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Overview 

!  Machine learning and 
hardware 

!  Probabilistic graphical 
models  
!  Spatio-temporal random 

fields 
!  Integer Markov random 

fields 
!  Stochastic Discrete 

Clenshaw Curtis 
Quadrature 

 

I walk you through the talk 



Machine learning and hardware -- 1 

!  MatLab takes care: 
!  distributes operations 

over cores,  
!  executes for-loops in 

parallel,  
!  executes on Hadoop,  
!  exploits arrays for GPU, 
!  generates code for FPGA 

!  Machine learning algorithms 
are independent of their 
execution platform.   

!  Compilers might offer 
specialized functions, e.g., 
matrix operations. 

 Hardware? 

That is something I run 

my algorithms on. 

 



Good old days 

!  Machine learning algorithms 
were implemented on some 
computer.  

!  Data structures and 
algorithms were evaluated 
concerning runtime and 
memory consumption.  

!  Tests were run on a PC with a 1.8 
GHz Intel P4 processor and 1 
Gbytes of RAM. The operating 
system was Debian Linux (kernel 
version: 2.4.24). (Bodon 2004) 

!  We performed the experiments on 
a PC AMD Athlon™ XP 2000+ 1.6 
GHz, 1 GB RAM, 2 GB Swap with 
40GB Hard Disk running Fedora 
Core 1.... using g++ compiler. 
(Sucahyo} 

!  The experiments were conducted 
on a Windows XP PC equipped 
with a 2.8GHz Pentium IV and 
512MB of RAM memory. 
(Lucchese et al. 2004) 



Good old days 

!  Machine learning algorithms 
were implemented on some 
computer.  

!  Data structures and 
algorithms were evaluated 
concerning runtime and 
memory consumption.  

!  Tests were run on a PC with a 1.8 
GHz Intel P4 processor and 1 
Gbytes of RAM. The operating 
system was Debian Linux (kernel 
version: 2.4.24). (Bodon 2004) 

!  We performed the experiments on 
a PC AMD Athlon™ XP 2000+ 1.6 
GHz, 1 GB RAM, 2 GB Swap with 
40GB Hard Disk running Fedora 
Core 1.... using g++ compiler. 
(Sucahyo} 

!  The experiments were conducted 
on a Windows XP PC equipped 
with a 2.8GHz Pentium IV and 
512MB of RAM memory. 
(Lucchese et al. 2004) 



Machine learning and hardware -- 2 

!  Von Neumann bottleneck:  
instruction fetch and data operation 
sharing a bus. 
!  New coprocessor:  

shared memory GPU!  
!  In 2013, with deep neural networks  

the computation demands on Google’s 
data centers doubled. 
!  Even newer coprocessor: 

inference by customized chip TPU! 
!  Intel: Lake Crest chip for learning 
!  Quantum computing (D-Wave): 

processor with more than 1 000 Qubits 
for fast optimization. 

We need novel hardware 

for machine learning!  

P. Dubey (2017)“The quest for the ultimate learning machine” 



Moore’s law and other exponential trends 

!  The complexity for minimum 
component costs has 
increased at a rate of roughly 
a factor of two per year. 
Gordon E. Moore (1965)  

!  Software is getting slower 
more rapidly than hardware 
becomes faster.  
Niklaus Wirth (1995) 

!  An updated version of 
Moore's Law over 120 Years: 
calculations per second per 
constant Dollar. The 7 most 
recent data points are all 
NVIDIA GPUs. 

By Steve Jurvetson - https://www.flickr.com/photos/jurvetson/31409423572/ 



Resource restrictions energy and cooling 

!  Google’s total yearly energy 
consumption is 2 terawatt 
hours (2024 watt hours). 
!  1 search request 

consumes 0.3 watt hours. 
!  Asking and reading the 

result at a PC consumes 
about the same. 

European Network of Excellence in 
Internet Science, report in Ubiquity 

June, 2015 

Google Cooling, Georgia 



Ultra-low power microcontrollers 

!  Slow    16 MHz 
!  Small wordsize  16 Bit 
!  Small memory   64 Kb 
!  Restricted capabilities,  

no floating point unit 
!  Connectable to  

multiple sensors 
!  Energy around  0,0048 W 

Texas Instruments MSP 430FR5969 



Machine Learning and hardware -- 3 

!  Cloud computing 
!  Hadoop 
!  BigTable (Google Chrome) 
!  HBase (Apache 

Cassandra) 
!  Lambda/Kappa paradigm 

!  Map reduce 
!  Stream processing 

!  GPU 
!  Parallel computing 
!  Multiple instruction, 

multiple data 

Don’t forget the new 
programming paradigms! 



