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Abstract

When setting an algorithm/system to work, several parameters, both cate-
gorical and numerical, are usually to be defined. Often, a preliminary series
of test runs is performed in order to find some sub-optimal parameter set-
ting. This procedure may be time consuming. On the other hand, in most
algorithms suitable to complex real-world applications, the relation between
a parameter’s value and the output cannot be easily specified, not even qual-
itatively, because the interrelation between different parameters may mask
the effect of each one. On the other hand, the user, even though not knowing
in advance the results of the mining, may nevertheless be able to explicitly
specify some set of constraints on the desired output.

Deliverable D4.1 furnishes the abstract description of the methodology
trying to capture those aspects that do not depend upon a specific data
mining task. An example of this task-independent part is the description
of the loop into which the user and the algorithm are inserted, with the
specification of the types of information that they should exchange.



Chapter 1

Introduction

When setting an algorithm/system to work, several categorical and/or nu-
merical parameters are usually to be defined. Often, a preliminary series
of test runs is performed in order to find some sub-optimal parameter set-
ting. This procedure may be boring and very time consuming, especially
when the faced task requires the use of algorithms with a high computational
complexity. On the other hand, in most algorithms suitable to complex real-
world applications, the relation between a parameter’s value and the output
cannot be easily specified, not even qualitatively, because the interrelation
between different parameters may mask each other’s effects. On the other
hand, the user, even though not knowing in advance the results of mining,
may nevertheless be able to explicitly specify some set of constraints on
the desired output. For instance, in a segmentation task, he/she may want
that customers with given characteristics mostly belong to the same group,
and so on. The satisfaction of the constraints defined by the user can be
codified into a function, which reflects the degree to which the constraints
have been satisfied by the algorithm. This function can be automatically
optimized with respect to the algorithm’s parameters. In order to introduce
this step, constraint definition and algorithm’s run must be inserted into a
closed loop, which the user is an integral part of. Two fundamental aspects
differentiate this approach from the trial-and-error one: on the one hand,
the loop is executed only one time, and, on the other, the parameter setting
is determined automatically.

In general, the satisfaction of the user’s constraints are codified into a
function that reflects the degree to which the constraints are satisfied by the
algorithm. This function can be automatically optimized with respect to the
algorithm’s parameters. In order to introduce this step, constraint definition
and algorithm’s run must be inserted into a closed loop, which the user is
an integral part of. Two fundamental aspects differentiate this approach
from the trial-and-error one: on the one hand, the loop is executed only one
time, and, on the other, the parameter setting is determined automatically.
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Previous experience in using this approach in market segmentation tasks
gave good results in terms of both speed up and user agreement on the
quality of the results.

The problem of parameter setting in Machine Learning is a very im-
portant one, because different parameter values may drastically change the
output of a learning algorithm. Some efforts have been done in the past
(see, for example, [Kohavi and John, 1995]') and also commercial products,
such as, for instance, the MLLC++, contains methods for automatic setting
of C4.5s parameters. However, the problem has mostly been left, up to now,
to the intuition of the machine learning developer or to a time consuming
trial-and-error procedure.

The idea underlying our approach is to allow the user to express his/her
preference for solutions and to codify these preferences so as to link them
experim entally to the algorithms parameter values through an optimization
process.

'Ron Kohavi and George John. ” Automatic Parameter Selection by Minimizing Esti-
mated Error”. In Proceeding of the Twelfth International Conference on Machine Learning
(Lake Tahoe,CA), pp.304-312.



