
Accelerating Imitation Learning in Relational
Domains

via Transfer by Initialization

Sriraam Natarajan1, Phillip Odom1, Saket Joshi2, Tushar Khot4, Kristian
Kersting5, and Prasad Tadepalli3

1 Wake Forest University, USA
2 Cycorp Inc, USA

3 Oregon State University, USA
4 University of Wisconsin-Madison, USA

5 Fraunhofer IAIS, Germany

Abstract. The problem of learning to mimic a human expert/teacher
from training trajectories is called imitation learning. To make the pro-
cess of teaching easier in this setting, we propose to employ transfer learn-
ing (where one learns on a source problem and transfers the knowledge to
potentially more complex target problems). We consider multi-relational
environments such as real-time strategy games and use functional-gradient
boosting to capture and transfer the models learned in these environ-
ments. Our experiments demonstrate that our learner learns a very good
initial model from the simple scenario and effectively transfers the knowl-
edge to the more complex scenario thus achieving a jump start, a steeper
learning curve and a higher convergence in performance.

1 Introduction

It is common knowledge that both humans and animals learn new skills by
observing others. This problem, which is called imitation learning, can be for-
mulated as learning a representation of a policy – a mapping from states to
actions – from examples of that policy. Imitation learning has a long history
in machine learning and has been studied under a variety of names including
learning by observation [1], learning from demonstrations [2], programming by
demonstrations [3], programming by example [4], apprenticeship learning [5],
behavioral cloning [6], and some others. Techniques used from supervised learn-
ing have been successful for imitation learning [7]. We follow this tradition and
investigate the use of supervised learning methods to learn behavioral policies.

Our focus is on relational domains where states are naturally described by
relations among an indefinite number of objects. Examples include real time
strategy games such as Warcraft, regulation of traffic lights, logistics, and a
variety of planning domains. A supervised learning method for imitation learning
was recently proposed [8]. This approach assumes an efficient hypothesis space
for the policy function, and learns only policies in this space that are closest to

Fig. 1. Wargus Scenarios (left) The two tower scenario where providing examples is
easier. right The three tower scenario which is significantly more complicated and
requires more training trajectories.

the training trajectories [9, 10]. This approach is based on functional gradient
boosting [11] where a set of relational regression trees [12] are used to compactly
represent a complex relational policy. This approach was demonstrated to be
successful in many problems.

One of the key assumptions in the proposed approach is that the policies can
be generalized across the objects in the domain. While one of the advantages
of a logical representation is the generalization capability, it is also quite possi-
ble that in several large problems, the optimal policies can vary greatly as the
number of the objects in the domains can increase. In such cases, the learner
has to be provided with new example trajectories to learn the policies. Since the
complexity of the domain has increased, the number of trajectories required for
learning can also increase significantly. For instance, consider the two scenarios
presented in Figure 1 where the goal is to defend the towers from being destroyed
by the enemy units. In the left figure, there are two towers and two enemy and
friendly footmen and archers. In the right figure, all the numbers increase by
one. As we show empirically, the optimal policies for the two scenarios can be
very different. More importantly, the number of trajectories required to converge
to the optimal policy is higher in the case of the more complex scenario.

In order to train on such complex scenarios, we propose to employ transfer
learning [13, 14] for learning in a (simpler) source problem and then transfer-
ring the learned knowledge to a (more complex) target task. More precisely,
we aim to employ transfer by initialization [15] where the models learned from
the source task are used to initialize the models in the learning task. Following
prior work [8], we perform search through the space of policies using functional
gradient boosting but initialize the gradients with the models learned in the
source task. Our hypothesis is that this initialization will allow the learner to
explore more complex policy spaces that might not have been accessed easily if
the search started out with uniform policies. We verify this claim empirically.

In summary, we consider the problem of imitation learning in relational do-
mains where the optimal policies can be significantly different as the number of
objects in the domain increases. Generalization of policies is still a desired prop-
erty as the properties of the objects themselves can change across situations with
the same number of objects. When the number of objects change, we propose to
employ transfer learning by initialization to initialize the gradients in the target
task. We evaluate the hypothesis in a real time strategy game and show that we
are able to achieve a jump start, faster convergence to a more optimal policy.

