

Decision Tree and Random Forest Implementations for fast Fitlering of Sensor Data

Sebastian Buschjäger and Katharina Morik

TU Dortmund University - Computer Science - Artificial Intelligence Group

July 3, 2018

So... Distributed computation hype?

1991 Ubiquitous Computing

1999 Internet of Things

2015 Edge Computing / Fog Computing

Machine Learning for small devices

Fact We measure a lot of data

Thus We need to transmit and analyze a lot of data

Machine Learning for small devices

Fact We measure a lot of data

Thus We need to transmit and analyze a lot of data

Idea Use Machine Learning locally to decide which data is useful Thus Continuously apply ML model in realtime on small devices

Random Forest

Fact Random Forest is one of the best performing ML model **Often** We design ML models independently from application

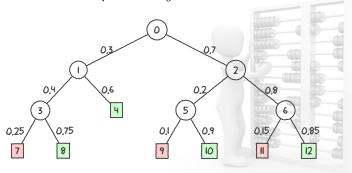
Random Forest

Fact Random Forest is one of the best performing ML model **Often** We design ML models independently from application

What system is needed for a given tree / forest?
What is the best way to implement a Decision Tree?

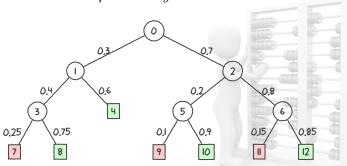
Decision Tree

- Inner nodes make decision $x_i < t$
- **Leaf nodes** make prediction \widehat{y}



Decision Tree

- Inner nodes make decision $x_i < t$
- **Leaf nodes** make prediction \widehat{y}



Observation Some path in tree have higher frequency than others

Idea Each decision is a Bernoulli Experiment with probability $p_{i o j}$

Idea Each decision is a Bernoulli Experiment with probability $p_{i \rightarrow j}$ Path probability

$$p(\pi) = p_{\pi_0 \to \pi_1} \cdot \ldots \cdot p_{\pi_{L-1} \to \pi_L}$$

Idea Each decision is a Bernoulli Experiment with probability $p_{i o j}$ **Path probability**

$$p(\pi) = p_{\pi_0 \to \pi_1} \cdot \ldots \cdot p_{\pi_{L-1} \to \pi_L}$$

Expected no. of comparisons

$$\mathbb{E}[L] = \sum_{\pi} p(\pi) \cdot |\pi|$$

Idea Each decision is a Bernoulli Experiment with probability $p_{i o j}$ **Path probability**

$$p(\pi) = p_{\pi_0 \to \pi_1} \cdot \ldots \cdot p_{\pi_{L-1} \to \pi_L}$$

Expected no. of comparisons

$$\mathbb{E}[L] = \sum_{\pi} p(\pi) \cdot |\pi|$$

Idea Use expected no. of comparisons to estimate runtime

There are many ways to implement a Decision Tree For Example: NativeTree

```
bool predict(short const * x){
    unsigned int i = 0;
    while(!tree[i].isLeaf) {
        if (x[tree[i].f] <= tree[i].split) {</pre>
            i = tree[i].left;
        } else {
            i = tree[i].right;
    return tree[i].prediction;
```


There are many ways to implement a Decision Tree For Example: If-Else-Tree

```
bool predict(short const * x){
    if(x[0] \le 8191){
        if(x[1] \le 2048){
            return true;
        } else {
            return false;
   } else {
        if(x[2] \le 512){
            return true;
        } else {
            return false;
```


There are many ways to implement a Decision Tree For Example: Vectorized Tree

```
bool predict(short const * x){
    unsigned int i = 0;
    unsigned int mask;
    void * tmp;
    while(!tree[i].isLeaf) {
        load_vectorized(tree[i],tmp);
        mask = compare_vectorized(tmp, x);
        i = mask_to_index(mask);
    return tree[i].prediction;
}
```


Results

So which one is the best? And when?

Come visit me at my poster and find out!