Chapter 2

Methodology

Given an algorithm A, designed to solve a specific data mining task, let X
be its input (typically a dataset), Y be its output (for instance, a set of
classification rules, a partition of the data, a set of association rules, and so
on), and P = {p1,...,ps} be a set of s numerical parameters:

Y =AX,P) (2.1)
Each parameter p; in P has usually a default value:

P(O) = {pl (O)a -y Ps (O)} (2'2)

The default values are employed when the user does not have a better sug-
gestion. Even though the user does not know the results Y, he/she may
nevertheless know that the solution Y should (preferably) satisfy some con-
straints. These constraints, possibly expressed in an unstructured language,
are collected in a set @ = {q1,--.,97}-

The first step consists in codifying each constraint into a numerical func-
tion, which expresses, in an interval [0, 1] the degree to which a given output
satisfies the constraint. The functions associated to every constraints are
summed up together, to build up a global objective function to be maxi-
mized. This soft approach is necessary because it may often happen that
the constraints expressed by the user contradict each other, so that a com-
promise has to be sought.

A way of satisfying the constraints is to modify the parameters present
in the algorithm. If the analytical link between parameters and output
is known, the problem is simpler, because it is sufficient to determine the
region of the parameter space where the output is the desired one. But this
situation seldom occurs. In general, the effects of the parameters is much
more far-reaching. However, the output, considered as an implicit function
of the parameters, as in (2.1), may be experimentally modified by letting
the learning algorithm run. The difference between this approach and the
trial-and-error one consists in the fact that if the maximum (or a setting
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Figure 2.1:

close to the maximum) of the objective function is found, then is no need
to re-try, because we cannot expect to do better.

In Figure 2.1, a graphical representation of the steps to perform is re-
ported. In the next section, an exemplification of the method shall help to
clarify the method.



Chapter 3

Parameter Tuning in a
Segmentation Algorithm

In this Section we describe, for the sake of exemplification, how the method-
ology outlined in Section 3 has been applied to a segmentation algorithm,
SEGMENT, already available at CSELT.

SEGMENT is an not hierarchical clustering algorithm based on the con-
cept of density, that produces separated groups and operates over data de-
scribed by couple [Attribute, Value]. This approach requires introducing the
notion of distance between points and eventually between clusters. In gen-
eral, this distance is a function that both increases with the inter-cluster
distance and diminishes with the intra-cluster distance. An optimal segmen-
tation will maximize an objective function that is related to this distance
notion. The attributes are usually weighed and the weights of the attributes
are the main algorithm parameters of whom values have to be determined.

The attributes can be categorical, numerical or structured. Let X the
set of N examples to be partitioned, and A = {A44,..., Ay} the attributes
set, where each value of the attribute Ay belongs to Ay, with

VAhGA:Ah:’U]'EAh:{’Ul,...,’ULh}; |Ah|:Lh (31)

Let ng) the value of the attribute Ap in the example x;. For each at-
tribute we introduce a distance function, that depends on the attribute type,
between the attribute values. The distance for the attribute A; between two
example z; and x5 is denoted by dj, ('UJ(.I),UJ(-Q)), while the global distance be-
tween two example is the average of the distances of the single attributes,
namely

1 & ) (2
Dlew,aa) = 57 3 dalo} 07" (32)
=1
Let wy, ..., wy the attributes weights, equation 3.2 is modified as in the
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following
1 & e,
D(z1,z2) = szhdh(’l’j ,0;) (3.3)
h=1
H
W = th.
h=1

Equation 3.3 is the distance function we use in SEGMENT.

3.1 SEGMENT: the algorithm

In this section we briefly furnish a description of SEGMENT. The algorithm
receives as an input a set X of examples to be partitioned off into K clusters
with K < Ky, where Kjs roughly is twice as much as the final number
of clusters we would obtain. SEGMENT partitions the set X in groups
throughout a straightforward dinstance criteria. An abstract description of
the algorithm is shown in Figure 3.1, and its step are summarized in the
following;:

1. Require to the user

e the X examples to be partitioned;

the couples attribute-weight to be taken into account;
e the couples constraints-value to be taken into account;

e the parameter Kj;.
2. Partition X and produce a collection of different clustering !.
3. Select one clustering.