The rest of the paper is organized as follows: we introduce the background
and the prior work on relational imitation learning next. We then present our
transfer algorithm for initialization and evaluate the algorithm on a complex
RTS game and conclude the paper by outlining some challenges for future work.

2 Background

An MDP is described by a set of discrete states S, a set of actions A, a reward
function rs(a) that describes the expected immediate reward of action a in state
s, and a state transition function pass′ that describes the transition probability
from state s to state s′ under action a. A policy, π, is defined as a mapping
from states to actions, and specifies what action to execute in each state. In the
imitation learning, we assume that the reward function is not directly obtained
from the environment. Our input consists of S, A and supervised trajectories
generated by a Markov policy. We try to match it using a parameterized policy.

3 Relational Imitation Learning

Following Ratliff et al. [16], we assume that the discount factor are absorbed into
the transition probabilities and policies are described by µ ∈ G where G is the
space of all state-action frequency counts. We assume a set of features F that
describe the state space of the MDP and the expert chooses the action ai at any
time step i based on the set of feature values 〈fi〉 according to some function.
For simplicity, we denote the set of features at any particular time step i of the
jth trajectory as f ji and we drop j whenever it is fairly clear from the context.

The goal of our algorithm is to learn a policy that suitably mimics the expert.
More formally, we assume a set of training instances {〈f ji , ai〉m

j

i=1}nj=1 that is
provided by the expert. Given these training instances, the goal is to learn a
policy µ that is a mapping from f ji to aji for each set of features f ji . The key
aspect of our setting is that the individual features are relational i.e., objects
and relationships over these objects. The features are denoted in standard logic
notation where p(X) denotes the predicate p whose argument is X. The problem
of imitation learning given these relational features and expert trajectories can
now be posed as a regression problem or a supervised learning problem over
these trajectories.

In our previous work [8], we employed Functional-Gradient Boosting for
learning relational policies. The goal is to find a policy µ that is captured using

the trajectories (i.e., features f ji and actions aji) provided by the expert, i.e.,
the goal is to determine a policy µ =P (ai|fi;ψ) ∀a, i where the features are
relational. These features could define the objects in the domain (squares in a
gridworld, players in robocup, blocks in blocksworld, archers or footmen in a
real-time strategy game etc.), their relationships (type of objects, teammates
in robocup etc.), or temporal relationships (between current state and previous
state) or some information about the world (traffic density at a signal, distance
to the goal etc.).

We assume a functional parametrization over the policy and consider the
conditional distribution over actions ai given the features to be,

P (ai|fi;ψ) = eψ(ai;fi)/
∑
a′i

eψ(a
′
i;fi),∀ai ∈ A (1)

where ψ(ai; fi) is the potential function of ai given the grounding fi of the
feature predicates at state si and the normalization is over all the admissible
actions in the current state. Formally, functional gradient ascent starts with an
initial potential ψ0 and iteratively adds gradients ∆i. Here, ∆m is the functional
gradient at episode m and is

∆m = ηm × Ex,y[∂/∂ψm−1log P (y|x;ψm−1)] (2)

where ηm is the learning rate. Note that in Equation 2, the expectation Ex,y[..]
cannot be computed as the joint distribution P (x,y) is unknown (in our case,
y’s are the actions while x’s are the features). Instead of computing the gradi-
ents over the potential function, the gradients are computed for each training
example:

∆m(aji ; f
j
i) = ∇ψ

∑
j

∑
i

log(P (aji |f
j
i ;ψ))|ψm−1

(3)

These are point-wise gradients for examples 〈f ji , a
j
i 〉 on each state i in each trajec-

tory j conditioned on the potential from the previous iteration(shown as |ψm−1
).

Now this set of local gradients form a set of training examples for the gradient at
stage m. The main idea in the gradient-tree boosting is to fit a regression-tree on
the training examples at each gradient step [17]. The idea of functional gradient
boosting is presented in Figure 2.

