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Abstract

Training a statistical named entity recognition
system in a new domain requires costly man-
ual annotation of large quantities of in-domain
data. Active learning promises to reduce the an-
notation cost by selecting only highly informa-
tive data points. This paper is concerned with
a real active learning experiment to bootstrap a
named entity recognition system for a new do-
main of radio astronomical abstracts. We evalu-
ate several committee-based metrics for quanti-
fying the disagreement between classifiers built
using multiple views, and demonstrate that the
choice of metric can be optimised in simulation
experiments with existing annotated data from
different domains. A final evaluation shows that
we gained substantial savings compared to a ran-
domly sampled baseline.

1. Introduction

The training of statistical named entity recognition (NER)
systems requires large quantities of manually annotated
data. Manual annotation however is typically costly and
time-consuming. Furthermore, successful application of
NER is dependent on training data from the same domain.
Thus, bootstrappingNER in a new domain typically re-
quires acquisition of new annotated data. Active learning
promises to reduce the total amount of labelled data by se-
lectively sampling the most informative data points.

We introduce the newly created Astronomical Bootstrap-
ping Corpus (ABC), which contains abstracts of radio as-
tronomical papers, and report on our assessment of active
learning methods for bootstrapping a statistical named en-
tity recognition (NER) system for this new domain.

Appearing inProceedings of the Workshop on Learning with Mul-
tiple Views, 22nd ICML, Bonn, Germany, 2005. Copyright 2005
by the author(s)/owner(s).

As part of our methodology, we experimented with aNER

system in a known domain with existing corpus resources,
namely the Genia corpus of biomedical abstracts (Kim
et al., 2003). We tested relevant active learning parame-
ters in simulation experiments with a view to arrive at an
optimal setting for a real active learning experiment in the
new astronomical domain. This was of particular impor-
tance since we were budgeted only 1000 sentences for ac-
tive learning annotation.

We employ a committee-based method where trained clas-
sifiers are caused to be different by employing multiple
views of the feature space. The degree of deviation of the
classifiers with respect to their analysis can tell us if an ex-
ample is potentially useful. We evaluate various metrics
to quantify disagreement and demonstrate that the choice
of metric can be optimised in simulation experiments with
existing annotated data from distinct domains.

In the following section, we present the new corpus of as-
tronomy abstracts developed for the bootstrapping task. In
section 3, we introduce our active learning set-up for boot-
strapping named entity recognition. Next, section 4 con-
tains experimental results for a series of simulated active
learning experiments used for parameter optimisation and
section 5 contains the bootstrapping results. Finally, sec-
tion 6 contains conclusions and future work.

2. The Corpus

2.1. Astronomical Named Entities

The main purpose of the corpus development work was
to provide materials for assessing methods of porting a
statisticalNER system to a new domain. To do this we
needed to create a small annotated corpus in a new domain
which would serve as a basis for experiments with boot-
strapping. Our chosen new domain was abstracts of radio
astronomical papers and our corpus consists of abstracts
taken from the NASA Astrophysics Data System archive,
a digital library for physics, astrophysics, and instrumenta-
tion (http://adsabs.harvard.edu/preprintservice.html).
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On the Column Density of<Source-type >AGN</Source-type > Outflows: The Case of
<Source-name >NGC 5548</Source-name >

We reanalyze the<Instrument-name >Hubble Space Telescope</Instrument-name > high-resolution spectroscopic data of
the intrinsic absorber in<Source-name >NGC 5548</Source-name > and find that the<Spectral-feature >C IV ab-
sorption</Spectral-feature > column density is at least 4 times larger than previously determined. This increase arises from
accounting for the kinematical nature of the absorber and from our conclusion that the outflow does not cover the narrow emission
line region in this object. The improved column density determination begins to bridge the gap between the high column densities
measured in the X-ray and the low ones previously inferred from the<Spectral-feature >UV lines</Spectral-feature >.
Combined with our findings for outflows in high-luminosity<Source-type >quasars</Source-type >, these results suggest that
traditional techniques for measuring column densities – equivalent width, curve of growth, and Gaussian modeling – are of limited value
when applied to UV absorption associated with<Source-type >active galactic nucleus</Source-type > outflows.

Figure 1. An example abstract.

Our choice of new domain was driven partly by longer-
term plans to build an information extraction system for
the astronomy domain and partly by the similarities and
differences between this domain and the biomedical do-
main that the initialNER tagger is trained on. The main
point of similarity between the two data sets is that they are
both comprised of scientific language taken from abstracts
of academic papers. The main difference lies in the techni-
cal terms and in the named entities that are recognised.

Following consultation with our astronomy collaborators,
we created a cohesive dataset in the radio astronomy do-
main, and established an inventory of four domain-specific
named entity types. The dataset was created by extracting
abstracts from the years 1997-2003 that matched the query
“quasar AND line”. 50 abstracts from the year 2002 were
annotated as seed material and 159 abstracts from 2003
were annotated as testing material. 778 abstracts from the
years 1997-2001 were provided as an unannotated pool for
bootstrapping. On average, these abstracts contain 10 sen-
tences with an average length of 30 tokens. The corpus
was annotated for the four entity types below (frequencies
in the seed set in brackets). Fig. 1 shows an example text
from this corpus.

Instrument-name Names of telescopes and other mea-
surement instruments, e.g.Superconducting Tunnel Junc-
tion (STJ) camera, Plateau de Bure Interferometer, Chan-
dra, XMM-Newton Reflection Grating Spectrometer (RGS),
Hubble Space Telescope. [136 entities, 12.7%]

Source-name Names of celestial objects, e.g.NGC 7603,
3C 273, BRI 1335-0417, SDSSp J104433.04-012502.2,
PC0953+ 4749. [111 entities, 10.4%]

Source-type Types of objects, e.g.Type II Supernovae
(SNe II), radio-loud quasar, type 2 QSO, starburst galaxies,
low-luminosity AGNs. [499 entities, 46.8%]

Spectral-feature Features that can be pointed to on a
spectrum, e.g.Mg II emission, broad emission lines, ra-
dio continuum emission at 1.47 GHz, CO ladder from (2-1)
up to (7-6), non-LTE line. [321 entities, 30.1%]

2.2. Corpus Preparation and Annotation

The files were converted from their originalHTML to
XHTML using Tidy (http://www.w3.org/People/
Raggett/tidy/ ), and were piped through a sequence
of processing stages using theXML -based tools from the
LT TTT andLT XML toolsets (Grover et al., 2000; Thomp-
son et al., 1997) in order to create tokenisedXML files. It
turned out to be relatively complex to achieve a sensible
and consistent tokenisation of this data. The main source
of complexity is the high density of technical and formu-
laic language (e.g.(N(H2) ' 1024cm

−2), 17.8h−1
70 kpc,

for Ωm = 0.3, Λ = 0.7, 1.4 GHz of 30µ Jy) and an ac-
companying lack of consistency in the way publishers con-
vert from the original LaTex encoding of formulae to the
HTML which is published on the ADS website. We aimed
to tokenise in such a way as to minimise noise in the data,
though inevitably not all inconsistencies were removed.

The seed and test data sets were annotated by two astro-
physics PhD students using theNITE XML toolkit annota-
tion tool (Carletta et al., 2003). In addition, they annotated
1000 randomly sampled sentences from the pool to pro-
vide a baseline for active learning. Inter-annotator agree-
ment was obtained by directly comparing the two annota-
tor’s data. Phrase-level f-score is 86.4%. Token-level accu-
racy is 97.3% which corresponds to a Kappa agreement of
K=.925 (N=44775, k=2; where K is the kappa coefficient,
N is the number of tokens and k is the number of annota-
tors).
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3. Active Learning with Multiple Views

Supervised training of named entity recognition (NER) sys-
tems requires large amounts of manually annotated data.
However, human annotation is typically costly and time-
consuming. Active learning promises to reduce this cost
by requesting only those data points for human annotation
which are highly informative. Example informativity can
be estimated by the degree of uncertainty of a single learner
as to the correct label of a data point (Cohn et al., 1995)
or in terms of the disagreement of a committee of learn-
ers (Seung et al., 1992). Active learning has been success-
fully applied to a variety of similar tasks such as document
classification (McCallum & Nigam, 1998), part-of-speech
tagging (Argamon-Engelson & Dagan, 1999), and parsing
(Thompson et al., 1999).

We employ a committee-based method where the degree of
deviation of different classifiers with respect to their anal-
ysis can tell us if an example is potentially useful. Trained
classifiers can be caused to be different by bagging (Abe
& Mamitsuka, 1998), by randomly perturbing event counts
(Argamon-Engelson & Dagan, 1999), or by producing dif-
ferent views using different feature sets for the same clas-
sifiers (Jones et al., 2003; Osborne & Baldridge, 2004). In
this paper, we present active learning experiments forNER

in astronomy texts following the last approach.

3.1. Feature split

We use a conditional Markov model tagger (Finkel et al.,
2004) to train two different models on the same seed data
by applying a feature split. The feature split as shown in Ta-
ble 1 was hand-crafted such that it provides different views
while empirically ensuring that performance is sufficiently
similar. While the first feature set comprises of character
sub-strings, BNC frequencies, Web counts, gazetteers and
abbreviations, the second set contains features capturing in-
formation about words, POS tags, word shapes, NE tags,
parentheses and multiple references to NEs. These features
are describe in more detail in (Finkel et al., 2004).

3.2. Level of annotation

For the manual annotation of named entity examples, we
needed to decide on the level of granularity. The question
arises what constitutes an example that will be submitted
to the annotators. Reasonable levels of annotation include
the document level, the sentence level and the token level.
The most fine-grained annotation would certainly be on the
token level. This requires semi-supervised training to al-
low for partially annotated sentences, as in (Scheffer et al.,
2001). However, there are no directly applicable semi-
supervised training regimes for discriminative classifiers.
On the other extreme, one may submit an entire document

Feature Set 1
Prefix/Suffix Up to a length of 6
Frequency Frequency in BNC
Web Feature Based on Google hits of pattern instan-

tiations
Gazetteers Compiled from the Web
Abbreviations abbri

abbri + abbri+1

abbri−1 + abbri + abbri+1

Feature Set 2
Word Features wi, wi−1, wi+1

Disjunction of 5 prev words
Disjunction of 5 next words

TnT POS tags POSi, POSi−1, POSi+1

Word Shape shapei, shapei−1, shapei+1

shapei + shapei+1

shapei−1 + shapei + shapei+1

Prev NE NEi−1, NEi−2 + NEi−1

NEi−3 + NEi−2 + NEi−1

Prev NE + Word NEi−1 + wi

Prev NE + POS NEi−1 + POSi−1 + POSi

NEi−2 + NEi−1 + POSi−2 + POSi−1

+ POSi

Prev NE + Shape NEi−1 + shapei
NEi−1 + shapei+1

NEi−1 + shapei−1 + shapei
NEi−2 + NEi−1 + shapei−2 +
shapei−1 + shapei

Paren-Matching Signals when one parenthesis in a pair
has been assigned a different tag in a
window of 4 words

Occurrence
Patterns

Capture multiple references to NEs

Table 1. Feature split for parameter optimisation experiments

for annotation. A possible disadvantage is that a document
with some interesting parts may well contain large portions
with redundant, already known structures for which know-
ing the manual annotation may not be very useful. In the
given setting, we decided that the best granularity is on the
sentence level.

3.3. Sample Selection Metric

There are various metrics that could be used to quantify the
degree of deviation between classifiers in a committee (e.g.
KL-divergence, information radius, f-measure). The work
reported here uses two sentence-level metrics based on KL-
divergence and one based on f-score. In the following, we
describe these metrics.

KL-divergencehas been suggested for active learning to
quantify the disagreement of classifiers over the probability
distribution of output labels (McCallum & Nigam, 1998)
and has been applied to information extraction (Jones et al.,
2003). KL-divergence measures the divergence between
two probability distributionsp andq over the same event

- 7 -



spaceχ:

D(p||q) =
∑
x∈χ

p(x) log
p(x)
q(x)

(1)

KL-divergence is a non-negative metric. It is zero for iden-
tical distributions; the more different the two distributions,
the higher the KL-divergence. KL-divergence is maximal
for cases where distributions are peaked and prefer differ-
ent labels. Taking a peaked distribution as an indicator for
certainty, using KL-divergence thus bears a strong resem-
blance to the co-testing setting (Muslea, 2002). Intuitively,
a high KL-divergence score indicates an informative data
point. However, in the current formulation, KL-divergence
only relates to individual tokens. In order to turn this into
a sentence score, we need to combine the individual KL-
divergences for the tokens within a sentence into one single
score. We employed mean and max.

The f-complementhas been suggested for active learning
in the context of NP chunking as a structural compari-
son between the different analyses of a committee (Ngai
& Yarowsky, 2000). It is the pairwise f-score comparison
between the multiple analyses for a given sentence:

fMcomp =
1
2

∑
M,M ′∈M

(1− F1(M(t),M ′(t))) (2)

whereF1 is the balanced f-score ofM(t) andM ′(t), the
preferred analyses of data pointt according to different
membersM,M ′ of ensembleM. The definition assumes
that in the comparison between two analyses, one may ar-
bitrarily assign one analysis as the gold standard and the
other one as a test case. Intuitively, examples with a high
f-complement score are likely to be informative.

4. Parameter Optimisation Experiments

In the previous section, we described a number of param-
eters for our approach to active learning. Bootstrapping
presents a difficult problem as we cannot optimise these pa-
rameters on the target data. The obvious solution is to use a
different data set but there is no guarantee that experimental
results will generalise across domains. The work reported
here addresses this question. We simulated active learn-
ing experiments on a data set which consists of biomed-
ical abstracts marked up for the entities DNA, RNA, cell
line, cell type, and protein (Kim et al., 2003).1 Seed, pool,
and test sets contained 500, 10,000, and 2,000 sentences
respectively, roughly the same size as for the astronomical
data. As smaller batch sizes require more retraining itera-
tions and larger batch sizes increase the amount of annota-
tion necessary at each round and could lead to unnecessary
strain for the annotators, we settled on a batch size of 50

1Simulated AL experiments use 5-fold cross-validation.

sentences for the real AL experiment as a compromise be-
tween computational cost and work load for the annotator.

We then ran simulated AL experiments for each of the
three selection metrics discussed in section 3. The perfor-
mance was compared to a baseline where examples were
randomly sampled from the pool data. Experiments were
run until there were 2000 sentences of annotated training
material including the sentences from the seed data and the
sentences selected from the pool data.

4.1. Costing Active Learning

For quality evaluation, we used the established f-score met-
ric as given by the evaluation scripts developed for the
CoNLL NER tasks (Tjong Kim Sang & De Meulder, 2003).
In order to assess the relative merits of various active learn-
ing scenarios, we will plot learning curves, i.e. the increase
in f-score over the invested effort. Ideally, a cost metric
should reflect the effort that went into the annotation of ex-
amples in terms of time spent. However, a precise time
measurement is difficult, or may be not available in the
case of simulation experiments. We will therefore consider
a number of possible approximations.

A sentence-based cost metric may seem like an obvious
cost function, but this may pose problems when different
sample selection metrics have a tendency to choose longer
or shorter sentences. Thus, we will also consider more fine-
grained metrics, namely the number of tokens in a sentence
and the number of entities in a sentence.

4.2. Comparison of Selection Metrics

The plots in figure 2 show the learning curves for random
sampling and the three AL selection metrics we examined
for the parameter optimisation experiments. The first takes
the number of sentences as the cost metric and the second
and third take the number of tokens and the number of en-
tities respectively.

Random sampling is clearly outperformed by all other se-
lection metrics. The random curve for the sentence cost
metric, for example, reaches an f-score of 69% after ap-
proximately 1500 sentences have been annotated while the
maximum KL-divergence curve reaches this level of per-
formance after only≈ 1100 sentences. This represents
a substantial reduction in sentences annotated of 26.7%.
In addition, at 1500 sentences, maximum KL-divergence
offers an error reduction of 4.9% over random sampling
with a 1.5 point improvement in f-score. Averaged KL-
divergence offers the same error reduction when using the
sentence cost metric, but at 19.3%, a lower reduction of
sentences annotated. F-complement performs worst giving
10% cost reduction and 1.6% error reduction.

The learning curves also allow us to easily visualise the
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Figure 2. Parameter optimisation learning curves for sentence, token, and entity cost metrics
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Figure 3. Active annotation learning curves for sentence, token, and entity cost metrics

performance difference of the three selection metrics with
respect to each other. The f-complement metric clearly un-
derperforms with respect to KL-divergence based metrics.

According to the learning curves with number of sentences
as the cost metric, maximum KL-divergence performs the
best. However, when choosing a different cost metric, as
for example the number of tokens or entities that occur in
each selected sentence, the learning curves behave com-
pletely differently as can be seen in the second and third
plots in figure 2. This illustrates the fact that the selec-
tion metrics operate in different ways preferring shorter or
longer sentences with more or less entities. With number
of tokens as the cost metric, averaged KL-divergence per-
forms the best with a 23.5% reduction in annotation cost to
reach an f-score of 69% and an error reduction of 4.9% at
≈ 40,000 tokens. And with entities as the cost metric, the
f-complement selection metric seems to perform best. So,
the question arises: how do we combine this information
to prepare for a real annotation task where we only have a
single opportunity to get the best performing and most cost
effective system possible.

To explore the behaviour of the three selection metrics fur-
ther, we also look at the number of tokens and the num-
ber of entities in the sentences chosen by each metric. Ta-
ble 2 contains the number of tokens and entities contained
within the selected sentences averaged across the 5 cross-
validation results. Comparing these numbers, one can ob-
serve the types of sentences preferred by each selection

Metric Tokens Entities
Random 26.7 (0.8) 2.8 (0.1)
F-comp 25.8 (2.4) 2.2 (0.7)
KL-max 30.9 (1.5) 3.5 (0.2)
KL-ave 27.1 (1.8) 3.3 (0.2)

Table 2. Average tokens and entities per sentence for different se-
lection metrics (standard deviation in brackets)

metric. While the maximum KL-divergence metric selects
the longest sentences containing the most number of enti-
ties, the f-complement selection metric chooses the shortest
sentences with the least number of entities in them. The av-
eraged KL-divergence metric, on the other hand, generally
selects average length sentences which still contain rela-
tively many entities.

As averaged KL-divergence does not affect sentence
length, we expect the sentences selected to take less time
to annotate than the sentences selected by maximum KL-
divergence. And, since these sentences have relatively
many entity phrases, we expect to have more positive ex-
amples than with the f-complement metric and thus have
higher informativity and therefore performance increase
per token. Furthermore, sentence length is not the best sin-
gle unit cost metric. The number of sentences is too coarse
as this gives the same cost to very long and very short sen-
tences and does not allow us to consider the types of sen-
tences selected by the various metrics. Likewise, the num-
ber of entities does not reflect the fact that every selected
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sentence needs to be read regardless of the number of en-
tities it contains, which again covers up effects of specific
selection metrics.

5. Active Annotation Results

We developed NEAL, an interactive Named Entity Active
Learning tool for bootstrappingNER in a new domain. The
tool manages the data and presents batches of selectively
sampled sentences for annotation in the same annotation
tool used for the seed and test data. The entire abstract
is presented for context with the target sentence(s) high-
lighted. On the basis of the findings of the simulated ex-
periments we set up the real AL experiment using averaged
KL-divergence as the selection metric. The tool was ini-
tialised with the 50 document seed set described in section
2 and given to the same annotators that prepared the seed
and test sets.

As we do not have a model of temporal or monetary cost in
terms of our three cost metrics, we evaluate with respect to
all three cost metrics. Figure 3 contains learning curves for
random sampling and for selective sampling with the aver-
aged KL-divergence selection metric plotted against num-
ber of sentences, number of tokens, and number of entities.
The initial performance (given only the seed data for train-
ing) amounts to an f-score of 69.1%. 50 sentences (with an
average of 28 tokens and 2.5 entities per sentence as com-
pared to 29.8 and 2.0 for the randomly sampled data) are
added to the training data at each round. After 20 itera-
tions, the training data therefore comprises of 1,502 sen-
tences (containing approx. 43,000 tokens) which leads to
an f-score of 79.6%.

Comparing the selective sampling performance to the base-
line, we confirm that active learning provides a significant
reduction in the number of examples that need annotating.
Looking first at the token cost metric, the random curve
reaches an f-score of 76% after approximately 39,000 to-
kens of data has been annotated while the selective sam-
pling curve reaches this level of performance after only≈
24,000 tokens. As for the optimisation data, this represents
a dramatic reduction in tokens annotated of 38.5%. In addi-
tion, at 39,000 tokens, selectively sampling offers an error
reduction of 13.0% with a 3 point improvement in f-score.
Selective sampling with the averaged KL-divergence selec-
tion metric also achieves dramatic cost and error rate re-
ductions for the sentence (35.6% & 12.5%) and entity cost
metrics (23.9% & 5.0%).

These improvements are comparable to the cost and er-
ror reduction achieved in the optimisation data. While it
should be taken into account that these domains are rela-
tively similar, this suggests that a different domain can be
used to optimise parameters when using active learning to

bootstrapNER. This is confirmed not only by an improve-
ment over baseline for the token cost metric but also by an
improvement for the sentence and entity cost metrics.

In a companion paper, we report in some more detail about
the effects of selective sampling on annotator’s perfor-
mance (Hachey et al., 2005). Even though we find that
active learning may result in a slightly higher error rate in
the annotation, we demonstrate that active learning still in-
curs substantial reductions in annotation effort as compared
to random sampling.

6. Conclusions and Future Work

We have presented an active learning approach to boot-
strapping named entity recognition for which a new corpus
of radio astronomical texts has been collected and anno-
tated. We employ a committee-based method that uses two
different feature sets for a conditional Markov model tagger
and we experiment with several metrics for quantifying the
degree of deviation: averaged KL-divergence, maximum
KL-divergence, and f-complement.

We started with aNER system tested and optimised in a
domain with existing corpus resources and built a system
to identify four novel entity types in a new domain of as-
tronomy texts. Experimental results from the real active
learning annotation illustrate that the optimised parameters
performed well on the new domain. This is confirmed for
cost metrics based on the number of sentences, the number
of tokens, and the number of entities.

While presenting results with respect to the three cost met-
rics ensures completeness, it also suggests that the real cost
might be better modelled as a combination of these met-
rics. During annotation, we collected timing information
for each sentence and we are currently using this timing in-
formation to investigate realistic models of cost based on
sentence length and number of entities.
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Abstract

We study estimation of mixture models for
problems in which multiple views of the in-
stances are available. Examples of this set-
ting include clustering web pages or research
papers that have intrinsic (text) and extrin-
sic (references) attributes. Our optimiza-
tion criterion quantifies the likelihood and
the consensus among models in the individual
views; maximizing this consensus minimizes
a bound on the risk of assigning an instance
to an incorrect mixture component. We de-
rive an algorithm that maximizes this crite-
rion. Empirically, we observe that the result-
ing clustering method incurs a lower cluster
entropy than regular EM for web pages, re-
search papers, and many text collections.

1. Introduction

In many application domains, instances can be repre-
sented in two or more distinct, redundant views. For
instance, web pages can be represented by their text,
or by the anchor text of inbound hyperlinks (“miser-
able failure”), and research papers can be represented
by their references from and to other papers, in addi-
tion to their content. In this case, multi-view methods
such as co-training (Blum & Mitchell, 1998) can learn
two initially independent hypotheses. These hypothe-
ses bootstrap by providing each other with conjectured
class labels for unlabeled data. Multi-view learning
has often proven to utilize unlabeled data effectively,
increase the accuracy of classifiers (e.g., Yarowsky,
1995; Blum & Mitchell, 1998) and improve the quality
of clusterings (Bickel & Scheffer, 2004).

Nigam and Ghani (2000) propose the co-EM procedure
that resembles semi-supervised learning with EM (Mc-
Callum & Nigam, 1998), using two views that alter-

Appearing in Proceedings of the Workshop on Learning with
Multiple Views, 22nd ICML, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

nate after each iteration. The EM algorithm (Demp-
ster et al., 1977) is very well understood. In each it-
eration, it maximizes the expected joint log-likelihood
of visible and invisible data given the parameter esti-
mates of the previous iteration — the Q function. This
procedure is known to greedily maximize the likelihood
of the data. By contrast, the primary justification of
the co-EM algorithm is that it often works very well;
it is not known which criterion the method maximizes.

We take a top down approach on the problem of mix-
ture model estimation in a multi-view setting. A result
of Dasgupta et al. (2001) motivates our work by show-
ing that a high consensus of independent hypotheses
implies a low error rate. We construct a criterion that
quantifies likelihood and consensus and derive a pro-
cedure that maximizes it. We contribute to an un-
derstanding of mixture model estimation for multiple
views by showing that the co-EM algorithm is a special
case of the resulting procedure. Our solution naturally
generalizes co-EM for more than two views. We show
that a variant of the method in which the consensus
term is annealed over time is guaranteed to converge.

The rest of this paper is organized as follows. Section
2 discusses related work. In Section 3, we define the
problem setting. Section 4 motivates our approach,
discusses the new Q function, the unsupervised co-EM
algorithm, and its instantiation for mixture of multi-
nomials. We conduct experiments in Section 5 and
conclude with Section 6.

2. Related Work

Most studies on multi-view learning address semi-
supervised classification problems. de Sa (1994) ob-
serves a relationship between consensus of multiple
hypotheses and their error rate and devised a semi-
supervised learning method by cascading multi-view
vector quantization and linear classification. A multi-
view approach to word sense disambiguation combines
a classifier that refers to the local context of a word
with a second classifier that utilizes the document in
which words co-occur (Yarowsky, 1995). Blum and
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Mitchell (1998) introduce the co-training algorithm for
semi-supervised learning that greedily augments the
training set of two classifiers. A version of the Ad-
aBoost algorithm boosts the agreement between two
views on unlabeled data (Collins & Singer, 1999).

Dasgupta et al. (2001) and Abney (2002) give PAC
bounds on the error of co-training in terms of the
disagreement rate of hypotheses on unlabeled data in
two independent views. This justifies the direct min-
imization of the disagreement. The co-EM algorithm
for semi-supervised learning probabilistically labels all
unlabeled examples and iteratively exchanges those la-
bels between two views (Nigam & Ghani, 2000; Ghani,
2002). Muslea et al. (2002) extend co-EM for active
learning. Brefeld and Scheffer (2004) study a co-EM
wrapper for the Support Vector Machine.

For unsupervised learning, several methods combine
models that are learned using distinct attribute sub-
sets in a way that encourages agreement. Becker
and Hinton (1992) maximize mutual information be-
tween the output of neural network modules that per-
ceive distinct views of the data. Models of images
and their textual annotations have been combined
(Barnard et al., 2002; Blei & Jordan, 2003). Reinforce-
ment clustering (Wang et al., 2003) exchanges cluster
membership information between views by artificial
attributes. Bickel and Scheffer (2004) use the co-EM
algorithm for clustering of data with two views. Clus-
tering by maximizing the dependency between views is
studied by Sinkkonen et al. (2004). Also, the density-
based DBSCAN clustering algorithm has a multi-view
counterpart (Kailing et al., 2004).

3. Problem Setting

The multi-view setting is characterized by avail-
able attributes X which are decomposed into views
X(1), . . . , X(s). An instance x = (x(1), . . . , x(s)) has
representations x(v) that are vectors over X(v). We fo-
cus on the problem of estimating parameters of a gen-
erative mixture model in which data are generated as
follows. The data generation process selects a mixture
component j with probability αj . Mixture component
j is the value of a random variable Z. Once j is fixed,
the generation process draws the s independent vec-
tors x(v) according to the likelihoods P (x(v)|j). The
likelihoods P (x(v)|j) are assumed to follow a paramet-
ric model P (x(v)|j, Θ) (distinct views may of course be
governed by distinct distributional models).

The learning task involved is to estimate the parame-
ters Θ = (Θ(1), . . . , Θ(s)) from data. The sample con-
sists of n observations that usually contain only the

visible attributes x
(v)
i in all views v of the instances

xi. The vector Θ contains priors α
(v)
j and parame-

ters of the likelihood P (x(v)
i |j, Θ(v)), where 1 ≤ j ≤ m

and m is the number of mixture components assumed
by the model (clusters). Given Θ, we will be able to
calculate a posterior P (j|x(1), . . . , x(s), Θ). This pos-
terior will allow us to assign a cluster membership to
any instance x = (x(1), . . . , x(s)). The evaluation met-
ric is the impurity of the clusters as measured by the
entropy; the elements of each identified cluster should
originate from the same true mixture component.

4. Derivation of the Algorithm

Dasgupta et al. (2001) have studied the relation be-
tween the consensus among two independent hypothe-
ses and their error rate. Let us review a very simple
result that motivates our approach, it can easily be
derived from their general treatment of the topic. Let
h(v)(x) = argmaxj P (j|x(v),Θ(v)) be two independent
clustering hypotheses in views v = 1, 2. For clarity of
the presentation, let there be two true mixture com-
ponents. Let x be a randomly drawn instance that,
without loss of generality belongs to mixture compo-
nent 1, and let both hypotheses h(1) and h(2) have a
probability of at least 50% of assigning x to the correct
cluster 1. We observe that

P (h(1)(x) 6= h(2)(x)) ≥ max
v

P (h(v)(x) 6= 1).

That is, the probability of a disagreement h(1)(x) 6=
h(2)(x) is an upper bound on the risk of an error
P (h(v)(x) 6= 1) of either hypothesis h(v).

We give a brief proof of this observation. In Equa-
tion 1 we distinguish between the two possible cases
of disagreement; we utilize the independence assump-
tion and order the summands such that the greater
one comes first. In Equation 2, we exploit that the
error rate be at most 50%: both hypotheses are less
likely to be wrong than just one of them. Exploiting
the independence again takes us to Equation 3.

P (h(1)(x) 6= h(2)(x))
= P (h(v)(x) = 1, h(v̄)(x) = 2) +

P (h(v)(x) = 2, h(v̄)(x) = 1) (1)
where v = argmaxuP (h(u)(x) = 1, h(ū)(x) = 2)

≥ P (h(v)(x) = 2, h(v̄)(x) = 2) +
P (h(v)(x) = 2, h(v̄)(x) = 1) (2)

= maxv P (h(v)(x) 6= 1) (3)

In unsupervised learning, the risk of assigning in-
stances to wrong mixture components cannot be min-
imized directly, but with the above argument we can
minimize an upper bound on this risk.
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The Q function is the core of the EM algorithm. We
will now review the usual definition, include a consen-
sus term, and find a maximization procedure.

4.1. Single-View Optimization Criterion

Even though the goal is to maximize P (X|Θ), EM
iteratively maximizes an auxiliary (single-view) cri-
terion QSV (Θ, Θt). The criterion refers to the visi-
ble variables X, the invisibles Z (the mixture compo-
nent), the optimization parameter Θ and the parame-
ter estimates Θt of the last iteration. Equation 4 de-
fines QSV (Θ, Θt) to be the expected log-likelihood of
P (X, Z|Θ), given X and given that the hidden mixture
component Z be distributed according to P (j|x, Θt).

The criterion QSV (Θ, Θt) can be determined as in
Equation 5 for mixture models. It requires calcu-
lation of the posterior P (j|xi,Θt) as in Equation 6;
this is referred to as the E step of the EM algo-
rithm. In the M step, it finds the new parameters
Θt+1 = argmaxΘ QSV (Θ, Θt) that maximize QSV over
Θ. The parameters Θ occur in Equation 5 only in the
prior probabilities αj and likelihood terms P (xi|j, Θ).

QSV (Θ,Θt)= E[log P (X, Z|Θ)|X, Θt] (4)

=
n∑

i=1

m∑

j=1

P (j|xi,Θt) log(αjP (xi|j, Θ)) (5)

P (j|xi,Θt)=
αjP (xi|j, Θt)∑
k αkP (xi|k, Θt)

(6)

The EM algorithm starts with some initial guess at
the parameters Θ0 and alternates E and M steps until
convergence. Dempster et al. (1977) prove that, in
each iteration, P (X|Θt+1)−P (X|Θt) ≥ 0. Wu (1983)
furthermore proves conditions for the convergence of
the sequence of parameters (Θ)t.

