
Deliverable D4.2

Studies in Parameter Setting

Lorenza Saitta Università del Piemonte Orientale
Marco Botta Università del Piemonte Orientale

Giuseppe Beccari TILab
Ralf Klinkenberg University of Dortmund

Abstract

Deliverable D4.2 is an integral part of Deliverable D4.3, which contains the running
software for automated parameter setting. For some algorithms the types of meaningful
constraints the user is allowed to specify, the method to encode these constraints, and,
finally, the function to be optimized are reported. The details of the overall process must
be hidden from the user, who is only required, through a graphical interface, to specify
the constraints.

Studies in Parameter Setting

As described in Deliverable D4.1, when setting an algorithm/system to work, several

parameters are usually to be defined. Often, a preliminary series of test runs is performed
in order to find some sub-optimal setting. This procedure may be time consuming. On the
other hand, in most algorithms suitable to complex real-world applications, the link
between a parameter's value and the output cannot be easily a-priori specified. On the
other hand, the user may be able to specify a set of constraints on the desired output. If
the satisfaction of each constraint can be codified into a function, then this function can
be (semi-)automatically optimized with respect to the algorithm's parameters. In order to
introduce this step, constraint definition and algorithm's run must be inserted into a
closed loop, which the user is an integral part of.

Deliverable D4.1 described the task- and algorithm-independent part of the loop into

which the user and the algorithm are inserted, with the specification of the types of
information they should exchange. The whole process is described in Figure 1.

L A(p) hp(x)

Φ(p)

Figure 1 – Task- and algorithm-independent part of the parameter setting

process. Algorithm A depends on a vector p of parameters. The function
Φ(p) contains the evaluation of the constraints, which contributes to the

selection of a particular hypothesis hp(x) depending upon p.

The algorithm A has usually an internal function Ψ to optimize (for example,

classification algorithms try to minimize prediction error, clustering algorithms may
maximize inter-cluster distance and/or minimize intra-cluster distance). It is important to
notice that functions Φ and Ψ cannot be identical, otherwise overfitting occurs.

Nevertheless, function Ψ implicitly depends upon the parameter vector p, so that

optimizing Φ does have effects also on Ψ.

1. Algorithm SEGMENT

SEGMENT is a density-based, non-hierarchical clustering algorithm, which generates

flat partitions of an example set, and is currently available to TILab and DISTA in the
Mining Mart project. It is used to segment a set of examples, described with <Attribute –
Value > pairs. More precisely, let A = {A 1, ..., AH} be a set of attributes and X the set of

examples to partition. Let vh be a generic value of attribute Ah. The notation vh
i()

indicates the value of attribute Ah in example Xi. For each attribute Ah a distance measure

dh(vh
()1

,vh
()2

) is defined, depending on the attribute nature. The global distance between

two examples X1 and X2 is given by the average distance over the attributes:

 D(X1, X2) =
1 1

1

2

H
d v vh h

h

H

h(,)() ()

=
∑

Let now w1, ..., wH be the weights assigned to the attributes. Then:

D(X1, X2) =
1 1

1

2

W
w d v vh h h

h

H

h(,)() ()

=
∑

 W =

wh
h

H

=
∑

1

The basic component of the SEGMENT system is the procedure Cluster (X, W, KM),
which has as input the set of examples to be partitioned, the set of weights, and a
maximum value for the number of clusters in any given partition. The value KM is usually
twice the sought number of clusters. An abstract description of the procedure is reported
in Figure 2.

Cluster(X, KM)
Select {Z1, ..., Z K M

} from X; X’ = X - {Z1, ..., Z K M
}; N’ = N - K M

CLUST(1) = X

for i = 1, KM do Ci = {Z i} end
for each X ∈ X’ do

if D(X, Z1) ≤ D(X, Z2) then C1 = C1 ∪ { X}

else C2 = C2 ∪ { X}

endif
end

Memorize CLUST(2) = { C1, C2 }

for j = 3, KM do
for i = 1, j-1 do

for each X ∈ Ci do

if D(X, Z j) ≤ D(X, Z i) then Ci = Ci - {X}; C j = Cj ∪ {X}

end
end

Memorize CLUST(j) = { C1, ..., Cj }

end

Figura 2 – Algorithm Cluster (X, W, KM), used inside SEGMENT to generate
partitions with number of clusters ranging from 2 to KM.

When Cluster terminates, a series of different clusterings, CLUST(j) (1 ≤ j ≤ KM), is
generated: each clustering contains j clusters. Let M i

j() = | Ci
j() | (1 ≤ j ≤ KM, 1 ≤ i ≤ j) be

the cardinality of the i-th cluster in the j-th grouping. Being the clusters disjoint, we have:

N = M i
j

i

j
()

=
∑

1

The Cluster algorithm is inserted into a loop which generates KM clustering with a
number of clusters raging from 1 to KM, as described in Figure 3.

SEGMENT (X, KM, K*)

if KM = K*
then Cluster (X, K*)
else Cluster(X, KM)

Choose K* ≤ KM

endif

Figure 3 – Global algorithm SEGMENT. The value K* is the optimal number
of clusters.