4. Analyze the selected clustering: If the clustering is adequate then goto
6.

5. Otherwise ask to the user to:

e Change/Add constraints;

e Require the execution of the Optimization module (weights’ tun-
ing);
'The algorithm produces a collection of different clustering, CLUST(j) (1 < j < Ku),

containing 1 upto K clusters. Let Mi(j) = |Ci(j)| (1 <j < K, 1<1i<j)the cardinality
of the i, cluster into the ji» group, as the clusters are separated, we have:

i
N=> M7 (3.4)
i=1
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Figure 3.1: A abstract description of the SEGMENT(X, Kjs) algorithm,
that partitions X examples off in a certain number of separated clusters.

e Require the execution of the Refinement module (clusters’ centers
tuning);

goto 3.
6. Iteration ends.

In many applications constraints are usually imprecise at the beginning
of the iteration, and they are often assigned by default especially when the
user cannot furnish them. For this reason, the initial loops might fail, and a
modulation of instances’ distances, obtained by a weight tuning (Optimiza-
tion module), and/or an adjustment of the number of clusters (Refinement
module) might produce the desired results.
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3.2 Clusters’ centers selection

The selection of the initial clusters’ centers is critical even for algorithms
that are able to change the centers’ positions (e.g. K-Means [Fayyad and
Bradley 1998]2), hence this is particularly difficult in SEGMENT where you
cannot modify the initial centers’ postures. As they are not provided by
the user, the clusters’ centers are selected by an Stochastic Windowing al-
gorithm (see Figure 3.1). The method has been inspired by the solution
proposed by Fayyad and Bradley, that has been demonstrated to be ade-
quately accurate and efficient also with big dataset. The main idea of the
Fayyad and Bradley’s algorithm can be summarize in the following steps:

1. Given a set X of examples we generate J subset z; (1 <i < J) by a
random sampling algorithm.

2. Partition any z;, e.g. by the K-Means algorithm, and produce Z;,
namely the set of clusters’ centers obtained by the partion ofter the
partition.

3. Let Z2 = U{Zl Z;, partition Z, e.g. by the K-Means algorithm, J time
and obtain Y; solutions, with ¢ € [1...J] (where each Y; is obtained
exploiting Z; as initial centers’ set to be furnished to K-Means).

4. Select the Y; minimizing the distortion over Z.

3.3 User’s Constraints

The constraints the user furnishes, express his/her knowledge about the
problem domain. They are described by syntactical expressions, as closed
as possible to the natural language, that have to be translate into adequate
analytical functions or automatic procedures. This section briefly describes
the constraints the user exploit into the informed segmentation task.

Type 1: Instance Association. Instances z; € X’ C X, have mostly to
belong to the same cluster.

Type 2: Value Association. Instances with a given value, v; € Ay, for
the categorical or numerical attribute Ay, have mostly to belong to the
same cluster; more specifically, the constraint requires that instances
with a given value for a certain attribute are grouped into one cluster,
while other attributes could be also remarkable different.

Type 3: Value Separation. The value distribution of a given attribute
Ay, mostly has to be partitioned over clusters; more specifically, the

2U. Fayyad and P. Bradley, Refining Initial Points for K-Means Clustering, Interan-
tional Conference on Machine Learning, 1998
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constraint requires that any cluster has to exhibit instances with one
value for the attribute Ay, while many clusters might exhibit instances
with that A, = v; € Ap,.

Type 4: Number of Clusters. Let K the number K of clusters, it has to
be Kmin < K < Knag-

Type 5: Cluster Cardinality. The cardinality of each cluster has to be
bigger then a given value M.

Type 6: Cardinality Ratio. The Max/Min cardinality ratio has to be
less or equal to a given value R.

Type 7: Cluster Adherence. The values’ distribution of the attribute
Ay, mostly has to be partitioned over clusters, and instances with a
given value v; € Ap have mostly to be grouped into one cluster; ac-
tually, this constraint is the logical AND between constraints 2 and
3.

