 79.4%
Back-propagation 75.0% 67.7%
C4.5 68.5% 58.8%

Table 1 Results on Musk

6.2 Mutagenesis

Similar to the Musk database, the Mutagenesis database describes molecules
falling in two classes, mutagenic and non-mutagenic. However, this time structural
information about the atoms and bonds that make up the compound are provided. As
chemical compounds are essentially annotated graphs, this database is a good test-
case for how well our approach deals with graph-data. The dataset we have analysed
is known as the ‘regression-friendly’ dataset, and consists of 188 molecules. The
database consists of 26 tables, of which three tables directly describe the graphical
structure of the molecule (molecule, atom and bond). The remaining 23 tables
describe the occurrence of predefined functional groups, such as benzene rings.

Four different experiments will be performed, using different settings, or so-called
backgrounds. They will be referred to as experiment B1 to B4:
• B1:  the atoms in the molecule are given, as well as the bonds between them; the

type of each bond is given as well as the element and type of each atom.
• B2: as B1, but continuous values about the charge of atoms are added.
• B3: as B2, but two continuous values describing each molecule are added.
• B4: as B3, but knowledge about functional groups is added.
The largest resulting table, for B4, contains 309 constructed features.

Table 2 shows the results of RollUp compared to other, previously published
results. Clearly RollUp outperforms the other methods on all backgrounds, except B4.



Most surprisingly, RollUp already performs well on B1, whereas the ILP methods
seem to benefit from the propositional information provided in B3.

Progol FOIL Tilde RollUp
B1 76% 61% 75% 86%
B2 81% 61% 79% 85%
B3 83% 83% 85% 89%
B4 88% 82% 86% 84%

Table 2 Results on Mutagenesis

example The following tree of the B3 experiment illustrates the use of aggregates for
structural descriptions.

CNT_BOND =< 26
    PREDOMINANT_TYPE_ATOM [21 27] -> F
    PREDOMINANT_TYPE_ATOM 22 -> F
    PREDOMINANT_TYPE_ATOM 3
        MAX_CHARGE_ATOM =< 0.0
            PREDOMINANT_TYPE_BOND 7 -> F
            PREDOMINANT_TYPE_BOND 1 -> T
        MAX_CHARGE_ATOM  > 0.0 -> F
CNT_BOND  > 26
    LUMO =< -1.102
        LOGP =< 6.26 -> T
        LOGP  > 6.26 -> F
    LUMO  > -1.102 -> F

6.3 Financial

Our third database is taken from the Discovery Challenge organised at PKDD ’99
and PKDD 2000 [14]. The database is based on data from a Czech bank. It describes
the operations of 5369 clients holding 4500 accounts. The data is stored in 8 tables, 4
of which describe the usage of products, such as credit cards and loans. Three tables
describe client and account information, and the remaining table contains
demographic information about 77 Czech districts. We have chosen the account table
as our target table. Although we thus have 4500 examples, the dataset contains a total
of 1079680 records. Our aim was to determine the loan-quality of an account, that is
the existence of a loan with status ‘finished good loan’ or ‘running good loan’. The
resulting table contains a total of 148 features.

A near perfect score of 99.9% was achieved on the Financial dataset. Due to the
great variety of problem definitions described in the literature, quantitative
comparisons with previous results are impossible. Similar (descriptive) analyses of
loan-quality however never produced the pattern responsible for RollUp’s
performance. The aggregation approach proved particularly successful on the large
transaction table (1056320 records). This table has sometimes been left out of other
experiments due to scalability problems.



7� Discussion

The experimental results in the previous section demonstrate that our approach is
at least competitive with existing multi-relational techniques, such as Progol and
Tilde. Our approach has two major differences with these techniques, which may be
the source of the good performance: the use of aggregates and the use of
propositionalisation. Let us consider the contribution of each of these in turn.

Aggregates There is an essential difference in the way a group of records is
characterised by FOL and by aggregates. FOL characterisation are based on the
occurrence of one or more records in the group with certain properties. Aggregates on
the other hand typically describe the group as a whole; each record has some
influence on the value of the aggregate. The result of this difference is that FOL and
aggregates provide two unique feature-spaces to the learning procedure. Each feature-
space has its advantages and disadvantages, and may be more or less suitable for the
problem at hand.

Although the feature-spaces produced by FOL and aggregates have entirely
different characteristics, there is still some overlap. As was shown in section 4, some
aggregates are very similar in behaviour to FOL expressions. The common features in
the two spaces typically

• select one or a few records in a group (min and <, max and >, count > 0 for
some condition).

• involve a single attribute: wv ≤ 1
• have a relatively low variable-depth.

If these properties hold, aggregate-based learning procedures will generally
perform better, as they can dispose of the common selective aggregates, as well as the
complete aggregates such as sum and avg.

Datamodels with a low variable depth are quite common in database design, and
are called star-shaped (dv = 1) or snowflake schemata (dv > 1). The Musk dataset is
the most simple example of a star-shaped model. The datamodel of Mutagenesis
consists for a large part of a star-shaped model, and Financial is essentially a
snowflake schema. Many real-world datasets described in the literature as ILP
applications essentially have such a manageable structure. Moreover, results on these
datasets frequently exhibit the extra condition of wv ≤ 1. Some illustrative examples
are given in [4, 13].

Propositionalisation According to lemma 2, Polka has the ability to discovery
patterns that have a bigger clause-depth than either of its steps has. This is
demonstrated by the experiments with our particular instance of Polka. RollUp
produces variable-deep and thus clause-deep features. These clause-deep features are
combined in the decision tree. Some leafs represent very clause-deep patterns, even
though their support is still sufficient. This is an advantage of Polka
(propositionalisation + propositional learning) over multi-relational algorithms in
general.

Next to advantages related to expressivity, there are more practical reasons for
using Polka. Once the propositionalisation-stage is finished, a large part of the
computationally expensive work is done, and the derived view can be analysed



multiple times. This not only provides a greater efficiency, but gives the analyst more
flexibility in choosing the right modelling technique from a large range of well-
developed commercially available set of tools. The analyst can vary the style of
analysis (trees, rules, neural, instance-based) as well as the paradigm (classification,
regression).

8� Conclusion

We have presented a method that uses aggregates to propositionalise a multi-
relational database, such that the resulting view can be analysed by existing
propositional methods. The method uses information from the datamodel to guide a
process of repeated summarisation of tables on other tables. The method has shown
good performance on three well-known datasets, both in terms of accuracy as well as
in terms of speed and flexibility.

The experimental findings are supported by theoretical results, which indicate the
strength of this approach on so-called star-shaped or snowflake datamodels. We have
also given evidence for why propositionalisation approaches in general may
outperform ILP or MRDM systems, as was suggested before in the literature [4, 12].
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