4.2. Multi-View Criterion

We want to maximize the likelihood in the individ-
ual views and the consensus of the models because we
know that the disagreement bounds the risk of assign-
ing an instance to an incorrect mixture component.
Equations 7 and 8 define our multi-view Q function as
the sum over s single-view Q functions minus a penalty
term ∆(·) that quantifies the disagreement of the mod-
els Θ(v) and is regularized by η.

QMV (Θ(1), . . . , Θ(s), Θ(1)
t , . . . , Θ(s)

t )

=
s∑

v=1

QSV (Θ(v), Θ(v)
t ) (7)

−η∆(Θ(1), . . . , Θ(s),Θ(1)
t , . . . , Θ(s)

t )

=
s∑

v=1

E
[
log P (X(v), Z(v)|Θ(v))|X(v),Θ(v)

t

]
(8)

−η∆(Θ(1), . . . , Θ(s), Θ(1)
t , . . . , Θ(s)

t )

When the regularization parameter η is zero, then
QMV =

∑
v QSV . In each step, co-EM then maximizes

the s terms QSV independently. It follows immediately
from Dempster et al. (1977) that each P (X(v)|Θ(v))
increases in each step and therefore

∑
v P (X(v)|Θ(v))

is maximized.

The disagreement term ∆ should satisfy a number of
desiderata. Firstly, since we want to minimize ∆, it
should be convex. Secondly, for the same reason, it
should be differentiable. Given Θt, we would like to
find the maximum of QMV (Θ,Θt) in one single step.
We would, thirdly, appreciate if ∆ was zero when the
views totally agree.

We construct ∆ to fulfill these desiderata in Equa-
tion 9. It contains the pairwise cross entropy
H(P (j|x(v)

i ,Θ(v)
t ), P (j|x(u)

i , Θ(u))) of the posteriors of
any pair of views u and v. The second cross entropy
term H(P (j|x(v)

i ,Θ(v)
t ), P (j|x(v)

i ,Θ(v))) scales ∆ down
to zero when the views totally agree. Equation 10 ex-
pands all cross-entropy terms. At an abstract level,
∆ can be thought of as all pairwise Kullback-Leibler
divergences of the posteriors between all views. Since
the cross entropy is convex, ∆ is convex, too.

∆(Θ(1), . . . , Θ(s), Θ
(1)
t , . . . , Θ

(s)
t )

=
1

s−1

∑

v 6=u

n∑
i=1

(
H(P (j|x(v)

i , Θ
(v)
t ), P (j|x(u)

i , Θ(u)))

−H(P (j|x(v)
i , Θ

(v)
t ), P (j|x(v)

i , Θ(v)))
)

(9)

=
1

s−1

∑

v 6=u

n∑
i=1

m∑
j=1

P (j|x(v)
i , Θ

(v)
t ) log

P (j|x(v)
i , Θ(v))

P (j|x(u)
i , Θ(u))

(10)

In order to implement the M step, we have to maxi-
mize QMV (Θ,Θt) given Θt. We have to set the deriva-
tive to zero. Parameter Θ occurs in the logarithmized
posteriors, so we have to differentiate a sum of likeli-
hoods within a logarithm. Theorem 1 solves this prob-
lem and rewrites QMV analogously to Equation 5.

Equation 12 paves the way to an algorithm that max-
imizes QMV . The parameters Θ occur only in the log-
likelihood terms log P (x(v)

i |j, Θ(v)) and log α
(v)
j terms,

and QMV can be rewritten as a sum over local func-
tions QMV

v for the views v. It now becomes clear that
the M step can be executed by finding parameter es-
timates of P (x(v)

i |j, Θ(v)) and α
(v)
j independently in

each view v. The E step can be carried out by cal-
culating and averaging the posteriors P (v)(j|xi,Θt, η)
according to Equation 13; this equation specifies how
the views interact.
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Theorem 1 The multi-view criterion Q can be ex-
pressed as a sum of local functions QMV

v (Equation
11) that can be maximized independently in each view
v. The criterion can be calculated as in Equation 12,
where P (v)(j|xi, Θt, η) is the averaged posterior as de-
tailed in Equation 13 and P (j|x(v)

i ,Θ(v)
t ) is the local

posterior of view v, detailed in Equation 14.

QMV (Θ(1), . . . , Θ(s), Θ(1)
t , . . . , Θ(s)

t )

=
s∑

v=1

QMV
v (Θ(v), Θ(1)

t , . . . , Θ(s)
t ) (11)

=
s∑

v=1

(
n∑

i=1

m∑

j=1

P (v)(j|xi,Θt, η) log α
(v)
j (12)

+
n∑

i=1

m∑

j=1

P (v)(j|xi, Θt, η) log P (x(v)
i |j, Θ(v))

)

P (v)(j|xi,Θ
(1)
t , . . . , Θ(s)

t , η) (13)

= (1−η)P (j|x(v)
i , Θ(v)

t )+
η

s−1

∑

v̄ 6=v

P (j|x(v̄)
i , Θ(v̄)

t )

P (j|x(v)
i , Θ(v)

t ) =
α

(v)
j P (x(v)

i |j, Θ(v)
t )

∑
k α

(v)
k P (x(v)

i |k, Θ(v)
t )

(14)

The proof for Theorem 1 is given in Appendix A.

4.3. Generalized Co-EM Algorithm

Theorem 1 describes the unsupervised co-EM algo-
rithm with arbitrarily many views mathematically.
The M steps can be executed independently in the
views but Theorem 1 leaves open how the E and M
steps should be interleaved. Co-EM can be imple-
mented such that a global E step is followed by M
steps in all views or, alternatively, we can iterate over
the views in an outer loop and execute an E and an M
step in the current view in each iteration of this loop.

We implement the latter strategy because consecutive
M steps in multiple views impose the following risk.
Cases can arise in which QMV

1 can be maximized by
changing Θ(1)

t+1 such that it agrees with Θ(2)
t . A con-

secutive M step in view 2 can then maximize QMV
2

by changing Θ(2)
t+1 such that it agrees with Θ(1)

t . As
a result, the two models flip their dissenting opinions.
We observe empirically that this effect slows down the
convergence; if the Q function consisted of only the ∆
term, then this could even lead to alternation.

The unsupervised co-EM algorithm with multiple
views is shown in Table 1. When the execution
has reached time step t and view v, the parameters
Θ(1)

t+1, . . . , Θ(v−1)
t+1 and Θ(v)

t , . . . , Θ(s)
t have already been

estimated. In the E step, we can therefore determine

Table 1. Unsupervised Co-EM Algorithm with Multiple
Views.

Input: Unlabeled data (x
(1)
i , . . . , x

(s)
i ) ∈ D. Regulariza-

tion parameter η (by default, 1).

1. Initialize Θ
(1)
0 , . . . , Θ

(s)
0 at random; let t = 1.

2. Do until convergence of QMV :

(a) For v = 1 . . . s:

i. E step in view v: Compute the

posterior P (v)(j|xi, Θ
(1)
t+1, . . . , Θ

(v−1)
t+1 ,

Θ
(v)
t , . . . , Θ

(s)
t , η) in view v using Equation

13.
ii. M step in view v: maximize QMV ;

Θ
(v)
t+1 = argmaxΘ(v) QMV

v (Θ(v), Θ
(1)
t+1, . . . ,

Θ
(v−1)
t+1 , Θ

(v)
t , . . . , Θ

(s)
t ).

(c) Increment t.

3. Return Θ = (Θ
(1)
t , . . . , Θ

(s)
t ).

the posterior P (v)(j|xi, Θ
(1)
t+1, . . . , Θ

(v−1)
t+1 ,Θ(v)

t , . . . ,

Θ(s)
t , η) using the most recent parameter estimates.

In the succeeding M step, the local QMV
v function

is maximized over the parameter Θ(v). Note that
the co-EM algorithm of Nigam and Ghani (2000) is
a special case of Table 1 for two views, η = 1, and
semi-supervised instead of unsupervised learning.

In every step 2(a)ii, the local function QMV
v increases.

Since all other QMV
v̄ are constant in Θ(v), this implies

that also the global function QMV increases. In each
iteration of the regular EM algorithm, P (X|Θt+1) −
P (X|Θt) ≥ 0. For co-EM, this is clearly not the case
since the Q function has been augmented by a dissent
penalization term. Wu (1983) proves conditions for
the convergence of the sequence (Θ)t for regular EM.
Sadly, the proof does not transfer to co-EM.

We study a variant of the algorithm for which con-
vergence can be proven. In an additional step 2(b),
η is decremented towards zero according to some an-
nealing scheme. This method can be guaranteed to
converge; the proof is easily derived from the con-
vergence guarantees of regular EM (Dempster et al.,
1977; Wu, 1983). We can furthermore show that co-
EM with annealing of η maximizes

∑
v P (X(v)|Θ).

In the beginning of the optimization process, ∆ con-
tributes strongly to the criterion QMV ; the dissent ∆
is convex and we know that it upper-bounds the er-
ror. Therefore, ∆ guides the search to a parameter
region of low error. The contribution of ∆ vanishes
later;

∑
v P (X(v)|Θ) usually has many local maxima

and having added ∆ earlier now serves as a heuristic
that may lead to a good local maximum.
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4.4. Global Prior Probabilities

According to our generative model we have one global
prior for each mixture component, but in step 2(a)ii
the co-EM algorithm so far estimates priors in each
view v from the data. We will now focus on maximiza-
tion of Q subject to the constraint that the estimated
priors of all views be equal.

We introduce two sets of Lagrange multipliers and get
Lagrangian L(α, λ, γ) in Equation 15. Multiplier λ(v)

guarantees that
∑

j α
(v)
j = 1 in view v and γ(j,v) en-

forces the constraint α
(1)
j = α

(v)
j for component j.

L(α, λ, γ) =

s∑
v=1

n∑
i=1

m∑
j=1

P (v)(j|xi, Θt, η) log α
(v)
j

+

s∑
v=1

λ(v)

(
m∑

j=1

α
(v)
j − 1

)
+

s∑
v=2

m∑
j=1

γ(j,v)(α
(1)
j − α

(v)
j ) (15)

Setting the partial derivatives of L(α, λ, γ) to zero
and solving the resulting system of equations leads to
Equation 16. Expanding P (v)(j|xi, Θt, η), the regu-
larization parameter η cancels out and we reach the
final M step for α

(v)
j in Equation 17. We can see that

the estimated prior is an average over all views and is
therefore equal for all views.

α
(v)
j =

1
sn

s∑
v=1

n∑

i=1

P (v)(j|xi,Θt, η) (16)

=
1
sn

s∑
v=1

n∑

i=1

P (j|x(v)
i , Θ(v)

t ) = αj (17)

4.5. Cluster Assignment

For cluster analysis, an assignment of instances to clus-
ters has to be derived from the model parameters. The
risk of deciding for an incorrect cluster is minimized
by choosing the maximum a posteriori hypothesis as
in Equation 18. Bayes’ rule and the conditional inde-
pendence assumption lead to Equation 19.

h(xi) = argmaxjP (j|xi, Θ) (18)

= argmax
j

αj

∏s
v=1 P (x(v)

i |j, Θ(v))
∑m

k αk

∏s
v=1 P (x(v)

i |k, Θ(v))
(19)

4.6. Mixture of Multinomials

In step 2(a)ii the co-EM algorithm estimates parame-
ters in view v from the data. This step is instantiated
for the specific distributional model used in a given
application. We will detail the maximization steps for
multinomial models which we use in our experimen-
tation because they model both text and link data
appropriately.

A multinomial model j is parameterized by the prob-
abilities θ

(v)
lj of word wl in view v and mixture com-

ponent j. The likelihood of document x
(v)
i is given by

Equation 20. Parameters n
(v)
il count the occurrences

of word wl in document x
(v)
i . P (|x(v)

i |) is the prior on
the document length. The factorials account for all
possible sequences that result in the set of words x

(v)
i .

P (x(v)
i |j, Θ(v)) = P (|x(v)

i |)|x(v)
i |!

∏

l

(θ(v)
lj )n

(v)
il

n
(v)
il !

(20)

We will now focus on maximization of QMV over the
parameters θ

(v)
lj . Lagrangian L(θ, λ) in Equation 21

guarantees that the word probabilities sum to one.

L(θ, λ) =
s∑

v=1

n∑

i=1

m∑

j=1

P
(v)

(j|xi, Θt, η)
(
log P (|x(v)

i |)|x(v)
i |! +

∑

l

n
(v)
il (log

θ
(v)
lj

n
(v)
il !


 +

s∑

v=1

m∑

j=1

λ
(v)
j

(∑

l

θ
(v)
lj − 1

)
(21)

Setting the partial derivatives to zero and solving the
resulting system of equations yields Equation 22.

θ
(v)
lj =

∑
i P (v)(j|xi, Θt, η)n(v)

il∑
k

∑
i P (v)(j|xi, Θt, η)n(v)

ik

(22)

5. Empirical Studies

We want to find out (1) whether co-EM with multiple
views finds better clusters in sets of linked documents
with mixture of multinomials than regular single-view
EM; (2) whether co-EM is still beneficial when there is
no natural feature split in the data; (3) whether there
are problems for which the optimal number of views
lies above 2; and (4) whether the consensus regulariza-
tion parameter η should be annealed or fixed to some
value. To answer these questions, we experiment on
archives of linked and plain text documents. All data
sets that we use contain labeled instances; the labels
are not visible to the learning method but we use them
to measure the impurity of the returned clusters. Our
quality measure is the average entropy over all clus-
ters (Equation 23). This measure corresponds to the
average number of bits needed to code the real class
labels given the clustering result. The frequency p̂i|j
counts the number of elements of class i in cluster j,
and nj is the size of cluster j.

H =
m∑

j=1

nj

n

(
−

∑

i

p̂i|j log p̂i|j

)
(23)

The mixture of multinomials model for text assumes
that a document is generated by first choosing a com-
ponent j, and then drawing a number of words with
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Figure 1. Average cluster impurity over varying numbers of clusters.
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Figure 2. Six single-view data sets with random feature splits into views (left); tuning the regularization parameter η to
a fixed value (center); annealing η during the optimization process (right).

replacement according to a component-specific like-
lihood. The multinomial link model analogously as-
sumes that, for a document x, a number of references
from or to other documents are drawn according to
a component-specific likelihood. We first use three
sets of linked documents for our experimentation. The
Citeseer data set contains 3,312 entries that belong to
six classes. The text view consists of title and abstract
of a paper; the two link views are inbound and out-
bound references. The Cora data set contains 9,947
computer science papers categorized into eight classes.
In addition to the three views of the Citeseer data set
we extract an anchor text view that contains three
sentences centered at the occurrence of the reference
in the text. The WebKB data set is a collection of
4,502 academic web pages manually grouped into six
classes. Two views contain the text on the page and
the anchor text of all inbound links, respectively. The
total number of views are 2 (WebKB), 3 (Citeseer),
and 4 (Cora).

Note that web pages or publications do not necessar-
ily have inbound or outbound links. We require only
the title/abstract and web page text views to contain
attributes. The other views are empty in many cases;
the inbound link view of 45% of the Cora instances is
empty. In order to account for this application-specific
property, we include only non-empty views in the av-
eraged posterior P (v)(j|xi, Θt, η).

We use two single-view baselines. The first base-
line applies single-view EM to a concatenation of all
views (caption “concat. views”). The second base-

line merges all text views (anchor text and intrinsic
text are merged into one bag) and separately merges
all link views (corresponding to an undirected graph-
ical model). Single-view EM is than applied to the
concatenation of these views (“merged views”). All
results are averaged over 20 runs and error bars in-
dicate standard error. Figure 1 details the clustering
performance of the algorithm and baselines for various
numbers of clusters (mixture components assumed by
the model). Co-EM outperforms the baselines for all
problems and any number of clusters.

In order to find out how multi-view co-EM performs
when there is no natural feature split in the data,
we randomly draw six single-view document data sets
that come with the cluto clustering toolkit (Zhao &
Karypis, 2001). We randomly split the available at-
tributes into s subsets and average the performance
over 20 distinct attribute splits. We set the number of
clusters to the respective number of true mixture com-
ponents. Figure 2 (left) shows the results for several
numbers of views. We can see that in all but one case
the best number of views is greater than one. In four
of six cases we can reject the null hypothesis that one
view incurs a lower entropy than two views at a signif-
icance level of α = 0.01. Additionally, in 2 out of six
cases, three views lead to significantly better clusters
than two views; in four out of six cases, the entropy
has its empirical minimum for more than two views.

In all experiments so far, we fixed η = 1. Let us study
whether tuning or annealing η improves the cluster
quality. Figure 2 (center) shows the entropy for various
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fixed values of η; we see that 1 is the best setting (η > 1
would imply negative word probabilities θ

(v)
lj ).

Let us finally study whether a fixed value of η or an-
nealing η results in a better cluster quality. In the fol-
lowing experiments, η is initialized at 1 and slowly an-
nealed towards 0. Figure 2 (right) shows the develop-
ment of the cluster entropy as η approaches towards 0.
We see that fixing and annealing η empirically works
equally well; annealing η causes a slight improvement
in two cases and a slight deterioration of the quality
in one case. The distinction between co-EM with and
without annealing of η lies in the fact that convergence
can only be proven when η is annealed; empirically,
these variants are almost indistinguishable.

6. Conclusion

The QMV function defined in Equation 7 augments
the single-view optimization criterion QSV by penaliz-
ing disagreement among distinct views. This is mo-
tivated by the result that the consensus among in-
dependent hypotheses upper-bounds the error rate of
either hypothesis. Theorem 1 rewrites the criterion
QMV (Θ,Θt) such that it can easily be maximized over
Θ when Θt is fixed: an M step is executed locally in
each view. Maximizing QMV naturally leads to a ver-
sion of the co-EM algorithm for arbitrarily many views
and unlabeled data. Our derivation thus explains, mo-
tivates, and generalizes the co-EM algorithm.

While the original co-EM algorithm cannot be shown
to converge, a variant of the method that anneals η
over time can be guaranteed to converge and to (lo-
cally) maximize

∑
v P (X(v)|Θ). Initially amplifying

the convex error bound ∆ in the criterion QMV serves
as a heuristic that guides the search towards a better
local optimum.

Our experiments show that co-EM is a better cluster-
ing procedure than single-view EM for actual multi-
view problems such as clustering linked documents.
Surprisingly, we also found that in most cases the im-
purity of text clusters can be reduced by splitting the
attributes at random and applying multi-view clus-
tering. This indicates that the consensus maximiza-
tion principle may contribute to methods for a broader
range of machine learning problems.
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Appendix

A. Proof of Theorem 1

In order to prove Theorem 1 we first prove two addi-
tional equations. Firstly, we prove that the left term
of Equation 24 equals zero. Equation 24 holds because

∑m
j=1 P (j|xi,Θt) log C = log C when C is independent

of j. Instead of summing over all two-way combina-
tions of views we sum only once over each pairwise
combination in the left term of Equation 25 and merge
the logarithms. The terms in the resulting fraction
cancel to one.

Secondly, we simplify the dissent function ∆. In Equa-
tion 26 we add a term (Equation 24) that we proved
to be zero in Equation 25. Equations 27 merge the
logarithms and apply the chain rule to extract α

(v)
j .

In Equation 28 the logarithm is split up and the sum
over all pairwise view combinations is substituted with
a nested sum.

Now we can prove Theorem 1. We write QMV as
a sum of single-view QSV criteria (Equation 5) and
the transformed ∆ of Equation 28, resulting in Equa-
tion 29. With Equation 30 the log(α(v)

j P (x(v)
i |j, Θ(v)))

terms are factored out. We introduce the abbreviation
P (v)(j|xi, Θt, η) in Equation 31. Finally the logarithm
is split up (Equation 32) and the proof is finished. ¤
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Abstract

In this paper we develop an algorithm for
spectral clustering in the multi-view setting
where there are two independent subsets of
dimensions, each of which could be used for
clustering (or classification). The canonical
examples of this are simultaneous input from
two sensory modalitites, where input from
each sensory modality is considered a view, as
well as web pages where the text on the page
is considered one view and text on links to
the page another view. Our spectral cluster-
ing algorithm creates a bipartite graph and
is based on the “minimizing-disagreement”
idea. We show a simple artifically generated
problem to illustrate when we expect it to
perform well and then apply it to a web page
clustering problem. We show that it performs
better than clustering in the joint space and
clustering in the individual spaces when some
patterns have both views and others have just
one view.

Spectral clustering is a very successful idea for clus-
tering patterns. The idea is to form a pairwise affin-
ity matrix A between all pairs of patterns, normalize
it, and compute eigenvectors of this normalized affin-
ity matrix (graph Laplacian)L. It can be shown that
the second eigenvector of the normalized graph Lapla-
cian is a relaxation of a binary vector solution that
minimizes the normalized cut on a graph (Shi & Ma-
lik, 1998; J.Shi & Malik, ; Meila & Shi, 2001; Ng
et al., 2001). Spectral clustering has the advantage
of performing well with non-Gaussian clusters as well
as being easily implementable. It is also non-iterative
with no local minima. The Ng,Jordan,Weiss(Ng et al.,

Appearing in Proceedings of the Workshop on Learning with
Multiple Views, 22nd ICML, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

2001) (NJW) generalization to multiclass clustering
(which we will build on) is summarized below for data
patterns xi to be clustered in to k clusters.

• Form the affinity matrix A(i, j) = exp(−||xi −
xj ||2/2σ2)

• Set the diagonal entries A(i, i) = 0

• Compute the normalized graph Laplacian as L =
D−.5AD−.5 where D is a diagonal matrix with
D(i, i) =

∑
j A(i, j)

• Compute top k eigenvectors of L and place as
colums in a matrix X

• Form Y from X by normalizing the rows of X

• Run kmeans to cluster the row vectors of Y

• pattern xi is assigned to cluster α iff row i of Y is
assigned to cluster α

In this paper we develop an algorithm for spectral clus-
tering in the multi-view setting where there are two in-
dependent subsets of dimensions, each of which could
be used for clustering (or classification). The canoni-
cal examples of this are multi-sensory input from two
modalities where input from each sensory modality is
considered a view as well as web pages where the text
on the page is considered one view and text on links to
the page another view. Also computer vision applica-
tions with multiple conditionally independent sensor
or feature vectors can be viewed in this way.

1. Algorithm Development

Our spectral multi-view algorithm is based on ideas
originally developed for the (non-spectral) Minimizing-
Disagreement algorithm (de Sa, 1994a; de Sa &
Ballard, 1998). The idea behind the Minimizing-
Disagreement (M-D) algorithm is that two (or more)
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networks receiving data from different views, but with
no explicit supervisory label, should cluster the data
in each view so as to minimize the disagreement be-
tween the clusterings. The Minimizing-Disagreement
algorithm was described intuitively using the following
diagram shown in Figure 1. In the figure imagine that
there are two classes of objects, with densities given
by the thick curve and the thin curve and that this
marginal density is the same in each one-dimensional
view. The scatter plots on the left of the figure show
two possible scenarios for how the “views” may be re-
lated. In the top case, the views are conditionally inde-
pendent. Given that a “thick/dark” object is present,
the particular pattern in each view is independent. On
the right, the same data is represented in a different
format. In this case the values in view 1 are repre-
sented along one line and the values in view 2 along
another line. Lines are joined between a pair if those
values occurred together. The minimizing disagree-
ment algorithm wants to find a cut from top to bottom
that crosses the fewest lines – within the pattern space
(subject to some kind of balance constraint to prevent
trivial solutions with empty or near empty clusters).
Disagreement is minimized for the dashed line shown.
Here we transform this intuitive idea for 1-D views to
a general algorithm on a weighted bipartite graph.

The difficulty in transforming this intuitive idea into a
general algorithm for a M-D spectral algorithm is that
in describing it as making a cut from top to bottom,
we assume that we have a neighborhood relationship
within each top set and bottom set, that is not explic-
itly represented. That is we assume that points drawn
in a line next to each other are similar points in the
same view. Treating the points as nodes in a graph
and applying a graph cut algorithm, would lose that
information.

One solution would be to simply connect co-occurring
values and also join nearest neighbors (or join neigh-
bors according to a similarity measure) in each view.
This, however, raises the tricky issue of how to encode
the relative strengths of the pairing weights with the
within-view affinity weights.

Instead, our solution is to draw reduced weight co-
occurrence relationships between neighbors of an ob-
served pair of patterns (weighted by a unimodal func-
tion such as a Gaussian). We call our algorithm sM-D
Each input in each view is represented by a node in the
graph. The strength of the weight between two nodes
in different views depends on the number of multi-view
patterns (which we can think of as co-occuring pairs
of patterns) that are sufficiently close (in both views)
(with a fall off in weight as the distances grow). This

representation has the semantics that we believe there
is noise in the actual patterns that occur or alterna-
tively that we wish to consider the pairings simultane-
ously at multiple scales.

More specifically, let us define x
(v)
i as view v of the

ith pattern. We will construct a graph node for each
view of each pattern and define n(i,v) to represent the
node for view v of the ith pattern. Now consider the
pattern x

(1)
1 = [1 2 1]′ (where throughout this pa-

per ’ denotes the transpose operator) and the pattern
x

(1)
2 = [1 2 1]′ + ~ε′. These two patterns should prob-

ably be considered identical for small ~ε. This means
that x

(2)
1 the co-occurring pattern for x

(1)
1 should prob-

ably also be linked with x
(1)
2 . The Gaussian weight-

ing allows us to do this in a smooth way for increas-
ing ~ε. To compute the total weight between node
n(i,1) and n(j,2) we sum over all observed pattern co-
occurrences (k=1 to p): the product of (the (Gaussian
weighted) distance between x

(1)
i (the pattern repre-

sented by n(i,1)) and x
(1)
k and the same same term for

the relationship between the x
(2)
j and x

(2)
k . That is

wij =
∑

p

e
−
||(x

(1)
i

−x
(1)
k

)||2

2σ2
1 e

−
||(x

(2)
j

−x
(2)
k

)||2

2σ2
2 (1)

= [Av1 ×Av2]ij (2)

where Av1 is the affinity matrix for the view 1 patterns
and Av2 the affinity matrix for just the view 2 pat-

terns. Av1(i, j) = e

−||(x
(1)
i

−x
(1)
j

)||2

2σ2
1 . Note that the prod-

uct between the Gaussian weighted distances within
each view is just the Gaussian weighted normalized
distance between the two concatenated patterns (when
considered as multi-view patterns).

Then we take the p × p matrix of w’s and put it in a
large 2p× 2p matrix of the form

AsM−D =
[

0p×p W
W ′ 0p×p

]
where 0p×p represents a p× p matrix of zeros (and we
will drop the subscript from here on for clarity). This
matrix could then be considered an affinity matrix (for
a bipartite graph) and given to the spectral clustering
algorithm of (Ng et al., 2001). However note that the
next step is to compute eigenvectors of the matrix

D−.5AsM−DD−.5

where D is a diagonal matrix with D(i, i) =∑
j AsM−D(i, j) (row sums of AsM−D) which is equal
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to (where Drow (Dcol) is the diagonal matrix with di-
agonal entries equal to the row (column) sums of W )[

D−.5
row 0
0 D−.5

col

] [
0 W

W ′ 0

] [
D−.5

row 0
0 D−.5

col

]
but that matrix has the same eigenvectors as the ma-
trix[

D−.5
rowWD−1

colW
′D−.5

row 0
0 D−.5

col W ′D−1
rowWD−.5

col

]
which has conjoined eigenvectors of each of the
blocks D−.5

rowWD−1
colW

′D−.5
row and D−.5

col W ′D−1
rowWD−.5

col

and these parts can be found efficiently together by
computing the SVD of the matrix LW = D−.5

rowWD−.5
col .

This trick is used in the co-clustering literature
(Dhillon, 2001; Zha et al., 2001), but there the affinity
submatrix W is derived simply from the term docu-
ment matrix (or equivalent) not derived as a prod-
uct of affinity matrices from different views 1. The
final clustering/segmentation is obtained from the top
eigenvectors. There are several slightly different ways
to cluster the values of this eigenvector. We use the
prescription of Ng, Jordan and Weiss from the first
page where Y is obtained as follows.

Av1 =exp(-distmatview1/(2*sigsq1));
Av2 =exp(-distmatview2/(2*sigsq2));
W=Av1*Av2;
Dtop=(sum(W’));
Dbot=(sum(W));
Lw=diag(Dtop.^(-.5))*W*diag(Dbot.^(-.5));
[U,S,V]=svds(Lw)
X=[U(:,1:numclusts);V(:,1:numclusts)];
Xsq=X.*X;
divmat=repmat(sqrt(sum(Xsq’)’),1,numclusts);
Y=X./divmat;

Note that computing the SVD of the matrix LW =
D−.5

rowWD−.5
col , gives two sets of eigenvectors, those of

LW L′W and those of L′W LW . The algorithm above
concatenates these to form the matrix Y (as one would
get if performing spectral clustering on the large ma-
trix AsM−D). This thus provides clusters for each view
of each pattern. To get a cluster for the multi-view
pattern, when both views are approximately equally
reliable, the top p rows of the Y matrix can be av-
eraged with the bottom p rows before the k-means
step. If one view is significantly more reliable than the
other, one can just use the Y entries corresponding
to the more reliable view (The eigenvectors of LW L′W
reveal the clustering for the view 1 segments and the
eigenvectors of L′W LW for the view 2 segments). .

1It is possible to combine these ideas and use multiple
views, each (or one) of which is a co-clustering

For comparison, we consider the patterns to be in the
joint space given by the inputs in the two views. We
call this algorithm JOINT In this case, we can sim-
ply use the standard spectral clustering algorithm to
determine clusters. Note that in this case

AJOINT (i, j) = e−
||(xi−xj)||2

2σ2

= e−
||(x

(1)
i

−x
(1)
j

)||2+||x(2)
i

−x
(2)
j

)||2

2σ2

= Av1(i, j)
σ2
1

σ2 ·Av2(i, j)
σ2
2

σ2

Thus the affinity matrix for clustering in the joint
space can be obtained by a componentwise product
(Hadamard product or .* in Matlab) of the affinity ma-
trices for the individual modalities. [As shown above,
a person who ignored the multi-view structure of the
data would use one σ2 for all dimensions, however to
give this algorithm the best chance we allowed the use
of different σ2

1 and σ2
2 .] In other words, we actually

used AJOINT (i, j) = Av1(i, j) ·Av2(i, j)

We also compare our algorithm to one where the affin-
ity matrices of the two individual modalities are added.
This idea is mentioned in (Joachims, 2003) for the
semi-supervised case. We call this algorithm SUM.
case ASUM (i, j) = Av1(i, j) + Av2(i, j).

2. Theoretical Comparison of
Algorithms

As discussed in (Ng et al., 2001), the simplest case
for spectral clustering algorithms, is when the affinity
matrix is block diagonal. One can easily see that the
following statements are true.

Statement 1: For consistent block diagonal Av1 and
Av2, all 3 algorithms preserve block diagonal form.

Statement 2: If the affinity matrix in one view is block
diagonal but random in the other then only JOINT
results in a block diagonal affinity matrix.

