

Summary Extraction on Data Streams in Embedded Systems

Sebastian Buschjäger and Katharina Morik

TU Dortmund University - Computer Science - Artificial Intelligence Group

September 18, 2017

So... IoT hype?!

2016 Ericsson Maritime ICT connects over 350 cargo vessels on one freighter

So... IoT hype?!

2016 Daimler Trucks has deployed 400000 trucks with 400 sensors each

Summary Extraction on Data Streams in Embedded Systems

4

Fakultät Informatik Lehrstuhl für Künstliche Intelligenz

So... IoT hype?!

2016

Virgin Atlantic announces fleet of fully connected Boeing 787 machines and cargo

technische universität dortmund

Lehrstuhl für Künstliche Intelligenz

IoT means large autonomous systems

Common intuition

dortmund

technische universität

There will be more devices We will get more data Systems will become more autonomous

Fakultät Informatik

IoT means large autonomous systems

Common intuition

dortmund

technische universität

There will be more devices We will get more data Systems will become more autonomous

Question

What to do if something unexpected happens?

tu technische universität dortmund Fakultät Informatik Lehrstuhl für Künstliche Intelligenz

Goal Monitor systems

Clear

Nobody can monitor all the sensor data on the fly

But

To detect unexpected behavior we need to monitor all data

tu technische universität dortmund

Fakultät Informatik Lehrstuhl für Künstliche Intelligenz

Goal Monitor systems

Clear

Nobody can monitor all the sensor data on the fly

But

To detect unexpected behavior we need to monitor all data

Idea

Compute summaries on the fly while sensor data is generated

Goal Monitor systems

Then

Human expert can inspect summaries Perform operations on summary etc.

Goal Monitor systems

Then

Human expert can inspect summaries Perform operations on summary etc.

Constraint Different data types + theoretically sound

Data summarization Some theory

Intuition

Use set function f to measures expressiveness of summary \boldsymbol{S}

Goal

 $\max_{S \subseteq V, |S| \le k} f(S)$

Data summarization Some theory

Intuition

Use set function f to measures expressiveness of summary S

Goal

$$\max_{S \subseteq V, |S| \le k} f(S)$$

Gain Let $f: V \to \mathbb{R}$ and let $e \in V$ and $S \subseteq V$:

$$\Delta_f(e|S) = f(S \cup \{e\}) - f(S)$$

Summarization Sieve-Streaming

technische universität

dortmund

Badanidiyuru et al. 2014 Sieve-Streaming Item e arrives one at a time Immediately decide if e should be added to summary

Summarization Sieve-Streaming

Badanidiyuru et al. 2014 Sieve-Streaming Item e arrives one at a time Immediately decide if e should be added to summary

Idea Introduce novelty threshold v. Add e if

 $\Delta_f(e|S) > v$

Summarization Sieve-Streaming

technische universität

dortmund

Badanidiyuru et al. 2014 Sieve-Streaming Item e arrives one at a time Immediately decide if e should be added to summary

 $\Delta_f(e|S) > v$

Idea Introduce novelty threshold v. Add e if

Challenge What is the "optimal" v?

Summarization Sieve-Streaming

Idea

Manage multiple summaries i = 1, 2, 3... with multiple v_i

 \rightarrow "sieve" out unimportant elements

Summarization Sieve-Streaming

Idea

Manage multiple summaries i = 1, 2, 3... with multiple v_i

 \rightarrow "sieve" out unimportant elements

By sumodularity

 $v_i \in [m, km]$ with $m = \max_{e \in V} f(\{e\})$ Then solution is $\frac{1}{2} - \varepsilon$ approximation

Note

This is independent from f

Submodular maximization The right function

Question

What submodular function f captures summarization?

Herbrich et al. 2003 / Seeger 2004 Informative Vector Machine

$$f(S) = \frac{1}{2} \log \det \left(\mathcal{I} + \sigma^{-2} \Sigma_S \right)$$

Submodular maximization The right function

Question

What submodular function f captures summarization?

Herbrich et al. 2003 / Seeger 2004 Informative Vector Machine

IVM for data summarization

Since we know f, reduce interval!

Note Assume $k(e_i, e_i) = 1$

Least-expressive summary All off-diagonal elements are 1

IVM for data summarization

Since we know f, reduce interval!

Note Assume $k(e_i, e_i) = 1$

Least-expressive summary All off-diagonal elements are $1 \$

$$f(S) = \frac{1}{2} \log \det \left(\mathcal{I} + \sigma^{-2} \Sigma_S \right) = \frac{1}{2} \log \det \left(\mathcal{I} + \sigma^{-2} \mathbf{1} \mathbf{1}^T \right)$$

IVM for data summarization

Since we know f, reduce interval!

