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Introduction: a classic example for 
spatial analysis

Dr. John Snow
Deaths of cholera
epidemia
London, September 1854

Infected water pump?

A good representation is
the key to solving a problem

Disease cluster
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Good representation because...

Represents spatial relation of objects 
of the same type

Represents spatial relation of
objects to other objects

It is not only 
important where a
cluster is but also,
what else is there (e.g. 
a water-pump)!

Shows only relevant aspects and
hides irrelevant
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Goals of Spatial Data Mining

• Identifying spatial patterns
• Identifying spatial objects that are 

potential generators of patterns
• Identifying information relevant 

for explaining the spatial pattern 
(and hiding irrelevant information)

• Presenting the information in a way 
that is intuitive and supports further analysis
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Approach to Spatial Knowledge
Discovery

Data Mining

+
Geographic Information Systems

= SPIN!
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UK, Greater Manchester, Stockport 

Buildings

Rivers

Streets

Hospitals

Person p. Household

No. of Cars

Long-term illness

Age

Profession

Ethnic group

Unemployment

Education

Migrants

Medical establishment

Shopping areas

...
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Representation of spatial data 
in Oracle Spatial

A set of relations R1,...,Rn such that each relation Ri has a 
geometry attribute Gi or an identifier Ai such that Ri can 
be linked (joined) to a relation Rk having a geometry 
attribute Gk

– Geometry attributes Gi consist of ordered sets of 
x,y-pairs defining points, lines, 
or polygons

– Different types of spatial objects 
are organized in different relations 
Ri (geographic layers), e.g. streets, 

rivers, enumeration districts, 
buidlings, and 

– each layer can have its own set 
of attributes A1,..., An and at most
one geometry attribute G
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Stockport Database Schema

ED

TAB01

TAB95

TAB61

...

Water

...

River

Building

Street

Shopping 
Region

Vegetation

=zone_id

=zone_id

=zone_id

spatially 
interact

inside

spatially 
interactsspatially 

interacts

spatially 
interacts

Attribute data

95 tables with
census data,

~8000 attributes

Geographical
Layers

85 tables

Spatial Hierarchy

• County 

• District

• Wards

• Enumeration district

spatially 
interact
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Spatial Predicates in Oracle Spatial

A inside B, B contains A

A contains B, B inside A

A covered-by B, B covers A

A covers B, B covered by A

A equals B, B equals A

A overlaps B, B overlaps A

A meets B, B meets A

A disjoint B, B disjoint A

Distance relation: Minimum distance between 2 points

Topological relation (Egenhofer 1991)
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Typical Data Mining representation

Data Mining for spatial data: strong discrepancy between usual and 
adequate problem representation

‘spreadsheet  data’
exactly 1 table

atomic values
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SPIN! – The Elements
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1. Spatial Data Mining Platform 



Spatial Data Mining, Michael May, Fraunhofer AIS 13

Providing an integrated data mining  
platform

• Data access to heterogeneous and distributed data 
sources (Oracle RDBMS, flat file, spatial data)

• Organizing and documenting analysis tasks
• Launching analysis tasks
• Visualizing results

Note: Same software 
basis as MiningMart!
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SPIN! Architecture: Enterprise Java 
Bean-based

Enterprise Java Bean Container

Client

DatabaseDatabase

Workspace
Entity
Bean

Algorithm
Session
Bean

Client
Entity
Bean

Workspace

Algorithm
Component

Persistent
object

Data

JDBC (Connections)

RMI/IIOP (References)
Visual

Component

Java Swing based Client

Object-relational spatial 
database (Oracle9i)

JBoss application server
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SPIN! User Interface

Workspace Tree

Point & Click-
Tool for 
defining 
analysis tasks

Property editor
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2. Visual Exploratory Analyis
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Interactive Exploratory Analysis

Combining spatial
and non-spatial 
displays

Variables selected
and manipulated by 
the user

Powerful for low-
dimensional
dependencies (3-4)

Scatter Plot

Parallel Coordinate Plot
Choropleth maps showing 
distribution of variable(s) 
in space

Displays dynamically linked 
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3. Searching for Explanatory
Patterns
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Data Mining Tasks in SPIN!

• Looking for associations between subsets of 
spatial and non-spatial attributes 
ð Spatial Association Rules

• A phenomenon of interest (e.g. death rate) is given
but it is not clear which of a large number of spatial
and non-spatial attributes is relevant for explaining
it 
ð Spatial Subgroup Discovery

• A quantitative variable of interest is given and we
ask how much this variable changes when one of 
the relevant independent variables is changed
ð Bayesian Local regression
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Subgroup Discovery Search

• Subgroup discovery is a multi-relational approach that
searches for probabilistically defined deviation patterns
(Klösgen 1996, Wrobel 1997)

• Top-down search search from most general to most specific
subgroups, exploiting partial ordering of subgroups (S1 ≥ S2
S1 more general  than S2)

• Beam search expanding only the n best ones at each level of 
search

• Evaluating hypothesis according to quality function:
T= target group
C= concept

T = long-term illness=high
C = unemployment=high
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Division of labour between Oracle RDBMS 
and Search Manager

Database Server Search Algorithm

Mining Server
sufficient
statistics

• search in hypothesis space     

• generation and evaluation of hypotheses
(subgroup patterns) 

mining query

• Database integration: efficiently organize 
mining queries

• Mining query delivers statistics (aggregations)
sufficient for evaluating many hypotheses
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Data Mining visualization

Linked Display

Spatial Venn DiagramSubgroup Overview

p(T|C) vs. p(C)

Subgroup

High long-term illness in
districts crossed by M60 
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Customer Analysis Rodgau, Germany



Spatial Data Mining, Michael May, Fraunhofer AIS 24

System Demo: 
Customer Analysis 

using 
MiningMart and SPIN!
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Summary & Outlook

• SPIN! tightly integrates Data Mining analysis and GIS-based
visualization

• Main features:
– A spatial data mining platform
– New spatial data mining algortihms for subgroup discovery, 

association rules, Baysian MCMC
– New visualization methods

• Integration of Spatial Data allows to get results that could not
be achieved otherwise

• MiningMart can usefully applied for some pre-processing
tasks

• Future tasks: Integrating spatial preprocessing in MiningMart


