
On-Site Gamma-Hadron Separation with Deep Learning on FPGAs

ECMLPKDD2020
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Gamma-Ray Astronomy

On-Site Gamma-Hadron Separation with Deep Learning on FPGAs @ECMLPKDD2020 by Buschjäger et al. 1/15



Facts about FACT

FACT First G-APD Cherenkov Telescope continuously monitors the sky for gamma rays

• It produces roughly 180 MB/s of data

• Only 1 in 10.000 measurements is interesting

• Bandwidth / computation power / physical space is limited
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Facts about the FACT Pipeline

Simulation Data

• CORSIKA simulation

• with and without quality cuts

• downsampled to 200K/100K train/test data, equal distribution

Pre-processing

• Subtract reference voltage curves from measurement to count no of photons

• Focus on 50 ns ROI from 300ns time series

Result 45× 45 images where each pixel contains a photon count
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The FACT data
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Telescope processing pipeline

Raw Data

Calibration
Cleaning

Feature

Extraction

Signal

Separation

Data

Simulation

Raw Data

Calibration

GPU

Training ‘+1’

‘-1’

On-Site Gamma-Hadron Separation with Deep Learning on FPGAs @ECMLPKDD2020 by Buschjäger et al. 6/15



Deep Learning on FACT

General approach Start with something simple and gradually increase complexity

Input data D = {(x1, y1), . . . , (xN , yN)} with xi ∈ N45×45, yi ∈ {0, 1},Ntrain = 200K ,Ntest = 100K

Take-Aways In total 1178 experiments performed

• Smaller architectures work better

• Early stopping / Learning-rate scheduler helps

• ResNet does not seem to improve performance

Final model Simple VGG-like architecture

3× 3 Conv BN ReLu MaxPool FC

repeat k times
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Binarized Neural Networks on FACT

Binarized Neural Networks Use weights from {−1, 1} instead of R

For training Use deterministic binarization + full precision SGD

Why BNNs? Only 2 clocks needed to process 32/64/128/256 bits (= weights)

Approach Map weights/inputs to bitstring ‘−1→ 0’ and ‘+1→ 1’

• fiwi is ‘+1’ if same sign, else ‘0’. This is an XOR operation

•
∑

i fiwi counts occurrences of same sign. This is the popcount operation.

∑
i

fiwi = POPCNT(f XOR W )
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FastInference: Workflow and Capabilities
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Experimental analysis

1. How do RandomForest, CNNs and Binary CNNs perform on simulation data?

→ CNNs should outperform Binary CNNs should outperform RF on simulation

2. How do RandomForest, CNNs and Binary CNNs perform on real-world data?

→ (Binary) CNNs hopefully outperform RF on real-world data

3. Is the implementation of FastInference real-time capable?

→ Binary CNNs should be faster than regular CNNs, regardless the target architecture
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Deep Learning vs Random Forest on Simulation Data

Model Data Accuracy, no QC Accuracy, QC

epochs:100 epochs:10 epochs:100 epochs:10

RF DL2 0.70959 0.78483

RF PhC 0.74711 0.78839

CNN(small) PhC 0.90825 0.88867 0.93441 0.93846

BNN(small) PhC 0.90861 0.88644 0.90440 0.88866

CNN(large) PhC 0.91094 0.90251 0.93735 0.94228

BNN(large) PhC 0.90011 0.89925 0.93112 0.91369
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Deep Learning vs Random Forest on Crab Nebula Data

Model Data Sli&ma, no QC Sli&ma, QC

epoch: 100 epoch: best loss epoch: 100 epochs:best loss

RF DL2 22.86σ 23.82σ

RF PhC 2.09σ 3.35σ

CNN(small) PhC 24.09σ 25.83σ 24.12σ 24.89σ

BNN(small) PhC 19.55σ 25.87σ 22.96σ 21.67σ

CNN(large) PhC 23.68σ 24.64σ 24.20σ 23.17σ

BNN(large) PhC 22.70σ 22.92σ 22.35σ 22.26σ
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X86 CPU vs FPGAs for Deep Learning

System Type Runtime [ms/event]

float binary

ONNX Runtime
large 21.083± 0.078 26.642± 0.100

small 0.957± 0.020 1.861± 0.037

Generated Code
large 78.583± 1.704 11.250± 0.077

small 2.757± 0.026 1.574± 0.014

FPGA
large - 561.588± 0.000

small - 4.221± 0.000

FPGA pipelined
large - 72.657± 0.000

small - 0.662± 0.000
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Recap: (Binarized) CNNs work well on simulated and real-world FACT data
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X Excellent performance on training data

X Improved performance on real-world data

X Real-time capabilities on small devices

X FPGA implementation available if necessary
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