3.4 Optimization module

The Optimization module adjusts the instances’ distances (the attributes’
weights) in order to increase the number of satisfied user constraints, thus
eventually producing the desired result. Actually, an attribute weight mod-
ulation allows modifying the obtained clustering in the way that constraints
1, 2, 3 and 7 might be guaranteed. This section describes how an attribute
weights perturbation affect the instances’ distances and how this correla-
tion can be exploited to modify the solution SEGMENT proposes. The first
paragraph describes the case of single weight tuning, while the second para-
graph presents the case of multiple weight tuning.

Single weight tuning

Let z1,z2 two instances in X, the distance D(z1,z3) is defined by the fol-
lowing equation:

1 & 1 &
D = D(z1,29) = W Z wh, dh('uj(-l),'uj(-z)) =W Z wp, dp, (3.5)
h=1 h=1
The distance D can be also written as a function of w,:

1 H
D(’LU,») = D(.Z‘l,ivg) = W Z W, dh (3.6)
h=1
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Let perturbate the w, weight by a little valueAw,, we have (using a error
calculation)
_ 0D (wy)

AD
ow,

Aw, (3.7)

with
0D (wy) _dr — D(wy)

ow, w

(3.8)

Equation 3.8 shows that:
o 20 — ¢ iffd, = D, Aw, does not affect AD, thus d, = D returns a

dw,
stable state;

e I 5 0 iffd. < D, Aw, is in direct proportion with AD, thus a

ow,
positive Aw, results into a positive AD;

. g—fr < 0 iff d > D, Aw, is in inverse proportion with AD, thus a
positive Aw, results into a negative AD.

Hence, a single weight perturbation affects the distance D(z1,z2) so that:

d, — D(wy)
w

Let z; the center of the cluster C;. Let Aw, a perturbation of the at-
tribute w,. Let B the ball defined by the points z; so that dy(z;,zs) =
D(z;,zs). Points over B; are not affected by any Aw,. Points inside the
ball B has d, > D, and g—ul))r < 0, thus any positive Aw, returns a negative
AD, and points are attracted into the cluster C;. Points outside the ball B,
has d, < D, and g—zﬁ > 0, thus any positive Aw, gives returns a positive
AD, and points are moved away to the cluster Cs.

D*(z1,x2) = D(z1,x2) + Aw, (3.9)

Instances’ displacement by a single weight tuning

Given an instance z; and a ball By, related to the center z; of cluster
Cs, one of the following conditions holds:

e z; does not belong to the ball By;

e z; is onto the ball By;

e z; belongs to the ball B,.

Let the third condition holds for a specific =7, and assume that z7 belongs
to Cs while it is also close to the cluster Ceq # Cs. If we want displace x;‘
from Cs to Cpeyw, we should apply a positive Aw, so that, after the weight

tuning we will obtain:

D'(:c’;-, Znew) < D'(:c’;-, Zs) (3.10)
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with
D(z}, znew) > D(z3, 25) (3.11)
before the displacement, and
-D
D(a}2) = Dlej,z)+ T Ay,
" " d, — D(w
D’(37jaznew) = D(xj’znew) + TT(T) Aw,

Multiple weight tuning

Let z1,z2 two instances in X, the distance D(z1,z5) is defined by the fol-
lowing equation:

1 -
D = D(z1,25) thdh (i, 0l?) = e (3.12)
Let perturbate @ by A_iu, we have
AD = AD(z1,25) = VD o Aw (3.13)

where V,, is the the gradient operator;

. - (dew\ d-DE = -
VwD =V ( W ) = 3 with &= W (3.14)
where E is the unit vector of 1, then
' pE
AD = AD(z1,z2) = d ¢ o Aw (3.15)