When is the sM-D algorithm better than the JOINT
algorithm? Figure 2 shows a simple example that
shows that clustering in the joint space and M-D style
algorithms are not identical. The datapoints are num-
bered for the purposes of discussion. Consider in par-
ticular the membership of the circled datapoint (4).
The sM-D algorithm would cluster it with datapoints
1, 2 and 3. The JOINT algorithm is much more likely
(over a wider range of parameters and noise levels)
to cluster datapoint 4 with datapoints 5,6,7 and 8.
To quantify this effect, we constructed an affinity ma-
trix for each view from the example in Figure 2 and
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Marginal densities for two classes in each 
of two views

Highly Correlated

Conditionally Independent

View 2

View 1

View 2

View 1

View 2

View 1

View 2

View 1
0

0

Figure 1. A Consider two classes of patterns with two 1-D
views. The top of the figure represents the density for the
two pattern classes (bold and unbold) in View 1. Assume
the marginal densities in View 2 are similar. An exam-
ple scatterplot is shown on the left of the figure. On the
right,the same data is presented in a different format. Here
lines are joined between co-occurring patterns in the two
imaginary 1-D views/modalities (as shown at top). The
M-D algorithm wants to find a partition that crosses the
fewest lines. Two cases are shown for when the views are
conditionally independent or highly correlated. In the con-
ditionally independent case, there is a clear non-trivial op-
timal cut. In the correlated case,there are many equally
good cuts and the M-D algorithm will not perform well in
this case.

ran spectral clustering algorithms on noisy versions of
these affinity matrices for varying levels of noise and
varying cross-cluster strength m.

Av1 =



1 0 1 0 0 0 0 0
0 1 0 1 m 0 m 0
1 0 1 0 0 0 0 0
0 1 0 1 m 0 m 0
0 m 0 m 1 0 1 0
0 0 0 0 0 1 0 1
0 m 0 m 1 0 1 0
0 0 0 0 0 1 0 1



Av2 =



1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 m m 0 0
0 0 1 1 m m 0 0
0 0 m m 1 1 0 0
0 0 m m 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1


The cross-cluster strength m relates to the relative
spacing between the two clusters with respect to the
σ2 parameter in the spectral clustering algorithm. The
results are robust over a broad range of noise levels
(10−19 to 10−1). For m=0, all three algorithms cor-

View 1

1 2

4
5

7 8

6
3

View 2

Figure 2. A simple example that would give a different so-
lutions clustered in the joint space JOINT, than if the
sM-D algorithm was used.

rectly cluster nodes 1-4 and 5-8. However for m ≥ .05
the JOINT method breaks down and groups one of
nodes 4 or 5 with the wrong cluster. The SUM
algorithm breaks down for m ≥ .81 and the sM-
D algorithm continues to group appropriately until
m = .92. Figure 3 explains these results graphically as
well as showing the actual (pre-noise) matrices com-
puted WsM−D,ASUM , and AJOINT .

3. Clustering results with the course
webpage dataset

This dataset consists of two views of web pages. The
first view consists of text on the web page and the
second view consists of text on the links to the web
page (Blum & Mitchell, 1998). We use the six class
(course, department, faculty, project, staff, student)
version in (Bickel & Scheffer, 2004) consisting of tfidf
(term frequency inverse document frequency - where
a document is stored as a vector of weighted words.
Tfidf weights words more if they occur more in a doc-
ument and downweights words that occur often in the
full dataset) vectors without stemming. Patterns were
normalized within each view so that squared distances
reflected the commonly used cosine similarity measure.

We use the average entropy error metric of (Bickel &
Scheffer, 2004)

E =
k∑

i=1

mi(−
∑

j pij log2(pij))
m

where pij is the proportion of cluster i that is from
mixture component j, mi is the number of patterns
in class i and m is the total number of patterns. On
this dataset, with this error measure, perfect agree-
ment would result in E = 0, everybody in the same
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class would give E = 2.219 (and equal size clusters
with probability measurement equal to the base class
probabilities also gives E = 2.2).

We first compared the algorithms on the full dataset.
To do this we first searched for good σ1 and σ2 from
clustering in the individual views.

We found that (with the proper normalization), the
joint method worked slightly better(E=1.64) than the
sum (E=1.70) and m-d version (E=1.66) (standard er-
ror estimates are provided later when 90% of the data
is used). For comparison, Bickel and Scheffer report
measures on the same error measure (with 6 clusters)
of approximately2 1.73 (multi-view) and 2.03 (single
view) for their mixture-of-multinomials EM algorithm
and approximately 1.97 (multi-view) and 2.07 (single
view) for their spherical k-Means algorithm (Bickel &
Scheffer, 2004).

As mentioned, when computing the SVD of the matrix
LW = D−.5

rowWD−.5
col , one gets two sets of eigenvectors,

those of LW L′W and those of L′W LW and for equally
reliable views, the Y matrices can be averaged before
the k-means step. For this dataset however, view 1 is
significantly more reliable than view 2 and we obtain
improved performance by simply using the eigenvec-
tors from view 1.

The main advantage of our algorithm is that it can al-
low us to combine sources of information with different
numbers of views. To see this, remember that the affin-
ity submatrix W is in terms of how similar pairs are
to co-occurring pairs. Thus a single view pattern x

(1)
i

from view 1 does not contribute to the library of paired
occurrences but can still be related to patterns x

(2)
j in

view 2 according to how similar the pair (x(1)
i , x

(2)
j ) is

to the set of co-occurring patterns. Thus we can con-
struct a full bipartite affinity matrix between patterns
from view 1 and those from view 2 using equation 2
where p sums over only the paired patterns. This re-
sults in a matrix multiplication of the form Av1 ×Av2

where this time Av1 is (p + m) × p dimensional and
Av2 is p × (p + n) dimensional where there are p co-
occurring (multi-view) patterns and m patterns with
only view 1 and n patterns with only view 2 (see Fig-
ure 4). Note that the bottom right quadrant of the
resulting W matrix computes the affinity between an
unpaired view 1 pattern and an unpaired view 2 pat-
tern according to the sum of the affinities between this
pair (x(1)

p+i, x
(2)
p+j) and each of the set of observed pairs

{(x(1)
1 , x

(2)
1 ), ...(x(1)

p , x
(2)
p )}. The affinity between two

pairs of patterns is the product between the affinity
2estimated from their graph

between each view of each pattern.

In this case we use the eigenvectors of LW L′W to find
the clusters for both the paired and view 1 data and
must use the eigenvectors of L′W LW to find the clusters
for the data that only has view 2.

For comparison, we consider two other alternatives for
clustering data that consists of some multi-view pat-
terns and some single view patterns.

Alternative A using JOINT: cluster only the p
patterns consisting of x

(1)
i and x

(2)
j concatenated in

the joint space. Spectral clustering will give clusters
for these patterns. To report clusters for the m + n
unpaired patterns, report the cluster of the nearest
same view paired pattern of the pattern.

Alternative B: cluster the patterns from each view
separately. In this case the pairing information is lost.

Results for different values of p are reported in Tables
1 thru 3. Table 1 shows that there is a very slight but
significant performance advantage for the multi-view
patterns using Alternative A when 2084 (90%) of the
patterns have both views, but that Alternatives B and
our sM-D method perform significantly better on the
patterns that only have values for view 1 and our sM-D
method performs significantly better than both alter-
natives for patterns that only have values for view 2.
When only 1158 (50% ) of the patterns are provided
with two views, the sM-D algorithm performs signifi-
cantly better in all categories. Table 3 shows how the
sM-D algorithm varies for different numbers of paired
patterns. (The slight improvement in clustering per-
formance (with increased variance) for the paired view
data in the 50% paired case is likely due to an in-
creased chance of not including inappropriate pairs in
the paired dataset. Performance decreases with non
independent sources of information have been observed
with the non-spectral M-D algorithm. If leaving out
some data vectors increases the independence between
views, we would expect improved performance.) Per-
formance for the single view data is seen to decrease
gradually with less paired training data.

One value of an algorithm that can train with multi-
view data and report data for single-view data would
be when the single-view data arrive at a later time.
We are working on using the Nystrom approximation
(Charless Fowlkes & Malik, 2004) for such out of sam-
ple estimates. This would allow us to train with paired
data and provide cluster labels for later unpaired data.

- 24 -



Table 3. Average Entropy for sM-D for varying amount of two-view data. (See Table 1 for an explanation of terms)

2084 (90%) 1621 (70%) 1158 (50%) 694 (30%) 231 (10%)

both views 1.68± .003 1.66± .006 1.64± .01 1.68± .01 1.76± .03
View 1 only 1.63± .02 1.66± .01 1.66± .006 1.67± .01 1.73± .02
View 2 only 1.83± .02 1.91± .01 1.95± .006 1.97± .01 2.00± .01

Table 1. Average Entropy where 2084 (90%) of the Pat-
terns have both views. Alt. is an abbreviation for Alterna-
tive. All values are given ± 1 standard error of the mean
over 10 runs. The both view line refers to the error for
patterns that had two views, View 1 only refers to errors
on patterns that consisted of only view 1 and View 2 only
refers to errors on patterns that consisted of View 2 only.
All errors are using the average entropy error measure

Alt. A Alt B sM-D

both views 1.66± .003 1.68± .002 1.68± .003
View 1 only 1.83± .02 1.64± .02 1.63± .02
View 2 only 1.95± .02 2.04± .003 1.83± .02

Table 2. Average Entropy where 1158 (50%) of the Pat-
terns have both views. (See Table 1 for an explanation of
terms)

Alt. A Alt. B sM-D

both views 1.67± .01 1.69± .002 1.64± .01
View 1 only 1.90± .02 1.68± .006 1.66± .006
View 2 only 2.04± .006 2.04± .003 1.95± .006

4. Discussion

We have shown that spectral clustering is competi-
tive in the webpage domain and have introduced a
novel multi-view spectral clustering algorithm. While
it performs slightly worse than properly normalized
joint spectral clustering in the full webpage domain,
the difference is small and the sM-D algorithm has the
major advantage that it allows single view patterns to
benefit from the paired dataset. This allows one to
incorporate all available information to form the best
clusters when there is lots of single-view data to be
clustered.

The spectral Minimizing-Disagreement algorithm was
motivated by the earlier Minimizing-Disagreement al-
gorithm(de Sa, 1994a; de Sa & Ballard, 1998) and we
believe that of the different ways of spectral clustering

with multiple views, sM-D best incorporates the idea
of minimizing the disagreement of the outputs of two
classifiers (clusterers). In the appendix we reproduce
an argument from (de Sa, 1994b; de Sa & Ballard,
1998) that motivates, in the 1-D case, the minimizing-
disagreement approach as an approximation to mini-
mizing misclassifications.

The spectral implementation of the Minimizing-
Disagreement idea shares many of the advantages and
disadvantages of other spectral techniques. It does not
work as well for multi-class classifications as for binary.
It is quick to implement and run (with sparse matri-
ces) and has a guaranteed global optimum which is
related by a relaxation to the desired optimum.

Putting the algorithm in the framework of graph par-
titioning should allow easier comparison and combi-
nation with results from clustering in the joint space.
Also it should be straightforward to modify the algo-
rithm to incorporate some labeled data so that the
algorithm can be used in a semi-supervised way. We
are currently exploring these avenues.

Appendix: Minimizing Disagreement as
an Approximation to Minimizing
Misclassifications

The M-D algorithm to minimize the disagreement cor-
responds to the LVQ2.1 algorithm(Kohonen, 1990) ex-
cept that the “label” for each view’s pattern is the hy-
pothesized output of the other view. To understand
how making use of this label, through minimizing the
disagreement between the two outputs, relates to the
true goal of minimizing misclassifications in each view,
consider the conditionally independent (within a class)
version of the 2-view example illustrated in Figure
5. In the supervised case (Figure 5A) the availabil-
ity of the actual labels allows sampling of the actual
marginal distributions. For each view, the number
of misclassifications can be minimized by setting the
boundaries for each view at the crossing points of their
marginal distributions.

However in the self-supervised system, the labels are
not available. Instead we are given the output of the
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other view. Consider the system from the point of
view of view 2. Its patterns are labeled according to
the outputs of view 1. This labels the patterns in Class
A as shown in Figure 5B. Thus from the actual Class
A patterns, the second view sees the “labeled” distri-
butions shown. Letting a be the fraction of Class A
patterns that are misclassified by view 1, the resulting
distributions of the real Class A patterns seen by view
2 are (1− a)P (CA)p(x2|CA) and (a)P (CA)p(x2|CA).

Similarly Figure 5C shows View 2’s view of the pat-
terns from class B (given View 1’s current border).
Letting b be the fraction of Class B patterns misclas-
sified by view 1, the distributions are given by (1 −
b)P (CB)p(x2|CB) and (b)P (CB)p(x2|CB). Combining
the effects on both classes results in the “labeled” dis-
tributions shown in Figure 5D. The “apparent Class
A” distribution is given by (1 − a)P (CA)p(x2|CA) +
(b)P (CB)p(x2|CB) and the “apparent Class B” distri-
bution by (a)P (CA)p(x2|CA)+(1−b)P (CB)p(x2|CB).
The crossing point of these two distributions occurs at
the value of x2 for which (1 − 2a)P (CA)p(x2|CA) =
(1 − 2b)P (CB)p(x2|CB). Comparing this with the
crossing point of the actual distributions that occurs
at x2 satisfying P (CA)p(x2|CA) = P (CB)p(x2|CB) re-
veals that if the proportion of Class A patterns mis-
classified by view 1 is the same as the proportion of
Class B patterns misclassified by view 1 (i.e. a = b)
the crossing points of the distributions will be identi-
cal. This is true even though the approximated distri-
butions will be discrepant for all cases where there are
any misclassified patterns (a > 0 OR b > 0). If a ≈ b,
the crossing point will be close.

Simultaneously the second view is labeling the pat-
terns to the first view. At each iteration of the al-
gorithm both borders move according to the samples
from the “apparent” marginal distributions.
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Figure 3. The resulting graphs (and matrices) resulting
from the three algorithms a) sM-D b)SUM c) JOINT. ap-
plied to the matrices A1 and A2 above. The light lines
correspond to weights of m and 2m and the dark lines cor-
respond to weights of 1 and 1 + m2. In a) the solid lines
correspond to co-occurrence lines and the dashed lines, in-
ferred relationships. In c) the faint dotted lines only arise
due to noise. The e’s in the matrix result only from the
noise and would be different small numbers at each spot).
Each algorithm tries to find the smallest normal-
ized cut in its graph
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Figure 4. A graphical view of the matrix multiplication re-
quired to compute W when there are p patterns with both
views, m patterns with only view 1 and n patterns with
only view 2.
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Figure 5. An example joint and marginal distribu-
tion for a conditionally independent example prob-
lem. (For better visualization the joint distribution is ex-
panded vertically twice as much as the marginal distribu-
tions.) The darker gray represents patterns labeled “A”,
while the lighter gray are labeled “B”. (A) shows the label-
ing for the supervised case. (B) shows the labeling of Class
A patterns as seen by view 2 given the view 1 border shown.
a represents the fraction of the Class A patterns that are
misclassified by view 1. (C) shows the labeling of Class B
patterns as seen by view 2 given the same view 1 border.
b represents the fraction of the Class B patterns that are
misclassified by view 1. (D) shows the total pattern dis-
tributions seen by view 2 given the labels determined by
view 1. These distributions can be considered as the la-
beled distributions on which view 2 is performing a form
of supervised learning. (However it is more complicated as
view 1’s border is concurrently influenced by the current
position of view 2’s border). See text for more details.
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Abstract

Eigen-analysis such as LSI or KCCA was
already successfully applied to cross-lingual
information retrieval. This approach has a
weakness in that it needs an aligned training
set of documents. In this paper we address
this weakness and show that it can be suc-
cessfully avoided through the use of machine
translation. We show that the performance is
similar on the domains where human gener-
ated training seta are available. However for
other domains artificial training sets can be
generated that significantly outperform hu-
man generated ones obtained from a different
domain.

1. Introduction

The use of eigen-analysis in cross-lingual information
retrieval was pioneered by Dumais et al. (Dumais
et al., 1996). They used Latent Semantic Indexing to
documents formed by concatenating the two versions
of each document into a single file. The training set
was therefore required to be a paired dataset, mean-
ing a set of documents together with their translations
into the second language.

This restriction also applied to the later application of
kernel canonical correlation analysis to this task (Vi-
nokourov et al., 2002). The difference in this approach
is that the two versions of the documents are kept sep-
arate and projection directions for the two languages
are sought that maximise the correlation between the
projections of the training data. These directions are
then used to create a ‘semantic space’ in which the
cross-lingual analysis is performed.

Appearing in Proceedings of the Workshop on Learning with
Multiple Views, 22

nd ICML, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

This approach was applied initially to the Hansard
corpus of English/French paired documents from the
Canadian parliament (Vinokourov et al., 2002). The
semantic space derived in this way was further used to
perform text classification on a separate corpus. Here
the Reuters-21578 data was used.

The same approach has been used for more distinct
languages in a paper studying cross-lingual informa-
tion retrieval of Japanese patents (Li & Shawe-Taylor,
2005). Again this relied on using a paired dataset of
Japanese patents as training data.

The approach to cross-lingual information retrieval
and semantic representation has therefore proven re-
liable and effective in a number of different contexts.
There is, however, an apparently unavoidable weak-
ness to the approach in that a paired training set is
required whose documents adequately cover the top-
ics of interest. Indeed in the experiment that applied
the semantic space learned with Hansard data to the
Reuter’s documents, the small overlap of the two vo-
cabularies inevitably resulted in poorer performance.

This paper addresses this weakness by using machine
translation to generate paired datasets that can be
used to derive a semantic space using documents di-
rectly relevant to the target domain.

The paper is organised as follows. The next section
discusses the questions raised by the use of automatic
translation and outlines the experiments that will be
presented to provide answers to these questions. Sec-
tion 3 gives a brief summary of the KCCA approach to
finding a semantic subspace mapping, while Section 4
presents the experimental results. We finish with some
conclusions.

2. Using machine translation

The use of machine translation (MT) ensures that
appropriate datasets can be generated but raises the
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question of whether their quality will be sufficient to
derive an accurate semantic space. Clearly we would
expect that having a hand translated dataset will be
preferable to using MT software. The first question
this paper will address is the extent to which this is
true.

Hence, the paper investigates how the quality of a ma-
chine translation generated dataset compares with a
true paired corpus when one is available. This exper-
iment is performed on the Hansard corpus with very
encouraging results.

The advantage of using a machine generated paired
dataset is that the topic of the articles will be identi-
cal to those on which the analysis is to be performed.
In contrast the best available hand translated corpus
might be for documents whose topics are only loosely
related to those being studied. So we have a dilemma:
do we use a machine translated corpus with a close
topic match or a hand translated corpus with a weaker
match. The second set of experiments reported in this
paper will attempt to address this dilemma.

We consider a dataset for which paired training data
is not available. Here we tackle a classification task
and investigate the effectiveness of the semantic space
generated from the translated paired corpus. We com-
pare classification accuracy using this space with the
space obtained from a paired dataset with a weaker
overlap of topic with the documents being classified.
For these experiments we used the now standard clas-
sification algorithm of support vector machines. Again
the results obtained are very encouraging.

2.1. Related work

The MT was already used in the context of cross-
language IR. D. W. Oard used it in the (D. W. Oard,
1998) as a method for translating the queries or the
documents between bag-of-words spaces for different
languages. A more similar approach to ours was used
in the (M. L. Littman, S. T. Dumais and T. K. Lan-
dauer, 1998). They generated a separate LSI seman-
tic space for each of the languages. For example, the
semantic space was generated using the English docu-
ments from the training set and all non-English docu-
ments from the test set were than translated using MT
and mapped into this semantic space. Our approach
differs in that it only uses MT for the training period.
In a practical setup this can be crucial since there is
no need to call the time-expencive MT in the query
loop. The aim of this paper is to show that MT can
be used for obtaining a paired corpus for KCCA that
is well matched to the target documents and not to
to perform a general comparison of KCCA with other

CLIR methods.

3. Summary of KCCA

Canonical Correlation Analysis (CCA) is a method of
correlating two multidimensional variables. It makes
use of two different views of the same semantic object
(eg. the same text document written in two different
languages) to extract representation of the underlying
semantics.

Input to CCA is a paired dataset S = {(ui, vi); ui ∈
U, vi ∈ V }, where U and V are two different views of
the data – each pair contains two views of the same
document. The goal of CCA is to find two linear
mappings into a common semantic space W from the
spaces U and V . All documents from U and V can
be mapped into W to obtain a view- or in our case
language-independent representation.

The criterion used to choose the mapping is the corre-
lation between the projections of the two views across
the training data in each dimension. This criterion
leads to a generalised eigenvalue problem whose eigen-
vectors give the desired mappings.

CCA can be kernelized so it can be applied to fea-
ture vectors only implicitly available through a ker-
nel function. There is a danger that spurious correla-
tions could be found in high dimensional spaces and so
the method has to be regularised by constraining the
norms of the projection weight vectors. A parameter τ

controls the degree of regularisation introduced. The
kernelized version is called Kernel Canonical Correla-
tion Analysis (KCCA).

Example Let the space V be the vector-space model
for English and U the vector-space model for French
text documents. A paired dataset is then a set of
pairs of English documents together with their French
translation. The output of KCCA on this dataset is
a semantic space where each dimension shares simi-
lar English and French meaning. By mapping Eng-
lish or French documents into this space, a language
independent-representation is obtained. In this way
standard machine learning algorithms can be used on
multi-lingual datasets.

4. Experiments

In the following experiments, two issues regarding ar-
tificially generated corpora are discussed. First we
compared it to a human generated corpus in domains
where a human generated corpus is already available.
The goal of this part is to check if the artificial corpus
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can deliver comparable results. For the second part
of the experiments we chose a domain and a problem
for which human generated corpora were not available.
We wanted to show, that by using documents from this
domain an artificial corpus can be generated which
outperforms human generated corpora obtained from
different domains. Due to the datasets available we
chose an information retrieval task for the first part
of experiments and a text classification task for the
second part.

4.1. Information Retrieval

The first part of experiments was done on the Hansards
corpus (Germann, 2001). This corpus contains around
1.3 million pairs of aligned text chunks from the offi-
cial records of the 36th Canadian Parliament. The
raw text was split into sentences with Adwait Ratna-
parkhi’s MXTERMINATOR and aligned with I. Dan
Melamed’s GSA tool. The corpus is split into two
parts, House Debates (around 83% of text chunks)
and Senate Debates. These parts are than split into
a training part and two testing parts. For our exper-
iments we used the House Debates part from which
we used only the training part and first testing part.
The text chunks were split into ‘paragraphs’ based on
‘* * *’ delimiters and these paragraphs were treated
as separate documents. We only used documents that
had the same number of lines in both their English
and French version.

The training part was used as a human gener-
ated aligned corpus for learning semantic space with
KCCA. In order to generate an artificial aligned corpus
we first split the training documents into two halves.
From the first half we kept only the English documents
and only the French documents from the second half.
In this way we obtained two independent sets of doc-
uments, one for each language. We then used Google

Language Tools 1 to translate each document into its
opposite language and generate an artificial aligned
corpus. Some statistics on the corpora used in this
experiment can be found in Table 1.

Table 1. Hansards aligned corpora

Train Artificial Test1

Text chunks 495,022 495,022 42,011
Documents 9,918 9,918 896
En. words 38,252 39,395 16,136
Fr. words 52,391 55,425 21,001

From each corpus we learned with KCCA a language
independent semantic space with 400, 800 or 1200 di-

1http://www.google.com/language_tools

Table 2. Top1 and Top10 results for the queries with 5
keywords are on left side and with 10 keywords are on the
right side

n 1 [%] 10 [%] 1 [%] 10 [%]

En - En 96 100 99 100
Fr - Fr 97 100 100 100

mensions on a subset of 1500 documents.

The documents for these subsets were selected ran-
domly and all results were averaged over five runs with
different seeds for the random number generator. We
ran experiments for the regularization parameter τ set
to 0.2, 0.5 and 0.8, but because results for different
parameters were not much different only results for
τ = 0.5 are presented. The threshold for the Partial
Gram-Schmidt algorithm (or equivalently incomplete
Cholesky decomposition of the kernel matrices) was
set to 0.4.

For the information retrieval task, the entire first test-
ing part of the Hansards corpus was projected into the
language independent semantic space learned from the
human generated corpus or from the artificial corpus.
Each query was treated as a text document and its
TFIDF vector was projected into the KCCA semantic
space. Testing documents were than retrieved using
nearest neighbour with cosine distance to the query.

In the first experiment each English document was
used as a query and only its mate document in French
was considered relevant for that query (Vinokourov
et al., 2002). The same was done with French docu-
ments as queries and English documents as test doc-
uments. We measured the number of times that the
relevant document appeared in the set of the top n re-
trieved documents (Top n). The Top1 results for both
corpora are on average 96-98%, with results for human
generated corpus generally scoring around 2% higher.
The Top10 results were 100% for the both corpora.

For the next experiment we extracted 5 or 10 key-
words from each document, according to their TFIDF
weights, and used them for a query. Only the docu-
ment from which the query was extracted and its mate
document were regarded as relevant. We first tested
queries in the original bag-of-words space and these re-
sults can serve as a baseline for the experiments done
in the KCCA semantic spaces. Results are shown in
Table 2. All queries were then tested in a similar way
as before, the only difference is that this time we also
measured the accuracy for cases where the language of
the query and the relevant document were the same.
Results for the queries with 5 keywords are presented
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Table 3. Top1 and Top10 results for the queries with 5
keywords for the human generated corpus (top) and arti-
ficial corpus (bottom). The numbers are Top1/Top10 in
percent.

En – En En – Fr Fr – En Fr – Fr

dim 1/10 1/10 1/10 1/10

400 76/98 59/93 60/92 74/98
800 83/99 64/95 65/94 81/99
1200 87/99 66/96 65/95 84/99

400 76/97 49/89 50/87 72/97
800 84/99 55/91 56/89 80/99
1200 86/99 58/91 59/90 83/99

in Table 3. and for the queries with 10 keywords in
Table 4.

It is interesting to note that, for cases where the
query was in the same language as the documents we
searched over, the results are equal or slightly better
for the artificial corpus than for the human generated
one. This shows that, from both corpora, KCCA finds
a similar semantic basis in vector-space models of Eng-
lish and French documents. However, the results for
the artificial corpus are not as good as for the hu-
man generated corpus when it comes to cross-lingual
queries. For queries with only 5 keywords, Top1 results
for the artificial corpus are on average around 8% lower
than for the human generated corpus while for queries
with 10 keywords this drops to around 7%. Note that
this difference stays constant when the dimensionality
of semantic space increases. The difference between ar-
tificial and human generated corpora, when measuring
the recall for the top 10 retrieved documents, drops to
around 5% for queries with 5 keywords and to only 2%
for queries with 10 keywords. The results for the cross-

Table 4. Top1 and Top10 results for the queries with 10
keywords for the human generated corpus (top) and arti-
ficial corpus (bottom). The numbers are Top1/Top10 in
percent.

En – En En – Fr Fr – En Fr – Fr

dim 1/10 1/10 1/10 1/10

400 93/99 79/99 78/97 90/100
800 96/100 82/99 81/98 94/100
1200 97/100 82/99 81/98 96/100

400 94/100 70/96 69/96 91/100
800 97/100 75/98 75/97 95/100
1200 97/100 77/98 75/97 96/100

language parts of the experiments are lower for the ar-
tificial corpus than for the human generated corpus.
The difference is not significant and a language inde-
pendent semantic space learned on an artificial aligned
corpus can still be successfully used in practice.

4.2. Classification

The second part of the experiments was done on the
Reuters multilingual corpora (Reuters, 2004) (mul,
2004), which contain articles in English, French, Ger-
man, Russian, Japanese and other languages. Only
articles in English, French and German were used for
this experiment. Articles for each language were col-
lected independently and no human generated aligned
corpus was available for this domain. All articles are
annotated with categories.

The task addressed in this experiment was how to
make use of the existing corpus of annotated docu-
ments from one language, for example English, for do-
ing classification in some other language, for example
French. This can be done with the use of KCCA for
construction of a language independent semantic space
in which annotated English documents can be used to
train a classifier that can also be applied to the French
documents [4]. The problem with this approach is that
the expensive task of annotating French documents is
replaced with the even more expensive task of gener-
ating the aligned corpus needed for KCCA. This can
be elegantly avoided through the use of MT tools. An-
other possibility is to use an aligned corpus from some
other domain, for example the Hansards corpus used in
the previous experiments. However, documents from
that corpus belong to different domain and may not
cover all the semantics that appear in the news arti-
cles. On the other hand the artificial corpus is con-
structed from the same set of documents that will be
used for training the classifiers.

For this experiment we picked 5000 documents for each
of the three languages from the Reuters corpus. Sub-
sets of these documents formed the training datasets
for the classifiers. These same documents were also
used for generating artificial aligned corpora in the
same way as in the first part of the experiments;
Google Language Tools were used to translate English
documents to French and German and the other way
around. In this way we generated English-French and
English-German aligned corpora. We used the training
part of the Hansards corpus as English-French human
generated aligned corpora. Some statistics on the cor-
pora used in this experiment can be found in Table 5.

KCCA was used for learning a language independent
semantic space from these aligned corpora. The pa-
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Table 5. English-French and English-German aligned cor-
pora from the Reuters corpus.

En-Fr En-Gr

Paragraphs 119,181 104,639
Documents 10,000 10,000
English words 57,035 53,004
French words 66,925 —
German words — 121,193

rameters used for learning were the same as for the
information retrieval task. The only difference is that
only subsets of 1000 documents were used. These sub-
sets were selected randomly and the results presented
were averaged over 5 runs. A linear SVM was used
as a classification algorithm with cost parameter C set
to 1.

The classification experiment was run in the follow-
ing way. All the classifiers were trained on subsets
of 3000 documents from the training set and the re-
sults were averaged over 5 runs. This means that the
presented results are averaged over 25 runs. The clas-
sifiers trained in the original vector-space models are
used as a baseline to which the ones trained in the
KCCA semantic space can be compared. The doc-
uments from the English training set were projected
into KCCA semantic space and a classifier was trained
on them. The same was done with the French and
German documents. The classifiers were tested on a
subset of 50,000 documents from the Reuters corpora.
The testing documents were also projected to KCCA
semantic space for classifiers living in that space. We
measured average precision: baseline results are shown
in Table 6.

Table 6. Average precision for classifiers for categories
CCAT, MCAT, ECAT and GCAT

CCAT MCAT ECAT GCAT

English 85 % 80 % 62 % 86 %
French 83 % 85 % 63 % 94 %
German 85 % 86 % 62 % 91 %

The results for the human generated and for the arti-
ficial English-French corpus are presented in Table 7
and in Figure 1. The results obtained with the arti-
ficial corpus were in all cases significantly better than
the results obtained with the Hansard corpus and are
close to the baseline results for single language clas-
sification. Note that the results for the artificial cor-
pus only slightly improve when the dimensionality of
semantic space increases from 400 to 800 while the re-

Table 7. Average precision [%] for classifiers learned in
KCCA semantic space learned Hansards/artificial corpus
(Hansard/artificial). The results are for the semantic space
wiht 400 (top) and 800 (bottom) dimensions.

CCAT MCAT ECAT GCAT

En-En 59/79 40/76 25/51 51/78
En-Fr 41/78 21/81 18/54 75/89
Fr-En 55/80 30/76 22/50 40/77
Fr-Fr 40/78 24/82 19/54 77/89

En-En 67/80 61/82 38/54 67/79
En-Fr 47/79 32/82 27/55 80/90
Fr-En 60/80 43/76 30/52 51/78
Fr-Fr 53/79 59/83 38/56 85/89

sults for the human generated corpus increase by 10
or more percent. This shows that the first 400 di-
mensions learned from the artificial corpus are much
richer at capturing the semantics of news articles than
the ones learned from Hansard corpus.

Results for classification based on English-German ar-
tificial aligned corpus are shown in Table 8. Surpris-
ingly in some cases the cross-lingual classifications do
better than a straight German classifier. The results
are not as close to the base line (Table 6) as the results
from English-French artificial corpus. We suspect that
this is due to the different structure of German which
is evident in Table 5; the number of different words in
the German articles is twice as high as in the English
or French documents. One workaround would be to
use more advanced preprocessing before using the bag
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Figure 1. Average precision [%] for the classification of
English and French documents in the 800 dimensional se-
mantic space.
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Table 8. Average precision [%] for classifiers learned in
KCCA semantic space learned on artificially generated
English-German aligned corpus

CCAT MCAT ECAT GCAT

En-En 75 77 49 81
En-Gr 72 82 46 87
Gr-En 70 75 43 78
Gr-Gr 67 83 44 86

En-En 76 78 52 82
En-Gr 73 82 47 88
Gr-En 71 75 46 79
Gr-Gr 68 83 47 86

of words or a use of different document representation
like the string kernel.