Machine learning and hardware 

Let’s work together! 

Overview of a research center  

with exactly that mission  



Collaborative Research Center 876: 
Providing Information by  
Resource-Constrained 
Data Analysis 
 
13 projects 
20 professors 
50 Ph D students 
 
Integrated graduate school 
 
2011 - 2018 
4 more years are possible 
 



SFB 876: Resource constraints 

Small devices 
!  Small memory 
!  Low power 
!  Restricted arithmetic 
!  Novel architectures 

Small devices collect data 
!  Internet of Things 
!  Cyber-physical systems 
!  Sensor measurements 

Small devices apply models 
"  Analysis and prediction 

available:  
"  Anytime,  
"  Anywhere! 

 



Small devices 

!  Raspberry Pie 
!  FPGA 
!  Phy Node 
!  Logistics chip by SFB 876 

!  with antenna,  
!  photovoltaic for energy 

harvesting  
!  smart way-bill for better 

routing 
Michael ten Hompel et al.   
project A4 
 



PAMONO  

!  Microscopy of nano-objects 
!  immediate virus detection 
!  DNA-DNA interactions 
!  Intercellular 

communication through 
cell-derived vesicles 

!  Local changes of reflectivity 
image the binding events of 
nano-particles. 

!  Group of bright pixels 
indicates a binding event.  

!  Change of light intensity 
shows moment of binding 
and then stabilizing. 

Victoria Shpacovitch, Heinrich 
Müller et al. project B2 



SFB 876: Resource constraints 

Big data  
!  Large volume, velocity, variety data 
!  High dimensions 
!  Complex models 

Applications 
!  Data-driven science 

!  astro- and particle physics, 
!  biomedicine and genetics 

"  Goals: 
"  Scalable algorithms 
"  Real-time inference 
"  Compressed models 



A terabyte a day 

!  Calibration, cleaning 
!  Feature extraction 
!  Signal separation 
!  Energy estimation 
!  A simulator provides labeled 

observations. 
!  Gamma rays of high energy 

are rare events as opposed to 
hadrons, ratio 1 to 1000 

Project C3 in SFB 876 with 
Wolfgang Rhode, Tim Ruhe 

MAGIC I, MAGIC II, FACT 
La Palma, Roque de los Muchachos 
  
C. Bockermann, K. Brügge, J.Buss, A.Egorov, K.Morik, W.Rhode, T.Ruhe 
“Online Analysis of High-Volume Data Streams in Astroparticle Physics”   
Best Paper Award ECML PKDD 2015 
 



SFB 876: Resource-aware machine learning 

!  Cyberphysical systems 
!  produce big data. 

!  Big data analytics  
!  delivers data summaries,  

models for prediction.  
!  Push some analytics to CPS! 

!  Less communication, energy  
!  Foundations 

"  Beyond runtime and  
sample complexity! 

"  Memory- and energy- 
efficient analytics!  

"  Models that take  
resources into account! 

"  Machine learning and computing machinery ‒  
a new challenge! 
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Machine learning and  

Hardware:   

the case of probabilistic  

graphical models 



Probabilistic models 

!  Data  
!  Observation x is realization of 

random variable X  
with state space X

!  State space X = X1 x  X2  x ... x  XN   
!  Probability P(x) of an event X=x  

 
 

!  Predict  probability from data  
!  Estimate probability density  

!  Topic models,  
!  embeddings, 
!  ... 

!  Supervised: predict state with 
maximum likelihood given 
observations 
!  Regression, 
!  Naive Bayes, 
!  Conditional Random Fields  

D =
!x1, !x 2,..., !xN{ }



Why exponential families? 

!  Sufficient statistic 
aggregates data: 

 
!  The dimension of is finite and 

independent of |D|  
iff P(x) is in an exponential 
family. (Pitman 1936)  

!  ... and exp(.) > 0 

!  Markov Random Field (MRF) 
= probability distribution 
that can be factorized into 
positive functions defined on 
cliques that cover all the 
nodes and edges of G. 
(Hemmersley Clifford 1990) 

φ D( ) = 1
D

φ
!x( )

!x∈D
∑



Graphical Models 

!  Graph G=(V,E) 
!  Sufficient statistic:  

implicitly mapping joint vertex 
assignment into vector space 

 :  X --> Rd 

!  Parameter vector to be learned: 
θ in Rd 

!  Log partition function: 
 

 

CRF :
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Discrete Random Field  

φ
!x( )∈ 0,1{ }

d

φV
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Discrete Random Fields ‒ Example: app usage 