The functional-gradient w.r.t ψ(aji ; f
j
i) of the likelihood for each example

〈f ji , a
j
i 〉 is given by:

∂ logP (aji |f
j
i ;ψ)

∂ψ(âji ; f
j
i)

= I(aji = âji |f
j
i)− P (aji |f

j
i ;ψ) (4)

where âji is the action observed from the trajectory and I is the indicator func-
tion that is 1 if aji = âij and 0 otherwise. The key feature of the above expression
is that the functional-gradient at each state of the trajectory is dependent on
the observed action â. If the example is positive (i.e., it is an action executed
by the expert), the gradient (I −P) is positive indicating that the policy should

Fig. 2. Relational FGB. This is similar to the standard FGB where trees are induced
in stage-wise manner; the key difference being that the trees are relational regression
trees. To compute the predictions, a query, x is applied to each tree in turn, and the
numerical values at the leaf reached in each tree are summed to obtain ψ(x).

increase the probability of choosing the action. On the contrary if the example is
a negative example (i.e., for all other actions), the gradient is negative implying
that it will push the probability of choosing the action towards 0.

Following prior work [18–20], we used Relational Regression Trees (RRTs)[12]
to fit the gradient function at every feature in the training example [8]. Hence
the distribution over each action is represented as a set of RRTs on the features.
These trees are learned such that at each iteration the new set of RRTs aim to
maximize the likelihood. Hence, when computing P (a(X)|f(x)) for a particular
value of state variable X (say x), each branch in each tree is considered to
determine the branches that are satisfied for that particular grounding (x) and
their corresponding regression values are added to the potential. For example,
X could be a particular unit in Wargus. or a certain block in the blocksworld.

4 Relational Transfer

In this work, we extend the previous work in imitation learning by employing
the ideas for inductive transfer [13]. While the previous approach was able to
achieve generalization in a imitation learning setting, the generalized policies
might not be sufficient in some other variations of the problems. For instance,
in the scenarios considered in Figure 1, the optimal policies for the three tower
defense scenario can be significantly different from the easier task of two tower
scenario. Also, since the three tower case is a harder task, as we show empirically,
learning in this setting might require more example trajectories from the expert.
In such cases, it is easier to transfer the knowledge gained from the two tower
scenario to the three tower case for initialization and then improve upon the
knowledge by learning in the three tower case. This will enable the learner to:
(a) learn a better policy than the one generalized from the two tower scenario

Table 1. Transfer Learning Algorithm

1: function Transfer(Tsource,Ttarget)
2: Λs = TIL({},Tsource) . Learn with source Trajectories
3: Λt = TIL(Λs,Ttarget) . Use learned models and learn on Target Trajectories

return Λt

4: end function
5: function TIL(Λ, Trajectories T)
6: Λ0 = Λ
7: for 1 ≤ k ≤ | A| do . Iterate through each action
8: for 1 ≤ m ≤M do . M gradient steps
9: Sk := GenExamples(k;T ;Λk

m−1)
10: ∆m(k) := FitRRT (Sk;L) . Gradient
11: Λk

m := Λk
m−1 +∆m(k) . Update models

12: end for
13: P (A = k|f) ∝ ψk

14: end for
15: return Λ
16: end function
17: function GenExamples(k, T, Λ)
18: S := ∅
19: for 1 ≤ j ≤ |T | do . Trajectories
20: for 1 ≤ i ≤ |Sj | do . States of trajectory
21: Compute P (âji = k|f ji) . Probability of user action being the current

action
22: ∆m(k; f ji) = I(âji = k)− P (âji = k|f ji)

23: S := S ∪ [(âji , f
j
i),∆(âji ; f

j
i))] . Update relational regression examples

24: end for
25: end for
26: return S . Return regression examples
27: end function

and (b) converge to the optimal policy faster in the three tower scenario i.e.,
from fewer trajectories when compared to learning with no knowledge.

The form of the functional gradients facilitate easy transfer. Since they per-
form gradient descent in function space, we can initialize the models (ψ0) for
the three tower scenario with some of the trees learned in the two tower sce-
nario. Conceptually, this is essentially the same as using the result of the first
few gradient steps in the source problem while learning in the target problem.
After initializing the gradient ascent with the initial set of trees, we propose to
learn new set of trees in the target task that build upon the initial model. As
mentioned earlier, this initial set of trees for the ψ0.

To perform learning in the target task, the trajectories must be weighted
given the initial model. Similar to Equation 4, we compute the value of I(aji =

âji |f
j
i) − P (aji |f

j
i ;ψ0) for each action of each trajectory, i.e., the weight of each

observed action is the difference between the indicator function of that action
and the marginal probability of that action given the initial potential function.