5. Conclusion

The paper has addressed a pressing practical prob-
lem in the application of KCCA to cross-lingual infor-
mation retrieval and language-independent semantic
space induction in general, namely how to find an ap-
propriate paired dataset.

Frequently we will only have access to a hand trans-
lated training corpus that is loosely related to the doc-
ument corpus that is being analysed. The paper pro-
poses a method of addressing this problem by using
automatic machine translation tools to generate an
‘artificial’ paired corpus directly from the document
corpus itself.

This raises two questions that are analysed in the pa-
per. Firstly, how much worse is a semantic space de-
rived from an artificial corpus than from a hand trans-
lated one, and secondly can the topic match offset any
degradation resulting from the machine translation.

The first experiment showed that the degradation in
performance does exist when we move to MT, but in a
testing cross-lingual information retrieval task the re-
duction in recall was below 10%. This result certainly
suggests that the advantage of exact topic match could
well result in an increase in the quality of the semantic
space obtained for a corpus with no hand translations
available.

Our second experiment confirms this conjecture by
demonstrating that the MT method improves cross-
lingual classification results for the multi-lingual
Reuters corpus when compared with using the seman-
tic space induced from the hand translated Hansard

corpus.

For these experiments the results are even more en-
couraging. They show a very significant advantage
for the MT approach. Furthermore, the difference
between the classification results using the semantic
space and those obtained for single language classi-
fication using the bag of words feature space is not
very large. This suggests that the method could be
used to provide a general language independent classi-
fier that can be used to classify documents from either
language. This could potentially make it possible to
use the topic labelling from one language to generate
labels for newswire documents from the second lan-
guage without the need for trained staff with appro-
priate language skills to perform the classification.
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Abstract

We propose an algorithm for forming a hier-
archical clustering when multiple views of the
data are available. Different views of the data
may have different underlying distance mea-
sures which suggest different clusterings. In
such cases, combining the views to get a good
clustering of the data becomes a challenging
task. We allow these different underlying dis-
tance measures to be arbitrary Bregman di-
vergences (which includes squared-Euclidean
and KL distance). We start by extending
the average-linkage method of agglomerative
hierarchical clustering (Ward’s method) to
accommodate arbitrary Bregman distances.
We then propose a method to combine mul-
tiple views, represented by different distance
measures, into a single hierarchical cluster-
ing. For each binary split in this tree, we
consider the various views (each of which
suggests a clustering), and choose the one
which gives the most significant reduction in
cost. This method of interleaving the dif-
ferent views seems to work better than sim-
ply taking a linear combination of the dis-
tance measures, or concatenating the feature
vectors of different views. We present some
encouraging empirical results by generating
such a hybrid tree for English phonemes.

1. Introduction

There has been a lot of recent machine learning re-
search on exploiting multiple views of data. For in-
stance, (Blum & Mitchell, 1998) notice that web pages

Appearing in Proceedings of the Workshop on Learning with
Multiple Views, 22nd ICML, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

can be viewed in two ways – by the words occur-
ring in them, and by the words occurring in pages
that point to them – and show how a certain type
of conditional independence between these views can
be exploited very effectively in semi-supervised learn-
ing. Likewise, (Collins & Singer, 1999) demonstrate
a semi-supervised method for learning a named-entity
classifier, using spelling and context as the two differ-
ent views.

There has also been some encouraging work on using
multiple views for unsupervised learning (eg. (Dhillon
et al., 2003) and (Bickel & Scheffer, 2004)), in partic-
ular for clustering. It is natural to think that multiple
views of the data should help yield better clusterings.
However, there is a basic problem that needs to be re-
solved carefully. The various views may suggest rather
different and incompatible clusterings of the data, es-
pecially if there is some independence between them.
How can these different clusterings be reconciled?

We focus on hierarchical clusterings. These are pop-
ular tools for exploratory data analysis because they
depict data at many level of granularity, and because
there are simple algorithms for constructing them. In
this paper, we propose a method for reconciling mul-
tiple views to generate a single hierarchical clustering.

Our model is as follows: there are n objects to be clus-
tered. Each view corresponds to a different distance
function on these objects. The most common dis-
tance function, which for instance underlies k-means,
is squared Euclidean distance. Another useful mea-
sure is KL-divergence, which for instance is used for
clustering words in (Pereira et al., 1993). These two
distance functions are members of a much larger fam-
ily, the Bregman divergences. These are the natural
distance functions for exponential families of distribu-
tions, which is perhaps why they crop up in diverse ma-
chine learning contexts (Lafferty et al., 1997; Banerjee
et al., 2004). In this paper, we allow each view to be

- 35 -



represented by a different Bregman divergence.

We start by extending average-linkage agglomerative
clustering (specifically, Ward’s method) to accommo-
date arbitrary Bregman divergences. Average-linkage
typically assumes squared Euclidean norm as the un-
derlying distance measure, and exploits special proper-
ties of this distance to substantially increase efficiency.
We show that these same speedups can be realized for
all Bregman divergences.

A straightforward way to accommodate multiple views
would be to use a linear combination of their different
distance measures. This approach runs into some ba-
sic problems. First of all, the different distances might
at very different scales, and it might not be possible
to make them comparable to one another by a simple
linear transformation. Second, if the views represent
very different information, then a linear combination
of the two distances may simply serve to dampen or
obscure the information in each. These intuitions are
borne out in the experiments we conduct, in which
linear combinations of the distance measures tend to
destroy well-formed clusters that are present in indi-
vidual views (based on just one distance function).

We propose a hybrid hierarchical clustering which is
constructed top-down and in which each binary split
is based upon a single view, the best view at that par-
ticular juncture. At each point in the tree construc-
tion, we have a certain cluster of objects that needs to
be partitioned in two. We try out all the views; for
each view, we determine a good split (into two clus-
ters) using agglomerative clustering, and we note the
reduction in cost due to that split. We choose the
view that gives the biggest multiplicative decrease in
cost. Thus, the tree keeps the best splits – the most
significant clusterings – suggested by each view.

To try this out, we formed a hierarchical clustering
for 39 phonemes, using data from the TIMIT data-
base (Zue & Seneff, 1988). We used two views of
each phoneme: a 39-dimensional vector in Euclidean
space, the mean of the samples of that phoneme, where
each speech sample is encoded using the standard mel-
frequency cepstral coefficients. For the second view,
we considered context information, specifically the dis-
tribution over the next phoneme. This is a probability
vector in 39-dimensional space, with KL-divergence as
the natural distance. The results were encouraging.

2. Bregman Divergences

Many of the most common families of probability dis-
tributions – such as Gaussian, Binomial, and Poisson
– are exponential families. This formalism has turned

out to be very powerful in statistics and machine learn-
ing because it is general enough to include many distri-
butions of interest (another example: the distributions
which factor over a specified undirected graph) while
at the same time being specific enough that it implies
all sorts of special properties.

It turns out that each exponential family has a nat-
ural distance measure associated with it. In the case
of spherical Gaussians, it is perhaps obvious what this
distance measure is: squared Euclidean distance, be-
cause the density at any given point is determined by
its squared Euclidean distance from the mean.

Let’s look at another example. In the multinomial
distribution, it can be checked that the density of a
point depends on its KL-divergence from the mean. In
a crucial sense, therefore, KL divergence is the natural
distance measure of the multinomial. Notice that it is
not a metric: it is not symmetric and does not satisfy
the triangle inequality. However, as we will see, it is
well-behaved in some ways and has a lot in common
with squared Euclidean distance.

The various distance measures underlying different ex-
ponential families are collectively known as the Breg-
man divergences (Lafferty et al., 1997; Banerjee et al.,
2004). We now give the standard formal definition of
these divergences, which does not follow the intuition
about exponential families but rather associates each
divergence with a specific convex function.

Definition Let φ : S → R be a strictly convex func-
tion which is defined on a convex domain S ⊂ Rd and
is differentiable on the interior of S. The Bregman
distance Dφ : S × int(S) → [0,∞) is then defined by

Dφ(x,y) = φ(x)− φ(y)−∇φ(y) · (x− y). (1)

Some examples: choosing φ = 1
2‖x‖

2 gives Dφ(x,y) =
1
2‖x− y‖2, squared Euclidean distance.

Dφ(x,y) =
1
2
‖x‖2 − 1

2
‖y‖2 − y · (x− y).

=
1
2
‖x‖2 − 1

2
‖y‖2 − y · x + ‖y‖2

=
1
2
‖x‖2 +

1
2
‖y‖2 − y · x

=
1
2
‖x− y‖2 (2)

Similarly, φ(x) =
∑d

i=1 xi log xi gives

Dφ(x,y) =
d∑

i=1

xi log
xi

yi
−

∑
i

xi +
∑

i

yi, (3)

which is a generalization of KL-divergence (it reduces
to the regular definition when x and y are probability
measures and therefore sum to one).
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2.1. Properties of Bregman divergences

Bregman divergences share a lot of the special prop-
erties of squared Euclidean distance. For instance,
they satisfy a Pythagorean theorem (Lafferty et al.,
1997). This makes it hopeful that many algorithms
which seem expressly designed for squared Euclidean
distance (and therefore for data which is, in a sense,
Gaussian), such as k-means or average-linkage clus-
tering, might be extendable to other Bregman diver-
gences (that is, to other exponential families).

Recent work (Banerjee et al., 2004) has extended k-
means to arbitrary Bregman divergences. This is pos-
sible due to certain properties that all Bregman diver-
gences possess:

1. Given any set of points S, the single point µ which
minimizes the aggregated Bregman distance∑

x∈S

Dφ(x, µ)

is simply the mean of S, which we’ll denote µS .

2. The additional cost incurred by choosing a differ-
ent point µ 6= µS as the center of cluster S has a
very simple form:∑

x∈S

Dφ(x, µ) =
∑
x∈S

Dφ(x, µS) + |S| ·Dφ(µS , µ)

(4)

We will make extensive use of these properties.

3. Extending average-linkage clustering
to Bregman divergences

There are several methods for average-linkage agglom-
erative clustering, of which Ward’s method is perhaps
the most principled. Given n data points, it starts by
putting each point in a singleton cluster of its own. It
then repeatedly merges the two closest clusters, until
there is just one cluster containing all the points. The
sequence of merges defines the hierarchical clustering
tree; along the way we get k-clusterings (partitions
into k clusters) for all k = 1, . . . , n. In Ward’s method,
which is designed to use squared Euclidean distance,
the distance between two clusters S, T is the increase
in k-means cost occasioned by merging them, in other
words, cost(S ∪T )− cost(S)− cost(T ), where the cost
of a set of points is defined as

cost(S) =
∑
x∈S

‖x− µS‖2.

In particular, when the algorithm has k + 1 clusters,
and is deciding which pair to merge, it will choose

the pair whose merger gives the smallest overall k-
means cost. Thus Ward’s method strives to produce
k-clusterings with small k-means cost, for all k.

This suggests how to extend the method to other Breg-
man divergences: simply change the cost function,

cost(S) =
∑
x∈S

Dφ(x, µS).

Notice that this makes sense because of property 1
above. The resulting algorithm is once again trying
to minimize k-means cost, but for our more general
distance functions.

This is straightforward enough, but more work is
needed to make this new algorithm practical. In
Ward’s method, the properties of Euclidean distance
are used to compute the cost of candidate mergers,

WardEuc(S, T ) = cost(S ∪ T )− cost(S)− cost(T ),

very quickly. There is no need to actually sum over
these three clusters; instead, the expression reduces to

WardEuc(S, T ) =
|S||T |
|S|+ |T |

‖µS − µT ‖2,

which is very quick, assuming that the means and sizes
of clusters are kept available. Notice also that µS∪T

and |S ∪ T | can easily be computed from the means
and sizes of S, T .

We now see that a similar simplification is possible
for any Bregman divergence, and thus we can handle
any of these distance functions without any additional
time complexity. More precisely:

Lemma For any Bregman divergence Dφ, the cost of
merging two clusters S, T is:

Wardφ(S, T ) = cost(S ∪ T )− cost(S)− cost(T )
= |S|φ(µS) + |T |φ(µT )− (|S|+ |T |)φ(µS∪T ).

Proof: For any Bregman divergence Dφ, the cost of
merging two clusters S, T is:

Cost(S ∪ T )− Cost(S)− Cost(T )

=
∑

x∈S∪T

Dφ(x, µS∪T ) −
∑
x∈S

Dφ(x, µs)

−
∑
x∈T

Dφ(x, µT )
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Using equation (4), we get

=
∑

x∈S∪T

Dφ(x, µS∪T )

−
∑
x∈S

Dφ(x, µS∪T ) + |S| ·Dφ(µs, µS∪T )

−
∑
x∈T

Dφ(x, µS∪T ) + |T | ·Dφ(µT , µS∪T )

= |S| · φ(µs) + |T | · φ(µT )− (|S|+ |T |) · φ(µS∪T )
− |S| · µsφ

′(µS∪T ) + |S| · µS∪T φ′(µS∪T )
− |T | · µT φ′(µS∪T ) + |T | · µS∪T φ′(µS∪T )

= |S|φ(µs) + |T |φ(µT )− (|S|+ |T |)φ(µS∪T )

−

[ ∑
x∈S∪T

x

]
φ′(µS∪T ) +

[ ∑
x∈S∪T

x

]
φ′(µS∪T )

= |S| · φ(µs) + |T | · φ(µT ) − (|S| + |T |)φ(µS∪T )

So we get,

Cost(S ∪ T )− Cost(S)− Cost(T )
= |S| · φ(µs) + |T | · φ(µT )− (|S|+ |T |)φ(µS∪T )

The final expression above can be evaluated quickly.
For example, for KL distance, we get

WardKL(S, T ) = |S|µS · log(µS) + |T |µT · log(µT )
− (|S|+ |T |)µS∪T · log(µS∪T )

(where the logarithms are taken coordinatewise).

4. Multiple views

Often we may have different set of features, obtained in
different ways, and giving different type of information
about the data we are trying to cluster. For example,
we can obtain three different views of a web page, the
first being the words in the web page itself, the second
being the words in the web pages pointing to it, and
third being some other statistical information about
the page such as the size, number of times it is accessed
etc. Each of the views is a useful source of information
about the web page, and together they should be able
to yield a better clustering than we could get from one
view alone, but it is not obvious how to combine them.

Hybrid clustering algorithm
Input: A set of n points given as two views (represen-
tations) X and Y , each in a space with an underlying
Bregman divergence.

1. If n = 1 put the single point in a leaf and return.

2. Apply the generalized Ward’s method to X and Y
in turn, and in each case retrieve the 2-clustering.
Call these Cx1, Cx2 (for X) and Cy1, Cy2 (for Y ).

3. Choose the “better” of the two splits, to divide
X, Y into two clusters, [X1, Y1] and [X2, Y2].

4. Create a tree node for this split.

5. Recursively handle [X1, Y1] and [X2, Y2].

6. Return tree.

4.1. Combining multiple views: first try

Perhaps the most obvious approach to accommodat-
ing multiple views is to concatenate the feature vectors
corresponding to the different representations, or more
generally, to use a linear combination of their differ-
ent underlying distance measures. This approach is
problematic on two fronts. First, the various distance
measures might be incomparable (as with Euclidean
distance and KL divergence), making it somewhat ab-
surd to form linear combinations of them. Second, if
the views are orthogonal and suggest different clus-
terings, then in the linear combination this structure
might get obscured. In fact, in our experiments we see
when features are naively combined by such methods,
we lose some of the good clusters clearly present in
visible in the individual views.

4.2. A hybrid approach

When combining multiple views, we want to preserve
cluster structures that are strongly suggested by the
individual views. The idea is that if there was a strong
separation between the data points in one of views,
that separation should not be lost while combining the
information from other views. We propose building a
hierarchical tree in a top-down fashion that uses the
best view available at each split point in the tree. This
hybrid algorithm is outlined in the figure above.

To choose the best view for a given split, the algo-
rithm computes the 2-clusterings suggested by all the
different views, and picks the best one. How should
this be defined? Intuitively, we want to pick the view
that provides the most well-separated clustering, that
is, the largest reduction in the cost. We have to be
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Figure 1. When there are three true clusters, K-means
could split the third clusters into two pieces (shown in A),
where as 2-clusters generated using Ward’s method is more
likely to keep the clusters intact (shown in B).

careful about how to do this; since the distance func-
tions in different views are potentially on very different
scales it is not a good idea to simply compare absolute
differences in cluster costs.

Instead, we use ratios. We measure the goodness of
a particular 2-clustering (binary split suggested by a
particular view) by the ratio of its cost to the cost of
the single combined cluster. That is, the goodness of
a split of cluster X into [X1, X2] is

cost(X)
cost(X1) + cost(X2)

.

This particular measure (or rather its reciprocal)
is equivalent to the (2-norm) Davies-Bouldin index
(Davies & Bouldin, 1979) of similarity between two
clusters.

When we are generating a 2-clustering from a par-
ticular view, we use agglomerative clustering (Ward’s
method) rather than k-means, even though the latter
is simpler and quicker. Since at every step we split the
data into exactly two clusters, using k-means could
give us a bad division in case the data had three true
clusters: it is more likely to split the third cluster into
two pieces than Ward’s method, which would likely in-
stead split the three clusters by putting the two closer
ones together(Figure 1). This approach adds a O(n2)
complexity to our algorithm so may not be used for
larger data sets.

5. Experiments

Our experimental results are for the 39 English lan-
guage phonemes. We used two views of each phoneme,
that were available in the TIMIT data set. The first
view was intended to represent the speech signal itself,
and consisted of a 39-dimensional vector in Euclidean
space. To form this vector for a given phoneme, we
looked at all utterances of that phoneme in the data
set and transformed each utterance into a sequence
of 39-dimensional vectors consisting of mel-frequency

Figure 2. Classification chart of English phonemes, as in
(Rabiner & Juang, 1993). Each family of phonemes has
been assigned a color to make it easier to compare the
various trees generated by experiments.

cepstral coefficients. This is a standard representation
for speech recognizers. We picked one vector of coeffi-
cients from roughly the middle of each utterance, and
then averaged these (over utterances) to get a single
39-dimensional vector for the phoneme. We thought
of this vector as residing in Euclidean space since this
is implicitly the distance measure used on this data by
most speech recognizers.

The second view consisted of context information,
specifically about the next phoneme. For each
phoneme, we constructed a 39-dimensional vector rep-
resenting transition probabilities to other phonemes
(the ith entry was the chance that this particular
phoneme would be followed by the ith phoneme). We
used Laplace smoothing to avoid zero probability val-
ues. For this view, we used KL-divergence since it is
a natural distance to use with probability measures.
(It is purely a coincidence that both views of the
phonemes have the same dimensionality.)

A reference hierarchical clustering already exists for
phonemes, and in shown in Figure 2, copied over from
(Rabiner & Juang, 1993). This provides an invaluable
standard against which to judge the various hierarchi-
cal clusterings we generate.
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Figure 3. Hierarchical clustering based upon the speech
signal, in 39-dimensional Euclidean space.

5.1. Pure hierarchical clusterings

We first generated hierarchical clusterings based on
individual views. The first of these, using Euclidean
distance on the speech signal representation, is shown
in Figure 3. The second, using KL divergence on the
context representation, is shown in Figure 4. In the
trees produced by these individual views, there are
a few clusters that partially match the clusters sug-
gested by the reference classification in Figure 2. The
first view does a good job of separating stops, fricatives
and affricatives from the rest, although it is not good
at distinguishing between these three groups. The sec-
ond view is overall less competent, although it does a
better job of distinguishing stops, fricatives, and af-
fricatives. However, each view by itself is quite far
from the reference clustering.

5.2. Way to combine multiple views

The trees generated by each individual view with their
corresponding distance measures seem to complement
each other by showing part of the whole picture. This
motivated us to use both measures together to gener-
ate one consolidated tree. We first tried the obvious
trick of combining the two distance measures by us-
ing a linear combination of the two distance measures.
The result was still a Bregman divergence and thus
amenable to our generalized agglomerative clustering
scheme. The tree in Figure 5 is based upon a partic-
ular linear combination that tries to partially account
for the different scales of the two distance measures.

Figure 4. Hierarchical clustering based upon context infor-
mation, with KL-divergence as the distance measure.

Figure 5 doesn’t improve on the clustering given by
each individual view separately, and in fact demolishes
some clusters suggested by KL distance.

5.3. Better way to combine the multiple views

Finally, we combined the two views into a hybrid tree,
using the proposed algorithm. The result is in Fig-
ure 7. The hybrid tree manages to preserve the sepa-
rations that were strongly suggested by each view, to
unite the good points of each. A good separation of
nasals, vowels, stops and fricatives from the first view
and a better separation of stops and affricatives due to
the second view is clearly present in the hybrid tree.
The height of the tree nodes in the hybrid tree do not
correspond to the closeness of the points under that
node, since the algorithm works in a recursive way,
the entire left tree is generated before the right tree.

Figure 6, shows the histogram of the similarity mea-
sure between the two clusters at every split in the hier-
archy. Notice that this is the inverse of the ”goodness
of split”. The lower the similarity between clusters,
the better the split. We observe that on the whole,
the splits found by our hybrid algorithm lead to less
similar pairs of clusters than those found by the regular
Ward’s algorithm using a single view. This corrobo-
rates our intuition that the significant separations in
either view should make it into the hybrid view.
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Figure 5. Hierarchical clustering based on a linear combi-
nation of the two distance functions. The tree looks very
similar to the one built only in Euclidean space.
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Figure 6. Histogram of similarity measures between the
two clusters at every split in the hierarchy (smaller val-
ues are better). The distribution of these similarity values
is noticeably better for the hybrid algorithm than for the
other two.

Figure 7. Tree formed by using both views and using the
hybrid clustering algorithm. It preserves the separations
that were clearly present in each of the individual views.

6. Future Work

We seem to have found a way to effectively exploit
multiple views in hierarchical clustering. We still face
the issue of how to quantitatively assess the extent of
the benefit. A related approach to multiview learning
is presented in (Bickel & Scheffer, 2004). They evalu-
ate their clusterings by computing the entropy of the
clusters given the true classification. Our approach of
using the histogram of inverse goodness-of-split val-
ues is more subjective but better fits the unsupervised
model.
We also plan to test our hybrid algorithm on different
and larger data sets, such as the WebKB data recently
provided to us by Steffen Bickel, for which we are most
grateful.
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Abstract
Co-training improves multi-view classifier learn-
ing by enforcing internal consistency between
the predicted classes of unlabeled objects based
on different views (different sets of features for
characterizing the same object). In some applica-
tions, due to the cost involved in data acquisition,
only a subset of features may be obtained for
many unlabeled objects. Observing additional
features of objects that were earlier incompletely
characterized, increases the data available for co-
training, hence improving the classification accu-
racy. This paper addresses the problem of active
learning of features: which additional features
should be acquired of incompletely characterized
objects in order to maximize the accuracy of the
learned classifier? Our method, which extends
previous techniques for the active learning of la-
bels, is experimentally shown to be effective in a
real-life multi-sensor mine detection problem.

1. Motivation

A fundamental assumption in the field of classifier design
is that it is costly to acquire labels; after all, if label acqui-
sition were cheap, we would have little need for classifiers
because we could simply acquire labels as and when we
needed them. But how does the situation change when it is
also costly to acquire features? This paper aims to answer
this question. We begin with a little more motivation.

In the simplest setting for classifier design, each object has
been characterized by a vector of features and a label, as

schematically depicted in Figure 1a. Assuming that labels
are indeed costly to acquire, we can imagine relaxing this
setting so that each object has been characterized by a vec-
tor of features, but only a small subset of the objects has
been labeled. If we are not permitted to acquire additional
labels for the unlabeled data, as shown in Figure 1b, we are
in a semi-supervised learning setting (Belkin et al., 2004;
Blum & Chawla, 2001; Corduneanu & Jaakkola, 2004; In-
oue & Ueda, 2003; Joachims, 1999; Joachims, 2003; Kr-
ishnapuram et al., 2004; Nigam et al., 2000; Seeger, 2001;
Zhu et al., 2003); on the other hand, if weare permitted to
label some of the unlabeled data (Figure 1c), we are in an
active learning setting (MacKay, 1992; Muslea et al., 2000;
Krishnapuram et al., 2004; Tong & Koller, 2001).

Expanding this framework still further, sometimes the ob-
jects to be classified can be characterized by vectors of fea-
tures in multiple independent ways; we will call each of
these characterizations aview. For example, a web page
may be described either using the words it contains or the
set of words in the links pointing to it. A person may be
identified on the basis of facial features in an image, speech
patterns in an audio recording, or characteristic motions in
a video. Buried mines may be investigated using radar,
sonar, hyper-spectral, or other kinds of physical sensors.
Assuming that only a small subset of the objects has been
labeled and that no further labels may be acquired (Fig-
ure 1d), we are in the setting of the original co-training
algorithm of Blum and Mitchell (1998), which has been
extended in a number of interesting directions in subse-
quent work (Brefeld & Scheffer, 2004; Collins & Singer,
1999; Dasgupta et al., 2001; Balcan et al., 2004). In partic-
ular, we recently reformulated co-training using a prior ina
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Figure 1.Schematic depiction of different settings. Throughout, rows correspond to objects, wide boxes to feature matrices, and narrow
boxes to vectors of class labels; black shading indicates available data, blue shading indicates missing data that can be acquired, and
whitespace indicates missing data that cannot be acquired. (a) Each object is characterized by one set of features and one label: super-
vised learning. (b) Some objects are missing labels that cannot be acquired: semi-supervised learning. (c) Some objects are missing
labels that can be acquired: active learning of labels. (d) Objects can becharacterized by more than one view, but some are missing labels
that cannot be acquired: co-training. (e) Same as (d) but labels can be acquired: active learning of labels with co-training (Krishnapuram
et al., 2004). (f) Some objects have not been labeled and not all objects have been characterized in all views: active learning of features
and labels (this paper).

Bayesian context (Krishnapuram et al., 2004). This refor-
mulation is based on logistic regression, yielding a convex
objective function with a unique local optimum.

As shown in (Krishnapuram et al., 2004), our formulation
enables us to consider active learning settings in which we
are now permitted to label some of the unlabeled data, as
depicted in Figure 1e. But this same formulation also en-
ables us to consider a new setting in which each object may
be characterized by only a subset of available views. This
can occur in real-life when features are also costly to ac-
quire, as is often the case when physical sensors need to
be deployed for each view of an object. If new views may
be acquired for any object, as depicted in Figure 1f, how
should we decide which view to acquire? And what is the
relative benefit of acquiring features versus labels?

In terms of previous work, while several authors have pro-
vided criteria for deciding which objects should be labeled
(the setting of Figures 1c and 1e), we seek to answer a
new question: which incompletely characterized objects
(whether labeled or unlabeled) should be further investi-
gated in order to most accurately learn a classifier? To
the best of our knowledge, despite its clear importance,
the latter question has not been formally addressed before.
A few authors have developed intuitive but somewhatad
hocapproaches for acquiring features only for labeled ob-
jects (Melville et al., 2004; Zheng & Padmanabhan, 2002),
but we believe this is the first approach for feature acquisi-
tion on both labeled and unlabeled objects.

Section 2 summarizes the probabilistic model for multi-
view classifier design that we inherit from Krishnapuram

et al. (2004). Section 3 explains the information-theoretic
background for the criteria developed in Sections 4 and 5
for active label acquisition and active feature acquisition,
respectively. Experimental results are provided in Section 6
and a summary of our conclusions in Section 7.

2. Probabilistic model

2.1. Notation

For notational simplicity, we focus on two-class problems
for objects characterized by two views; the proposed meth-
ods extend naturally to multi-class and multi-view prob-
lems. Since we have only two views, we’ll use dot notation
to indicate them: leṫxi ∈ R

d1 andẍi ∈ R
d2 be the feature

vectors obtained from the two views of thei-th object. Let
xi = [ẋT

i
, ẍT

i
]T be thed-dimensional (d = d1 + d2) vec-

tor containing the concatenation of the feature vectors from
both views (with appropriate missing values if an object has
not been characterized in both views).

In addition to the features in the two views, binary class
labels are also collected for a subset of objects; the label
of the i-th object is denoted asyi ∈ {−1, 1}. The set
of L labeled objects isDL = {(xi, yi) : xi ∈ R

d, yi ∈
{−1, 1}}L

i=1, while the set ofU unlabeled objects isDU =
{xi : xi ∈ R

d}L+U

i=L+1
. Thus, the available training data is

Dtrain = DL

⋃
DU .

Let Ṡ, S̈, and ˙̈S = Ṡ
⋂
S̈ denote, respectively, the sets

containing the indices of objects characterized by sensor
1, sensor2, and both. The indices of the corresponding

labeled and unlabeled objects are denoted asṠL, S̈L, ˙̈SL
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andṠU , S̈U , ˙̈SU .

2.2. Multi-view logistic classification

In binary logistic regression, the predicted class probabil-
ities are modeled using the well-known logistic function
σ (z) = (1 + exp(−z))−1. For example, in the first view,

P
(
yi

∣∣∣ ẋi, ẇ
)

= σ
(
yiẇ

T ẋi

)
, (1)

whereẇ is the classifier weight vector for the first view.
A similar expression holds for the second view. Denot-
ing w = [ẇT , ẅT ]T , we can find the maximum likelihood
(ML) estimate of the classifiers for both sensorsŵML , by
maximizing the overall log-likelihood,

ℓ(w) = ℓ1(ẇ) + ℓ2(ẅ),

where

ℓ1(ẇ) =
∑

i∈ ṠL

log P
(
yi

∣∣∣ ẋi, ẇ
)

,

ℓ2(ẅ) =
∑

i∈ S̈L

log P
(
yi

∣∣∣ ẍi, ẅ
)

.

Given a priorp(w), we can find the maximuma posteri-
ori (MAP) estimateŵMAP by maximizing the log-posterior
L(w) = ℓ(w) + log p(w). Clearly, ML estimation can
be accomplished by independently maximizing the log-
likelihoods for each sensor,ℓ1(ẇ) andℓ2(ẅ). If the prior
factorizes asp(w) = p1(ẇ) p2(ẅ) (i.e. , it modelsẇ and
ẅ as a priori independent) we can clearly still perform
MAP estimation of the two classifiers separately. However,
if p(w) expresses some dependence betweenẇ and ẅ,
both classifiers must be trained simultaneously by jointly
maximizingL(w). In this case, the classifier learned for
each sensor also depends on the data from the other sensor.
This provides a Bayesian mechanism for sharing informa-
tion and thus exploiting synergies in learning classifiers for
different sensors.

2.3. Co-training priors

The standard means of coordinating information from both
sensors is by using the concept ofco-training (Blum &

Mitchell, 1998): on the objects with indices in̈̇SU , the two
classifiers should agree as much as possible. In a logistic
regression framework, the disagreement between the two

classifiers on the objects in̈̇S can be measured by
∑

i∈ ˙̈SU

(
ẇT ẋi − ẅT ẍi

)2
= wT

C w, (2)

whereC =
∑

i∈ ˙̈SU

[ẋT

i
,−ẍT

i
]T [ẋT

i
,−ẍT

i
]. This suggests

the following Gaussian “co-training prior”

p(w) = p(ẇ, ẅ) ∝ exp
{
−(λco/2) wT

Cw
}

. (3)

This co-training prior can be combined with othera pri-
ori information, also formulated in the form of Gaussian
priors, derived from labeled and unlabeled data using the
formulation in (Krishnapuram et al., 2004). Formally,

p(w|λ) = N
(
w

∣∣∣ 0; (∆prior(λ))
−1

)
, (4)

where the prior precision matrix∆prior(λ), which is a func-
tion of a set of parameters (includingλco) collected in vec-
tor λ, is

∆prior(λ) = Λ + λcoC +

[
λ̇∆̇ 0

0 λ̈∆̈

]
(5)

with Λ = diag{λ1, ..., λd}; finally

∆̇ =
∑

i,j∈Ṡ,i>j

K̇ij (ẋi − ẋj) (ẋi − ẋj)
T

is the precision matrix for semi-supervised learning derived
in Krishnapuram et al. (2004), and̈∆ is a similar expres-
sion. All the parameters inλ formally play the role of
inverse variances; thus, they are given conjugate gamma
hyper-priors. If we leṫλ = λ̈ = λ0, then we have:

p
(
λ0

∣∣∣ α0, β0

)
= Ga

(
λ0

∣∣∣ α0, β0

)
,

p
(
λi

∣∣∣ α1, β1

)
= Ga

(
λi

∣∣∣ α1, β1

)
,

p
(
λco

∣∣∣ αco, βco

)
= Ga

(
λco

∣∣∣ αco, βco

)
.