φ(x): ( /* Verticeses*/ 
1.  on, /*dom(torch)*/ 
2.  off, 
3.  on, /*dom(rain)*/ 
4.  off,  
5.  map, /*dom(map)*/ 
6.  off, 
/*Edges*/ 
1.  on, off, /* edge torch-rain*/   
2.  on,on,  
3.  off,off,  
4.  on,off, /*edge torch-map*/ 
5.  on, on, 
6.  off, off,  
7.  on, off, /*edge rain-map*/ 
8.  on, on, 
9.  off, off ) 
) 

Observation 
!  x1:(on,off,off)
!  φ(x1) = (1,0,0,1,0,1,1,0,0,1,0,0,0,0,1) 
!  d = 15 

Torch 

Rain 

Map 
{on, 
off} 

{on,off} 

{on, 
off} 

Graph G=(V,E) 



Machine learning and hardware -- 4  

!  Ultra-low power devices 
offer resources. 

!  It is the (to be) learned model 
which demands resources. 
!  Redundancies 
!  Real values 
!  Exponential complexity 

 
!  Parameter storing, sufficient 

statistics (graph) 

PE
!x( ), A θ( )



!  Investigate model demands: 
!  Application independent 
!  Dependency preserving 
!  Theoretically well-based  

not heuristic 
!  Derived from first 

principles 
!  Implemented. 

 



Goal 1: Application independence 

!  Application dependent  
!  Physics: Ising 

graph of adjacent atomic spins 
with states {+1, -1} 
 
 
Exploit structure given by the 
application! Ferromagnetic, 
later hierarchical classification. 

!  Linguistics: CRF 
The transition is always the 
same, x, y are distinct.  

!  Application independent:  
!  Restrict the resource demands 

of the model.  

β 0 

0 β

Pβ
!x( ) = 1

Zβ

exp −βH !x( )( )

x 

y 
α α α



Goal 2: Dependency preserving 

!  Variational inference destroys 
some dependencies, 
because not all cliques are 
considered.  

!  Inconsistencies possible. 

v 

P(v)=c 

P(v)=c’ 

c ≠ c’ 



Models and hardware demands 

!  Resource demands of models 
!  Where can we save resources? 

!  Parameters and redundancies 

P(!x) = exp
!
θ ,φ !x( ) − A

!
θ( )( )

Ultra-low power device 
!  Slow   16 MHz 
!  Small wordsize  16 Bit 
!  Small memory   64 Kb 
!  Restricted capabilities,  

no floating point unit 
!  Connectable to  

multiple sensors 
!  Energy around  0,0048 W 
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Spatio-temporal  
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Spatio-temporal random fields 

!  The spatio-temporal graph is 
trained to predict each node’s 
maximum a posteriori 
probability with the marginal 
probabilities.  
!  Generative model predicting 

all nodes. 
!  Dimension  

T x |V0| x | X| +  
[(T-1)(|V0|+3|E0|)+ |E0|] x |X|2 

!  Remember: vectors are sparse 
we have to exploit that! 

 

User queries: 
Given traffic densities at all 
nodes at t1, t2, t3, what is the 
probability of traffic density 
at node A at time t5? 
Given state “jam” at place A 
ts,  which other places have a 
higher probability for “jam” in 
ts < t < te? 
 



Spatio-temporal random fields  

!  Parameter sharing 
!  Reparametrization 
!  Regularization 
!  Distributed optimization 

If edges in some subset 
represent similar relations 
and have a common state 
space, then instead of 
 
 
 
 
 
we may share parameters 



Reparametrization compresses the model 

!  Reparametrize model 
 
       Δ regularized by  L1, L2 norm 
!  There are not many changes 

over time. Model is highly 
compressed.  

!  Bound on distance between 
true θ and ν(Δ); 
Sparsity in estimate implies 
redundancy in the true 
parameter. Proof Piatkowski  

!  Learning is faster. 
!  Quality is not at all less than 

MRF, 4NN. 

Δt ≈θt+1 −θt
Universal reparametrization 
Proof  Piatkowski (forthcoming) 



Smart trip modeling for Dublin 

!  Open Street Map # graph 
topology 

!  Open Trip Planner: user query 
(v,w), route planning based on 
traffic costs. 

!  Traffic costs learned: 
!  Spatio-temporal random 

field based on sensor data 
stream; 

!  Gaussian process estimates 
values for non-sensor 
locations. 

!  Framework for real-time 
processing of data streams, XML 
configuration of data flow, 
connecting data, traffic model 
and planner. 