When the set of clustering with different numbers of clusters has been generated, the

optimal one must be chosen. Let K* be this optimal value. The K* value is chosen using
two evaluation function, the cohesion and the separation functions. The first one
measures how similar are the examples inside each cluster, whereas the second one
measures how different are examples in separate clusters. Let us consider first the
cohesion function.

Cohesion function

Let us introduce the following notations:

γ
C
(A) = Cohesion function of a cluster C w.r.t. the values of attribute A in its elements.

Γ(C) = Cohesion of a cluster C

Γtot (K) = Cohesion of a group of K clusters Cj (1 ≤ j ≤ K)

Moreover, let Dmax(C,A) be the maximum distance, w.r.t. A, of element pairs occurring in

C. As the distance function is defined in the interval [0, 1], then 0 ≤ Dmax(C,A) ≤ 1.

Let us define the Cohesion function γ
C
(A) of C w.r.t. A as follows:

+ Numerical attributes : γ
C
(A) = 1 - Dmax(C,A)

+ Categorical attributes:

γ C A L
se L

v A v C A
se L

()
(,) (,)

=
− − <

−
−

=









1
1

1
2

l
l

l
r r
X

Let
r
v(X,A) and

r
v(C,A) be the L-dimensional vectors containing the distributions of the

A's values in C and in X.

+ Hierarchical attribute:

γ
C
(A) = 1 - Dmax(C,A)

According the above definitions, the cohesion w.r.t. a single attribute of a clustering is 0,

when each example constitutes a cluster, to 1, when there is a unique single cluster.

The Cohesion Γ(C) of a cluster C w.r.t. all attributes is given by:

Γ(C) =
1

1W
w Ah h

h

H

Cγ ()
=

∑
The maximum cohesion Γ(C) = 1 corresponds to the case that γ

C
(A

h
) = 1 for each

attribute, namely, when the clustering contains a unique cluster C. On the contrary, Γ(C)

= 0 when C ≡ X.

If a clustering contains K clusters Cj with cardinality Mj (1 ≤ j ≤ K), the total cohesion

Γtot (K) will be:

Γtot (K) =
1

1N
M Ci j

j

K

Γ()
=
∑

The typical behavior of the cohesion function is reported in Figure 4.

 Γtot(K)

 1

0

 0 1 N K

 Figure 4 – Typical behaviour of the cohesion function.

Separation Function

Let us introduce the following notations:

σ
C1,C2

(A) = Separation function between clusters C1 and C2 w.r.t. the values of attribute A.

Σ(C1, C2) = Separation between clusters C1 and C2 w.r.t. the values of all attributes.

Σtot (K) = Separation among a group of K clusters Cj (1 ≤ j ≤ K)

Moreover, let Dmin(C1, C2,A) and Dmax(C1, C2,A) be the minimum and maximum distance,

w.r.t. A, of element pairs occurring one in C1 and the other in C2.

Let us define the Separation function σ
C1,C2

(A) as follows:

+ Numerical and Hierarchical attributes :

σC C A
1 2

() =
D C C A

D C C AMax

min(, ,)

(, ,)
1 2

1 2

+ Categorical attributes:

 σ C C A
1 2

() =

|| (,) (,) ||
r r
v C A v C A1 2

2

−

where
r
v(X,A) and

r
v(C,A) are the L-dimensional vectors containing the distributions of

the A's values in C1 and C2.

+ Hierarchical attribute:

γ
C
(A) = 1 - Dmax(C,A)

According the above definitions, the separation w.r.t. a single attribute of a clustering is
1, when each example constitutes a cluster, and to 0, when there is a unique single
cluster.

The Separation Σ(C1, C2) w.r.t. all attributes is given by:

Σ(C1,C2) =
1

1 2
1W
w Ah h

h

H

C Cσ ()
=

∑
The minimum separation Γ(C) = 1 corresponds to the case that σ C C A

1 2
() = 1 for each

attribute, namely, when the clustering contains the unique cluster X. On the contrary,
Σ(C1,C2) = 1 when C1,C2 ≡ X.

If a clustering contains K clusters Cj with cardinality Mj (1 ≤ j ≤ K), the total separation

Σtot(K) will be:

Σtot (K) =
1

1 11

1

N K
M M C Ci j i j

j i

K

i

K

()
() (,)

−
+

= +=

−

∑∑ Σ

Ideally, the optimal number K* of clusters is the K value corresponding to the maximum
curvature of the cohesion and separation functions.

Constraints Given by the User

The user may provide constraints of the following types:

TYPE 1: Instances Association

The instances x1, x2, …, xn must be in the same cluster.

TYPE 2: Values Association

The instances that have the same value v for the attribute A must be in the same cluster.

TYPE 3: Values Separation

The values distribution of the attribute A must have separated modality in the clusters.

TYPE 4: Number of clusters

The number of clusters must be in the interval [K1, K2]

TYPE 5: Cardinality of cluster

The cardinality of each cluster must be bigger then M.

TYPE 6: Cardinality ratio

The ratio of the max cardinality to the min one must not exceede r.

TYPE 7: Modality conservation

The values distribution of the attribute A must have modality separated in the clusters
and each modality must be in only one cluster.

