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Facts about FACT

FACT First G-APD Cherenkov Telescope continuously monitors the sky for gamma rays
e |t produces roughly 180 MB/s of data
e Only 1 in 10.000 measurements is interesting

e Bandwidth / computation power / physical space is limited
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Facts about the FACT Pipeline

Simulation Data

e CORSIKA simulation
e with and without quality cuts

e downsampled to 200K/100K train/test data, equal distribution
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Facts about the FACT Pipeline

Simulation Data

e CORSIKA simulation
e with and without quality cuts

e downsampled to 200K/100K train/test data, equal distribution
Pre-processing

e Subtract reference voltage curves from measurement to count no of photons

e Focus on 50 ns ROl from 300ns time series

Result 45 x 45 images where each pixel contains a photon count
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The FACT data

Air Shower

Atmosphere

e Cherenkov Light
a— |

Camera Samples (2000 MHz)
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Deep Learning on FACT

General approach Start with something simple and gradually increase complexity
Input data D = {(x1,y1), .., (xn, yn)} with x; € N*%% y; € 0,1}, Nyain = 200K, Nresr = 100K
Take-Aways In total 1178 experiments performed

e Smaller architectures work better

e Early stopping / Learning-rate scheduler helps

e ResNet does not seem to improve performance
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General approach Start with something simple and gradually increase complexity
Input data D = {(x1,y1), ..., (xn, yn)} with x; € N**** y; € 0,1}, Nyrain = 200K, Nresr = 100K

Take-Aways In total 1178 experiments performed

e Smaller architectures work better
e Early stopping / Learning-rate scheduler helps

e ResNet does not seem to improve performance

Final model Simple VGG-like architecture

repeat k times

|3 x 3 Conv |—>| BN |—>| RelLu |—>| MaxPool |—>

On-Site Gamma-Hadron Separation with Deep Learning on FPGAs @ECMLPKDD2020 by Buschjager et al. ‘ E )

7/15



Binarized Neural Networks on FACT

Binarized Neural Networks Use weights from {—1,1} instead of R

For training Use deterministic binarization + full precision SGD
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Binarized Neural Networks on FACT

Binarized Neural Networks Use weights from {—1,1} instead of R

For training Use deterministic binarization + full precision SGD

Why BNNs? Only 2 clocks needed to process 32/64/128/256 bits (= weights)
Approach Map weights/inputs to bitstring ‘—1 — 0’ and ‘+1 — 1’

e fiw; is ‘+1' if same sign, else ‘0’. This is an XOR operation

e Y . fiw; counts occurrences of same sign. This is the popcount operation.

> fiwi = POPCNT(f XOR W)
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Experimental analysis

1. How do RandomForest, CNNs and Binary CNNs perform on simulation data?
— CNNs should outperform Binary CNNs should outperform RF on simulation

2. How do RandomForest, CNNs and Binary CNNs perform on real-world data?
— (Binary) CNNs hopefully outperform RF on real-world data

3. Is the implementation of Fastlnference real-time capable?
— Binary CNNs should be faster than regular CNNs, regardless the target architecture
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Deep Learning vs Random Forest on Simulation Data

Model Data Accuracy, no QC Accuracy, QC
epochs:100 epochs:10  epochs:100  epochs:10

RF DL2 0.70959 0.78483

RF Ph@ 0.74711 0.78839

CNN(small) PhC 0.90825 0.88867 0.93441 0.93846
BNN(small) PhC 0.90861 0.88644 0.90440 0.88866

CNN(large) PhC 0.91094 0.90251 0.93735 0.94228
BNN(large) PhC 0.90011 0.89925 0.93112 0.91369
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Deep Learning vs Random Forest on Crab Nebula Data

Model Data Stigma, no QC Shomn Qe
epoch: 100 epoch: best loss epoch: 100 epochs:best loss

RF DL2 22.860 23.820

RF PhC 2.090 3.350
CNN(small) PhC 24.090 25.830 24120 24.890
BNN(small) PhC 19.550 25.870 22.960 21.670
CNN(large) PhC 23.680 24.640 24.200 231/
BNN(large) PhC 22.700 22.920 200 35Yer 22.260
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X86 CPU vs FPGAs for Deep Learning

System Type Runtime [ms/event]

float binary

ONNX Runtime large 21.083 +0.078 26.642 +0.100

small 0.957 £ 0.020 1.861 & 0.037
R e
N
.
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v’ Excellent performance on training data V' Real-time capabilities on small devices

v Improved performance on real-world data v" FPGA implementation available if necessary
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