Note Assume $k(e_i, e_i) = 1$

Least-expressive summary All off-diagonal elements are $1 \$

$$f(S) = \frac{1}{2} \log \det \left(\mathcal{I} + \sigma^{-2} \Sigma_S \right) = \frac{1}{2} \log \det \left(\mathcal{I} + \sigma^{-2} \mathbf{1} \mathbf{1}^T \right)$$
$$= \frac{1}{2} \log \left(1 + \sigma^{-2} \mathbf{1}^T \mathbf{1} \right) = \frac{1}{2} \log \left(1 + \sigma^{-2} k \right)$$

IVM for data summarization

Since we know f, reduce interval!

Note Assume $k(e_i, e_i) = 1$

Most-expressive summary All off-diagonal elements are 0

IVM for data summarization

Since we know f, reduce interval!

Note Assume $k(e_i, e_i) = 1$

Most-expressive summary All off-diagonal elements are $\boldsymbol{0}$

$$f(S) = \frac{1}{2} \log \det \left(\mathcal{I} + \sigma^{-2} \Sigma_S \right) = \frac{1}{2} \log \det \left(\mathcal{I} (1 + \sigma^{-2}) \right)$$

IVM for data summarization

Since we know f, reduce interval!

Note Assume $k(e_i, e_i) = 1$

Most-expressive summary All off-diagonal elements are $\boldsymbol{0}$

$$f(S) = \frac{1}{2} \log \det \left(\mathcal{I} + \sigma^{-2} \Sigma_S \right) = \frac{1}{2} \log \det \left(\mathcal{I}(1 + \sigma^{-2}) \right)$$
$$= \frac{1}{2} \log \left((1 + \sigma^{-2})^k \det \left(\mathcal{I} \right) \right) = \frac{k}{2} \log \left(1 + \sigma^{-2} k \right)$$

Sieve-Streaming enhancements

Result

Number of sieves reduced without performance loss

Sieve-Streaming enhancements

Result

Number of sieves reduced without performance loss

Default
$$v_i \in [\frac{1}{2}\log(1+\sigma^{-2}), \frac{k}{2}\log(1+\sigma^{-2})]$$

Reduced $v_i \in [\frac{1}{2}\log(1+k\sigma^{-2}), \frac{k}{2}\log(1+\sigma^{-2})]$

Sieve-Streaming enhancements

Result

Number of sieves reduced without performance loss

Default
$$v_i \in [\frac{1}{2}\log(1+\sigma^{-2}), \frac{k}{2}\log(1+\sigma^{-2})]$$

Reduced $v_i \in [\frac{1}{2}\log(1+k\sigma^{-2}), \frac{k}{2}\log(1+\sigma^{-2})]$

More improvements Reopen sieves once full

Sieves with small threshold will quickly be full Save summary, and reopen sieve with larger threshold

Sieve-Streaming enhancements

Result

Number of sieves reduced without performance loss

Default
$$v_i \in [\frac{1}{2}\log(1+\sigma^{-2}), \frac{k}{2}\log(1+\sigma^{-2})]$$

Reduced $v_i \in [\frac{1}{2}\log(1+k\sigma^{-2}), \frac{k}{2}\log(1+\sigma^{-2})]$

More improvements Reopen sieves once full

Sieves with small threshold will quickly be full Save summary, and reopen sieve with larger threshold

 \Rightarrow Increase utility value with same number of sieves

Experiments Questions

Question 1 Are summaries with IVM really expressive?

Experiments Questions

Question 1 Are summaries with IVM really expressive?

- \rightarrow Summaries should contain "hidden" states of data
- \rightarrow Extract summary of classification task
- \rightarrow Then each class represents one "hidden" state

Experiments Questions

Question 1 Are summaries with IVM really expressive?

- \rightarrow Summaries should contain "hidden" states of data
- \rightarrow Extract summary of classification task
- \rightarrow Then each class represents one "hidden" state

Question 2 How perform enhancements compared to default?

Experiments Data

Synthetic data

GMM with 4 dimensions and 4 classes. Use

$$K = 10, \dots, 24, \ \varepsilon = 0.1, \ \sigma = 1, \ k(e_i, e_j) = \exp\left(\frac{-||e_i - e_j||_2^2}{10}\right)$$

UJIndoor Location

Predict (semantic) location, e.g. room number based on GPS. Use

 $K = 80, \dots, 130, \ \varepsilon = 0.1, \ \sigma = 1, \ k(e_i, e_j) = \exp\left(\frac{-||e_i - e_j||_2^2}{0.005}\right)$

MNIST

Handwritten digit recognition task. Use

 $K = 8, \dots, 16, \ \varepsilon = 0.1, \ \sigma = 1, \ k(e_i, e_j) = \exp\left(\frac{-||e_i - e_j||_2^2}{784}\right)$

Experiments Results

17

Outlook

Outlook

Question 2 How well perform enhancements compared to vanilla? Quite well! Computation decreased + utility and recall increased

Outlook

Question 2 How well perform enhancements compared to vanilla? Quite well! Computation decreased + utility and recall increased

Next to come

Better kernel functions? Streaming with concept drift? \Rightarrow Maybe "forget" items? Use summaries for model learning?