Under this formulation, it is possible to interpretλ as a
hidden variable and write a generalized EM (GEM) algo-
rithm for obtaining an MAP estimatêwMAP. It is easy to
check that the complete-data log-likelihood is linear with
respect toλ; thus, in each iteration of the GEM algorithm,
the E-step reduces to the computation of the conditional
expectation ofλ given the current parameter estimate and
the observed data (this can be done analytically due to con-
jugacy). The (generalized) M-step then consists of maxi-
mizing a lower bound on the complete log-likelihood (see
(Böhning, 1992)) to obtain the new classifier estimate. The
steps are repeated until some convergence criterion is met.

3. Information-theoretic criteria for active
data acquisition

This section is devoted to answering the following ques-
tion: what additional information should be added toDtrain

so that the classifier parametersw are learned most accu-
rately, at minimum expense? Observe that there are several
ways in whichDtrain can be augmented: (1) label infor-
mationyi for a previously unlabeled objectxi ∈ DU ; (2)

features from sensor1 for anunlabeledobjecti ∈ S̈U \ ˙̈SU

(i.e., such that sensor 2 has been acquired, but 1 has not);
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(3) features from sensor2 for an unlabeledobject i ∈

S1
U
\ ˙̈SU ; (4) and (5) same as (2) and (3), but for labeled

objects. In this section, we show how information-theoretic
tools can be used to choose the best object to be queried for
further information under each scenario.

3.1. Laplace approximation for the posterior density

Ignoring the hyper-priors on the regularizerλ (i.e. , assum-
ing a fixedλ), after estimating a classifier̂wMAP from train-
ing dataDtrain, a Laplace approximation models the poste-
rior densityp(w|Dtrain) as a Gaussian

p(w|Dtrain) ≈ N
(
w|ŵMAP; (∆post)

−1
)
. (6)

Under the logistic log-likelihood and the Gaussian prior
(4) herein considered, the posterior precision matrix of the
Laplace approximation is given by:

∆post = ∆prior(λ) + Ψ (7)

where∆prior(λ) is the prior precision matrix in (5) and
Ψ = block-diag{Ψ̇, Ψ̈} is the Hessian of the negative log-
likelihood (see,e.g., (Böhning, 1992)) where

Ψ̇ =
∑

i∈ṠL

ṗi (1 − ṗi) ẋiẋ
T

i
,

with ṗi = σ
(
ẇT ẋi

)
; a similar expression holds for̈Ψ.

The differential entropy of the Gaussian posterior under the
Laplace approximation is thus (| · | denotes determinant)

h(w) = −
1

2
log

|∆post|

2πe
. (8)

3.2. Mutual information

After estimating a classifierŵMAP from Dtrain, the
(un)certainty in the labelyi predicted for an unlabeled
object xi ∈ DU is given by the logistic model (1):
P (yi|xi, ŵMAP). For a object (labeled or not) for which

we haveẋi but notẍi (i ∈ Ṡ \ ˙̈S), the uncertainty in the
latter can be modeled by some representation ofp(ẍi|ẋi)

learned from the training objects in̈̇S.

The mutual information (MI) betweenw andyi is theex-
pecteddecrease in entropy ofw whenyi is observed,

I (w; yi) = h(w) − E [h(w|yi)]

= E
[
log

∣∣∆yi

post

∣∣] − log |∆post| ,
(9)

where the expectation is w.r.tyi with probability distribu-
tion P (yi|xi, ŵMAP), while∆

yi

post is the posterior precision
matrix of the re-trained classifier after observingyi.

Similarly, the MI betweenw and a previously unobserved

featureẍi (for i ∈ Ṡ \ ˙̈S) is given by

I (w; ẍi) = h(w) − E [h(w|ẍi)|ẋi]

= E

[
log |∆ẍi

post|
∣∣∣ ẋi

]
− log |∆post|,

(10)

where the expectation is over the uncertaintyp(ẍi|ẋi) and
∆

ẍi

post is the posterior precision matrix of the retrained clas-
sifier after seeing features from sensor2 for objecti.

The maximum MI criterion has been used before to iden-
tify the “best” unlabeled object for which to obtain an ad-
ditional label (MacKay, 1992):

i∗ = arg max
i:xi∈DU

I (w; yi) = arg max
i:xi∈DU

E
[
log

∣∣∆yi

post

∣∣] .

(11)
Based on the same criterion, the best object for which to
acquire sensor 2 features—amongṠ \ S̈ for which we have
features from sensor 1, but not sensor 2—would be

i† = arg max
i∈Ṡ\ ˙̈S

E

[
log |∆ẍi

post|
∣∣∣ ẋi

]
. (12)

3.3. Upper bound on mutual information

Unfortunately,E[log |∆ẍi

post|] is very difficult to compute
for our models. Alternatively, we compute an upper bound
and use it in the maximum MI criterion just presented.
Since the functionlog |X| is concave (Boyd & Vanden-
berghe, 2003), by Jensen’s inequality we obtain

E [log |X|] ≤ log |E [X]| . (13)

Hence, our sample selection criterion will be

i† = arg max
i∈Ṡ\ ˙̈S

∣∣∣E
[
∆

ẍi

post

∣∣∣ ẋi

]∣∣∣ , (14)

instead of the original (12). Intuitively, we try to maximize
the expected posterior precision of the parameters.

3.4. Simplifying assumptions

We make two simplifying assumptions, fundamental in
making our approach practical for real-life problems.

Assumption 1: Let the posterior density of the parame-
ters, given the original training dataDtrain, bep(w|Dtrain).
Consider that we obtain additional featuresẍi, for some

i ∈ Ṡ\ ˙̈S and retrain the classifier, obtaining a new posterior
p(w|Dtrain, ẍi). When computing the utility of̈xi, we as-
sume that the the modes ofp(w|Dtrain, ẍi) andp(w|Dtrain)
coincide, although their precision matrices may not. It
turns out that it will be possible to obtain the new preci-
sions, without actually re-training, which would be very
computationally expensive. It is important to highlight that,
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after a “best” indexi† is chosen (under this simplifying as-
sumption), we actually observëxi† and re-train the clas-
sifier, thus updating the mode of the posterior. Since this
re-training is done only once for each additional feature ac-
quisition, tremendous computational effort is saved.

The same assumption is made for label acquisition.

Assumption 2: For the purpose of computing the utility of
acquiring some new data (a label or a set of features), we
treatλ as deterministic, and fixed at the value of its expec-
tation after convergence of the GEM algorithm mentioned
in Section 2.3. This value is substituted in (7) to compute
the entropy and the mutual information.

4. Acquiring additional labels

For the sake of completeness, we now review the approach
in Krishnapuram et al. (2004) for acquiring labels.

According to Assumption 1, the MAP estimatêwMAP does
not change whenDtrain is augmented with a new labelyi;
consequently, the class probability estimates are also un-
changed. Based on (7), if we obtain the labelyi, for some
xi ∈ DU , regardless of whetheryi = −1 or yi = 1, the
posterior precision matrix becomes

∆
yi

post = ∆post+ ṗi (1 − ṗi)

[
ẋi

0

] [
ẋi

0

]T

+ p̈i (1 − p̈i)

[
0

ẍi

] [
0

ẍi

]T
(15)

The unlabeled object maximizing|∆yi

post| is thus queried for
its label. Intuitively, this favors objects with uncertainclass
probability estimates (̇pi and/orp̈i close to1/2).

5. Acquiring additional features

In this section we show how to computeE[∆ẍi

post|ẋi], which
is needed to implement the criterion in (14). Due to sym-
metry, E[∆ẋi

post|ẍi] is computed in a similar fashion, and
hence will not be explicitly described. Two different cases
must be studied: whenxi is labeled or unlabeled.

5.1. Additional features for unlabeled objects

Equation (7) shows that if we acquirëxi on a object previ-
ously characterized bẏxi, matrix∆

ẍi

post becomes

∆
ẍi

post = ∆post+ λ̈
∑

j∈S̈

K̈ij

[
0 0

0 Sij

]

+ λco

[
ẋiẋ

T

i
−ẋiẍ

T

i

−ẍiẋ
T

i
ẍiẍ

T

i

]
, (16)

where

Sij = ẍiẍ
T

i
− ẍiẍ

T

j

− ẍjẍ
T

i
+ ẍjẍ

T

j
. (17)

To compute the conditional expectationE[∆ẍi

post|ẋi] (see
(14)) we need a model forp(ẍi|ẋi). To this end, we use
a Gaussian mixture model (GMM) to represent the joint
density:

p(ẍi, ẋi) =
∑

c

πc N
(
ẋ|µ̇

c
, Σ̇c

)
N

(
ẍ|µ̈

c
, Σ̈c

)
.

Notice that, although using component-wise independence,
this joint GMM globally models the dependency between
ẋ and ẍ. From this joint GMM, it is straightforward to
derive the conditionalp(ẍi|ẋi), which is also a GMM, with
weights that depend oṅx:

p(ẍ|ẋ) =
∑

c

π′
c
(ẋ)N

(
ẍ|µ̈

c
, Σ̈c

)
. (18)

Further, theK̇ij andK̈ij are set to Gaussian kernels;e.g.,

K̇ij = N (ẋi|ẋj ,Σκ) . (19)

Using (18), (19) and standard Gaussian identities, the re-
quired expectations are obtained analytically:

E [ẍi|ẋi] =
∑

c

π′
c
(ẋi) µ̈

c
= m1

E
[
ẍiẍ

T

i

∣∣ ẋi

]

=
∑

c

π′
c
(ẋi)

(
µ̈

c
µ̈T

c
+ Σ̈c

)
= M2

E

[
K̈ij

∣∣∣ ẋi

]
=

∑

c

π′
c
(ẋi) zcj = m3j

E

[
K̈ijẍi

∣∣∣ ẋi

]
=

∑

c

π′
c
(ẋi) zcj µ
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ẍj

)

- 47 -



and

zcj = (2π)−d/2 |Λc|
1/2|Σ̈c|

−1/2|Σκ|
−1/2
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−1
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Λ
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c µ
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2

}
.

Finally,

E

[
∆

ẍi

post

∣∣∣ ẋi

]
= ∆post+ λ̈

∑

j∈ S̈

[
0 0

0 Sij

]

+ λco

[
ẋiẋ

T

i
−ẋim

T

1

−m1ẋ
T

i
M2

]
, (20)

where

Sij = m3jẍjẍ
T

j
− ẍjm

T

4j
− m4jẍ

T

j
+ M5j .

Substituting (20) into (14) gives us our selection criterion.

5.2. Additional features for labeled objects

From (7), we can derive∆ẍi

post for the case whenxi is a
labeled object (xi ∈ DL):

∆
ẍi

post = ∆post+ p̈i (1 − p̈i)

[
0

ẍi

] [
0

ẍi

]T

+ λco

[
ẋiẋ

T

i
−ẋiẍ

T

i

−ẍiẋ
T

i
ẍiẍ

T

i

]

+ λ̈
∑

j∈ S̈

K̈ij

[
0 0

0 Sij

]
. (21)

Using standard Gaussian identities and the approximation

σ(z)σ(−z) ≈ N

(
z

∣∣∣ 0,
8

π

)
,

we can show that,

E
[
p̈i (1 − p̈i) ẍiẍ

T

i

∣∣ ẋi

]

=
∑

c
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c
(ẋi)

(
uc uT

c
+ Uc

)
lc = M6, (22)

where
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ẅT µ̈
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+ ẅT

Σ̈cẅ
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8
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anduc = Uc Σ̈
−1

c
µ̈

c
. Finally, we can compute

E

[
∆

ẍi

post

∣∣∣ ẋi

]
= ∆post+ λ̈

∑

j∈ S̈

[
0 0

0 Sij
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+

[
0 0

0 M6
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[
ẋiẋ

T

i
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T

1

−m1ẋ
T

i
M2

]

and substitute it into (14).

5.3. Sample requirements and practical
approximations

The conditional distribution (18) used to compute
E[∆ẍi

post|ẋi] in Sections 5.1 and 5.2 relies on a Gaussian
mixture model (GMM) forp(ẍi, ẋi). Unfortunately, fit-
ting an accurate GMM demands a large number of sam-

ples; i.e. , ˙̈S must be large relative tod1 + d2. While our
(unreported) studies on simulated data confirmed that the
statistical methods proposed above work well when a suffi-

cient number of samples is already available in˙̈S, in many
real-life problems each sensor provides a large number of
features, and the above requirement may not be satisfied
(especially in early stages of the active learning process).
The estimation of covariances is particularly problematic
in these small-sample cases.

Due to this difficulty, in the results presented in the
next section we use an alternative surrogate forE[∆ẍi

post].

Specifically, in the formulae for∆ẍi

post ((16) and (21)) we
simply replaceẍi with m1 = E[ẍi|ẋi]—which can still
be reliably estimated from limited data, since it does not
involve covariances—and subsequently compute the deter-
minant of the resulting matrix. As demonstrated in the next
section, this approximation still yields very good experi-
mental results as compared to the random acquisition of
additional features.

6. Experiments: Multi-view feature
acquisition vs. label acquisition

To evaluate the methods proposed in this paper, we use the
same data used in Krishnapuram et al. (2004) to study the
performance of co-training and active label acquisition al-
gorithms. Mirroring their experimental setup, we also op-
erate our algorithms transductively, testing the accuracyof
the classifier on the same unlabeled data used for semi-
supervised training. In brief, the goal was to detect sur-
face and subsurface land mines, using two sensors: (1) a
70-band hyper-spectral electro-optic (EOIR) sensor which
provides 420 features; and (2) an X-band synthetic aper-
ture radar (SAR) which provides 9 features. Our choice of
dataset was influenced by two factors: lack of other pub-
licly available multi-sensor datasets; a need to compare the
benefits of the proposed active feature acquisition strategy
against the benefits of adaptive label querying methods.

The results for active feature acquisition on the unlabeled
samples (Section 5.1), and on the labeled samples (Sec-
tion 5.2) are shown in Figure 2. Additionally we let the al-
gorithm automatically decide whether to query additional
features on labeled or unlabeled data at each iteration,
based on the bound on mutual information for the best can-
didate query in each case. The results for this are also pro-
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Figure 2.Multi-sensor adaptive data acquisition with EOIR and SAR features. (a) (dotted) Number of land mines detected during
the querying for 100 labels (solid) ROC for the remaining objects. Reproduced from Krishnapuram et al. (2004). (b) ROC after
acquiring 27 additional feature sets for incompletely characterized labeled objects. (c) ROC after acquiring 129 additional feature sets
for incompletely characterized unlabeled objects. (d) ROC after acquiring 85 features for either labeled or unlabeled objects. Error bars
represent one s.d. from the mean.

vided in Figure 2. In all cases, for a baseline comparison,
we also provide average ROCs for 100 trials with random
querying, with error bars representing one standard devia-
tion from the mean. For additional insight, we also repro-
duce the results from Krishnapuram et al. (2004) for active
label query selection (Section 4) on the same data.

Analysis of results: all the adaptive data acquisition al-
gorithms show significant benefits over the baseline ran-
dom methods. Nevertheless, as compared to random sam-
ple query selection, active learning exhibits maximum ad-
ditional benefits in two scenarios: label query selection and
additional feature acquisition on the unlabeled samples.

Since labeled data is more valuable than unlabeled data, the
intelligent choice of a small set of additional label queries
improves the classifier performance most. The acquisition
of additional features on the unlabeled data also serves to

disambiguate the most doubtful test objects, in addition to
improving the classifier itself. Since the labeled data do
not need further disambiguation, we expect active acquisi-
tion of features for labeled objects to exhibit a smaller (but
still statistically significant) improvement in accuracy,es-
pecially in a transductive experimental setting. We have
verified these intuitions by experimentally querying a vary-
ing number of objects in each case, although we present
only one example result in Figure 2.

7. Conclusions

Using simple but practical approximations, this paper relies
on an information-theoretic criterion to answer the ques-
tion: Which feature sensor should be used to make mea-
surements on objects in order to accurately design multi-
sensor classifiers? Since a sensor may be used to obtain
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more than one feature simultaneously, this is a more gen-
eral problem than that of greedily choosing which feature
must be obtained in a myopic way, although it subsumes
the latter problem as a special case (especially in super-
vised settings when co-training effects are ignored by fix-
ingλco = 0). Despite the potentially wide applicability, we
have not seen this question addressed systematically in the
literature. Results on measured data indicate that the pro-
posed criterion for adaptive characterization of unlabeled
objects significantly improves classifier accuracy; results
using the corresponding criterion for labeled objects are
less impressive though.

In learning a classifier, one attempts to minimize the error
rate on an infinite set of future test samples drawn from the
underlying data-generating distribution. However, in trans-
ductive settings, one may sometimes only care about classi-
fying the unlabeled training samples. Future work includes
extensions of the ideas proposed here to automatically se-
lect the sensor whose deployment will most improve the
accuracy onthe remaining unlabeled training samples, in-
stead of attempting to learn accurate classifiers.

We will also consider non-myopic active learning strategies
that evaluate the benefits of improved classification accu-
racy in a setting that explicitly considers both the cost of
obtaining class labels and the costs involved in using vari-
ous sensors to make feature measurements. This would al-
low us to automatically decide which of the following is the
best course of action in any situation: (a) obtain many in-
dividually less effective feature measurements (with regard
to improving the classification accuracy) using a cheap sen-
sor; or (b) obtain fewer, but more useful feature measure-
ments using an alternative, costlier sensor; or (c) obtain a
small number of additional class labels at a significant cost.
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Abstract

Multi-view classification is a machine learn-
ing methodology when patterns or objects of
interest are represented by a set of different
views (sets of features) rather than the union
of all views. In this paper, multiple views are
employed in ensembles of nearest neighbor
classifiers where they demonstrate promising
results in classifying a challenging data set
of protein folds. In particular, up to 4.68%
increase in accuracy can be achieved, com-
pared to the best result in single-view classi-
fication, thus rendering ensembles of nearest
neighbor classifiers employing multiple views
an attractive research direction.

1. Introduction

The idea of employing multiple classifiers instead of
a single (best) classifier gained significant popular-
ity during last years. Among various strategies is
learning with multiple views (feature sets), which im-
plies that each pattern is described by several feature
sets rather than their combination into a single set.
Yarowsky (1995) and Blum and Mitchell (1998) were
first who have noticed that multiple views can lead
to better classification accuracy than the union of all
views. However, for this to happen, many unlabeled
patterns must be available for learning in addition to
labeled ones, which ideally fits to the case of semi-
supervised classification. Abney (2002) explained the
success of multi-view learning methods by the fact that
given certain independence between individual views
(and therefore base learners), the disagreement be-
tween base learners can be minimized by using the
unlabeled data, which, in turn, improves the com-

Appearing in Proceedings of the Workshop on Learning with
Multiple Views, 22nd ICML, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

bined accuracy of these learners. Multi-view learning
is not, however, limited to semi-supervised classifica-
tion: for example, several authors (Bickel & Scheffer,
2004; Kailing et al., 2004) applied it for unsupervised
clustering.

A fully supervised mode of multi-view learn-
ing (Rüping, 2005; Tsochantaridis & Hofmann, 2002)
has been not so intensively explored as other modes.
To contribute to this research, we propose to em-
ploy multiple classifiers or ensembles of classifiers, each
making predictions based on a specific view (set(s) of
features).

The goal of combining classifiers is to improve accu-
racy, compared to a single classifier. An ensemble
means combining multiple versions of a single classifier
through voting. Each version is called an individual
classifier. An ensemble of classifiers must be both di-
verse and accurate in order to improve accuracy, com-
pared to a single classifier. Diversity guarantees that
all the individual classifiers do not make the same er-
rors. If the classifiers make identical errors, these er-
rors will propagate to the whole ensemble and hence
no accuracy gain can be achieved in combining classi-
fiers. In addition to diversity, accuracy of individual
classifiers is important, since too many poor classifiers
can overwhelm correct predictions of good classifiers.

In order to make individual classifiers diverse, many
ensemble generation methods use feature selection so
that each classifier works with a specific feature set.
Feature selection can be often time-consuming and in
certain cases, almost all features may be relevant so
that none of them can be preferred to others. Our
hypothesis is that since each view constitutes a set or
sets of features, multiple views can be used instead
of feature selection in order to achieve diversity while
saving time.

Our idea is applied to a challenging bioinformatics
task: protein fold recognition. The main challenge
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comes from the fact that training and test data have
low similarity within each set and between sets. In
bioinformatics, low similarity between training and
test data is a prerequisite for unbiased test error es-
timation. In addition, many folds are insufficiently
represented in both sets: there are often as few as
seven representatives per fold! Nevertheless, experi-
ments demonstrate that the accuracy rate can grow
by 4.68% when utilizing nine views built from the six
original feature sets.

One of the first problems to solve when dealing with
ensembles of classifiers is to select a base classifier. In
this work, we adapted a variant of the nearest neigh-
bor (NN) classifier (Vincent & Bengio, 2002) because
it showed a competitive performance to support vector
machines. In next two sections, two popular methods
for generating ensembles of classifiers, namely, bagging
and boosting, are described together with a brief sur-
vey of the known ensembles of NN classifiers.

2. Bagging and Boosting

According to Breiman (1996a), bagging (bootstrap
aggregating) is a method for generating multiple ver-
sions of a classifier and using them to obtain an aggre-
gated classifier. The multiple versions are generated
by making bootstrap (random sampling with replace-
ment) samples of the original training set and consid-
ering these samples as new training sets. Each boot-
strap sample has the same number of patterns as the
original training set. The aggregation is combining
predictions (class labels) of the individual versions by
majority voting, where all votes are equally weighted.
However, bagging will not help if the accuracy of an
indivudual classifier is close to the limits attainable on
a given data set.

Boosting (Freund & Schapire, 1996) operates by iter-
atively running a given individual classifier on various
distributions over the training data, and then com-
bining predictions of the individual classifiers into a
single composite classifier by a weighted vote. Unlike
bagging, boosting forces the individual classifier Ct+1

at the t + 1th iteration to concentrate on the train-
ing patterns misclassified by the individual classifier
Ct at the tth iteration through reweighting (assigning
larger weight) misclassified patterns. That is, another
distinction between boosting and bagging is that the
voting process in boosting is not equally weighted in
contrast to that of bagging.

Both bagging and boosting perform best for unsta-
ble classifiers whose predictions are very sensitive to
(small) changes in the training data. Examples of such

classifiers are decision trees and neural networks. Un-
stable classifiers can have low bias but high variance.
It implies that stable classifiers like NN can have high
bias and low variance. Reducing either bias or vari-
ance, or both is the way to lower the test set mis-
classification error. Both bagging and boosting can
reduce the variance while boosting can also lower the
bias, even if the variance of a classifier is low (Schapire
et al., 1997).

3. Ensembles of NN Classifiers

There is not much work previously done regarding en-
sembles of NN classifiers. Breiman (1996a) was per-
haps one of the first researchers who studied this prob-
lem. He concluded that bagging NN classifiers does
not lead to increased accuracy because the NN classi-
fier is stable, i.e., errors made by individual classifiers
are highly correlated. In fact, bagging stable classifiers
can sometimes lower accuracy. The reason of failure
for bagging NN classifiers can be that bagging is in-
tended to reduce the variance of a classifier and the
variance of the (stable) NN classifier seems to be low
so it is hard to decrease it further. Applying bagging
to lower the bias is not meant (Freund & Schapire,
1996). However, selecting a subset from the whole set
of the original features typically causes instability in
classifier predictions: hence bagging may work.

Approaching from another direction, Alpaydin (1997),
Bao and Ishii (2002), Oza and Tumer (2001), and
Skalak (1996) showed that an ensemble of NN classi-
fiers each of which is trained from the small number of
prototypes selected from the whole training set results
in better accuracy than a single NN classifier using all
training patterns. Alpaydin (1997) argued that NN
classifiers do not tend to generate diverse (uncorre-
lated) votes on large training sets. That is why an en-
semble of NN classifiers will not succeed on such data
sets. Hence a large set should be either partitioned
into m smaller subsets, given m classifiers, or if the
training set is not large enough to allow partitioning,
one can use bootstrap in order to get smaller data sets
from the original set. Alpaydin (1997) concluded that
an ensemble of classifiers is superior over a single clas-
sifier only if individual classifiers of the ensemble fail
under different circumstances, and this requirement is
satisfied for small training sets. Oza and Tumer (2001)
added that feature selection (they used input decima-
tion) aims at reducing the correlations among individ-
ual classifiers by using different subsets of the origi-
nal features, while bagging and boosting approach to
the same goal by choosing different subsets of training
patterns. It implies that two approaches are clearly
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orthogonal and can complement each other, i.e., fea-
ture selection can be incorporated into bagging or/and
boosting. Bao and Ishii (2002) applied rough sets for
feature selection prior to combining NN classifiers.

Freund and Schapire (1996) combined AdaBoost and
a variant of the NN classifier. However, the goal
was to speed up classification rather than to achieve
higher accuracy. Thus, like in (Alpaydin, 1997; Skalak,
1996), boosting acted like NN editing, which reduces
the number of training patterns, leaving only those
which are sufficient to correctly label the whole train-
ing set. In (Freund & Schapire, 1996) a random subset
of training patterns, chosen according to the distribu-
tion provided by the boosting algorithm, was used as
prototypes, and the standard NN classifier predicted
the class label of a test pattern according to its closest
prototype. Freund and Schapire (1996) remarked that
when the distributions of the training and test data are
different, boosting can lose its advantage over other
methods. In addition, in case of small data sets, pat-
terns (typically outliers) that are consistently misclas-
sified at every iteration, may warp classifiers (Breiman,
1996b) and therefore boosting. However, except these
two cases, there is no reason to believe that stability
of a classifier per se should lead to failure of boost-
ing (Schapire et al., 1997), though no examples in-
volving boosting and NN classifiers and confirming this
statement were provided. Bay (1999) pointed to the
following reasons why boosting cannot be useful for
ensembles of NN classifiers: 1) boosting stops when a
classifier achieves 100% accuracy on the training set,
and this always happens for the NN classifier, 2) in-
creasing the weight of a hard to classify pattern does
not help to correctly classify that pattern since each
pattern can only help in classifying its neighbors, but
not itself. O’Sullivan et al. (2000) tried to adapt Ad-
aBoost to ensembles of NN classifiers when the test
data significantly differ from the training data because
features in the test set are either missing or corrupted.
Their approach is called FeatureBoost and it repre-
sents a variant of boosting where features are boosted
rather than patterns. FeatureBoost conducts a sen-
sitivity analysis on the features used by previously
learned models, and then biasing future learning away
from the features used most. Though O’Sullivan et al.
(2000) reached accuracy improvements over AdaBoost,
they indicated that these gains were less striking in the
ensembles of NNs, compared to the ensembles of deci-
sion trees.

Bay (1998) proposed to use simple (majority) voting
in order to combine outputs from multiple NN classi-
fiers, each having access only to a random subset of
the original features. Each NN classifier employes the

same number of features. Each time a test pattern
is presented for classification, a new random subset of
features for each classifier is selected. Predictions of
the NN classifiers are extremely sensitive to the fea-
tures used. Hence according to (Bay, 1998), different
feature sets lead to diverse individual NN classifiers,
making uncorrelated errors in the ensemble. Because
of uncorrelated errors simple voting is able to result in
the high overall accuracy even though individual clas-
sifiers may be not very accurate. Bay (1999) claims
that his algorithm is able to reduce both bias and vari-
ance. However, he remarked that there is no guarantee
that using different feature sets will always decorrelate
errors.

A similar conclusion that diversity among selected fea-
tures decorrelates errors made by individual classifiers,
was obtained in (Ricci & Aha, 1998) when applying
error-correcting output coding (ECOC) to combine
NN classifiers. This work emphasizes importance of
appropriate feature selection in making errors uncor-
related, which implies that feature selection incorpo-
rated into ECOC does not always necessarily produce
desirable improvement in accuracy. Although it seems
that ECOC can sometimes reduce both variance and
bias, nevertheless ECOC needs to convert the k-way
classification problem into a set of binary problems.

Tsymbal (2002) proposed dynamic integration of clas-
sifiers by arguing that simple majority voting does not
take into account the fact that each individual clas-
sifier performs best in certain cases, i.e., its region of
expertise is localized. If a combining algorithm is able
to identify such regions, the accuracy of an ensemble
can be significantly improved. The basic idea of dy-
namic integration is that in addition to training pat-
terns, training errors made by each classifier can be
utilized as well. Dynamic intergation estimates the lo-
cal accuracy of the individual classifiers by analyzing
their accuracy on nearby patterns to the pattern to
be classified. To ensure that individual classifiers are
diverse, Tsymbal (2002) experimented with different
distance functions and feature sets chosen by feature
selection.

Alkoot and Kittler (2002a; 2002b) concentrated on
such methods for combining classifiers as the product
rule, which combines multiple classifier outputs (typi-
cally class a posteriori probability estimates) by mul-
tiplication. The product rule plays a prominent role
because of its theoretical basis in probability calculus.
Nevertheless, its performance is degraded by the veto
effect when at least one of the individual classifiers pro-
duces the class a posteriori probability estimate that
is equal to zero. In this case, the output of an en-
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semble will be zero, too, even though other classifiers
can provide a lot of support for the class. In (Alkoot
& Kittler, 2002b), Modified product was proposed to
mitigate the veto effect. According to this rule, if the
output (class a posteriori probability estimate) of a
classifier falls below a specified threshold t, it is set to
t, while classifier estimates for other classes stay un-
changed. Though Modified product outperforms the
product rule for certain thresholds, it was neverthe-
less heuristic. That is why Alkoot and Kittler (2002a)
went further in battling the veto effect and marginal-
ized the k-NN estimates using the Bayesian prior (they
called it moderation). As a result, the class a poste-
riori estimate κ/k, where κ is the number of training
patterns belonging to a certain class out of k nearest
neighbors, is replaced with (κ + 1)/(k + m), given m
classes. Thus, even if k = 1 and κ = 0, the estimate is
1/(1+m) instead of zero. As k increases, the smallest
estimate assumes zero only when k → ∞. One ad-
vantage of moderating NN classifiers is that bagging
with moderation can largely compensate for the lack
of training data, i.e., this new rule is effective even for
small training sets.

Bao et al. (2004) used simple (majority) voting com-
bining outputs from multiple NN classifiers, where
each classifier has access only to a certain distance
function. Thus, they imitated the approach (Bay,
1998; Bay, 1999) while replacing different feature sets
with different distance functions. Zhou and Yu (2005a)
adapted bagging to the NN classifiers by perturbing
both training sets and distance functions. As a result,
a specific bootstrap sample and distance function are
associated with each individual classifier. As in bag-
ging, the combining rule is majority voting. Zhou and
Yu (2005a) concluded that neither perturbing train-
ing data nor distance functions is effective in build-
ing ensembles of NN classifiers based on bagging, but
their combination is. Following this line, Zhou and
Yu (2005b) utilized multimodal perturbation, i.e., per-
turbing the training data, features, and distance func-
tions.