Equation 3.15 shows that AD is not affected by Awifd = DE or when
d # Dg but @ = dﬁg is orthogonal to Aw. In general, a multiple weight
tuning affect the distance D so that:

d—DE
D*(z1,22) = D(z1,22) + S e Aw (3.16)
Explicitly, we have
ul 1
D*(.’L‘l,:L‘Q) = D 371,.’E2 Z [ ]( ), ] D(xl,.’Eg)] Awh (3.17)

h:l
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3.5 Refinement module

The Refinement module modifies the clusters’ centers in order to increase
the number of satisfied user constraints, thus eventually producing the de-
sired result. This module exploits both a merging and a splitting techniques
that affect the clusters’ shapes. Actually, this approach allows tuning the
obtained clustering in the way that constraints 4, 5 and 6 might be guaran-
teed. The merging and splitting techniques are performed by a search into
the cluster space with the goal of finding the most relevant solutions that
allow satisfying the user constraints. User is asked to choose among these
solutions.

3.6 Constraint analytical expression

Constraints 1, 2, 3 and 7 can be translated into a set of differential disequa-
tions of whom variables are the differentials of the attribute weights Aw.
When a solution of these disequation exist, the attributes’ weights are prop-
erly modified and the Optimization module succeedes. On the other hand
a perturbation Aw both that minimizes a given objective function or that
satisfies a subset of differential disequations obtained by an selection that
involves the user, is often accepted. The latter strategy invokes an iterative
algorithm that increasly reduces the number of differential disequations by
a selection discarding the most relevant ones. Disequations importance is
mainly measured in term of constraint values but a constraint evaluation
criteria is also furnished to prioritize them (see paragraph 3.7). Given the
constraint priorities obtained by the evaluation criteria, the user is allowed
modifying the disequations’ subset that at each step is taken into account
throughout a tuning of the constraints values.

Constraints 4, 5 and 6 can be handled by merging and splitting opera-
tions that have been implemented by automatic procedures.

Type 1: Instance Association requires that instances z; € X' C X,
have to belong to the same cluster C, thus we have to satisfy the
following disequations’ sets (with K — 1 disequations’ per set):

Vi, € X' D(zi,25) < D(wi,2j) j=1.KAj+#s (3.18)

where z; is center of cluster C; and z; is the center of cluster Cj.

If for some z;, € X" C X' disequations D(zp, zs) < D(zp,z;) do not
hold, a Aw is applied.
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Let

D'(zp,25) = D(zp,zs) + AD(zp, 2z5) (3.19)
D'(zp,zj)) = D(zp,2)+ AD(zp,z;)

we have the disequations
D'(zp,25) < D'(zp, 2)) (3:20)
while equation 3.18 has still to hold for any z; € X’ — X",

Type 2 and 3: Value Association and Value Separation requires
that instances z; € X' C X with the a given value v; of the at-
tribute Aj have mostly to belong to the same cluster (in the former
case only one, while in the latter the attribute distribution has to be
partitioned). The analytical expression for these constraints can be
indirectly obtained by a disequation that forces these instances to be
close each other. Let X” = X — X', we have:

Vag,zp €X' Va,z4€ X" D(x4,78) K D(T¢, T4) (3.21)

Let
1 & 5
Diea,ms) = g7 2 wndn(v;”,0)”) (da=0)  (3.22)
h=1
1< () , (d)
D(ze,z4) = szhdh(vjcavj)
h=1

as D(z,,1p) is not affected by w, when this is particularly high, we

have:

D(z¢,zq) — D(2a,7p) < wa * dh,maw (3.23)
where dp ez = Maz{dy(z.,zq)}.
In general,

W * Ap maz < maz{average(IntraCluster Distances)}  (3.24)

holds, and

< maz{average(IntraCluster Distances)}
a =

3.25
dh,maw ( )

If for some {z4,zp} A {z¢, 4} disequation 3.23 does not hold, a Aw is
applied.
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Let
D'(zq, 1) = D(z4, 1) + AD(z4, ) (3.26)
D'(z¢,zq) = D(x¢,14) + AD(z¢, 24)

we have the disequations:

Dl(af'c’wd) - Dl(waawb) < wq * dh,mam (3-27)

Type 4: Number of Clusters - the constraint can be handle by a proper
selection of the K4, parameter injected into the segmentation algo-
rithm.