Fig. 3. Proposed transfer approach. The key idea is to learn a small set of trees from
the source task and use them to initialize the RFGB algorithm for the harder task.

Once these weights are computed for the given trajectory, they serve as the
examples for learning new set of trees. This idea is presented in Figure 3. First
we learn a few set of trees in the source task and then use them to initialize the
models in the target task. We then learn a new set of trees in the target task.

Our proposed transfer learning algorithm is presented in Algorithm 1. The
function Transfer is the main algorithm that takes as input trajectories from
the source and the target tasks. The algorithm first calls the TIL function (which
stands for Tree − basedImitationLearning) with an empty potential function
(empty set of trees) and the source trajectories. The TIL function then learns a
set of trees in the source task. The TIL function is the same one presented in [8]
with the modification that it can use an initial set of trees. For each action (k),
it generates the examples for our regression tree learner (called using function
FitRRT) to get the new regression tree and updates its model (Λkm). This is
repeated up to a pre-set number of iterations M (typically, M = 20). We found
empirically that increasing M has no effect on the performance as the example
weights nearly become 0 and the regression values in the leaves are close to 0 as
well. Note that the after m steps, the current model Λkm will have m regression
trees each of which approximates the corresponding gradient for the action k.
These regression trees serve as the individual components (∆m(k)) of the final
potential function.

Once the set of trees have been learned in the source task, a subset of those
trees (typically we use 20 trees in our experiments), is then used as the initial
model for the target task and the TIL function is called with this initial set and
the trajectories. The function then returns a new set of trees which are then used
for evaluating in the target task. It must be mentioned that when choosing to
act in the target task, inference over the actions is performed using all the trees
(the initial set of source trees plus the target trees). It is easy to see that we
cannot ignore the transferred trees since they form the first step of the gradient
ascent when learning the policy in the target domain.

The proposed approach is closely related to the idea of modular policies of
Driessens [21]. He observed that the use of functional gradients to represent
policies allows us to separate the gradient updates to different subtasks of the
agent’s task. In other words, we can create separate potential functions for each
part of the task and the natural addition operator of functional gradients allows
then to obtain the final policy which is essentially a sum of different regression
trees. We extend the above to transfer learning where we consider an initial set
of trees for a different task (that could potentially be a subtask) and a new set
of trees are then learned for the new task. Hence, combining these two ideas, it
is possible to learn a higher level policy in a hierarchy by transferring from the
lower level subtasks.

5 Experiments

We present the empirical evaluation of our proposed algorithm on a real-time
strategy game. We are particularly interested in the following questions:
Q1: How do the transferred models compare against the models that are general-
ized using the relational imitation learning algorithm?
Q2: How do the transferred models compare against the models that are learned
directly on the target task with no prior models from source task?

Experimental Setup: Stratagus is an open-source real-time strategy (RTS) game
engine written in C based off the Warcraft series of games. Like all RTS games, it
allows multiple agents to be controlled simultaneously in a fully observed setting,
making an ideal test bed for imitation learning. A java client was written, revised
at Oregon State University6, to connect to the Stratagus game engine via a socket
connection. The client collects all of the game information from the game engine
and can issue detailed commands to all units of a player in the game. This client
allows for the learned policies to be executed directly in the game environment
as opposed to simulation creating more realistic performance metrics.

The setting in which transfer is being tested is the tower defense scenario
shown in Figure 1. The map used for the experiments consisted of 6 x 6 grid
world. Our scenarios consist of two opposing teams-one attacking, one defending-
each with two kinds of units. Footman have more health but must be close to an
enemy to attack them while ranged archers are easily killed but can attack from

6 http://beaversource.oregonstate.edu/projects/stratagusai

a distance. Towers exist on the map in set locations. The defending team must
prevent the attacking team from destroying the towers while the attacking team
must destroy as many towers as they can. The defending team must divide its
units among the various towers to prevent one tower from falling while another
is being saved. This dynamic creates complex policies.