7:00 

8:00 

v 

v 

w 

w 



Constructing the spatio-temporal graph of Dublin 

OpenStreetMap streets segmented according to junctions. 
966 sensors transmit traffic flow every 6 minutes (www.dublinked.ie). 
Aggregate sensor readings for 30 minutes, aggregate sensor nodes by 7NN. 
Traffic flow discretized into 6 intervals of density. 
48 time layers for each day (48* 30=1440 minutes make a day).   
Training for every weekday. 
Predicting density of each node and edge – interpreted as costs. 



Using STRF for smart  trip modeling -- Evaluation 

!  Confusion matrix of predicting the number of vehicles (6 
intervals) for all sensors and all half hours following 1 pm 
on Fridays, tested on March 1.,8.,15.,22.,29. 

!  given the traffic at 1 p.m. (bold is true). 

Predicted 0 1-5 6-20 21- 
30 

31-60 61- Prec 
True  

0 840 32 10 6 3 0 0.943 

1-5 2 632 498 3 0 1 0.556 

6-20 91 156 12169 2006 83 25 0.838 

21-30 32 0 1223 5637 717 14 0.739 

31-60 43 0 60 893 1945 29 0.655 

61- 0 0 16 3 12 35 0.530 

Recall 0.833 0.771 0.871 0.659 0.705 0.34 

Environment  Energy  Engineering 



Smart traffic for smart cities 

!  Several questions can be 
answered using the same 
learned model. 

!  The answers come along with 
their probabilities. This might 
be helpful for decision 
makers. 

!  Integration of Spatio-
temporal random fields into 
the Open Trip Planner and 
Gaussian information 
completion resulted in an 
excellent navigation system. 

  EU project INSIGHT 
 Liebig et al (2014) 

Piatkowski, Lee, Morik (2013) Spatio-temporal random 
fields: compressible representation and distributed 
estimation, Machine Learning Journal 93:1, 115 – 140. 
Liebig, Piatkowski, Bockermann, Morik (2014) 
Predictive Trip Planning – Smart Routing in Smart Cities, 
Mining Urban Data Workshop at 17th Intern. Conf. on 
Extending Database Technology.  



Prediction of phone calls in cells in the next hour 

!  Data from Orange Warsaw 
!  3923 cells with at least 4/5 

data points registered 
!  16.5.2016 ‒ 26.6.2016 
!  24 h * 3923 random variables 
!  3 classes separated at 1/3, 

2/3 quantile 

 

accuracy 

 L  M  H  N 

L  489113  49828  2640  26853 

M  67597  404590  73971  7865 

H  19731  181128  463748  1824 

N  0  0  0  0 



STRF  

!  STRF compress model to 
meet  resource constraints of  
devices. 
!  Small memory 

!  Investigate model demands: 
$  Application independent 
$ Dependency preserving 
$  Theoretically well-based  

not heuristic 
$ Derived from first 

principles 
$  Implemented. 
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Graphical models on resource-restricted processors 

!  Floating point arithmetics 
(real) costs more clock cycles 
than integer arithmetics. 

!  “The most obvious technique 
to conserve power is to 
reduce the number of cycles 
it takes to complete a 
workload.” (Intel 64, IA-32 
architectures optimization 
reference manual, guidelines 
for extending battery life). 

!  Restrict the parameter space 
of MRF  

Sandy Bridge ARM 11 

Real Int Real Int 

+ 3 1 8 1 

* 5 3 8 4-5 

/ 14 13-15 19 - 

Bit 
shift 

- 3 - 2 

Clock cycles for arithmetics 
on different processors: 
Real vs. integer. 

θ ∈ 0,1,...,K{ }⊂ Ν



Parameter space transformation 

!  Graph model tree-structured 
!  Transform the parameter 

space: 
 ηi (θ) = θi ln 2 

 

MRF :

p(!x) =
1

Z θ( )
exp θiφi

!x( )
i
∑
"

#
$

%

&
'

= exp θ,φ !x( ) − A θ( ))* +,

IntegerMRF :

p(!x) = exp η θ( ),φ
!x( ))* +,

= 2 θ ,φ x( ) −A η θ( )( ))* +,

=
2 θ ,φ x( )

2 θ ,φ y( )

y∈ℵ
∑



Integer belief propagation 

!  Simply replacing the exp(.) by 2(.) is not sufficient 
!  Overflows are normally avoided by normalization. 
!  Normalization is impossible in integer division. 