Type 5: Cluster Cardinality - the constraint can be handled by a
re-assignment of subsets of instances to clusters. When an instance x;
is assigned to a cluster Cs of whom cardinality is smaller then K then
cluster Cj is destroyed, and z; is re-assigned to its closer cluster C, but
C;. In general, instances’ displacements might requires an adjustment
of the center z, of cluster C,,.

Type 6: Cardinality Ratio - the constraint can be handled with an
algorithm that works as described above.

Type 7: Cluster Adherence requires the logical AND of constraints 2
and 3, thus it can be according handled.

3.7 Constraint evaluation criteria
In practical applications, constraints’ values are expressed as a collection of
adjectives. Actually, users often classify a constraint to be

{Fundamental, Very important, Important, Desirable, Secondary }

thus the need of transforming them into proper numerical values v;. The
straightforward relation below can be usefully exploited for this purpose:

Fundamental —— 5 — % = 0.333
Very important — 4 — £ = 0.267
Important - 3 = 13—5 = 0.200
Desirable - 2 = 12—5 = 0.133
Secondary - 1 = % = 0.067

The global constraints satisfaction function is defined by the following
equation:

o) = %gjqi*ei(cz) (3.28)

T
Q = D u
i=1
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where g; are the constraints’ values, while §;(C) in [0..1] are single constraints
satisfaction function. 0;(C) might also be less then one, while different to
zero. This choice is mainly motivated by the need of evaluating solutions
that while non satisfying all constraints, can be accepted by the user. As
a matter of the fact, given the complexity of differential disequations intro-
duced in Section 3.6, it is often hard to find a complete solution while partial
results can still be really precious for the user. For this reason, ©(C) ranges
in [0..1], if all constraints are satisfied ©(C) = 1, while ©(C) = 0 when all
constraints are not satisfied.

In order to introduce the function 8;(C) for any constraint, let define the
following objects:

Definition 1 - Let Aj, a categorical attribute, A}, C Aj a subset of its
possible value, and X (A, A}) the subset of examples for which the
attribute Aj exhibit a value in A}. Let N(A,A}) the number of
these examples.

Definition 2 - Let A} a categorical attribute and Ay, the set of its values.
Let 7(Ay) the vector, with L, componets, that contains the histogram
of the values of Ay over X. In particular, 7;(Ap) is the number of
examples in X so that A; = v;.

When Ay, is numerical we will take into account intervals instead of val-
ues, while if Ay, is structured we will evaluate leaves (or interval nodes when
leaves share a father) of the taxonomy instead of single values.

Let introduce the following equations:

N(An,AL) = Y 7i(An) (3.29)
v €A},
Ly,
N = ZTj(Ah)
j=1

Let also introduce the range, the average and the standard deviation of
T(Ap) with A, numerical:

R(7(An)) = Mazj{vj|Tj(An) < 0}jcn..n,) — Mini{vj|mj(An) < 0}jepi.ny)

(3.30)
E(7(A = v;7;(Ap)
(7(4n)) E“T](Ahzu )
Ly,
VAR(7(Ap)) ! S 75 (AR)(v; — B(7(44)))?)

21@1 7j(An) j=1



Mining Mart IST-1999-11993, Deliverable No. D4.1 16

Let now taking into account a single cluster C; € C and extend defini-
tions 1 and 2 to Cj, so that:

Definition 3 - Let C; € C a single cluster, A, a categorical attribute,
A} C Ay, a subset of its possible value, and X ®) (A, A},) the subset of
examples in C; for which the attribute Ay exhibit a value in A}. Let
N@(Ap, A}) the number of these examples.