Predicates Description

friendlyobject The type of defending unit
enemyobject The type of attacking unit

dead Enemy unit that is dead
locationId Location of friendly unit
strength Strength (hit points) of friendly unit
distance Distance of a friendly unit to a tower

enemyattower Tower that enemy unit is attacking
attacking Enemy unit that a friendly unit

was attacking in the previous state

Fig. 4. Features that describe the state in the two
scenarios. We omit the arguments of the predicates
for brevity.

We used the following fea-
tures to describe the state:
the strength (high, medium,
low) and location of all
friendly units, the type (foot-
man, archer) of all units in
the game, which tower each
enemy unit is currently at-
tacking, and the enemy unit
that all friendly units were
attacking the previous state.
Friendly units are unaware of
the strength of enemy units
or their exact location. The
full set of information given
at every state is included in
Table 4. The actions available
to the friendly units are to
move to a location and attack

a particular unit. The nature of the objects and the relationships between the
objects in this game naturally allow for a relational representation. Each type of
unit (footman or archers) shares traits such as their attacking range and their
total health so certain policy rules will naturally apply to all units of that type.

As mentioned earlier, the goal of this experiment is to learn to protect two
towers in a source scenario and transfer the learned knowledge to a target sce-
nario. The attacking team’s strategy is as follows: At the start of each game, each
member of the attacking team randomly selects a tower to attack. However, if
approached by an enemy archer or footmen, they will change their target to
eliminate the opposing player’s offensive units. After destroying one tower, they
will randomly select another tower to attack until there are no towers left and
the game ends. The goal of the game is to defend the towers. The game ends if
either the enemy team manages to destroy all of the towers or the friendly team
kills all of the enemy units. The number of friendly and attacking units vary
between the source and target scenarios. In the source scenario, there are two
footmen and two archers while in the target scenario, there are three footmen
and three archers. In both the scenarios, the towers cannot defend themselves.

Results: We used two performance metrics that are based on the number of
towers saved. The 3-tower win percentage is the percentage of games in which
all three towers were saved. This is a difficult task because it requires the friendly
team to defend all three towers simultaneously; else one tower may fall while they

are all defending the others. The 1-tower win percentage is the easier metric,
only requiring 1 of the 3 towers to be saved. We used randomly selected samples
of 30, 50, 70, 100, and 150 3-tower games from a pool of approximately 1000
expert games for training in the target scenario. For the source scenario, we used
100 games for training. This experiment was repeated 10 times and the average
percentage of winnings games were computed.

We used three models for evaluation – the transfer model, the non-transferred
model which learns only on the target task and the generalization model which
learns only on the source and not the target task. We learned 20 trees on the
source task and learned a further 20 on the target task. Hence, the final transfer
model had 40 trees while the other two models had 20 trees each.

The results are presented in Figures 5 corresponding to saving at least one
tower and three towers respectively. As can be seen from the figures, the transfer
model is superior to both the generalization and the pure imitation learner in the
twin tasks. Also, the results follow the original transfer learning goals of jump
start, steeper learning curve and better convergence. It is fairly clear that in
defending at least one tower, the use of the initial models from the source scenario
provides a bigger jump start than in defending all towers. On the other hand,
when saving all towers, the jump start is not fairly high but the learning curve
is steeper. It appears that the use of initial models allow for the learner in the
target scenario to explore a space of policies that might not have been otherwise
reached from an uniform policy. Similarly, the difference between transfer and
non-transfer models is higher in the one tower case than saving all the towers
though the difference in statistically significant in both the cases. Also, it must
be mentioned that even when the non-transferred models were provided with a
lot more trajectories, it is not able to match the performance of the transferred
model. This suggests that using initial policies in some cases is more useful than
obtaining more expert trajectories. It would be interesting to evaluate these
results in other domains as well.

In summary, our experiments answer both the questions affirmatively in that
the transfer models dominate both the original imitation learning models.

6 Discussion and Conclusion

We address the issue of sample complexity in imitation learning settings. In sce-
narios where the expert’s time is expensive/valuable and we have access to only
a few training examples from the expert our approach is to divide the expert’s
time between simple (smaller domain size) and harder (larger domain size) prob-
lems. Although policies induced from the simpler problem training instances can
be employed to solve the larger domain via relational generalization, in scenarios
we provide (such as Wargus) this does not translate to better performance. We
have presented transfer learning by using the simpler policy as our initial models
and building an updatable relational model by learning from the harder exam-
ples. We observe not only a superior performance to generalization but also a
drastic reduction in the sample complexity as compared with the naive method
of directly inducing a model on the complex examples.