Paik and Yang (2004) hypothesize that combining clas-
sifiers is not always better than selecting a single (best)
classifier. They investigated the ensembles of NN clas-
sifiers for tumor classification based on gene expres-
sion data and examine relationships between cross-
validation (CV) selection instability and ensemble per-
formance. In practice, CV has been used for two differ-
ent purposes: selecting the best model among a set of
models and finding the optimal parameters of a given
model. Similarly to other model selection techniques,
CV has to face the problem of uncertainty of selection
when there are several almost identically performing

models. In such a case, the uncertainty of selection
is high and a slight change of the data can dramati-
cally affect the classifier performance, i.e., under these
circumstances selecting the best classifier is ambigu-
ous and hence difficult. However, the high uncertainty
of CV selection favors an appropriate combination of
classifiers! On the other hand, when one classifier is
significantly better than others, combining it and poor
classifiers can only damage the overall performance,
and therefore selecting one classifier is expected to
work better in this case than combining classifiers.

Jiang et al. (2005) combined bagging and graphical
models. Their method starts from generating boot-
strap samples from the training data. After that, it
employes a causal discoverer to induce a dependency
model of features, expressed as a directed acyclic graph
for each sample. If a node has neither direct nor in-
direct connections to the class node in all the graphs,
the corresponding feature is removed, i.e., it is con-
sidered as irrelevant to the class attribute on all the
bootstrap samples. In this context, using graphical
models is viewed as feature selection. Predictions of
the individual classifiers trained from the samples are
combined by majority voting. Though this approach
can produce stronger ensembles than bagging alone,
an evident weakness of this approach to building en-
sembles of classifiers is that the total computational
cost is largely burdened by constructing a dependency
model on each sample.

Though most of work on ensembles of NN classi-
fiers concentrates on improving classification accuracy,
Barandela et al. (2003) carried out experiments in-
volving imbalanced data sets and outlier detection,
and they obtained promising results, thus opening a
new research line.

4. Our Approach

As one can see from the survey done in the previous
section, all authors utilized the conventional NN clas-
sifier in building ensembles. In contrast to others, we
chose a variant of the NN classifier called K-local hy-
perplane distance nearest neighbor (HKNN) (Vincent
& Bengio, 2002), which demonstrated a competitive
performance to the state-of-the-art (support vector
machines) for handwritten digit (Vincent & Bengio,
2002) and protein fold recognition (Okun, 2004b). As
the conventional NN classifier, HKNN does not require
training. It computes distances of each test point x to
L local hyperplanes, where L is the number of different
classes. The `th hyperplane is composed of K nearest
neighbors of x in the training set, belonging to the `th
class. A test point x is associated with the class whose
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hyperplane is closest to x. In general, K should not
be too small, otherwise a fitting hyperplane may be
not unique. Therefore, the approaches like (Alpaydin,
1997; Skalak, 1996) aiming at training set editing are
inappropriate when many classes are sparsely repre-
sented in the training set. HKNN has two parameters,
K and λ (penalty term), to be optimized.

It seems that feature selection is the most popular
way to make individual classifiers diverse, because per-
turbing training patterns (bagging, boosting) does not
work well for the NN classifiers. However, feature se-
lection is typically time-consuming. Moreover, in cer-
tain cases, almost all features can be relevant for char-
acterizing classes of patterns so that none of the fea-
tures can be preferred to others. Instead of feature se-
lection, we introduce multiple views, where each view
is associated with its own individual classifier. Mul-
tiple views are automatically generated from feature
sets describing patterns. Given that F is a set of the
original feature sets, the total number of views formed
from these sets, NV , is

∑|F |
i=1

(|F |
i

)
. For example, if

|F | = 6, then NV = 6 + 15 + 20 + 15 + 6 + 1 = 63.

Our classification scheme is akin to stacked generaliza-
tion (Wolpert, 1992), where a set of individual classi-
fiers forms the first level while a single combining algo-
rithm forms the second level. Though stacked general-
ization cannot always guarantee the improved classifi-
cation performance, it can be used as a meta-learning
technique to boost accuracy.

First, we need to select certain views from the com-
plete set of views. Selection can be 1) random, 2)
based on cross-validation errors, or 3) based on vali-
dation errors.

With the first option, one simply randomly chooses
M views like in (Bay, 1998; Bay, 1999). However,
random selection may not always guarantee the best
performance, compared to a single classifier.

The second option assumes that the optimal parame-
ters of individual classifiers are determined by cross-
validation applied to the training data, and each view
is linked to a certain CV error. Then one needs to
pick M views, all associated with 1) small differences
in CV errors, i.e., high instability in performance, and
2) sufficiently high accuracies, like done in (Paik &
Yang, 2004). Compared to the first option, the second
one reduces randomness of selection because of two
constraints.

Finally, the third option assumes a separate validation
set, which is used for a sensitivity analysis of views.
In this case, one starts from the view resulting in the
lowest CV error. Other views are iteratively added to

this view, one at a time, based on the minimum vali-
dation error, i.e., the view led to the smallest error of
an ensemble is linked up to the set of the previously se-
lected views. Such a procedure is akin to the wrapper
approach to feature selection with forward sequential
selection. John et al. (1994) and Aha and Bankert
(1994) demonstrated that the wrapper strategy is su-
perior to the filter one, because it avoids the problem
of using an evaluation function whose bias differs from
the classifier. Thus, it seems that the third option is
the best among the three, but quite often a separate
validation set is not provided or it is impossible to col-
lect it.

Based on this reason, we make use the second option,
though in order to demonstrate the full potential of
our approach, we will utilize the third option with the
test set applied for validation (this will be merely done
for illustration of our ideas).

The individual NN classifiers need to be combined to-
gether in order to make the final predictions. To com-
bine outputs of these classifiers, which are simply class
labels, a classification result vector (CRV) (Lepistö
et al., 2003) is used. CRV is a nearest neighbor com-
bining algorithm using the Hamming distance applied
to the vectors of class predictions. CRV acts as a kind
of ECOC. Unlike the latter, CRV does not need to
convert the k-way classification problem into a set of
binary problems. As follows from its name, ECOC is
capable of correcting a certain number of errors, and
this fact makes ECOC somewhat superior over ma-
jority voting. It is known that the NN classifiers do
not benefit much from ECOC unless appropriate fea-
tures are selected for each individual classifier (Ricci
& Aha, 1998). Since multiple views constitute feature
selection, CRV can be considered a good alternative
to majority voting.

5. Data Set and Challenges It Presents

The real-world protein data set derived from
the SCOP (Structural Classification of Proteins)
database (Lo Conte et al., 2000) was used. This data
set is available on line1 and its detailed description
can be found in (Ding & Dubchak, 2001). It contains
the 27 most populated folds represented by seven or
more proteins and corresponding to four major struc-
tural classes. The term “fold” is related to 3-D protein
structure. Understanding of how proteins form such
3-D structures has tremendous impact in new drug
design.

The training set consists of 313 protein folds having
1http://crd.lbl.gov/∼cding/protein
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(for each two proteins) no more than 35% of the se-
quence identity for aligned subsequences longer than
80 residues. The test set of 385 folds is composed of
protein sequences of less than 40% identity with each
other and less than 35% identity with the proteins of
the first dataset. In fact, 90% of the proteins of the
second dataset have less than 25% sequence identity
with the proteins of the first dataset. Such low iden-
tity both within each set and between two sets ren-
ders sequence analysis of proteins based on sequence-
to-sequence comparisons completely useless. Hence,
we turn to structure analysis based on physicochemi-
cal features extracted from protein sequences. Never-
theless, the significant difference between the training
and test data together with multiple, sparsely popu-
lated classes presents the main challenge for achieving
high classification accuracy.

Six feature sets in the data set are: amino acids com-
position (C), predicted secondary structure (S), hy-
drophobicity (H), normalized van der Waals volume
(V), polarity (P), and polarizability (Z). All but the
first feature set have dimensionality 21, whereas com-
position has dimensionality 20. In total, when com-
bined together, six feature sets form 125-dimensional
vectors for each fold. Since there are six feature sets,
63 views can be generated, where each view includes
from one to six feature sets. For instance, CH means
the view composed of composition and hydrophobicity
feature sets while PSV stands for the view combining
polarity, secondary structure, and volume feature sets.

6. Experiments

As mentioned before, Ding and Dubchak (2001) had
already split the initial data into the training and test
sets. As a result, the main efforts of researchers who
used these sets were spent on classifying the test set,
whereas the training set was primarily used for cross-
validation in order to find the optimal parameters of
the individual classifiers. We determined the opti-
mal parameters (K and λ) of each HKNN classifier by
means of leave-one-out cross-validation (loo-cv). Each
feature was normalized to zero mean and unit vari-
ance (Okun, 2004a) prior to cross-validation.

First, we verified the hypothesis of Paik and Yang
(2004) that classifiers with similar CV errors are good
candidates for inclusion into an ensemble. For this we
sorted views and respective classifiers according to loo-
cv error and picked M (3 ≤ M ≤ 9) views/classifiers
from different continuous segments of the sorted list,
e.g., first or last nine views/classifiers. Our observa-
tion is that it was not always true than combining
classifiers with similar CV errors leads to sizeable im-

Table 1. Decrease in test error of the ensemble as the views
were iteratively added by one at a time.

ensemble individual classifier

view test error loo-cv error

CSV 44.67 48.56
CHPZS 42.60 55.27
CHPS 40.78 56.87

C 39.74 62.30
CPZV 38.70 61.66
CZV 37.14 65.50
CH 36.88 59.43
CS 36.62 53.04

HPS 36.36 66.13

provement in accuracy. When accuracy of the whole
ensemble grew up, it was often less than 1%, which im-
plies that not any ensemble was good. Thus, selection
of proper views is of importance.

Next, we checked the maximum accuracy gain when
using the test set for validation2. That is, we started
from the view (CSV in our case) leading to the low-
est loo-cv error (48.56%) and added the next views
iteratively, by one at a time, to CSV until the new
minimum test error of the ensemble was smaller than
the previous minimum error. After combining nine
views, the test error rate fell to 36.36%. As for single-
view classification, the lowest test error corresponds
to 41.04% (CHPZS), which is 4.68% larger than the
result achieved with multiple views. Our result is also
smaller than the best result (38.80% in (Bologna &
Appel, 2002)), involving ensembles of classifiers based
on bagging neural networks.

Table 1 summarizes results. The first column contains
the views added one after another starting from CSV.
That is, CHPZS was added to CSV, followed by CHPS,
etc. The second column lists test errors of the ensem-
ble each time when a new view was added. The third
column shows loo-cv errors related to the individual
classifiers incorporated into the ensemble. As one can
see, these loo-cv errors are quite diverse, and this fact
did not prevent the whole ensemble to reach very low
test error.

2Of course, it would be possible to partition the training
set in order to have a proper validation set. However, the
sparse training set of dimensionality, relatively high com-
pared to the number of training patterns, prevents this
option because of the curse of dimensionality. The same
argument is applied to the test set. In addition, the HKNN
performance would quickly degrade if the number of near-
est neighbors, K, is too small.
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7. Conclusion

Multi-view classification was considered in the context
of ensembles of NN classifiers. Replacing feature selec-
tion with multiple views, it is possible to dramatically
lower computational demands to combining classifiers.
At the same time, as demonstrated by experiments
with protein fold recognition, accuracy improvement
can be achieved (up to 4.68% in our study), thus con-
tributing to research on ensembles of NN classifiers.
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Abstract

Named Entity Recognition (NER) poses the
problem of learning with multiple views in
two ways. First, there are not enough labeled
texts so that the exploitation of unlabeled
texts becomes necessary. Second, words and
word sequences offer several aspects for rep-
resentation, each reflecting another aspect of
them. Instead of choosing the most promis-
ing representation as done in feature selec-
tion, the cooperation of different features en-
hances learning NER. In this paper, we inves-
tigate the bootstrapping of features. From la-
beled and unlabeled texts, features are deter-
mined which in turn are exploited to recog-
nize names automatically. The SVM is used
as the learning engine. Results on German
texts and on biomedical texts show that the
approach is promising.

1. Introduction

A name or Named Entity (NE) is a noun phrase which
has almost no meaning besides its reference to a spe-
cific entity. Its recognition within texts is important,
for instance, if we want to extract from documents all
information about a particular person, location, or or-
ganisation. Named Entity Recognition (NER) is eased
by linguistic tools and word lists. However, these are
tedious to develop and domain sensitive. Hence, ap-
plying machine learning approaches to NER has be-
come a research subject.

Although one name often consists of several words,
the learning task is formulated as a classification of
single words. Every word is classified into the prede-
fined name categories and the additional is-not-a-name

Appearing in Proceedings of the Workshop on Learning with
Multiple Views, 22nd ICML, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

class. As shown in Table 1, this notation assumes that
all adjacent items tagged with the same class-label
form part of one single name (here: ”Foreign Ministry”
is an organisation and ”Shen Guofong” is a person).
The evaluation of NER is based on an exact match-
ing scheme, i.e. also partially correctly tagged names
count as mismatch (e.g., tagging only ”Ministry” as
ORG would be counted as complete failure).

Test and training sets for learning are prepared from
all candidate words for the given categories. An in-
stance consists of the word, its features, and the cor-
rect category (label). Among the learning methods are
Hidden Markov Models (Bikel et al., 1997), Maximum
Entropy Models (Borthwick et al., 1998), Support Vec-
tor Machine (SVM) (Takeuchi & Collier, 2002), Boost-
ing and Voted Perceptron (Collins & Singer, 1999).

Features for names can represent different aspects:
mere surface form of a word, linguistic knowledge
about the word (morphological, syntactic, semantic),
and statistics of the occurrence of the word in a doc-
ument collection. In a pure learning setting, linguistic
knowledge and, hence, the linguistic features are not
available. The underlying linguistic processes are to be
reflected by the form of a word, its context, and the
frequency of occurrences. These are three different as-
pects or views. According to McDonald (McDonald,
1996), there are two complementary kinds of evidence
for NER: Internal evidence is taken from within the
NE (e.g., beginning with an uppercase letter), while
external evidence is provided by the context in which
a name appears. We add as a third aspect the fre-
quency of occurrences.

Frequency of words or contexts in labeled texts are
the basis of learning NER. However, labeled corpora
are hard to get for each language and domain pair.
Therefore, a co-training scheme is promising (Blum &
Mitchell, 1998). Its presupposition that the feature
types are orthogonal is given. Hence, the frequencies
within unlabeled texts can be used, as well. We may
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Table 1. The word-tag assignment to NE

Foreign Ministry spokesman Shen Guofong announced in Taipei

ORG ORG 0 PER PER 0 0 LOC

consider external and internal evidence two indepen-
dent hypotheses on a name being of a particular NE
category. Only if both agree, the word is classified ac-
cordingly. Following Steven Abney, this procedure can
be applied to unlabeled data (Abney, 2002).

We may illustrate the NER learning procedure using
different aspects by the following example. An ap-
proach focussing on internal evidence combines an up-
percase beginning with a simple lookup in a list of
known names. It classifies some names correctly, de-
pending on the size of the lists. However, it ignores
lexical ambiguity, e.g. Philip Morris as person or or-
ganisation. It cannot cover all names, especially names
of the category ORGANISATION, because new com-
panies are founded. External evidence, the context
of the word to classify, helps to classify ambiguous
or unknown words. For instance, ”is headquartered
in” often follows a company and precedes a location.
To make estimations on the external evidence feasi-
ble, a sliding window approach can be used: Only a
fixed span of words, for instance three words before
and two words after the item to classify are consid-
ered. An example is given in Table 2. This technique
is applied to all words that could be part of a NE.
If external evidence is found for a sequence of words
predicting the category of the succeeding word, this
sequence is entered into a context lexicon. Using this,
in turn, classifies names in the unlabeled corpus. This
enlarges the list of known words. Now, more names
can be classified. In this way, internal and external
evidence can be used in a bootstrapping manner.

Due to the strict matching scheme used for the evalu-
ation of NER systems, it is necessary to recognize the
whole sequence of NEs. In order to focus on the de-
tection of the correct boundaries, we have developed
an enhanced sliding window approach. Keeping the
context window of three preceding and two succeed-
ing words fixed, we expand the instance to classify
dynamically from one up to eight words. Although
this enhanced sliding window approach augments the
number of instances notably, the F-Measure is almost
identical to the approach for classifying single words.
However, precision is much higher while recall is lower.
An example for the enhanced sliding windows is given
in Table 3.

In this paper, we investigate the bootstrapping of fea-

tures for NER learning. Our approach is evaluated by
the tasks of NER for German and for the biomedical
domain. Both, NER for German and for the biomedi-
cal domain is more challenging than the classical NER,
because capitalization is not a reliable indicator for
the detection of names. In German all nouns, and
not just names are capitalized; within English texts of
the biomedical domain, only some names start with an
uppercase letter. This increases the number of name
candidates and the lexical ambiguity. The free word
order of the German language makes NER even more
difficult, because the context is varying more.

2. Exploiting unlabeled data for

bootstrapping features

Our approach refrains from any handcrafted lists and
any linguistic processing. Given are an annotated cor-
pus, which is divided into training and test set, and an
unlabeled corpus of the same domain/language. Ac-
cording to the word frequencies, words are determined
which are not considered candidates for part of a name.
For all other words instances are formed for each cate-
gory (PERSON, LOCATION, ORGANISATION). An
instance contains the correct tag and the features of
the word and those of its context. The features can be
grouped into five sets

f1: Deterministic word-surface features like, e.g., ”4-
digit number”, ”Capitalized”, ”Uppercase only”
etc.

f2: Character-based word length

f3: Sub-word-form representation with positional sub-
strings. The word ”Hammer” is represented as:
”r”, ”er”, ”mer” at last position,”ham” at first,
”amm” at second position etc.

f4: Corpus-lexicon representing how often a word was
seen as NE of a particular category.

f5: Context-lexicon listing word sequences preceding
and succeeding NEs.

The first three feature sets describe the surface of a
single word. From the first set, the 20 surface fea-
tures, only one can apply to a certain word. The sec-
ond feature type is just the word length in characters.
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Table 2. The sliding window approach

context considered focus context considered

Foreign Ministry spokesman Shen Guofong announced

Ministry spokesman Shen Guofong announced in

The third feature set splits the word into substrings
together with their position. Up to 8 such positional
substrings can apply to a word. The fourth and fifth
feature set are based on an unlabeled corpus. They
describe all occurrences of a word within all consid-
ered unlabeled texts. For the 6 words within the sim-
ple sliding window, 42 feature values can maximally
be given. Hence, an instance is a vector of maximal
length 252, but being sparse the longest vector in our
applications had length 192.

The fourth feature set, f4, is automatically created us-
ing unlabeled data. Given classifiers for the categories
trained on an annotated corpus, they can be used to
create lexical resources by applying them to unlabeled
text. The classifier trained on PERSON, for instance,
returns for each word occurrence xi a numerical value
f(xi). If f(xi) is greater than 0, the word occurrence is
labeled positively as PERSON. The output of the clas-
sifiers will be full of false negatives but will also contain
a lot of true positives. Since these true positives are
based on the few names and contexts learned from the
labelled data, they can be used to extract new names.
The function value f(xi) for each word occurrence in
the unlabeled corpus is discretised into some intervals
cj . To reflect lexical ambiguity, for all words occurring
in the unlabeled data, the assignments of the different
cj are counted and those with a frequency ratio

freq(cj)

freq(x)
≥ θ

are turned into features. For instance, a word x with
freq(x) = n may receive by the PERSON classifier m1

times a function value in the range c1 = [−0.5, 0] and
m2 times f(x) in c2 = [0.5, 1]. If the two fractions ex-
ceed the threshold, then two features are constructed,
namely

PERSONc1 =
m1

n
PERSONc2 =

m2

n

All classifiers contribute to forming these features.
Because the classifiers are not perfect, the numbers
counted are far from being correct. Nevertheless they
show tendencies of words to co-occur with particular
labels. The evidence learned becomes the new feature
set f4, which is used by training classifiers on the la-
belled data, again. The resulting classifiers are applied
iteratively to the unlabeled data in order to extract

more evidence. This bootstrapping procedure com-
pletes the representation of internal evidence.

After applying the classifiers to the unlabeled data, the
NEs found are marked up in the raw corpus. Based
on this markup, the context lexicon, feature set f5, is
created. All word sequences up to three words are ex-
tracted and represented with information on the name
class they immediately preceded or succeeded. All
word sequences seen more than once as context of a
particular name class are stored in the context lexi-
con, together with the relative frequency of occuring
as context of a particular class divided by the total
frequency of the word sequence.

3. Experiments

We used the training data published for the shared
task on NER for the biomedical domain (Kim et al.,
2004) and those of the German NER at the CoNLL
2003 shared task (Tjong Kim Sang & De Meulder,
2003). The sub-word form representation reduces the
feature space significantly. The biomedical corpus con-
tains 22.000 word forms and 11.000 substrings. Within
our German data, we counted 33.000 word forms and
reduced them to 14.000 substrings, without any fre-
quency threshold. Still, we need a powerful and effi-
cient learning algorithm to deal with this large feature
set. We choose the linear SVM light (Joachims, 1998),
a learning algorithm for binary classification, which is
able to handle large numbers of parameters efficiently.
As common in NER, we stored all names recognized
within one text and marked-up other, previously un-
tagged occurrences of these names.

In a first system, we only evaluated the use of un-
labeled texts for the learning of internal evidence.
For all experiments we set the simple sliding win-
dow to six words, i.e. three preceding, the current,
and two succeeding words. For German, experiments
were conducted on the 200.000 words annotated for
CoNLL 2003 shared task on NER. For bootstrapping,
40 Millions of words from the FR-Corpus were used
(Frankfurter-Rundschau, 2004). The results for per-
son names were impressive (Roessler, 2004b). Adding
one simple rule to detect coordinated names, an F-
Measure of almost 0.9 was scored, which equals the
performance of the two rule-based systems for Ger-
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Table 3. The enhanced sliding window approach

context considered focus context considered

Ebenso schnell hat Bear Stearn Konkurrenz

Ebenso schnell hat Bear Stearns Konkurrenz die

Ebenso schnell hat Bear Stearns Konkurrenz die neue

man (Neumann & Piskorski, 2002; Volk & Clematide,
2001) and easily outperformed all contributions to the
shared task. This was scored only after two iterations
of the bootstrapping cycle. However, the performance
on the organisation and the location names reached
a plateau on a rather low level. Note, however, that
we compare our results with those achieved by using
hand-crafted rules and word lists. Not using unlabeled
data does not result in any compatible NER here.

The experiments on the biomedical domain (Roessler,
2004a) were conducted with an almost identical set-
ting. Here, we investigated the effects of bootstrapping
features. As unlabeled data, documents were taken
from Medline delivering 100 Mio. Words. Our sys-
tem scored an overall F-Measure of 0.64, which is in
the lower middle field compared to the other systems
participating at the shared task JNLPBA-2004 (Kim
et al., 2004). Similar to German organisation and lo-
cation names, the bootstrapping showed almost no ef-
fect to the 5 categories, which are not person names.
We are convinced, that person names are much eas-
ier to bootstrap because of the clear syntax of first
names and surnames (Quasthoff & Biemann, 2002).
The other categories vary much more in their appear-
ance. Bootstrapping with a focus on internal evidence
of single words is not able to capture the multi-word
character of names. Therefore, we used the enhanced
sliding window approach in order to focus on the mul-
tiword units and to bootstrap contexts at the same
time. Bootstrapping internal and external evidence
at the same time also approximated a plateau on a
rather low level. However, after every bootstrapping
cycle the model learned was more compact in terms of
the number of support vectors. We assume that this
generalisation is based on a shift from specific knowl-
edge about words to more general knowledge about
contexts, learned from the unlabeled data.

Based on this observeration, we developped the archi-
tecture shown in Figure 1. Starting with the enhanced
sliding window approach, we iterated bootstrapping to
learn external evidence until a plateau was reached.
Using the learned resources, we switched to the basic
sliding window approach to learn internal evidence.

Although our approach outperformed the best contri-
butions of the competition only in the category PER-

Figure 1. The process starts by creating instances for the
enhanced sliding window approach using only the feature
sets f1-f3. After the training of the SVMs, the classifiers
are applied to the unlabeled data in order to create the
feature sets f4 and f5 and the SVMs are retrained. After
every iteration it is checked, whether there is still an im-
provement of the classifiers performance. The first time,
when there is no further improvement, the simple sliding
window replaces the enhanced sliding window approach.
The second time, the algorithm stops.

SON, the results convinced us that learning from unla-
beled data is competible with using hand-crafted lists.
Some words (e.g., “Treuhand”), however, cannot be
recognised without name lists.

4. Conclusion and Related work

We have shown a method which forms two lexicons
for NER learning by applying learning results from
labeled texts to unlabeled texts. For each name cate-
gory, a classifier is learned. The classifiers are applied
to the unlabled texts. The result is used to form

• the corpus lexicon which lists names together with
their NE-categories, and

• the context lexicon which lists word sequences to-
gether with the categories they preceded or suc-
ceeded.

The obtained lexicons are used for further learning in
a bootstrapping manner.

We used SVM-light as learning engine. SVM for
biomedical NER were first applied by (Takeuchi &
Collier, 2002), or recently by (Bickel et al., 2004) in
combination with a context-sensitive post-processing
to gather multi-word names. However, they did not
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Figure 2. Comparing the bootstrapping of internal and ex-
ternal evidence with the best results scored at CoNLL. It-
erations 1-4 are based on the enhanced , iterations 5-8 on
the simple sliding window approach.

use unlabeled data. Varying the number of boot-
strapping cycles we saw that for each name category
a plateau is reached where further bootstrapping is
no more effective. Observing the number of support
vectors shows that bootstrapping makes the learned
models more and more general or compact, that is,
the number of support vectors is reduced from cycle
to cycle.

Experiments have shown that this approach makes
NER learning comparable with approaches that use
linguistic tools or carefully craftes lexicons. What still
remains unclear is the reason for the different impact
of unlabeled data for PERSON and the other cate-
gories. Possible reasons are the free word order of Ger-
man making the use of contexts more difficult, and the
large variety of forms in the biomedical names making
internal evidence hard to achieve.

Also other approaches to the classical NER task re-
fraining from any lists of names (like (Mikheev A. &
C., 1999; Zhou & Su, 2003)) showed results compa-
rable to knowledge-rich systems. A very promising
direction lies within the learning of names and trig-
gers from unlabeled texts in a bootstrapping cycle.
So-called seed lists, containing a few names, or seed
rules, that reliably predict names, are used to learn in-
ternal and external evidence (Collins & Singer, 1999)
(Riloff & Jones, 1999; Thelen & Riloff, 2002), (Lin
et al., 2003), (Cucerzan & Yarowky, 2002; Cucerzan &
Yarowky, 1999), (Ghani & Jones, 2002), (Quasthoff &
Biemann, 2002). In contrary to these approaches we
use an annotated corpus instead of seed lists or seed
rules. Additionally, we are not working with different
classifiers for different views but simply add and up-

date features for one learner per category. Moreover,
we always use the same sample of unlabeled data and
do not select instances based on the classifers deci-
sions. Like (Ghani & Jones, 2002) and (Quasthoff &
Biemann, 2002) we deal with entities without a dis-
tinctive uppercase beginning. (Quasthoff & Biemann,
2002) report an experiment with EM-style bootstrap-
ping of German person names. (Ghani & Jones, 2002)
compare different bootstrapping algorithms for the se-
mantic tagging of noun phrases.
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Abstract

Next to prediction accuracy, interpretability
is one of the fundamental performance crite-
ria for machine learning. While high accu-
racy learners have intensively been explored,
interpretability still poses a difficult problem.
To combine accuracy and interpretability,
this paper introduces an framework which
combines an approximative model with a
severely restricted number of features with
a more complex high-accuracy model, where
the latter model is used only locally. Three
approaches to this learning problem, based
on classification, clustering, and the con-
ditional information bottleneck method are
compared.

1. Introduction

More and more data is collected in all kinds of applica-
tion domains and sizes of data sets available for knowl-
edge discovery increase steadily. On the one hand
this is good, because learning with high-dimensional
data and complex dependencies needs a large number
of examples to obtain accurate results. On the other
hand, there are several learning problems which can-
not be thoroughly solved by simply applying a stan-
dard learning algorithm. While the accuracy of the
learner typically increases with example size, other cri-
teria are negatively affected by too much examples, for
example interpretability, speed in learning and appli-
cation of a model, overhead for handling large amounts
of data and the ability to interactively let the user
work with the learning system (Giraud-Carrier, 1998).
This paper deals with the criterion of interpretability
of the learned model, which is an important, yet often
overlooked aspect for applying machine learning algo-
rithms to real-world tasks. The importance of inter-
pretability stems from the fact that knowledge discov-

Appearing in Proceedings of the Workshop on Learning with
Multiple Views, 22nd ICML, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

ery is not equal to the application of a learning algo-
rithm, but is an iterative and interactive process that
requires much manual work from data miners and do-
main specialists to understand the problem, transform
the data prior to learning and interpret and deploy the
model afterwards. One cannot hope to successfully
solve these problems without substantial insight into
the workings and results of the learning algorithm.

The rest of the paper is organized as follows: the next
section discusses the concept of interpretability, its re-
lation to multiple views, and introduces the basic ideas
of this paper. Section 3 gives an introduction to the in-
formation bottleneck method, which will be used later.
Section 4 describes the problem of learning local mod-
els and its connection to learning with multiple views,
while three approaches to the crucial step of detecting
local patterns are presented in Section 5. Following
that, Section 6 gives some empirical results and Sec-
tion 7 concludes.

2. Interpretability

The key problem with interpretability is that humans
are very limited in the level of complexity they can
intuitively understand. Psychological research has es-
tablished the fact that humans can simultaneously deal
with only about seven cognitive entities (Miller, 1956)
and are seriously limited in estimating the degree of re-
latedness of more than two variables (Jennings et al.,
1982). An optimal solution of a high-dimensional,
large-scale learning task, however, may lead to a very
large level of complexity in the optimal solution. In-
terpretability is very hard to formalize, as it is a sub-
jective concept. In this paper, we use four heuristics
to approach the concept of interpretability:

Number of features: the number of features used in a
model is a heuristic measure of complexity. While
this is not strictly true, as the user may under-
stand even a high number of features if he can
relate the feature values to an existing mental con-
cept (e. g., a doctor may explain a large number
of symptoms by one disease), this heuristic has
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often been used in practice (Sommer, 1996).

User-defined hypothesis space: A very simple and yet
very important finding in practice is that people
tend to find those things understandable that they
already know. Hence, if a user has much experi-
ence with a specific learning algorithm, it may be
favorable to keep using this learner, regardless of
its accuracy.

Examples and features instead of models: While
models are often hard to understand even for ex-
perienced machine learning experts, single exam-
ples and single features have a clear meaning to
domain experts (e. g. instead of a TF/IDF repre-
sentation of text documents, one can look at the
texts themselves).

Split-up into sub-problems: Splitting up a problem
into several independent sub-problems reduces
the complexity and may still give reasonable re-
sults, even if the sub-problems are actually not
completely independent.

How can the interpretability problem be solved? Ex-
perience shows that one can often find a simple model
which provides not an optimal solution, but a reason-
ably good approximation. The hard work usually lies
in improving an already good model. Hence, we can
try to find a simple model first and then concentrate
on finding more sophisticated models only on those
parts of the input space, where the model is not good
enough. This will be an easier task because less exam-
ples have to be considered and hence one might use a
more sophisticated learner. To express the fact that
the latter models are only used for small parts of the
input space, these models will be called local models.
In contrast, the former, more general model will be
called the global model (Rüping, 2005).