Constraint of Type 2 require that the instances that have a certain value for an attribute A
are concentrated in the same cluster. Nothing is required from the other values that can
have any distribution in the cluster.

Constraint of Type 3 require that every cluster has only instances with the same value for
a certain attribute. Nothing is required from instances with the same value in the same

cluster.

Constraint of Type 7 is the logical AND of the constraints of Type 2 and Type 3.

The constraints of Type 1, 2, 3 and 7 can be satisfied acting on the weights of the
attributes. The remaining constraints must be dealt refining the struct of cluster (the
number and the centers of the cluster).

These two need of different nature have suggested to introduce two different modules.
One, the optimization module, is used to change the weights, the other, the refinement
module, is used to change the number and the center of the cluster.

Analytical Expression of the Constraints

The above constraints must be expressed in terms of the parametrers, namely the weights

of the attributes, in order to be otpimized. To this aim, let us consider the types of
constraints one at a time.

Type 1 Constraint: Instance association

The user can specify that two particular instances, A and B, must belong to the same

cluster. This constraint can be expressed as follows:

∃ Z i [∀ j ≠ i : D(A,Z i) ≤ D(A,Z j) e D(B,Z i) ≤ D(B,Z j)]

If A and B have been assigned to the same cluster, then the constraint is satisfied.
Otherwise, let A ∈ Ci and B ∈ Cj. Then, one of the two points has to move to the other’s

cluster, or both have to move to a third cluster. If B must move to A’s cluster, then,
before the move, we have:

D(B,Z i) > D(B,Z j)

D(A,Z i) ≤ D(A,Z j)

After, it must be:

D’(B,Z i) < D’(B,Z j)

D’(A,Z i) < D’(A,Z j).

By varying the attribute weights, the distance between B and Z i shall decrease, whereas

the distane between B and Z j must increase. Then, the following conditions must be

verified:

 D’(B, Z i) = D(B, Z i) + ∆D(B, Z i) ≤ D’(B, Z j) = D(B, Z j) + ∆D(B, Z j)

There are standard algorithms to solve an disequation system of the above kind. The user

has only to specify the pairs of instances, as the optimization module translates them
automatically into disequations.

Vincoli di Typo 2 and 3 Constraints: Value associaton and Modality separation

The user may specify that instances with the same value for a given attribute A must

belong to the same cluster. This constraint can be specified independently of the current
cluster centers, by forcing the involved instances to be very “close”, as illustrated in
Figure 5. Then, most likely, most of the instances will be assigned to the same cluster.

•
•

Z1
Z2

+
+

•
•

•
•

•• •

• ••
• •

•
••

• •

•
••

• •

•••••• •• •
•• ••

• •
••

• •

••
• •

••
• •

Figura 5 – Instance grouping. The instances tend to behave as a “single example”.

The analytical condition that realizes the constraint is the following:

D(A,B) =
1

1
W

w d v vh h h
h
h r

H

h
A B(,)() ()

=
≠

∑ for A and B such that v vr r
A B() ()=

D(C,D) =
1

1
W

w d v vh h h
h

H

h
C D(,)() ()

=
∑ for C and D such that v vr r

C D() ()≠

Clearly, the weight of attribute Ar must be higher than the one of the others, so that:

D(A,B) << D(C,D)

We have:

D(C,D) - D(A,B) ≤ wr Max{dh}

We impose that:

 wr Max{dr} ≤ Max{average intra-cluster distance }

In other words:

wr ≤
}{

}___{

rdMax

clusterClusterIntraMediaDistMax −

The above condition automatically tries to separate examples that have different values of

the attributes. Type 2 and 3 constraints may be conflicting.

The user can utilizes a graphical interface to specify the constraints and the optimization

module generates the set of corresponding disequations. If the disequation system is
solvable, then the best parameter setting is found. Otherwise the system tries to satisfy the
set of constraints as much as possible, starting from the most impostant ones.

Type 4 Constraint: Number of cluster

If the user knows the optimal number K* of clusters, this information can be used directly

by SEGMENT. Otherwise, a refinement module shall change K to K*. During the weight
optimization phase, the number of clusters does not change. At the end, in order to get
close to K*, some clusters can be merged or splitted.

Type 5 and 6 Constraints: Minimum cluster cardinality and Maximum cardinality
ratio

If too small clusters have been generated, their elements, during the final refinement, can

be reassigned to neibourgh clusters, and the modifications are accepted if the cohesion
and separation functions do not change too much. Otherwise, the neibourgh cluster
centers are moved closer each other, so that the they will hopefully capture the examples
in the small cluster.

The constraint related to the maximum cardinality ratio can be translated into the

previous one.

Type 7 Constraint : Modality

This constraint is the logical AND of Type 2 and 3 constraints, then it can be treated as

illustrated before.