Definition 4 - Let C; € C a single cluster, A, a categorical attribute and
Ay, the set of its values. Let 7()(A4},) the vector, with Lj, componets,
that contains the histogram of the values of A}, over C;. In particular,
T}Z)Ah) is the number of examples in C; so that A; = v;.

Let introduce the following equation:
N (An,45) = 3 7 (4n) (3:31)
v €A}
and the range, the average and the standard deviation analogously.

Type 1: Instance Association requires that instances z; € X' C X,
have mostly to belong to the same cluster. Let A and B the instances
that have to belong to the same cluster Cf, the constraint satisfaction
function is a binary function, namely:

1 if Ae Csand B € C;

0 otherwise (3.32)

6:1(C) :{

In general, let N’ the number of instances z; € X' that have to belong
to the same cluster Cs, let M, the instances in X that already belong
to Cs, the constraint evaluation function is:

M;—1
N’

(We assume that at least one instance already belong to Cj).

6,1(C) = (3.33)

Type 2: Values Association requires that instances with a given value,
v; € Ap, for the categorical or numerical attribute Ay, have mostly
to belong to the same cluster. The constraint satisfaction function
for this constraint can be obtained by the TJ(Z) (4p) (with 1 <17 < K)
distribution over clusters, more specifically we have:

Maz;(7\V (A1)
2= N8

1<i<K (3.34)

02(C) ranges in [..1], if all instances with the same value v; of the

attribute A, are grouped into the same cluster 85(C) = 1, on the other

hand, if they are uniformly distributed over clusters 02(C) = %
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Type 3: Value Separation requires that the value distribution of a
given attribute Ay mostly has to be partitioned over clusters, namely
instances that exhibit different values for Ay have to belong to different
clusters. The constraint satisfaction function for this constraint can
be obtained by the 79 (A,) vector distribution over clusters (with
1 <4 < K) , more specifically we have:

. AR(7® (A
§0 = 1- 2VR€2_,((; (; )})l)) if Ay is numerical  (3.35)
T h
§0 = 1- % if Ay, is categorical
h

where m; is the number of different values of A; in cluster Cj, the
constraint function is:

1 &
05(C) = = >, (3.36)
=1

03(C) ranges in [0..1]. 63(C) is one if all 6@ are equal to one, i.e.
when all VAR(7%(A},)) are zero. This condition occurs when the
vector 7 (A) (with 1 < i < K) exhibits only one not null component
(namely, instances with A, = v; mostly belong to a cluster). 63(C)
is zero when all () are zero, i.e. when the the standard deviation of
each distribution is uniform over the range.

Type 7: Cluster Adherence requires that values’ distribution of the
attribute Aj mostly has to be partitioned over clusters, and instances
with a given value v; € Ay, have mostly to be grouped into one cluster,
namely the logical AND between constraints 2 and 3. The condition
requires that 7(%) (Ap) exhibits only one not null component for each
i € [1..K], and that this histogram component differs from cluster to
cluster (off course, a complete solution can be found iff K = Ly). The
constraint satisfaction function for this constraint is:

. ARG (A
6@ — 1- VRf_,((Z—) (fi )’;)) if Ap, is numerical
T h
s = 1- % if Ay, is categorical
h
s = 1 BEO(AR) — E(FYD(An))
o R(7(Ap))

the constraint function is:

92 K-1

1 K ) K
6,(C) = [E 3 5(1)] [m S(1-6i) (3.37)
=1 3 j

=1 j=1
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Let now introduce the following function:

Z:% 1<z<a
o(z,a,b,c) =4 1 a<z<hbh (3.38)
IQ_T“; b<z<e

Type 4: Number of Clusters. The number of clusters has to belong to
the range [Kpmin.-Kmaz], the constraint evaluation function is:

94(0) = U(Ka Kmina Kmaz; Kooz + 1) (339)

where K is the number of clusters obtained by the segmentation algo-
rithm.