Implicitly, this setup requires a description of the parts
of the input space where the global model is not good
enough or a decision rule when to use the global model
or the local models. These regions will be called local
patterns (Hand, 2002) and we will require the descrip-
tion of the local patterns to be interpretable in the
same sense as the global model. The idea, as depicted
in Figure 1, is the following: to classify an observation
with high accuracy, we see whether it falls into one of
the local patterns. In this case, the corresponding lo-
cal model is used, else the global model is used. When
we are more interested in interpretability, it suffices
to inspect only the global model, which is an approx-
imation of the complete model, plus the local pattern
which characterizes the deviations between the global
and the complete model.
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Figure 1. The local model idea. Left: with respect to in-
terpretability, only the global model (horizontal line) is re-
garded, while the local pattern (rectangle) specifies the re-
gion where the global model is not reliable. Right: with re-
spect to accuracy, the pattern specifies when to use the lo-
cal model (nonlinear function) instead of the global model.

The local patterns distinguish this approach from both
ensemble methods and from independently learning
an understandable and a high-performance model. In
usual ensemble methods, even in the case of easily
interpretable base learners the combination of sev-
eral learners will add a large amount of complexity,
whereas using local patterns the model will be kept
simple for a large and well-defined part of the input
space. In contrast to two independently learned mod-
els, the local pattern assures that there is a strict, well-
defined correspondence between the two models. The
philosophy behind this approach is that accuracy and
interpretability are two aspects of the same problem
and that their solutions should be as independent as
necessary, but as close as possible.

This approach reduces complexity in two ways. First,
a less than optimal hypothesis language can be used for
the global model, because errors can still be corrected
by the local models. This leaves room for choosing a
hypothesis language that optimizes criteria other than
the prediction error, namely the interpretability of the
global model. Second, for the aspect of discovering
new knowledge, it may happen that the global model
finds only the obvious patterns in the data that do-
main experts are already aware of. Patterns are more
informative, if they contradict what is already known
(Guyon et al., 1996). Hence, it may in fact be the case
that the local models contain the interesting cases.

Of course, there is also a downside to this approach:
The complete model, consisting of three sub-models,
may easily be much more complex than a single model
designed to optimize accuracy. However, it should be
noticed that only the global model and the local pat-
terns are meant to be understandable and that a lower
complexity of a competing model yields no improve-
ment if it is still too complex for the user to under-
stand.
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In this paper, the interpretability framework consists
of restricting the number of features that both the
learner and the description of the error regions of the
learner may use. This can be seen as constructing two
new views on the data: one to define the global model
on, and one to discriminate between the global and the
local models.

3. Information Bottleneck

The information bottleneck method (Tishby et al.,
1999) extracts structure from the data by viewing
structure extraction as data compression while con-
serving relevant information. With the data modeled
by a random variable U1, relevant information is ex-
plicitely modeled by a second random variable V , such
that there is no need to implicitly model the relevant
structure in terms of appropriately choosing distance
or similarity measures as in standard clustering algo-
rithm. The idea is to construct a probabilistic clus-
tering, given by a random variable C, such that the
mutual information I(U, C) between the data and the
clusters is minimized, i. e. C compresses the data as
much as possible, while at the same time the mutual
information I(V, C) of the relevant variable V and the
clusters is maximized, i. e. the relevant structure is
conserved. Hence, the random variable C acts as a
bottleneck for the information U has about V . Both
goals are balanced against each other by a real pa-
rameter β > 0, such that the goal becomes to find a
clustering P (c|u) which minimizes

F = I(U, C) − βI(V, C).

It can be shown that this problem can be solved by
iterating between the following three equations

P (c) =
∑

u

P (u)P (c|u)

P (v|c) =
∑

u

P (v|u)P (u|c)

P (c|u) ∝ P (c)eβP (v|u) log P (v|c).

The first two equations ensure the consistency of the
estimate probabilities, while the third equation gives
a functional form of the clustering, depending on the
Kullback-Leibler-distance between P (v|u) and P (v|c)
(removing factors independent of c). The input con-
sists of the probability distributions P (u) and P (v|u).

1We use the letters U, V, W instead of the usual X, Y, Z

in order to avoid confusion with the classification features
X and labels Y used later

3.1. Condition Information Bottleneck

Gondek and Hoffmann (Gondek & Hofmann, 2004)
extend the information bottleneck approach by con-
sidering not only information about relevant, but also
about irrelevant structure. It is often easier to express
what is already known and hence is uninteresting, than
to specify what is interesting and relevant. Examples
of such irrelevant structures are general categorization
schemes and well-known properties of the data, when
instead one is interested in how the data differs from
what one thinks it looks like.

Conditional information bottleneck (CIB) is formu-
lated by introducing a random variable W to describe
the irrelevant information. The learning problem cor-
responds to that of standard information bottleneck
with the new target function

F = I(U, C) − βI(V, C|W )

That is, one wants to maximize the information that
C has of V , given that W is already known. In a way,
the goal is to extract information orthogonal to what
one can already infer via W .

Again, the problem can be solved by iterating between
three estimation equations

P (c) =
∑

u

P (u)P (c|u)

P (v|w, c) =
∑

u

P (v|u, w)P (u|w, c)

P (c|u) ∝ P (c)e
β
∑

w
P (w|u)

∑
y

P (v|u,w) log P (v|w,c)

The probabilities P (v|u, w), P (w|u) and P (u) have to
be given to the learner as input.

4. Local Models and Multiple Views

Local pattern or subgroup detection (Hand, 2002) is
defined as the un-supervised detection of high-density
regions in the data. That is, one looks for regions in
the input space, whose empirical probability with re-
spect to a given a training set is significantly higher
than the probability assigned by a default probabil-
ity measure, which encodes the prior beliefs about the
data. The idea is that the user already has some idea
of what his data looks like and is interested in cases
where his beliefs are wrong.

Local models are an extension of local patterns to the
supervised case. Local models are meant to improve
the prediction, hence instead of P (x) the interesting
quantity is the conditional class probability P (y|x).
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We will deal with classification rules only here. Given
a global classifier f(x), the goal is to find regions of the
input space where f(x) is wrong, plus a new, better
classification rule on these regions. To justify the term
local the error regions are restricted to have a proba-
bility below a user-defined threshold τ , such that most
of the data will be predicted by the global model.

In order to improve interpretability with local mod-
els, we want both the global classifier and the descrip-
tion of the local regions to be interpretable. As dis-
cussed in Section 2, this implies that the user may
choose any learner that he deems to be appropriate.
Treating the learner as a black box, we improve under-
standability only by restricting the number of features
for the global classifier and the local pattern detec-
tion can use. In other words, we construct a specific
view for the global classifier which is optimized for in-
terpretability of the overall model and a second view
for the local patterns, which is optimized for describ-
ing the incorrectly predicted examples of the global
model. Finally, the local classifier is not restricted in
which features to use, as it is not meant to be under-
standable, but only to increase accuracy.

4.1. Optimizing the Global and Local Models

Selecting a subset of features for the global model is
a well investigated problem and can be solved in a
general way for example using the wrapper approach
(Kohavi & John, 1998). This approach is computer
intensive, but can be used for any learner.

The local learner is not restricted by any interpretabil-
ity considerations at all and we may select the learner
which gives the best accuracy. The definition of the
local models asks only for the local model to be de-
fined on its corresponding local pattern. Hence, we
may use different learners for each pattern, which may
be a good idea when there are different reasons that
the data deviates from the global model. This means
that the detection of local patterns and the construc-
tion of models depend on each other and that it may
be a good idea to construct them in parallel or let them
iteratively improve each other (Rüping, 2005).

However, as in the following we are mainly concerned
with the problem of finding adequate local patterns,
we simplify things by using only one local model on all
local patterns. This model will be learned on all avail-
able examples (that is, it is actually a global model),
but will be used only on the detected local patterns.
This model is expected to perform better than the ac-
tual global model because it is not restricted by inter-
pretability constraints.

5. Detecting Local Patterns

Given the global and local models, the goal of local
pattern detection in this case is to find a description
of the regions in the input space where the local model
is better than the global one. Examples lying in these
regions will be called local examples here. The goal
of local pattern detection here is to optimize the com-
bined learners accuracy while keeping the restriction
of interpretability (hypothesis language and number of
features) and locality (only a fraction of τ examples in
the local patterns).

5.1. Local Patterns as a Classification Task

It is straightforward to define local pattern detection
as a classification task: given the examples (xi, yi)

n
i=1

and the global and local learners predictions, define the
new label li as 1 when (xi, yi) is a local example (mean-
ing that the global learner predicts (xi, yi) wrong and
the local learner is right). Set li = −1 otherwise. Then
learn a classifier using the new labels. This classifier
will predict whether the local model should be used on
an example instead of the global one.

When the global and local learner agree, it obviously
does not matter which prediction one uses. However,
this does not mean that these examples can be re-
moved from the local pattern learners training set. As
the locality restriction requires that only a fraction of
τ examples may lie in the local patterns, it is advis-
able to include only the local examples in the positive
class, where the combined model can be improved by
the local model. If the locality restriction is still not
met, one will have to reduce the number positive pre-
dictions of the local pattern learner even more, e.g. by
selecting a proper threshold for learners with a numer-
ical decision function.

For the decision, which classifier to use for the local
pattern task, the same interpretability considerations
as for the global model apply. In fact, as may be ad-
visable to use the same learner for both tasks. Letting
the learner choose different sets of features and a dif-
ferent hypothesis in both tasks may provide enough
variation to significantly improve the results.

5.2. Clustering Local Examples

Although in the strict sense detecting local patterns
is a classification task in the framework of local mod-
els, it can also be solved by a clustering approach. The
reason is, that the classification task is actually a quite
relaxed one: given that the local model is more accu-
rate than the global one and as long as the locality
restriction is fulfilled, it is no problem to include more
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examples in the local pattern than necessary. Hence,
in this case the performance criterion for the classifica-
tion is biased very much towards completely covering
the positive class (recall) with less emphasis on the
negative class.

This task may be solved by clustering the local ex-
amples using a density-based clusterer and choosing
a threshold on the density to define the regions with
highest probability of finding a local example. It is
straightforward to optimize these thresholds such that
the accuracy of the combined model is maximized.

A clustering approach may be better suited as a clas-
sification approach, as clustering not only tries to de-
scribe the differences between the local and the non-
local examples, but actually tries to find a compact
representation of the local examples. This description
may give the user a clue why these examples are more
complex to classify and may lead to an improved rep-
resentation of the data.

One can also account for the probabilistic nature of
the division of the examples into local and non-local
examples. Assume that the training data (xi, yi)i=1...n

is i. i. d. sampled from Porig(X × Y )2. We start by
learning a probabilistic classifier f , that is, a classi-
fier whose outputs can be interpreted as the condi-
tional class probability f(x) = Porig(Y = 1|x). Many
classifiers either directly give such a probability or
give outputs which can be appropriately scaled (Gar-
czarek, 2002; Platt, 1999). We assume that this is the
true distribution of positive and negative classes given
the observation x and thus arrive at an estimate of
Porig(Y 6= f(x)|x). Assuming Porig(x) = 1/n for all x

in the training set gives an estimate of

P (x) := Porig(x|Y 6= f(x)) =
Porig(Y 6= f(x)|x)∑
x Porig(Y 6= f(x)|x)

the probability of drawing an falsely classified observa-
tion. When generating a cluster model, this probabil-
ity can be used as a weight on how much each example
will have to be represented by the cluster.

To enforce the restriction on the number of features
used for the model, one can either use a clustering
algorithm that incorporates feature reduction by se-
lecting a subset of features that maximizes the density
of the projection in this subspace (projected cluster-
ing, (Aggarwal et al., 1999)), or by selecting features
after the clustering process, for example based on the
mutual information I(x, c) of the features x and the
cluster membership values c.

2In the following, the index orig is also used to identify
the marginal distributions derived from Porig

5.3. Informed Clustering for Local Patterns

Informed clustering describes the setting where the de-
sired structure to be extracted by a clustering is not
only defined implicitly using the distance or similarity
function, but also explicit information about relevant
and irrelevant structure is given. The conditional in-
formation bottleneck algorithm is one such approach,
where one can explicitely define irrelevant structure
which the clustering algorithm should ignore.

There are two kinds of irrelevant information one could
exploit. First, one can use a probabilistic clustering
p(c|x) of the complete training observations (xi)i=1...n.
This clustering shows, what the data generally looks
like and can be used as a background model to dis-
criminate the local examples against. Note that we
do not require an information bottleneck clustering at
this stage, we could also use any other probabilistic
clusterer. It would also be possible to use an exist-
ing description of the data set at this stage (e. g. an
ontology given by the user).

The other method is to define the prediction of the
global model or, more precisely the conditional class
probability Porig(Y = 1|x) as irrelevant. The idea here
is that the global model is used anyway and that it is
better to look for independent sources of information.

In either case, one can arrives at a well-defined prob-
ability Pcib(w|u). Now one can set up the conditional
information bottleneck problem to find the local pat-
terns as follows: identify U with the index i and the
relevant features V with the classification features X :

• Pcib(u) = P (xi) = Porig(xi|Y 6= f(xi))

• ∀w : Pcib(v|u, w) = Pib(v|u)

In other words, the problem is to compute a proba-
bilistic clustering P (c|u) = P (c|xi) of the observations
xi which are misclassified by the classifier f (controlled
by Pcib(u) = Porig(xi|Y 6= f(xi))), such that the clus-
tering describes how the local examples differ from the
complete data set (via defining the cluster information
Pib(v|u) of the complete data set as irrelevant) or how
the local examples differ from structure from the global
model (via Porig(Y = 1|x)).

As the information bottleneck method does not re-
turn a cluster model, but only the cluster member-
ship probabilities p(c|x), a model that induces these
memberships has to be found in order to apply the
clustering to new observations. Following the goal of
interpretability, it is advantageous to use a k-medoids
clustering model, as it is often easier to interpret sin-
gle examples than models. For each cluster, we choose
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that example as medoid, which – in the space of pro-
jections on the most relevant features – minimizes the
expected distance of the medoid to the examples in
the cluster, where expectation is taken with respect to
the probability Pcib(x, c) for the cluster c.

6. Experiments

In this section, we report results for both an instructive
application for classifying music data, which we report
in depth, and for a set of standard data sets in order
to compare the different local pattern approaches.

6.1. Music Data

In these experiments, a linear Support Vector Machine
(Vapnik, 1998) was used as both global and local clas-
sifier. Feature selection for the global classifier was
performed by repeatedly removing the features with
lowest absolute weight in the decision function. The
SVM decision functions were probabilistically scaled
using the method of (Platt, 1999). The pattern detec-
tion based on the CIB method (see Section 5.3) was
used, where the initial clustering was obtained by stan-
dard information bottleneck and a k-medoids model of
the CIB membership values was generated with the co-
sine similarity measure.

The data set in this experiment consists of 1885 audio
files of songs from 8 music genres, combined with user
reviews of each of the song as plain text. The classifi-
cation target was to predict the music taste of a user.
From the music files, 50 audio features were gener-
ated following the methodology of (Mierswa & Morik,
2005). The text information was represented as fre-
quencies of the 500 most frequent words. The global
classifier was learned from the text data only, as it is
easy for users to interpret single keywords, while audio
features are hard to understand even for experienced
experts. The local classifier was learned on the union
of the audio and text features. Notice that in this ap-
plication we have four different views on the data: the
keywords from the classification, the keywords from
the clustering, the union of the audio and text features
for the local classifier and finally the actual songs from
the audio files, which the user can actually listen to.

The initial information bottleneck clustering was pa-
rameterized to return 8 cluster, in correspondence with
the 8 music genres, and its parameter β was set to max-
imize the correspondence to the genres. However, the
most informative words regarding the clustering were
hello, power, blend, sounds, baby, fat, quiet,

bit, night, and give, which do not seem to reveal
any obvious genre structure.

Feature selection for classification returned groove,

smooth, chill, jazzy, mood, fusion, piano,

piece, paul, and jazz as the most important fea-
tures. It is obvious that a certain music taste can be
associated with these keywords

The CIB clustering returned talent, baby, sounds,

check, neat, pass, true, nice, sexy, and chorus

as the most important features. Interestingly, extract-
ing two medoids from this clustering showed that the
first medoid consists only of the word chorus with
no occurrence of the other keywords and the second
medoid consists of the words sounds and nice with
no occurrence of the other keywords. This is a result
of the sparse structure of the text data, as a medoid
as any other example will have only a few nonzero fea-
tures. For sparse data it may be instructive to try out a
different procedure to describe the CIB clusters. How-
ever, the second medoid with the keywords “sounds
nice” seems to indicate that there are two aspects to
musical taste in this data set, the genre – which the
initial clustering was optimized against – (the classifier
indicates that the user seems to like jazz) – and the
quality of the music independent of the style (whether
the song sounds nice or not).

5-fold cross-validation showed an accuracy of the
global model of 0.624 (σ = 0.0284), while the local
model achieved an accuracy of 0.670 (σ = 0.0164) mea-
sured over all examples. The combined model achieves
an accuracy of 0.649 (σ = 0.0230). This lies between
the accuracies of the global and the local model, which
was expected, as the amount of examples that the
global and the combined differ on is bounded by the
parameter τ (in this experiment, τ = 0.05), which
stops the local model from correcting more errors of
the global model.

To validate that the increase in performance is indeed
a result of the conditional information bottleneck ap-
proach, the experiment was repeated with a standard
information bottleneck clustering of the global models
errors instead of the CIB step (all other parameters
left constant). With the same accuracies for the global
and local classifiers, the accuracy of the combined clas-
sifier dropped to 0.627 (σ = 0.0329). This proves that
the conditional information bottleneck clustering finds
novel structure in the errors of the global classifier.

To validate the effect of the parameter τ and the num-
ber of features for the CIB clustering, more experi-
ments were conducted. The result can be seen in Ta-
ble 1. The table shows the accuracies of the global,
local and combined models and the disagreement rate
(fraction of examples classified differently) between the
global and the combined model. We can see that the
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Table 1. Influence of the parameters on the performance.

parameters accuracy disagree

τ #features global local combined

0.05 10 0.624 0.670 0.648 0.147
0.05 20 0.624 0.670 0.653 0.201

0.025 10 0.646 0.670 0.642 0.070
0.025 20 0.646 0.670 0.646 0.019

combined model performs better when more features
for the CIB clustering are present. We also see that
the actual disagreement rate is higher than the given
threshold τ . This is again a result of the sparse na-
ture of the data, as in the space projected on the most
important keywords, several different examples fall to-
gether, which prevents a more fine grained control of
the number of local examples. An obvious tradeoff be-
tween interpretability in terms of number of features
and accuracy can be observed here.

6.2. Standard Data Sets

To compare the local pattern approaches, the classifi-
cation approach using a linear SVM, the clustering ap-
proach using an information bottleneck clusterer, and
the informed clustering approach using conditional in-
formation bottleneck with the global classifiers con-
ditional class probability estimate as irrelevant infor-
mation were compared on a total of 8 data sets. 6
of the data sets (diabetes, digits, liver, balance, wine
and breast-cancer) were taken from the UCI repository
of machine learning databases (Murphy & Aha, 1994),
and 2 additional real world data sets involving business
cycle prediction (business) and intensive care patient
monitoring (medicine) were used. The following table
sums up the description of the data sets:

Name Size Dimension
balance 576 4
breast 683 9

diabetes 768 8
digits 776 64
liver 345 6
wine 178 13

business 157 13
medicine 6610 18

In these experiments, a linear Support Vector Machine
(Vapnik, 1998) was used as both global and local clas-
sifier. Feature selection for the global classifier was
performed by repeatedly removing the features with
lowest absolute weight from the decision function un-
til only 10% of the features were left.

Table 2 shows the experiments results, namely the ac-
curacy of the global model, the local model (viewed as
a complex global classifier and evaluated on the com-
plete data set) and the combined models using clas-
sification, clustering and informed clustering for the
local patterns. All results were 5-fold cross-validated.
The performance of the combined model lies between
the performances of the global and local models, which
shows that local models can improve classification per-
formance even under severe restrictions on the number
of features (depending on the dimension of the data
set, in some case only 1 feature is used). It can, how-
ever, not beat a more complex classifier in this case,
which is a result of both the locality restriction stop-
ping the local model from classifying more observa-
tions and the dimensionality restriction allowing only
very coarse local patterns.

Overall, the clustering approach seems to be slightly
better than the other, but differences are very small.
This may be a sign that the local pattern detection
task is essentially limited by the allowed size and com-
plexity of the patterns in terms of number of features
and not by the algorithm.

7. Conclusions

Next to accuracy, interpretability is a primary quality
criterion for classification rules. Traditionally, these
goals have been pursued independent of another. This
paper showed that using the framework of local mod-
els, it is possible to find a model which combines not
only good performance with an easily interpretable ap-
proximation, but, even more important, allows to give
guarantees about the correspondence of the approx-
imation and the combined classifier in terms of the
disagreement rate threshold τ and in terms of an in-
terpretable description of the error regions.

In the proposed algorithm, clustering proves to be an
efficient tool for not only discriminating between the
global and the local model, but also for describing the
difference of both models in terms of a compact repre-
sentation of the structure in the global models errors.
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Table 2. Experimental Results.

Name Global Local combined

SVM IB CIB

balance 0.644 0.940 0.727 0.909 0.788
breast 0.907 0.969 0.931 0.956 0.951

diabetes 0.760 0.781 0.701 0.748 0.763
digits 0.993 0.996 0.994 0.993 0.994
liver 0.579 0.695 0.635 0.634 0.631
wine 0.927 0.971 0.927 0.943 0.932

business 0.828 0.866 0.828 0.834 0.821
medicine 0.719 0.744 0.749 0.748 0.756
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Abstract

In recent years, the complexity of data ob-
jects in data mining applications has in-
creased as well as their plain numbers. As
a result the characteristics that are used to
describe a data object are very heterogenous
and often model different aspects of the same
object. These different views on a certain
data object has led to the development for
various feature transformations and thus to
multiple object representations. For exam-
ple, a protein can be described by a text
annotation, its amino acid sequence and its
three dimensional structure. Thus, each pro-
tein can be described by three different fea-
ture vectors belonging to three different fea-
ture spaces. Another example are earth ob-
servation satellites taking images of the same
area in multiple color spectra. To exploit
these multiple representation for data min-
ing, the solutions have to cope with two prob-
lems: Comparability and Semantics.

Comparability is a problem because the
meaning of a pattern derived in one represen-
tation has to be related to the patterns de-
rived from other representations in an unbi-
ased way. For example, consider the distance
between two objects that are given by two
representations. Simply adding the distances
in both representation might offer a very bi-
ased comparison if distances in the first rep-
resentation tend to be much larger than in
the second representation. Thus, we have to
find a weighting that combines the distances
in a fair way.

The other aspect is semantics describing the
connection of a pattern in a single representa-

Appearing in Proceedings of the Workshop on Learning with
Multiple Views, 22nd ICML, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

tion to the global patterns observed using all
representations. For example, consider two
objects that are found in the same cluster in
two representations but are placed in differ-
ent clusters in a third representation. The
question if we should place an object in the
same global cluster is depended on the mean-
ing or semantics of the single representations.
If it is enough that a certain object is similar
with respect to one representation, we would
place the objects in the same cluster in the
final clustering based on all representations.
However, in other applications similarity in
one representation is only a hint that two
objects are really similar. Thus, we have to
demand that two object might be similar in
more than one representation when placing
them into the same cluster.

In this talk, we will discuss both problems
and describe general directions for their so-
lutions. Additionally, two methods using
these approaches are introduced. The first
is a method for kNN classification on multi-
represented data objects. The idea of this
method is to combine the decision sets of
kNN classification in each representation.
The second technique is a method for density-
based clustering on multi-represented data
objects. The idea of this method is to re-
define the core-object predicate of the algo-
rithm DBSCAN following varying semantics.
Finally, we will provide the results of our ex-
perimental evaluation on a set of real world
test sets from bio informatics and image pro-
cessing. The results demonstrate that data
mining algorithms following the mentioned
approaches could significantly improve the
quality of the derived patterns.
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Abstract

The Co-Training algorithm uses unlabeled
examples in multiple views to bootstrap clas-
sifiers in each view, typically in a greedy
manner, and operating under assumptions
of view-independence and compatibility. In
this paper, we propose a Co-Regularization
framework where classifiers are learnt in each
view through forms of multi-view regular-
ization. We propose algorithms within this
framework that are based on optimizing mea-
sures of agreement and smoothness over la-
beled and unlabeled examples. These algo-
rithms naturally extend standard regulariza-
tion methods like Support Vector Machines
(SVM) and Regularized Least squares (RLS)
for multi-view semi-supervised learning, and
inherit their benefits and applicability to
high-dimensional classification problems. An
empirical investigation is presented that con-
firms the promise of this approach.

1. Introduction

A striking aspect of natural learning is the ability to
integrate and process multi-modal sensory information
with very little supervisory feedback. The scarcity of
labeled examples, abundance of unlabeled data and
presence of multiple representations are aspects of sev-
eral applications of machine learning as well. An ex-
ample is hypertext classification: Modern search en-
gines can index more than a billion web-pages in a
single web-crawl, but only a few can be hand-labeled
and assembled into web directories. Each web-page
has disparate descriptions: textual content, inbound
and outbound hyperlinks, site and directory names,

Appearing in Proceedings of the Workshop on Learning with
Multiple Views, 22nd ICML, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

etc. Although traditional machine learning has fo-
cussed on two extremes of an information spectrum
(supervised and unsupervised learning), a number of
recent efforts have considered the middle-ground of
semi-supervised learning, with or without a multi-
view component (Belkin, Matveeva, & Niyogi, 2004;
Belkin, Niyogi & Sindhwani, 2004; Sindhwani, Niyogi
& Belkin, 2005; Joachims, 1999; Joachims, 2003; Blum
& Mitchell, 1998; Brefeld & Scheffer; Chapelle & Zien,
2005; Zhou et al, 2004).

The Co-Training framework proposed in (Blum &
Mitchell, 1998) has been among the first efforts that
provided a widely successful algorithm with theoretical
justifications. The framework employs two assump-
tions that allow unlabeled examples in multiple-views
to be utilized effectively: (a) the assumption that the
target functions in each view agree on labels of most
examples (compatibility assumption) and (b) the as-
sumption that the views are independent given the
class label (independence assumption). The first as-
sumption allows the complexity of the learning prob-
lem to be reduced by the constraint of searching over
compatible functions; and the second assumption al-
lows high performance to be achieved since it becomes
unlikely for compatible classifiers trained on indepen-
dent views to agree on an incorrect label. The co-
training idea has become synonymous with a greedy
agreement-maximization algorithm that is initialized
by supervised classifiers in each view and then it-
eratively re-trained on boosted labeled sets, based
on high-confidence predictions on the unlabeled ex-
amples. The original implementation in (Blum &
Mitchell, 1998) runs this algorithm on naive-bayes
classifiers defined in each view. For more on agreement
maximization principles, see (Abney, 2002; Dasgupta,
Littman & McAllester, 2001; Collins & Singer, 1999;
Yarowsky, 1995).

In this paper, we present a Co-Regularization frame-
work for multi-view semi-supervised learning. Our ap-
proach is based on implementing forms of multi-view
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regularization using unlabeled examples. We suggest a
family of algorithms within this framework: The Co-
Regularized Least Squares (Co-RLS) algorithm per-
forms a joint regularization that attempts to mini-
mize disagreement in a least squared sense; the Co-
Regularized Laplacian SVM and Least Squares (Co-
LapSVM, Co-LapRLS) algorithms utilize multi-view
graph regularizers to enforce complementary and ro-
bust notions of smoothness in each view. The recently
proposed Manifold Regularization techniques (Belkin,
Niyogi & Sindhwani, 2004; Sindhwani, 2004; Sind-
hwani, Niyogi & Belkin, 2005) are employed for Co-
LapSVM and Co-LapRLS. Learning is performed by
effectively exploiting useful structures collectively re-
vealed with multiple representations.

We highlight features of the proposed algorithms:

1. These algorithms arise from natural extensions of
the classical framework of regularization in Re-
producing Kernel Hilbert Spaces. The unlabeled
data is incorporated via additional regularizers
that are motivated from recognized principles of
semi-supervised learning.

2. The algorithms are non-greedy, involve convex
cost functions and can be easily implemented.

3. The influence of unlabeled data and multiple
views can be controlled explicitly. In particu-
lar, single view semi-supervised learning and stan-
dard supervised algorithms are special cases of
this framework.

4. Experimental results demonstrate that the pro-
posed methods out-perform standard co-training
on synthetic and hypertext classification datasets.

In section 2, we setup the problem of semi-supervised
learning in multiple views. In subsequent sections, we
discuss the Co-Regularization framework, propose our
algorithms and evaluate their empirical performance.

2. Multi-View Learning

In the multi-view semi-supervised learning setting, we
have labeled examples {(xi, yi)}

l
i=1 and unlabeled ex-

amples {xi}
l+u
l+1 where each example x = (x(1), x(2)) is

seen in two views with x(1) ∈ X(1) and x(2) ∈ X(2).
The setup and the algorithms we discuss can also be
generalized to more than two views. For the rest of this
discussion, we consider binary classification problems
where yi ∈ {−1, 1}. The goal is to learn the func-
tion pair f = (f (1), f (2)), where f (1) : X(1) 7→ {−1, 1}
and f (2) : X(2) 7→ {−1, 1} are classifiers in the two

Figure 1. Bipartite Graph Representation of multi-view
learning. The small black circles are unlabeled examples.

(a)

view 1                          view 2

(b)

view 1                           view 2

views. In this paper, we will focus on how the avail-
ability of unlabeled examples and multiple views may
be profitably leveraged for learning high-performance
classifiers f (1), f (2) in each view.

How can unlabeled data and its multiple views help?
In Figure 1(a), we reproduce the bipartite graph rep-
resentation of the co-training setting, to initiate a dis-
cussion. The figure shows the two views of labeled
and unlabeled examples, arranged as a bipartite graph.
The left and right nodes in the graph are examples as
seen in view 1 and view 2 respectively, with edges con-
necting the two views of an example. The unlabeled
examples are shown as small black circles and the other
examples are labeled. The class of compatible pairs of
functions identically label two nodes in the same con-
nected component of this graph. This may be inter-
preted as a requirement of smoothness over the graph
for the pair (f (1), f (2)). Thus, unlabeled examples pro-
vide empirical estimates of regularizers or measures of
smoothness to enforce the right complexity for the pair
(f (1), f (2)).

In many applications, it is unrealistic for two examples
to share a view exactly. A more realistic situation is
depicted in Figure 1(b) where three types of edges are
shown: (solid) edges connecting views of each example
as in Figure 1(a); (dashed) edges connecting similar
examples in each view; and (dotted) edges connecting
examples in each view based on similarity in the other
view. The similarity structure in one view induces a
complementary notion of similarity in the other views
with respect to which regularizers can be constructed
using unlabeled data.

In the next section, we describe algorithms that arise
from constructions of such regularizers.
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3. Co-Regularization

The classical regularization framework (Poggio &
Girosi, 1990; Schoelkopf & Smola, 2002; Vapnik, 1998)
for supervised learning solves the following minimiza-
tion problem :

f∗ = argmin
f∈HK

1

l

l
∑

i=1

V (xi, yi, f) + γ‖f‖2
K (1)

where HK is an Reproducing Kernel Hilbert space
(RKHS) of functions with kernel function K;
{(xi, yi)}

l
i=1, is the labeled training set; and V is

some loss function, such as squared loss for Regular-
ized Least Squares (RLS) or the hinge loss function
for Support Vector Machines (SVM). By the Repre-
senter theorem, the minimizer is a linear combination
of kernel functions centered on the data:

f(x) =

l
∑

i=1

αiK(x, xi)

This real-valued function is thresholded and used for
binary classification.

In the Co-regularization framework, we attempt to
learn the pair f = (f (1), f (2)) in a cross-product of two
RKHS defined over the two views, i.e., f (1) ∈ HK(1)

and f (2) ∈ HK(2) . The key issue is imposing an ap-
propriate notion of complexity on this pair so that a
regularized solution effectively utilizes unlabeled data
in the two views. We now describe some ideas.