Evaluation of the Constraint Satisfaction

Let us consider a generic clustering C = {C1, ..., CK}, with K cluster Cj, each of
cardinality Mj (1 ≤ j ≤ K). Let V = {V 1, ..., VT} be the set of constraints, and Q = {q1, ...,

q T} the associated relevance set. The relevance values are:

{Fundamental, Very important, Important, Desirable, Fair}

The above linguistic values, given by the user, are translated into numerical values as

follows:

Fundamental → 5 → 5/15 = 0.333

Very important →4 → 4/15 = 0.267

Important →3 → 3/15 = 0.200

Desirable → 2 → 2/15 = 0.133

Fair → 1 → 1/15 = 0.067

Let us define a Satisfaction function Funzione di Soddisfacimento Θ(C) as follows:

Θ(C) =
1

1Q
q Vj j

j

T
⋅()

=
∑ δ()

where δ(V j) is not a binary function, but it is:

0 ≤ δ(V j) ≤ 1

This approach has the advantage to consider intermediate situations of constraints
satisfaction.

The evaluate function Θ(C) has values in [0,1] and Θ(C) = 1 if all constraints are satisfy

and Θ(C) = 0 if no constraint is satisfied. We have now to define the δ(V j) function for

each type of constraint.

Type 1 Constraint: Instance association

This constraint can only be binary:

δ1(V) = If (A and B are in the same cluster) Then 1, Else 0.

If r instances must be in the same cluster, and only s of them actually are, then:

δ1()V s

r
=

Type 2 Constraint: Value association

Let τh,j be the number of instances with value vj for attribute Ah that are in the same

cluster, and let S(Ah, vj) be the total number of instances with value vj for attribute Ah.

Then :

δ2(V) =
τh j

h jS A v
,

(,)

The function δ2(V) is 1 when all examples with value vj for attribute Ah are in the same

cluster. The minimum value of δ2(V) is reached when the maximum number of examples

in the same cluster is minimum, i.e., when the examples are uniformly subdivided among
clusters. Then :

S A v

K
h j(,)

�





 ≤ δ2(V) ≤ 1

Type 3 Constraint: Value separation

Let C be a clustering, containing K clusters Ci (1 ≤ i ≤K) with the hystogram
r
τ

(i)
(Ah).

Let us define:

δ(i) = 1 - 2 ⋅

VAR

R

(())

(())

()

()

r

r
τ

τ

i
h

i
h

A

A
 for continuous-valued attributes

 δ(i) = 1 -
m

L
i

h

 for discrete attributes

where mi is the number of different values of Ah in Ci. Then:

 δ3(V) =
1

1K
i

i

K

δ()

=
∑

The evaluation function δ3(V) is equal to 1 when all δ(i) are 1, i.e., when all the

VAR(
r
τ

(i)
(Ah)) are equal to zero. The minimum δ3(V) is reached when all δ(i) are zero.

Then:
 0 ≤ δ3(V) ≤ 1

Type 7 Constraint: Modality

This type of constraint captures, at the same time, a Type 2 and a Type 3 constraint.

Then:

δ(i) = 1 - 2 ⋅

VAR

R

(())

(())

()

()

r

r
τ

τ

i
h

i
h

A

A
 for continuous-valued attributes

 δ(i) = 1 -
m

L
i

h

 for discrete attributes

The value mi is the number of different values of Ah in Ci. Let us consider the average

value over all clusters :

 1

1K

i

i

K

δ()

=
∑

If i* is the position of the peak value in the hystograms, the constraint evaluation is good
when the i*’s are as much different as possible. Let us define:

 δ δ δ6
1 11

1
1 2

1
1=





 −

−










= = +=

−

∑ ∑∑
K K K

i

i

K

i j
j i

K

i

K
()

* *
()

()

where:
 0 se i* ≤ j*

 δi*j* = for discrete attributes

 1 se i* = j*

δi*j* = 1 -

E E

R

((A)) - ((A))

(A)

(i*)
h

(j*)
h

h

r r
τ τ

 for continuous-valued attributes

Type 4 Constraint: Number of clusters

This constraint specifies that the number of clusters must be in the interval [Ki, Ks]. Let

us define the function:

x

a

−
−

1

1
se 1 ≤ x ≤ a

 σ(x,a,b,c) = 1 se a ≤ x ≤ b

b x

c b

−
−

se b ≤ x ≤ c

Finally:

 δ σ4 1() (, , ,)V K K K Ki s s= +

Type 5 Constraint: Cluster cardinality

If the minimum cardinality of any cluster is M, then let us define:

 δ()i (V) = σ(M, M i, N, N)

Globally:

δ5()V = 1

1K i

K

=
∑ σ(M, M i, N, N)

Type 6 Constraint: Cardinality ratio

If M Max and Mmin are the maximum and minimum cardinality values, and η is the

minimum ratio value, then:

Mmin = m i n M
i K

i

1≤ ≤
()() and MMax = M a x M

i K

i

1≤ ≤
()()

It must be:

M

MMax

min ≥ η

Using the function σ, we obtain:

δ σ η7 1 1 2() , , ,minV
M

MMax

= + + ∞







Objective Function to Optimize

We have now to define the global function to optimize. Let ξh be new variables,

normalized to 1:

r r
ξ = w

W
 and ξh

hw

W
= (1 ≤ h ≤ H)

Moreover:

ξh
h

H

=
=

∑ 1
1

Type 1 Constraint: Instance association

The following term must be small:

ϕ1(
r
ξ) = 1 1 1

11

2

1n m
D B A

m
D B A

n
D B Aj i

i

m

j

n m

i
i

n

−
−













+
==

−

=
∑∑ ∑(,) (,) (,)

Type 2 Constraint: Value association

The following term must be small:

ϕ2(
r
ξ) = 1 1 1

11

2

1n m
D B A

m
D B A

n
D B Aj i

i

m

j

n m

i
i

n

−
−













+
==

−

=
∑∑ ∑(,) (,) (,)

Type 3 Constraint: Value separtation

Let Ah be an attribute and let vi (1 ≤ i ≤ Lh) be one of its value. The groups of instances

with Ah = vi must be separated. Let Bi be the center of gravity of the examples for which

Ah = vi and let ni be their number. Then:

Di = 1

1n
D B A

i
i j

j

ni

(,)
=
∑

Dij =
D Di j+

2
ϕij(

r
ξ) = 1 - [D(Bi, Bj) - Dij]

2

Finally:

ϕ3(
r
ξ) =

2

1 11

1

L Lh h
ij

j i

L

i

L hh

()
()

− = +=

−

∑∑ ϕ ξ
r

Type 7 Constraint: Modality

Using the terminology of the previous case, we can define:

ϕ6(
r
ξ) =

1 2

1 11

1

1L
D

L Lh
i

h h
ij

j i

L

i

L

i

L hhh

+
− = +=

−

=
∑∑∑

()
()ϕ ξ
r

2. Algorithm Autoclass

AutoClass is an unsupervised Bayesian classification system that seeks a maximum
posterior probability classification. Its key features are the following ones:

 * it determines the number of classes automatically;
 * it can use mixed discrete and real valued data;
 * it can handle missing values;
 * its processing time is roughly linear in the amount of the data;
 * each element has probabilistic class membership;
 * it allows correlation between attributes within a class;
 * it generates reports describing the classes found; and
 * it predicts "test" case class memberships from a "training"
 classification.

AutoClass uses only vector valued data, in which each instance to be classified is
represented by a vector of values, each value characterizing some attribute of the
instance. Values can be either real numbers, or they can be discrete. In principle, each
attribute represents a measurement of some instance property common to all instances.
AutoClass models the data as mixture of conditionally independent classes. Each class is
defined in terms of a probability distribution over the meta-space defined by the
attributes. AutoClass uses Gaussian distributions over the real valued attributes, and
Bernoulli distributions over the discrete attributes. Default class models are also
provided.

AutoClass finds the set of classes that is maximally probable with respect to the data and

model. In the Bayesian approach to unsupervised classification, the goal is to find the
most probable set of class descriptions given the data and prior expectations. The
introduction of priors automatically enforces a tradeoff between the fit to the data and
the complexity of the class descriptions, giving an automatic form of Occam's razor.

In discussing a probabilistic model, we refer to a probability distribution or density
function (pdf) that gives the probability of observing an instance possessing any
particular attribute value vector. Ideally, such a modelwould take into account everything
known about the processes potentially involved in generating and observing an instance.
A Bayes Net relating input and output attributes would be suitable for instances of a well-
understood process. For general KDD systems like AutoClass, where little is known

about underlying processes, relatively simple statistical models are used.

Probabilistic models invariably contain free parameters, such as Bernoulli probabilities or
the Gaussian mean and variance, which must either be fixed or removed (by integration)
before instance probabilities can be computed. Thus, it is useful distinguish between the
pdf's functional form and its parameter values, and we denote these by T and p
respectively. S will denote the space of allowed pdf's models and parameters, while I
denotes implicit information not specifically represented.

For AutoClass, the fundamental model is the classical finite mixture distribution. This is

a two part model. The first gives the interclass mixture probability that an instance Xi is a

member of class Cj, independently of anything else we may know of the instance:

Pr (Xi ∈ Cj | pc, Tc, S, I).

The interclass pdf Tc is a Bernoulli distribution characterized by the class number J and

the probabilities of pc. Each class Cj is then modeled by a class pdf:

Pr (Xi ∈ Cj | pj, Tj, S, I),

giving the probability of observing the instance attribute values Xi conditional on the

assumption that instance Xi belongs in class Cj. The class pdf Tj is a product of individual

or covariant attribute pdf's Tjk, e.g., Bernoulli distributions for nominal attributes,

Gaussian densities for real numbers, Poisson distributions for number counts. It is not

necessary that the various Tj be identical, only that they all model the same subset of the

instance attributes.

AutoClass differs from most other classifiers in that the examples have a degree of
membership w.r.t. the classes: they have a weighted assignment, based on the probability
of class membership:

Pr (X i, Xi ∈ Cj | pj, Tj, S, I).

As a practical matter, the weighted assignment approach eliminates the brittle behavior
that boundary surface instances can induce in classification systems that decide
assignments. More importantly, it allows any user to apply decision rules appropriate to
that user's current goals.

Given a set of data X, we seek two things: for any classification pdf T we seek the
maximum posterior (map) parameter values p, and irrespective ofany p we seek the
most probable T. Thus there are two levels of search. For any fixed T, specifying the

number of classes and their class models, we search the space of allowed parameter
values for the maximally probable p. This is a real valued space of generally high
dimensions, subject to strong constraints between the parameters. There are many local
maxima and we have no simple way to determine the global maximum except by
generate and test. Thus parameter level search requires an expensive numerical

optimization. The model level search involves the number of classes J and alternate class

models Tj.