Type 5: Cluster Cardinality. The cardinality of each cluster has to be
bigger then a given value M,;,, the constraint evaluation function is:

1 X
05(C) = % > o(M;, My, N, N) (3.40)

i=1
where M; is the cardinality of cluster C;, while N is the number of

instances.

Type 6: Cardinality Ratio. The Max/Min cardinality ratio has to be
less or equal to a given value R. Let
Mmam = M(J,.’E,{MZ} 1=1.K
the constraint evaluation function is:

Mmin
Mmaw

06(C) =o(1+ ,1+ R,2,inf) (3.42)

3.8 Objective function

This section presents the objective function we exploit into the Optimization
module of SEGMENT. This function is obtained as the average of single
optimization function ( ¢; ) of constraints 1, 2, 3 and 7, namely

0(€) =" a wi(C,E). (3.43)

eV

Let f be the weight vector, and 5 its unit vector, for each constraint, we
have the following functions.
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Type 1: Instance Association requires that instances z; € X' C X,
have mostly to belong to the same cluster. Let N’ the number of
instances z; € X' that have to belong to the same cluster C;, let M;
the instances in X that already belong to C;, we should move N’ — M,
instances into Cs. The objective function is:

2

. N'—M, 1 M
v1(C,€) = Z D(zj,z) —ﬁZD(xi,zs) (3.44)
Si_
NI
+N’ ZD Tj, 2s)
i=1

where z; is the center of cluster Cj.

Type 2: Value Association requires that instances with a given value,
v; € Ap, for the categorical or numerical attribute Aj, have mostly to
belong to the same cluster. Let N’ the number of instances with the
a given value, v;, for the attribute A, let M, the number of instances
that already belong to a cluster Cy; we have to be push N’ — M,
instances into Cs. The objective function is:

N'—M;, 2

1
S P D(z;, 2, D(zi, 2) 4
w2(C,€) NI Z:l (x),2s) 2 (xi, 2 (3.45)

NI

+N/ZD Zj,Zs)
=1

where z; is the center of cluster Cs.

Type 3: Value Separation requires that the value distribution of a
given attribute Aj mostly has to be partitioned over clusters, namely
instances that exhibit different values for Ay, have to belong to different
clusters. Let z; the center of instances for whom A; = v;, let N; the
number of these instances (1 <7 < Ly), let

N.
1 13
;i = ﬁZD(IEj,Zi) (3.46)
Z .:
Yp+
Ppg = 2 :
we have

#3(C,8) = Lh_l > z( [D(zi,2) = pigl”)  (3:47)

i=1 j=i+1
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Type 7: Cluster Adherence requires that values’ distribution of the
attribute Aj mostly has to be partitioned over clusters, and instances
with a given value v; € Ay, have mostly to be grouped into one cluster,
namely the logical AND between constraints 2 and 3. Let z; the center
of instances for whom Aj; = v;, let N; the number of these instances
(1 <1i < Lp), with the position in equations 3.46, we have

_' 1 Lp, Lp—1 Ly
C,¢) = L—Z Z Z (1 — [D(zi,zj) — Di,j]Q)
= =1 j=i+1

(3.48)



Appendix A

Symbols

e X - dataset

® I1,...,ZN - instances or examples

e N - number of instances (cardinality of X)
e K - number of clusters

e Kjs - max number of clusters

e Ay, ..., Ay - attributes

e H - number of attributes

® wi,...,wy - attributes’ weights

o W=l w

o Ay ={v1,...,upp} - values of attribute A
e D - distance between two instances

e C; - cluster

e M, - cardinality of cluster C;

e C =UK, C; clustering

e T number of constraints

o V,...,Vr constraints

® qi,...,qr constraints values
T

* Q=204

e z; center of the cluster Cj

e Z; set of centers of a clustering
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