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Abstract. Today’s steel industry is characterized by overcapacity and
increasing competitive pressure. There is a need for continuously improv-
ing processes, with a focus on consistent enhancement of efficiency,
improvement of quality and thereby better competitiveness. About 70 %
of steel is produced using the BF-BOF (Blast Furnace - Blow Oxygen
Furnace) route worldwide. The BOF is the first step of controlling the
composition of the steel and has an impact on all further processing steps
and the overall quality of the end product. Multiple sources of process-
related variance and overall harsh conditions for sensors and automation
systems in general lead to a process complexity that is not easy to model
with thermodynamic or metallurgical approaches. In this paper we want
to give an insight how to improve the output quality with machine learn-
ing based modeling and which constraints and requirements are necessary
for an online application in real-time.
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1 Introduction

There are several ways to produce steel. A complete overview can be found in [6].
About 70 % of steel! is produced using the BF-BOF (Blast Furnace - Blow Oxy-
gen Furnace) route [5]. The first step is to smelt ores to raw iron in a blast furnace.
Coke is used as the primary energy source and as a reduction agent. The carbon
will bind the oxygen of the iron oxides. At the end of the process liquid raw iron is
produced and transported to the BOF. The produced liquid raw iron has a temper-
ature of 1,200 °C and has a very high concentration of carbon and other unwanted
substances. In the given use case [9], the BOF is charged with 150 tons of liquid
raw iron and around 30 tons of scrap metal. The amount of unwanted contents
(except carbon) will be bound in the slag by blowing pure oxygen on the mixture
of liquid raw iron and scrap metal. The whole mixture is stirred by a bottom gas
injection. During the process, the raw iron will be heated up to 1600 °C. The needed
energy will be produced by the combustion of the contained carbon in the raw iron.
After 20 to 30 min, the process will be stopped based on an analysis of the off-gas
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composition. The high temperature makes it very expensive and technically chal-
lenging [2] to measure the state of the BOF content during the process directly.
Usually, there will only be a single measurement at the end of the process. In the
given use-case, the quality of the output of the BOF process is described by the
temperature, the carbon and phosphorus content of the raw steel and the iron con-
tent of the slag at the end of the process. Depending on the difference between the
measured and the predefined target value, the process will be repeated until all
quality indicators are within the specifications. With only a single measurement
at the end of the process, only predictions of the quality indicators can be used
to control the process. The prediction of a single quality indicator can be coined
as a learning task. After one or multiple refinement steps, casting and rolling, the
steel is delivered as coil, plate, sections or bars. The BOF process is the first step of
controlling the composition of the steel. The quality of the output has an impact
on all further processing steps and the overall quality of the end products. Thus,
the quality requirements for the output are usually quite strict. It may happen that
up to 20 % of the processes [2] have to be restarted at least once due to quality issues
of the output. Hence, the improvement of the prediction is decisive to increase the
efficiency and saving resources [7,10].

2 Process Control

There are multiple possibilities to control the outcome of the process directly.
Corrective actions have the largest impact if they are executed as early as possi-
ble in the process. The most common approach is to precalculate the amount of
blown oxygen and heating, cooling and slagging agents based on thermodynamic
and metallurgical calculations [4]. The major challenges are presented by mul-
tiple sources of variance in the process. Wear and tear, weather, shift work, the
unknown state and composition of the used input materials and the high volume
of the BOF lead to conditions, that are hard to model with classical metallur-
gical approaches. Either these models are provided with numerous parameters
and are therefore complex to handle or a too small number of parameters lim-
its the reliability of the models. Nevertheless, the resulting predictions and the
corrective actions of the operators deliver usually good results already. But even
if the optimal metallurgical model would be used, the overall harsh conditions
will lead to wear or failure of sensors and other automation equipment. If not
handled properly, the reduced data quality and sensor reliability will reduce the
quality of every prediction significantly.

3 The BOF Process from a Data Point of View

The data of the BOF process comprise of continuous and event-based data.
These data streams are generated by two different data sources (Level 2 and 3
systems [3]). The data streams can be merged and partitioned in an sequence
of BOF processes. The event-based data stream contains the results of the com-
position analysis and the results of the other external measurements, events like
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the addition of cooling or heating agent and meta-data about the state of the
BOF itself. The continuous data stream contains all in-process measurements,
like the off-gas composition, the oxygen and cooling water flow and multiple
temperatures. A considerable proportion of the 100 raw features are not usable
due to not sufficient positioning of the sensors. Until today data analysis only
aimed at a better process understanding of the metallurgical experts. Even if
learning algorithms were used to model the process no automatic extraction of
features and application of learned models have been performed [11].

4 Offline Analysis and Online Application

The major improvement of successful predictions is tuning the features. For
the first time, we have constructed multiple new features to describe the BOF
process better and monitor the state more directly [7]. The promising results
lead to an implementation and application of a prototype at the steel factory
itself [9]. The online application of learned models should move beyond merely
hand coding the model into a control program. In some factories there are up to
6 BOFs installed. Every BOF will be in a different physical state and the given
input materials will be different for every factory. Consequently, every BOF
requires a different set of models and different update policies. The manual
management and update of the models would require great efforts. The wear
and failure of equipment and sensors will lead to concept drifts [1] or a complete
loss of raw data and all extracted features. Therefore, multiple models for the
multiple sensor settings and an online monitoring and management of these
models are needed. To the best of our knowledge, we are the first who developed
an online model management module. We implemented a modular and scalable
architecture, that is able to connect to multiple legacy systems, store all data
efficiently and dynamically extract new features from these raw data, learn new
models and apply these models in real-time [8].

5 From Predictions to Control Assistance

The predictions can be used by the operator to evaluate the potential outcome
of multiple corrective actions directly. Moving beyond this manual operation
on the basis of predictions, we improved the control assistance further. The
improvement can be formulated as an multi-objective optimization problem [9].
The predictions are used as a surrogate function for the real value of the quality
indicators. Similar to the metallurgical approach, the optimization algorithm
uses the amount of oxygen and additions as variables. The costs of the used input
materials can be used to calculate the costs of every potential corrective action
and can be included into the optimization problem. The optimization problem is
solved continuously (1 Hz) and the results can be used by the operator to adapt
the amount of oxygen and additions as early as possible in the process.
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6 Results and Conclusion

The prediction of the conditions at the BOF end-point have been improved
over all development steps and have been constantly better than the classical
approach. Nevertheless, the improvement of the prediction quality is only the
first step for a successful control and monitoring of BOF processes. The different
implementations have been executed successfully and reliable over multiple years.
Only with a modular and scalable architecture and implementation it is possible
to cope with the given harsh conditions and individual characteristics of every
BOF in real-time.
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