Co-Regularized Least Squares

A natural idea is to attempt to learn the pair f =
(f (1), f (2)) so that each function correctly classifies the
labeled examples, and the outputs of the pair agree
over unlabeled examples. This suggests the following
objective function:

(f (1)∗, f (2)∗) = argmin
f(1)

∈H
K(1)

f(2)
∈H

K(2)

l
∑

i=1

[

yi − f (1)(x
(1)
i )

]2

+

µ

l
∑

i=1

[

yi − f (2)(x
(2)
i )

]2

+ γ1‖f
(1)‖2

H
K(1)

+

γ2‖f
(2)‖2

H
K(2)

+
γC

(l + u)

l+u
∑

i=1

[

f (1)(x
(1)
i ) − f (2)(x

(2)
i )

]2

Here, µ is a real-valued parameter to balance data fit-
ting in the two views, γ1, γ2 are regularization param-
eters for the RKHS norms in the two views, and γC

is the coupling parameter that regularizes the pair to-
wards compatibility using unlabeled data. It is easy

to see that a representer theorem holds that expresses
the minimizing pair

(

f (1)∗(x(1)), f (2)∗(x(2)
)

in the fol-
lowing form:

(

l+u
∑

i=1

αiK
(1)(x(1), x

(1)
i ) ,

l+u
∑

i=1

βiK
(2)(x(2), x

(2)
i )

)

The (l + u) dimensional expansion coefficient vectors
α, β may be computed by solving the following coupled
linear system:

[

1

l
JK1 + γ1I +

γC

l + u
K1

]

α −
γC

l + u
K2β =

1

l
Y

[

µ

l
JK2 + γ2I +

γC

l + u
K2

]

β −
γC

l + u
K1α =

µ

l
Y

where Y is a label vector given by Yi = yi for 1 ≤ i ≤ l

and Yi = 0 for l +1 ≤ i ≤ l +u; J is a diagonal matrix
given by Jii = |Yi|, and K1,K2 are gram matrices of
the kernel functions K(1),K(2) over labeled and unla-
beled examples.

When γC = 0, the system ignores unlabeled data and
yields an uncoupled pair of solutions corresponding to
supervised RLS. We also note a curious relationship
over coefficients corresponding to unlabeled examples:
γ1αi = −γ2βi for l + 1 ≤ i ≤ l + u. The algorithm
appears to work well in practice when orthogonality to
the constant function is enforced over the data to avoid
all unlabeled examples from being identically classi-
fied.

Working with the hinge loss, one can also extend SVMs
in a similar manner. This has not been attempted in
this paper.

Co-Laplacian RLS and Co-Laplacian SVM

The intuitions from the discussion concerning Figure
1(b) is to learn the pair f = (f (1), f (2)) so that each
function correctly classifies the labeled examples and
is smooth with respect to similarity structures in both
views. These structures may be encoded as graphs
on which regularization operators may be defined and
then combined to form a multi-view regularizer. The
function pair is indirectly coupled through this regu-
larizer.

We assume that for each view (indexed by s = 1, 2), we
can construct a similarity graph whose adjacency ma-

trix is W (s), where W
(s)
ij measures similarity between

x
(s)
i and x

(s)
j . The Laplacian matrix of this graph is

defined as L(s) = D(s) − W (s) where D(s) is the di-
agonal degree matrix D

(s)
ii =

∑

j W
(s)
ij . The graph

Laplacian is a positive semi-definite operator on func-
tions defined over vertices of the graph. It provides
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the following smoothness functional on the graph:

gT L(s)g =
∑

ij

(gi − gj)
2W

(s)
ij

where g is a vector identifying a function on the graph
whose value is gi on node i. Other regularization
operators can also be defined using the graph Lapla-
cian (Kondor & Lafferty, 2003; Smola & Kondor, 2003;
Belkin, Matveeva, & Niyogi, 2004).

One way to construct a multi-view regularizer is to
simply take a convex combination L = (1 − α)L(1) +
αL(2) where α ≥ 0 is a non-negative parameter which
controls the influence of the two views. To learn the
pair f = (f (1)∗, f (2)∗), we solve the following optimiza-
tion problems for s = 1, 2 using squared loss or hinge
loss:

f (s)∗ = argmin
f(s)∈H

K(s)

1

l

l
∑

i=1

V (x
(s)
i , yi, f

(s)) +

γ
(s)
A ‖f (s)‖2

K(s) + γ
(s)
I f (s)T Lf (s)

where f (s) denotes the vector
(

f (s)(x
(s)
1 ), . . . , f (s)(x

(s)
l+u)

)T

; and the regulariza-

tion parameters γ
(s)
A , γ

(s)
I control the influence of

unlabeled examples relative to the RKHS norm.

The solutions to these optimization problems produce
the recently proposed Laplacian SVM (for hinge loss)
or Laplacian RLS (for squared loss) classifiers trained
with the multi-view graph regularizer (Belkin, Niyogi
& Sindhwani, 2004; Sindhwani, Niyogi & Belkin,
2005; Sindhwani, 2004). The resulting algorithms are
termed Co-Laplacian SVM and Co-Laplacian RLS re-
spectively.

The solutions are obtained by training a standard
SVM or RLS using the following modified kernel func-
tion:

K̃(s)(x(s), z(s)) = K(s)(x(s), z(s)) −

kT

x(s)(I + MG(s))−1Mkz(s)

where G(s) is the gram matrix of the ker-
nel function K(s); kx(s) denotes the vec-

tor
(

K(s)(x
(s)
1 , x(s)), . . . ,K(s)(x

(s)
n , x(s))

)T

and

M =
γ
(s)
I

γ
(s)
A

L. See (Sindhwani, Niyogi & Belkin, 2005)

for a derivation of this kernel.

When α = 0 for view 1 or α = 1 for view 2, the
multi-view aspect is ignored and the pair consists of
Laplacian SVM or Laplacian RLS in each view. When
γI = 0, the unlabeled data is ignored and the pair
consists of standard SVM or RLS classifiers.

Figure 2. Two-Moons-Two-Lines : RLS, Co-trained RLS
and Co-RLS

View 1: RLS (2 labeled examples) View 2: RLS (2 labeled examples)

View 1: Co−trained RLS (1 step) View 2: Co−trained RLS (1 step)

View 1: Co−RLS View 2: Co−RLS 

The idea of combining graph regularizers and its con-
nection to co-training has been briefly discussed in
(Joachims, 2003) in the context of applying spec-
tral graph transduction (SGT) in multi-view settings.
However, unlike co-training, SGT does not produce
classifiers defined everywhere in X(1), X(2) so that pre-
dictions cannot be made on novel test points. By op-
timizing in reproducing kernel Hilbert spaces defined
everywhere, Co-Laplacian SVM and RLS can also ex-
tend beyond the unlabeled examples.

4. Experiments

We performed experiments on a toy multi-view dataset
and a hypertext document categorization task.

Two-Moons-Two-Lines Toy Example

Figure 2 and Figure 3 demonstrate Co-Regularization
ideas on a toy dataset in which objects in two classes
appear as two moons in one view and two oriented lines
in another. Class conditional view independence is
enforced by randomly associating points on one moon
with points on one line, somewhat like the News 2× 2
dataset in (Nigam & Ghani 2000). One example is
labeled from each class and shown as the large colored
diamond and circle; the other examples are unlabeled.
We chose a Gaussian kernel for the two moons view
and a linear kernel for the two lines view.

In the top panel of Figure 2, we see that a super-
vised Regularized least squares classifier is unable to
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Figure 3. Two-Moons-Two-Lines : Laplacian SVM and
Co-Laplacian SVM

View 1: LapSVM View 2: LapSVM

Noisy View 1: LapSVM
(Error rate : 144/200)

View 1: Co−Regularized LapSVM (joint graph)
(Error rate : 18/200)

produce reasonable classifiers with only 2 labeled ex-
amples. In the middle panel, we add two more la-
beled examples based on the most confident predic-
tions (which are actually incorrect) of the supervised
classifiers on the unlabeled data. The middle panel
shows the classifiers obtained after 1 iteration of stan-
dard co-training with the boosted set of 4 labeled ex-
amples. Since greedy co-training does not revise con-
jectured labels, subsequent training fails to yield good
classifiers in either view. By contrast, Co-Regularized
Least squares classifiers, shown in panel 3, effectively
use the unlabeled data in two views.

In the top panel of Figure 3, we show single-view semi-
supervised learning with Laplacian SVMs in the two
views. We then add noise to the two-moons view so
that the two clusters are merged. This is shown in the
bottom left panel. In this case, the unlabeled data fails
to provide any structure for Laplacian SVM to exploit.
However, when the joint graph laplacian is used, the
rich structure in the two-lines view can be used to
recover good decision boundaries in the two moons
view. The bottom right panel shows the boundaries
constructed by Co-Laplacian SVM.

Hypertext Categorization

We considered the WebKB hypertext categorization
task studied in (Blum & Mitchell, 1998; Joachims,
2003; Nigam & Ghani 2000). There are 1051 web doc-
uments belonging to two classes: course or non-course

from four universities. Only 12 examples are labeled.
The two views are the textual content of a webpage
(which we will call page representation) and the an-
chortext on links on other webpages pointing to the
webpage (link representation).

The data was preprocessed into 3000 features for the
page-view and 1840 features for the link view using the
Rainbow software (McAllum, 1996). We used linear
kernels for both views. We also considered a page+link
representation with concatenated features.

The performance of several methods as measured
by mean precision-recall breakeven point (PRBEP)
is tabulated in Table 1. These methods are (a)
RLS, SVM on fully labeled data sets and with 12
randomly chosen labeled examples; (b) single-view
semi-supervised methods: SGT (Joachims, 2003),
TSVM (Joachims, 1999), Laplacian SVM, Lapla-
cian RLS (Belkin, Niyogi & Sindhwani, 2004; Sind-
hwani, Niyogi & Belkin, 2005); (c) multi-view semi-
supervised methods: Co-RLS, Co-trained RLS, Co-
trained SVM, Co-LapRLS and Co-LapSVM. In Table
1, Co-LapRLS1, Co-LapSVM1 use α = 0.5 to com-
bine graph Laplacians in page and link views; and Co-
LapRLS2, Co-LapSVM2 use the mean graph Lapla-
cian over page, link and page+link views, to bias classi-
fiers in each view. The performance of supervised clas-
sifiers with full labels (RLS (full) and SVM (full)) is
the mean PRBEP for 10-fold cross-validation. For all
other methods, we average over random choices of 12
labeled examples (making sure that each class is sam-
pled at least once) and measure the mean PRBEP eval-
uated over the remaining 1039 examples. We avoided
the model selection issue due to the small size of the la-
beled set and chose best parameters over a small range
of values.

The results in table 1 suggest that Co-LapSVM and
Co-LapRLS are able to effectively use unlabeled ex-
amples in the two views. The link and page classifiers
using 12 labeled examples, 1039 unlabeled examples
and multi-view regularizers match the performance of
supervised classifiers with access to all the labels. We
also see that Co-RLS outperforms Co-trained RLS. In
Table 2, we report the performance of Co-Laplacian
SVM (using the mean graph Laplacian over the page,
link and page+link views) in classifying unlabeled and
test web-documents of four universities. The high cor-
relation between performance on unlabeled and unseen
test examples suggests that the method provides good
extension outside the training set.

5. Conclusion

We have proposed extensions of regularization algo-
rithms in a setting where unlabeled examples are eas-
ily available in multiple views. The algorithms provide
natural extensions for SVM and RLS in such settings.
We plan to further investigate the properties of these
algorithms and benchmark them on real world tasks.
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Table 1. Mean precision-recall breakeven points over unla-
beled documents for a hypertext classification task.

View → link page page+
Classifier ↓ link

RLS (full) 94.4 94.0 97.8
SVM (full) 93.7 93.5 99.0

RLS (12) 72.0 71.6 78.3
SVM (12) 74.4 77.8 84.4

SGT 78.0 89.3 93.4
TSVM 85.5 91.4 92.2
LapRLS 80.8 89.0 93.1
LapSVM 81.9 89.5 93.6

Co-trained RLS 74.8 80.2 -
Co-RLS 80.8 90.1 -

Co-LapRLS1 93.1 90.8 90.4
Co-LapRLS2 94.4 92.0 93.6

Co-trained SVM 88.3 88.7 -
Co-LapSVM1 93.2 93.2 90.8
Co-LapSVM2 94.3 93.3 94.2

Table 2. Mean precision-recall breakeven points over test
documents and over unlabeled documents (test , unla-
beled)

University → page+link page link
View ↓
Cornell 91.6 , 90.9 88.9 , 88.8 88.2 , 88.7
Texas 94.8 , 95.5 91.6 , 92.4 90.9 , 93.5

Washington 94.7 , 94.9 94.0 , 93.9 93.7 , 92.4
Wisconsin 92.0 , 91.4 87.6 , 86.6 86.1 , 84.5
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Abstract

In multi-view remote sensing applications, in-
complete data can result when only a subset
of sensors are deployed at certain regions. We
derive a closed-form expression for comput-
ing a Gaussian kernel when faced with in-
complete data. This expression is obtained
by analytically integrating out the missing
data. This result can subsequently be used in
conjunction with any kernel-based classifier.
The superiority of the proposed method over
two common imputation schemes is demon-
strated on one benchmark data set and three
real (measured) multi-view land mine data
sets.

1. Introduction

The incomplete-data problem, in which certain fea-
tures are missing from particular feature vectors, exists
in a wide range of fields, including social sciences, com-
puter vision, biological systems, and remote sensing.
For example, partial responses in surveys are common
in the social sciences, leading to incomplete data sets
with arbitrary patterns of missing data. In multi-view
remote sensing applications, incomplete data can re-
sult when only a subset of sensors (e.g., radar, infrared,
acoustic) are deployed at certain regions. Increasing
focus in the future on using (and fusing data from)
multiple sensors, information sources, or “views” will
make such incomplete data problems more common
(see (Tsuda, Akaho & Asai, 2003; Lanckriet et al.,
2004)).

Incomplete data problems are often circumvented in
the initial stage of analysis—before specific algorithms
become involved—via imputation (i.e., by “complet-

Appearing in Proceedings of the Workshop on Learning with
Multiple Views, 22nd ICML, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

ing” the missing data by filling in specific values).
Common imputation schemes include “completing”
missing data with zeros, the unconditional mean, or
the conditional mean (if one has an estimate for the
distribution of missing features given the observed fea-
tures, p (xmi

i |x
oi

i )).

When kernel methods such as the SVM (Schölkopf &
Smola, 2002) are employed, one can either first com-
plete the data and then compute the kernel matrix,
or else complete and compute the kernel matrix in a
single stage. Semidefinite programming has been used
to complete kernel matrices that have only a limited

number of missing elements (Graepel, 2002). The em

algorithm (Tsuda, Akaho & Asai, 2003) is applicable
when both an incomplete auxiliary kernel matrix and
a complete primary kernel matrix exist, but not when
the patterns of missing data are completely arbitrary.
This assumption may be tolerable in certain applica-
tions, but it is not appropriate for the general missing
data problem.

By making only two assumptions—that p (xmi

i |x
oi

i ) is
a Gaussian mixture model (GMM), and that a Gaus-
sian kernel is employed—we can analytically calculate
the kernel matrix from incomplete data by integrating
out the missing data. The first assumption is mild,
since it is well-known that a mixture of Gaussians can
approximate any distribution. The second assump-
tion is not overly limiting as the Gaussian kernel is
one of the most commonly used kernel forms. In fact,
if one assumes a linear or polynomial kernel instead of
a Gaussian kernel, the missing data of the kernel ma-
trix can still be analytically integrated out. However,
the calculations for these kernels are trivial, so we fo-
cus here on the more interesting case of the Gaussian
kernel. After obtaining the kernel matrix, any kernel-
based method may be employed, as would be done for
an ordinary complete-data problem.

This paper is organized as follows. In Section 2, we
derive the expression to analytically compute a kernel
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matrix in the presence of incomplete data for Gaus-
sian kernels. Experimental classification results on one
benchmark machine learning data set and on three real
multi-view land mine data sets are shown in Section
3, before concluding remarks are made in Section 4.

2. Kernel Matrix with Incomplete Data

A data point xi may be mapped into feature space via
the positive semidefinite kernel function K. Comput-
ing the kernel for every pair of data points results in
the symmetric, positive semidefinite kernel matrix K.
The ij-th entry of this kernel matrix, Kij , is a mea-
sure of similarity between two data points, xi and xj .
Our goal is to obtain the kernel matrix when incom-
plete data exists. We solve this task in a multi-view
framework, treating incomplete data as the result of
only a subset of views being observed for any given
data point. However, this framework is not limiting
because one can simply treat each individual feature
as coming from a unique view.

2.1. Derivation of the Kernel Matrix

Let xs
i denote the data (features) of the i-th data point

from the set of views s. Let oi and mi denote the sets
of observed views and missing views for data point xi,
respectively. The notation N (x|µ,Σ) indicates that
x is distributed as a Gaussian with mean µ and co-
variance Σ. Using all available data, we model the
joint probability p (xmi

i ,xoi

i ) using a (Z-component)
Gaussian mixture model

p (xmi

i ,xoi

i ) =

Z
∑

ζ=1

$ζN (xi|θζ ,Θζ)

=
Z
∑

ζ=1

$ζN

(

[

xmi

i

xoi

i

]

∣

∣

∣

∣

∣

[

θmi

ζ

θoi

ζ

]

,





Θ
[mimi]
ζ Θ

[mioi]
ζ

(

Θ
[mioi]
ζ

)T

Θ
[oioi]
ζ







 (1)

where $ζ are the non-negative mixing coefficients that
sum to unity.

Any conditional distribution derived from this joint
probability will also be a mixture of Gaussians. Specif-
ically,

p
(

xmi

i

∣

∣

∣ x
oi

i

)

=

Z
∑

ζ=1

πi
ζN

(

xmi

i

∣

∣

∣ µ
mi

ζ ,Σmi

ζ

)

(2)

where

πi
ζ =

$ζN
(

xoi

i

∣

∣

∣ θ
oi

ζ ,Θ
[oioi]
ζ

)

∑Z
ξ=1 $ξN

(

xoi

i

∣

∣

∣
θoi

ξ ,Θ
[oioi]
ξ

)

µmi

ζ = θmi

ζ + Ω
(

xoi

i − θoi

ζ

)

Σmi

ζ = Θ
[mimi]
ζ −Ω

(

Θ
[mioi]
ζ

)T

Ω ≡ Θ
[mioi]
ζ

(

Θ
[oioi]
ζ

)−1

.

We also employ a Gaussian kernel function

Kij = K (xi,xj) = zκ · exp

{

||xj − xi||
2
2

−2σ2
κ

}

= zκ · exp

{

−
1

2
(xj − xi)

T
Σ−1

κ (xj − xi)

}

(3)

where Σκ = diag
(

σ2
κ

)

and zκ = (2π)
−d/2 |Σκ|

−1/2.
For S > 1 views, this kernel can be written as a prod-
uct of the individual-view kernels in various forms:

Kij =

S
∏

s=1

Ks
ij =

S
∏

s=1

N
(

xs
j

∣

∣

∣
xs

i ,Σ
s
κ

)

=
S
∏

s=1

N
(

xs
j − xs

i

∣

∣

∣
0,Σs

κ

)

.

In the following, we wish to derive the kernel Kij be-
tween two arbitrary data points, xi and xj , with in-
complete data. To do so, we will utilize the Gaussian
mixture model of p (xmi

i ,xoi

i ), which we assume has
already been obtained. Because of the absence of data
from some of the views, the incomplete data must be
integrated out. For ease of reading, we give the com-
plete derivation uninterrupted by text, opting to jus-
tify each step afterward. Note that a∩ b indicates the
intersection of sets a and b. The desired kernel is

K
(

xi,xj

∣

∣

∣
xoi

i ,x
oj

j

)

=
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dx
mj

j

∫

dxmi

i p
(

xmi
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∣

∣

∣
xoi

i ,x
oj

j

)

K
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∣

∣

∣
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i ,xmi
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j

)

(a)
=

∫
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j

∫

dxmi

i p
(
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i

∣

∣

∣
xoi

i

)

p
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x
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∣
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x
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i ,xmi

i ,x
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)

(b)
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∣

∣
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i Kmi
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)

- 81 -



(c)
= K

oi∩oj

ij

∫

dx
mj

j K
oi∩mj

ij p
(

x
mj

j

∣

∣

∣ x
oj

j

)

∫

dxmi

i

Z
∑

ζ=1

πi
ζN

(

xmi

i

∣

∣

∣ µ
mi

ζ ,Σmi

ζ

)

N
(

xmi

j − xmi

i

∣

∣

∣
0,Σmi

κ

)

(d)
= K

oi∩oj

ij

∫

dx
mj

j K
oi∩mj

ij p
(

x
mj

j

∣

∣

∣
x

oj

j

)

Z
∑

ζ=1

πi
ζN

(

xmi

j

∣

∣

∣
µmi

ζ ,Σmi

κ + Σmi

ζ

)

(e)
= K

oi∩oj

ij

∫

dx
mj

j K
oi∩mj

ij p
(

x
mj

j

∣

∣

∣
x

oj

j

)

Z
∑

ζ=1

πi
ζN

(

x
mi∩mj

j

∣

∣

∣
f ,F

)

N
(

x
mi∩oj

j

∣

∣

∣
g,G

)

(f)
= K

oi∩oj

ij

∫

dx
mj

j p
(

x
mj

j

∣

∣

∣ x
oj

j

)

N
(

x
oi∩mj

j

∣

∣

∣ x
oi∩mj

i ,Σoi∩mj

κ

)

Z
∑

ζ=1

πi
ζN

(

x
mi∩mj

j

∣

∣

∣ f ,F
)

N
(

x
mi∩oj

j

∣

∣

∣ g,G
)

(g)
= K

oi∩oj

ij

Z
∑

ζ=1

πi
ζN

(

x
mi∩oj

j

∣

∣

∣
g,G

)

∫

dx
mj

j p
(

x
mj

j

∣

∣

∣ x
oj

j

)

N
(

x
mj

j

∣

∣

∣ a,A
)

(h)
= K

oi∩oj

ij

Z
∑

ζ=1

πi
ζN

(

x
mi∩oj

j

∣

∣

∣ g,G
)

∫

dx
mj

j

Z
∑

ξ=1

π
j
ξN

(

x
mj

j

∣

∣

∣ b,B
)

N
(

x
mj

j

∣

∣

∣ a,A
)

(i)
= K

oi∩oj

ij

Z
∑

ζ=1

πi
ζN

(

x
mi∩oj

j

∣

∣

∣ g,G
)

Z
∑

ξ=1

π
j
ξ

∫

dx
mj

j zcN
(

x
mj

j

∣

∣

∣ c,C
)

(j)
= K

oi∩oj

ij

Z
∑

ζ=1

πi
ζN

(

x
mi∩oj

j

∣

∣

∣
g,G

)

Z
∑

ξ=1

π
j
ξzc.

(4)

In the derivation leading to (4), (a) follows because xi

and xj are independent; (b) follows by defining

Kij = K
(

xi,xj
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i ,x
oj

j ,x
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(c) follows by writing
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and
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(d) follows because the right-most integral is a convo-
lution of two Gaussians; (e) follows from conditioning
on x

oi∩mj

j so that
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(h) follows because
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(i) follows from being a product of Gaussians where

C =
(

A−1 + B−1
)−1

c = CA−1a + CB−1b

zc = (2π)
−d/2 |C|+1/2|A|−1/2|B|−1/2

× exp

{

−
1

2

[

aT A−1a + bT
B−1b− cT C−1c

]

}

;

and (j) follows since the integral of a Gaussian is unity.

Thus, the Gaussian kernel between any two data
points with incomplete data can be obtained analyti-
cally using (4). If a linear or polynomial kernel is cho-
sen instead, the missing data can still be integrated
out analytically. These cases are less interesting and
quite trivial though. For instance, in the linear kernel
case, analytically integrating out the missing data is
equivalent to conditional mean imputation.

3. Experimental Results

We use a logistic regression classifier in this work. In
logistic regression, the probability of label yi ∈ {1,−1}
given the data point xi is p (yi|xi) = σ(yiw

T φ(xi)),
where σ(z) = (1+exp(−z))−1 is the sigmoid function.
A data point xi is embedded into feature space via the
transformation

φ(xi) =
[

1 K(xi,x1) · · · K(xi,xN )
]

where we use the positive semidefinite Gaussian ker-
nel function K. As a result of this mapping, a non-
linear kernel classifier in the original input space can
be constructed via a linear classifier in the trans-
formed feature space. For a data set of N labeled
data points, the (supervised) linear classifier w can
be learned by maximizing the log-likelihood function
`(w) =

∑N
i=1 lnσ(yiw

T φ(xi)).

Our proposed kernel matrix completion method is
driven by the GMM in (1). In (Ghahramani &

Jordan, 1994), the algorithm is given for estimating
a GMM from incomplete data via the expectation-
maximization (EM) algorithm.

We compared our proposed method to two common
imputation schemes on four data sets. The difference
among the three methods is how the kernel matrix
is computed. Our proposed method uses (4) to ana-
lytically integrate out the missing data for the kernel
matrix. In conditional mean imputation, all missing
data is “completed” with the conditional mean, which
is obtained via the GMM in (2). Specifically, the miss-
ing features of each data point are replaced with their
conditional mean:

xmi

i ← E[xmi

i |x
oi

i ] =

Z
∑

ζ=1

πi
ζµ

mi

ζ .

In unconditional mean imputation, all missing data is
“completed” with the unconditional mean, which does
not require a model of the data. For example, if xi is
missing feature a (i.e., a ∈ mi), unconditional mean
imputation will make the substitution

xa
i ← E[xa

i ] =
1

M

M
∑

j=1

xa
s(j)

where there are M data points for which feature a

was observed, and s(j) is the index of the j-th such
data point. The Gaussian kernel matrices for these
two imputation methods were then computed as for a
regular complete-data problem (using (3)).

Note that after obtaining the kernel matrix for each
of the methods, we possess a standard complete-data
classification problem to which any kernel-based algo-
rithm can be applied. For each of the three methods,
we used the same logistic regression classifier form.
As a result, any differences in performance among the
three methods are strictly the result of the kernel ma-
trix calculation.

A measure of classifier performance is the area under
a receiver operating characteristic curve (AUC), which
is given by the Wilcoxon statistic (Hanley & McNeil,
1982)

AUC = (MN)−1
M
∑

m=1

N
∑

n=1

1xm>yn
(5)

where x1, . . . , xM are the classifier outputs of data be-
longing to class 1, y1, . . . , yN are the classifier outputs
of data belonging to class -1, and 1 is an indicator
function.
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Figure 1. Experimental results on the Ionosphere data set. The figures show (a) AUC, and (b) the relative distances of
the “estimated” kernel matrices from the “true” kernel matrix.

Table 1. Details of the 2-View Land Mine Detection data sets.

Data Number of Number of Data Points with Fraction of

Set Mines Clutter View 1 Only View 2 Only Both Views Missing Data

Area A 93 768 423 126 312 0.32

Area B 139 693 134 146 552 0.17

3.1. Ionosphere

The proposed algorithm was first applied to the Iono-

sphere data set (from the UCI Machine Learning
Repository), which has 351 data points and 34 fea-
tures. In this example, the 34 features constitute 34
“views.” Experimental results are shown in Figure
1(a) in terms of AUC, computed using (5). Each point
on every curve is an average over 40 trials. Every trial
consists of a random partition of training and testing
data, and a random pattern of missing features (re-
moved artificially). In every trial, 25% of the data was
used as training data.

Since we artificially removed features, we can also
build a classifier when there is no missing data. When
no missing data exists, performance still varies as a
function of the fraction of missing data because of
the random partitions of training and testing data.
From Figure 1(a), it can be seen that the pro-
posed method consistently outperforms the imputa-
tion methods, with the most significant difference oc-
curring when a large fraction of the data is missing.
Remarkably, the proposed method sometimes achieves
a larger AUC than that of the method with no miss-
ing data. We hypothesize that this phenomenon might
occur if the missing feature values actually decrease or
confuse class separation. In this case, their absence
would be more beneficial than their presence.

We can also compute the Euclidean distance of each of
the “estimated” kernel matrices (i.e., the kernel ma-

trices from the proposed or imputation methods) from
the “true” kernel matrix (i.e., the kernel matrix that
would be obtained if all data was present). From Fig-
ure 1(b), it can be seen that as the fraction of missing
data increases, the relative distance of the “estimated”
kernel matrices to the “true” kernel matrix increases.
Interestingly, the kernel matrix completed via condi-
tional mean imputation is actually closer to the true
kernel matrix than the proposed method’s kernel ma-
trix. We hypothesize that the proximity of the kernel
matrix for the imputation method does not lead to bet-
ter AUC because the single value imputation ignores
the uncertainty of the missing data (Rässler, 2004).

3.2. 2-View Land Mine Detection

The proposed algorithm was also applied to two real
data sets of 2-view land mine detection data. The goal
for this data set is to classify mines (class 1) and clutter
(class -1). The first view was an electro-optic infrared
(EOIR) sensor, while the second view was a synthetic
aperture radar (SAR) sensor. Data from each of the
sensors were characterized by nine features. Details
of these two data sets are summarized in Table 1.

For these experiments, 25% of the data was used as
training data, while the remainder was used as testing
data. Results shown in Table 2 are an average over 100
trials, where each trial represents a random partition of
training and testing data. Since data is truly missing,
no features are artificially removed.
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Table 2. The mean AUC of 100 trials of each method for
the 2-View Land Mine Detection data sets.

Conditional Unconditional

Data Proposed Mean Mean

Set Method Imputation Imputation

Area A 0.6865 0.5604 0.6305

Area B 0.6579 0.5355 0.6171

3.3. 4-View Land Mine Detection

The proposed algorithm was also applied to a real data
set of 4-view land mine detection data. The goal for
this data set is to again classify mines and clutter. The
four views were a ground-penetrating radar (GPR)
sensor, an EOIR sensor, a Ku-band SAR sensor, and
an X-band SAR sensor. The sensors were character-
ized by 17, 6, 9, and 9 features, respectively. The data
set had 713 total data points, only 91 of which were
mines.

Unlike the 2-view data sets, every data point had data
from each of the four views. Therefore, for the ex-
periments, views (i.e., sensors, or blocks of features)
were randomly chosen to be artificially removed and
thereafter treated as missing.

For the experiments, 25% of the data was used as
training data, while the remainder was used as test-
ing data. Each point in Figure 2 is an average over 10
trials, where each trial represents a random partition
of training and testing data, and a random pattern of
missing sensors (blocks of features).

From Figure 2, it can be seen that the proposed
method again outperforms the imputation methods,
with the most significant difference occurring when
higher fractions of data are missing. The performance
of the algorithm in which there is no missing data
varies with the fraction of missing data because of the
random partitions of training and testing data.

4. Conclusion

We have derived the expression for a Gaussian ker-
nel function (or matrix) when faced with incomplete
data. We analytically integrated out the missing data
to obtain a closed-form expression for the kernel. As a
result, incomplete data need no longer be a hindrance
for general multi-view algorithms. We have demon-
strated the superiority of this proposed method over
two common imputation schemes, on both a bench-
mark data set as well as on three real multi-view land
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Figure 2. Experimental results in terms of AUC for the 4-

View Land Mine Detection data set.

mine data sets. The advantage of the proposed method
has been found to be most pronounced when a large
amount of data is missing. The feature vectors for the
multi-view land mine data sets will be made available
to interested investigators upon request.

Analytical integration over the missing data can still
be performed if one employs a linear or polynomial
kernel instead of a Gaussian kernel, so our choice here
of a Gaussian kernel is not overly restrictive. This
kernel matrix completion work can also be utilized in
semi-supervised algorithms. Many semi-supervised al-
gorithms use the idea of a graph and the graph Lapla-
cian (Zhu, Ghahramani & Lafferty, 2003), which can
be directly computed from a kernel matrix. Future
work will use our kernel matrix completion method to
extend supervised algorithms to semi-supervised ver-
sions, when faced with incomplete data.
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