There are several levels of complexity. The basic level involves a single pdf Tj common

to all classes, with search over the number of classes. A second level allows the

individual Tj to vary from class to class. Model level search is subject to the usual

combinatorial explosion of possibilities as attribute number increases, but the Occam
factor inherent in the Bayesian approach limits the probability of complex class models
for any choice of model and non-delta priors. The model level search retains some of its

combinatorial complexity, but with known class memberships we can seek the most
probable model for each class individually. The additional information obtained by
knowing the class assignments makes it much easier to explore the space of allowed class
models, and obtain maximally informative class descriptions.

Autoclass assumes that the data instances Xi are conditionally independent, given the

classification pdf p, T. Thus any similarity between two instances shiuld be accounted for
by their class memberships. Under this assumption the joint data probability is just the
product of the individual instance probabilities.

At the classification level, or interclass, model pc, Tc is the classical Finite Mixture

model. This postulates that each instance belongs to one and only one, unknown, member

of a set of J classes Cj, with a probability

Pr (Xi ∈ Cj | Vc, Tc, S, I).

Note that this probability is independent of the instance attribute vector X i. In principle,

the classes constitute a discrete partitioning of the data, and thus the appropriate pdf is a

Bernoulli distribution. Its parameters pc are a set of probabilities {π1, …, πJ}, constrained

to satisfy the conditions 0 ≤ πj ≤ 1 and Sumj πj = 1. Thus we have:

Pr (Xi ∈ Cj | pc, Tc, S, I) = πj.

Since the Dirichlet (multiple Beta) distribution is conjugate to the Bernoulli, Autoclass
uses a uniform minimum information version for the prior probability distribution on the
πj:

Pr (π1, …, πJ | Tc, S, I) = Γ(j+1)/ Γ(1+1/J)J Prodj(πj)
1/J

The MAP parameter estimates for the supervised case, where Ij is the known number of

instances assigned to Cj, are then

πj
(est) = (Ij +1/J)/(I+1)

The instances Xi from each class are assumed to possess attribute vectors X i that are
independently and identically distributed w.r.t. the class as

Pr(X i | Cj , pj, Tj, S, I).

The pdf p j, Tj thus gives the conditional probability that an instance Xi would have

attribute values X i if it were known that the instance is a member of class Cj. This class

distribution function is a product of distributions modeling conditionally independent
attributes k:

Pr(X i | Cj ,pj, Tj, S, I) = ProdkPr(Xik | Xi ∈ Cj,pjk , Tjk, S, I)

Individual attribute models Pr(Xik | Xi ∈ Cj,pjk , Tjk, S, I) include the Bernoulli and

Poisson distributions, and Gaussian densities.

Combining the interclass and intraclass probabilities, the direct probability that an

instance Xi with attribute values X i is a member of class Cj is the following:

Pr(X i , Xi ∈ Cj| pj, Tj, pc, Tc, S, I) = πj ProdkPr(Xik | Xi ∈ Cj,pjk , Tjk, S, I)

The normalized class membership probability is obtained from this by normalizing over

the set of classes. The probability of observing an instance Xi with attribute values X i,

regardless of its class is then:

Pr(X i | p, T, S, I) = Sumj(πj ProdkPr(Xik | Xi ∈ Cj,pjk , Tjk, S, I))

Thus the probability of observing the set X is:

Pr(X | p, T, S, I) = Prodi[Sumj(πj ProdkPr(Xik | Xi ∈ Cj,pjk , Tjk, S, I))]

So far we have only described a classical finite mixture model, which can be converted to
a
Bayesian model by introducing priors, at this point only on the parameters, obtaining the
joint probability of the data and the parameter values.

AutoClass Attribute Models

Each class model is a product of conditionally independent probability distributions over
singleton and/or covariant subsets of the attributes. The only hard constraint is that all
class models, used in any classifications that are to be compared, must model the same
attribute set. Attributes deemed irrelevant to a particular classification cannot simply be
ignored, since this would affect the marginal probabilities. AutoClass provides basic
models for simple discrete (nominal) and several types of numerical data. In each case it
adopts a minimum or near minimum information prior.

+ Discrete valued attributes : Bernoulli distributions with uniform Dirichlet conjugate
prior.

+ Real valued location attributes (spatial locations) : Gaussian densities with either a

uniform or Gaussian prior on the means. We use a Jeffreys prior on a singleton
attribute's standard deviation, and the inverse Wishart distribution as the variance prior
of covariant attribute subsets.

+ Real valued scalar attributes (age, weight) : Log-Gaussian density model.
+ Bounded real valued attributes (probabilities): Gaussian Log-Odds.
+ Integer count valued attributes :Poisson distribution with uniform prior per Loredo.
+ Hierarchical models: this case represents a reorganization of the standard mixture

model, where each class is fully independent, to a tree structure, where multiple
classes can share one or more model terms.