!  Magnitude of messages corresponds to probability 
!  Use the length of each message  
!  Bit-length is similar to log 

mv→u y( ) = exp θvu=xy +θv=x( ) mwu x( )
w∈Nv− u{ }
∏

x∈ℵv

∑

!mv→u y( ) = 2 θvu=xy+θv=x( )

x∈ℵv

∑ !mwu x( )
w∈Nv− u{ }
∏

βv→u y( ) =max
x∈ℵv

θvu=xy +θv=x + βwu x( )
w∈Nv− u{ }
∑



Discretized probability space 

!  Belief propagation is now bit-
length propagation, i.e. the 
MAP and marginals are 
computed using the bit-length. 

!  The approximation error 
depends on the number of 
neighboring nodes and the 
space of states. 

!  Some true probabilities (y axis) 
cannot be expressed by the 
integer approximation (x axis). 



Evaluation: accuracy 

 0.85

 0.9

 0.95

 1000  2000  3000  4000  5000  6000  7000  8000

Int, deg=4
Int, deg=8
Int, deg=16

!  Different vertex degrees  
!  8000 nodes in the graph  
!  100 runs of IntMRF 

!  Real MRF is 100% accuracy. 

 



Integer model on ARM 

seconds 

Vertex state space  |X| 

!  >> 10 times faster on  
ultra-low devices 

!  State of the art performance 
in NLP and other real-world 
tasks. 



Integer MRF 

!  IntMRF can be executed on 
devices even those without 
floating point unit. 

!    
!  Investigate model demands: 

!  Application independent 
!  Dependency preserving 
!  Theoretically well-based  

not heuristic 
!  Derived from first 

principles 
!  Implemented. 
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Models and hardware demands 

!  Resource demands of models 
$  Parameters and 

redundancies 

!  Still exponential complexity! 

P(!x) = exp
!
θ ,φ !x( ) − A

!
θ( )( )

Ultra-low power device 
!  Slow   16 MHz 
!  Small wordsize  16 Bit 
!  Small memory   64 Kb 
!  Restricted capabilities,  

no floating point unit 
!  Connectable to  

multiple sensors 
!  Energy around  0,0048 W 

potential 
partition 



Calculation of the partition function 

!  In general, evaluating Z(θ) is 
#P-complete. 

!  Numerical approximate 
integration based on general 
quadrature:  
!  replace f by h 
!  x, w, xi  need to be 

determined 
!  Chebyshev polynomials as h 

 Tk(x)= 2x Tk-1 (x) ‒ Tk-2(x) 
!  Chebyshev interpolation 
!  Expensive part wi depends on 

G, X, ||θ||  
can be pre-computed! 

exp A θ( )( )= Z θ( )
Z θ( ) = ψ

ℵ

∫ !x( )dν
!x( )

hk
!x( )

l

u

∫ d!x = wi f xi( )
i=1

k

∑

hk
!x( ) = cix

i

i=1

k

∑

!Ak θ( ) = log wi
i=1

k

∑ E θJ l i
l=1

i

∏
⎡

⎣
⎢

⎤

⎦
⎥



Quadrature-based inference 

!  Numerical approximation technique with bounded error 
independent of the graph structure. 

!  Discrete Clenshaw-Curtis Quadrature: 
!  In: G, θ in Rd, degree k 
!  Out: |Z(θ) ‒ Zk(θ)| ≤ ε/2 Z(θ) 

!  Randomized algorithm SDCCQ based on Chebyshev polynomials 
!  Pre-compute wi  on server 
!  Send  to device and perform there inference with quality 

guarantees.  



Scalability 

!  Runtime in seconds as a 
function of the number of 
CPU cores for different 
polynomial degrees. 

!  40 E5 2697 Xeon CPU cores. 
!  Algorithm is easily made 

parallel.  



Discrete Clenshaw-Curtis Quadrature 

!  Decoupling most costly 
computation from the rest 
and pre-compute it. 

!   Use quadrature for partition 
function. 

!  Investigate model demands: 
!  Application independent 
!  Dependency preserving 
!  Theoretically well-based  

not heuristic 
!  Derived from first 

principles 
!  Implemented. 
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Probabilistic graphical  

models   meet 

hardware constraints. 



Contributors 

Nico Piatkowski 
!  STRF 
!  Integer MRF 
!  Stochastic 

Quadrature 
Sangkyun Lee 
!  Optimization 
!  Regularization 

Christian Bockermann 
!  Streams framework 
!  FACT Tools 

Thomas Liebig 
!  Traffic prognosis 
!  Routing 





We need novel hardware 

for machine learning!  

Don’t forget the new programming paradigms! 

Let’s work together! 

Thank you for your attention

We are hiring 
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