The Occam Factor

We have several times mentioned an Occam Factor, implying that Bayesian parameter
priors can somehow prevent the overfitting that is a problem with maximum likelihood
optimization of any kind of probabilistic model. Consider that every single parameter
introduced into a Bayesian model brings its own multiplicative prior to the joint
probability, which always lowers the marginal. If a parameter fails to raise the marginal
by increasing the direct probability by a greater factor than the prior lowers the marginal,
we reject the model incorporating that parameter. In the mixture models used by
AutoClass, each class requires a full set of attribute model parameters, each with its own
prior.

Similar effects limit model complexity within the classes. Simple independent attribute
models are usually favored simply because they require fewer parameters than the
corresponding covariant models. Both of the foregoing effects are confirmed throughout
our experience with AutoClass. For data sets of a few hundred to a few thousand
instances, class models with large order covariant terms are generally rated far lower than

those combining independent and/or small order covariant terms. We have yet to find a
case where the most probable number of classes was not a small fraction of the number of
instances classified. Nor have we found a case where the most probable number of model
parameters was more than a small fraction of the total number of attribute values. Over
fitting simply does not occur when Bayesian mixture models are correctly applied.

Constraints Given by the User

The user may provide constraints similar to those introduced for SEGMENT. In

particular:

TYPE 1: Instances Association

The instances x1, x2, …, xn must be in the same cluster.

TYPE 2: Values Association

The instances that have the same value v for the attribute A must be in the same cluster.

TYPE 3: Values Separation

The values distribution of the attribute A must have separated modality in the clusters.

TYPE 4: Number of clusters

The number of clusters must be in the interval [J1, J2]

Constraints of Type 5, 6 and 7 do not have meaning for Autoclass, because each example
belongs to all clusters, with different probabilities.

The parameters with respect to which optimization may occur are the a-priori class

probability in the Bernoulli inter-class distribution Pr (Xi ∈ Cj | pc, Tc, S, I). Let us

denote them by π = {π1, … , πJ}. All the other parameters are estimated by AutoClass
itself.

In order to apply the criteria of optimization, we have to re-interpret "belonging" to a

cluster as "having the maximum probability" w.r.t. that cluster.

TYPE 1: Instances Association

Let X1 and X2 be two instances that have to belong to the same cluster. Let

 Pr (X1 ∈ Cj | pj, Tj, S, I) and Pr (X2 ∈ Cj | pj, Tj, S, I)

be the corresponding probability sets (1 ≤ j ≤ J).

Let j1* = Arg Maxj Pr (X1∈ Cj | pj,Tj, S, I) and j2* = Arg Maxj Pr (X2∈ Cj | pj,Tj, S, I). It

must be: j1* = j2* . The evaluation function will be:

δ1(V) = If (j1* = j2*) Then 1, Else 0.

If r instances must be in the same cluster, and only s of them actually are, then:

δ1()V s

r
=

Membership is evaluated according to the probabilities.

Type 2 Constraint: Value association

Let τh,j be the number of instances with value vj for attribute Ah that are in the same

cluster (in this case, for which the probability of belonging to the cluster is maximum for

the class), and let S(Ah, vj) be the total number of instances with value vj for attribute Ah.

Then :

δ2(V) =
τh j

h jS A v
,

(,)

The function δ2(V) is 1 when all examples with value vj for attribute Ah are in the same

cluster. The minimum value of δ2(V) is reached when the maximum number of examples

in the same cluster is minimum, i.e., when the examples are uniformly subdivided among
clusters. Then :

S A v

K
h j(,)

�





 ≤ δ2(V) ≤ 1

In order to evaluate τh,j , we must decompose Pr (X1∈ Cj | pj,Tj, S, I) as follows:

 Pr (X∈ Cj | A1=v1, …,Ah=vj, …,AH=vH} = ∏h[Pr{A h=vj |X∈Cj }] πj /∏h[Pr{A h = vj }]

The constraint will be satisfied when the above probability reaches the maximum for the

same value whenever Ah=vj.

TYPE 3: Values Separation

This constraint is the complementary of the previous one. The formalization is the same,
but the constraint is satisfied whenever the membership reaches its maximum for

different classes when the values of attribute Ah are different.

Let C be a clustering, containing K clusters Ci (1 ≤ i ≤K) with the hystogram
r
τ

(i)
(Ah).

Let us define:

δ(i) = 1 - 2 ⋅

VAR

R

(())

(())

()

()

r

r
τ

τ

i
h

i
h

A

A
 for continuous-valued attributes

 δ(i) = 1 -
m

L
i

h

 for discrete attributes

where mi is the number of different values of Ah in Ci. Then:

 δ3(V) =
1

1K
i

i

K

δ()

=
∑

The evaluation function δ3(V) is equal to 1 when all δ(i) are 1, i.e., when all the

VAR(
r
τ

(i)
(Ah)) are equal to zero. The minimum δ3(V) is reached when all δ(i) are zero.

Type 4 Constraint: Number of clusters

This constraint specifies that the number of clusters must be in the interval [J1, J2]. As for

SEGMENT, let us define the function:

σ(x, a, b) = (x - a) (b - x)

Then:

 δ4 (V) = σ(J, J1, J2)

Objective Function to Optimize

For AutoClass, the variables ξh directly correspond to the πj, because they are already

normalized to 1. For the rest, the functions to optimize are the same as for SEGMENT,
provided that the above defined δ functions are substituted.

3. CART

In order to see whether the proposed methodology is also applicable to classification
algorithm, we have considered Cart. Cart is an algorithm for building decision trees. In

the learning sample Lfor the J-class problem, let Nj be the number of cases in class j.

Often the prior probabilities {π(j)} are taken to be the proportions {Nj/N}. If they are

unknown, the set of priors {π(j)} are either estimated from the data as {Nj/N} or supplied

by the analyst.

In a node t, let N(t) be the total number of cases in L with xn ∈ t, and Nj(t) the number of

class j cases in t. The proportion of the class j cases in L falling into t is Nj(t)/Nj. For a

given set of priors, π(j) is interpreted as the probability that a class j case will be
presented to the tree. Therefore, we take

p(j, t) = π(j) Nj(t)/Nj

as the resubstitution estimate for the probability that a case will both be in class j and fall
into node t. The resubstitution estimate of the probability that a case is in class j, given
that it falls into node t, is given by

 p(j|t) = p(j, t)/p(t)

and satisfies:

Sumj{p(j|t) } = 1

When {π(j)} = {N j/N} then p(j|t) = Nj(t)/N(t), so the p(j|t)}are the relative proportions

of class j cases in node t.

The four elements needed for the tree growing procedure are:

1. A set Q of binary questions of the form (Is x ∈ A?).

2. A goodness of split criterion Φ(s, t) that can be evaluated for any split s of any node

t

3. A stop-splitting rule
4. 4. A rule for assigning every terminal node to a class.

The set Q of binary questions generates a set S of splits s of every node t. Those cases in t
answering "yes" go to left descendant node tL and those answering "no" to the right

descendant tR. At each intermediate node t, the split selected is that split s* that
maximizes Φ(s, t).

If the data have standard structure, the class Q of questions can be standardized. Assume
that the measurement vectors have the form:

x = (x1, …, xH)

where H is the fixed dimensionality and the variables x1, …, xH can be a mixture of
ordered and categorical types.The standardized set of questions Q is defined as follows:

1. Each split depends on the value of only a single variable

2. For each ordered variable xm, Q includes all questions of the form:

{Is xm ≤ c?} for all c.

3. If xm is categorical, taking values in {b1, …, bV}, then Q includes all questions of the
form:

 (Is xm ∈ S?),

for all S subset of {b1, …, bV}.

The splits in items 2 and 3 for all H variables constitute the standardized set.

At each node the tree algorithm searches through the variables one by one, beginning
with xl and continuing up to xH. For each variable it finds the best split. Then it compares
the H best single variable splits and selects the best of the best. The computer program
CART incorporates this standardized set of splits. Since most of the problems ordinarily

encountered have a standard data structure, it has become a flexible and widely used tool.
When fixed-dimensional data have only ordered variables, another way of looking at the
tree structured procedure is as a recursive partitioning of the data space into rectangles.

The goodness of split criterion was originally derived from an impurity function. An
impurity function is a function Φ defined on the set of all J-tuples of numbers (p1, …, pJ)

satisfying p1 ≥ 0 and normalized to 1, satisfying the properties:

(i) Φ is a maximum only at the point {1/J, 1/J, …, 1/J}

(ii) Φ achieves its minimum only at the points (1, 0, ..., 0), (0,1,0,…0), … (0, 0, …, 1)

(iii) Φ is a symmetric function of p1, …, pJ

Given an impurity function p1, …, pJ, define the impurity measure i(t) of any node t as

i(t) = Φ(p(1|t), p(2|t), …, p(J|t))

When a node is split and its elements go to the left and right son nodes, tL and tR, we
define a decrease in impurity as:

∆i(s,t) = i(t) - pR i(tR) - pL i(tL),

being pR and pL the proportions of examples that went to tR and tL, respectively.
Then take the goodness of split Φ(a, t) to be ∆i(s,t).

Parameter Optimization

The problem with classification algorithms is that they already optimize a function Ψ,

which is the prediction error. Then, in order to avoid overfitting, the function Φ must not

be related to the classification error. Then, the user can only specify constraints related to
other aspects of the learned decision tree. One possibility is:

1. To set limits on the tree's depth
2. To set limits on the total number of nodes

Obviously, it may not be possible to satisfy the user's constraints without increase the
classification error. In this case, the procedure may serve as a test for the user's intuition.

Another way of using the optimization module is to identify some examples that cannot

be misclassified. In other words, examples may be weighted and the weight can be
optimized in such a way that the overall error of classification does not increase, yet
satisfying the user's constraints. This can be done by extending the idea of cost-sensitive
classification, in which each example is weighted singularly, instead of considering only
a cost fore the false positives and a cost for the false negative examples.

As a conclusion, we can say that the parameter optimization technique is best suited to
clustering algorithms and that, for these, it is mainly independent from the specific

algorithm used. For classification algorithms, the best use is for weighting examples,
allowing to specify the severity of misclassifying any single example.