Fig. 5. Results of saving at least one tower (left) and saving all three towers(right).
The transferred models dominate the one learned from two towers (generalization) and
the one learned on three towers without an initial policy (non-transfer)

Imitation learning encounters two major problems when dealing with large
state spaces. First, assuming a tabular representation of the policy to be learned
is likely to exceed memory due to the large state and action space. Second, it can
only make use of a limited amount of expert traces compared to the excessive
amount of possible traces. The implicit feedback gained by the expert’s traces
on the best action to take in a state might be so sparse that a well-generalizing
policy will only be discovered slowly.

The first problem can be solved using relational imitation learning (RIL) for
structural domains. However, the problem of sparse feedback has not been ad-
dressed by RIL yet. For relational reinforcement learning, there is a compelling
and simple solution to this problem: inject traces of execution of a reasonable
policy for the task at hand [22]. Unfortunately, this does not work for imitation
learning. The input consists already of traces of execution of a reasonable policy,
namely the policy of the expert. Thus, we do not gain anything despite enlarging
the training set as can be seen from our results. The non-transfer model seemed
to have converged to a inferior policy. To overcome this problem, we intuitively
propose to inject traces of a policy of a reasonably well related task. Specifically,
we directly inject the complete ”related” policy into a functional gradient boost-
ing approach to RIL. This appears to be an interesting result in that sometimes
prior policies have a better impact on the performance compared to more tra-
jectories. Our immediate challenge is to validate this hypothesis on other more
complex domains. Another interesting direction is the possibility of employing
active learning methods for extracting the best complex examples given the ini-
tial model thereby further improving on the performance of transfer.

References

1. A. Segre and G. DeJong. Explanation-based manipulator learning: Acquisition of
planning ability through observation. In Conf on Robotics and Automation, 1985.

2. B. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57:469–483, 2009.

3. S. Calinon. Robot Programming By Demonstration: A probabilistic approach. EPFL
Press, 2009.

4. H. Lieberman. Programming by example (introduction). Communications of the
ACM, 43:72–74, 2000.

5. A. Ng and S. Russell. Algorithms for inverse reinforcement learning. In ICML,
2000.

6. C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly. In ICML, 1992.
7. N. Ratliff, A. Bagnell, and M. Zinkevich. Maximum margin planning. In ICML,

2006.
8. S. Natarajan, S. Joshi, P. Tadepalli, K. Kersting, and J. Shavlik. Imitation learning

in relational domains: A functional-gradient boosting approach. In IJCAI, 2011.
9. R. Khardon. Learning action strategies for planning domains. Artificial Intelli-

gence, 113:125–148, 1999.
10. S. Yoon, A. Fern, and R. Givan. Inductive policy selection for first-order mdps. In

UAI, 2002.
11. J.H. Friedman. Greedy function approximation: A gradient boosting machine.

Annals of Statistics, 29, 2001.
12. H. Blockeel. Top-down induction of first order logical decision trees. AI Commun.,

12(1-2), 1999.
13. S. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowl-

edge and Data Engineering, 22:1345–1359, 2010.
14. Stephan Al-Zubi and Gerald Sommer. Imitation learning and transferring of human

movement and hand grasping to adapt to environment changes. In Human Motion,
volume 36 of Computational Imaging and Vision, pages 435–452. 2008.

15. N. Mehta, S. Natarajan, P. Tadepalli, and A. Fern. Transfer in variable-reward
hierarchical reinforcement learning. Machine Learning, 73(3):289–312, 2008.

16. N. Ratliff, D. Silver, and A. Bagnell. Learning to search: Functional gradient
techniques for imitation learning. Autonomous Robots, pages 25–53, 2009.

17. T.G. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random
fields via gradient tree boosting. In ICML, 2004.

18. B. Gutmann and K. Kersting. TildeCRF: Conditional random fields for logical
sequences. In ECML, 2006.

19. S. Natarajan, T. Khot, K. Kersting, B. Guttmann, and J. Shavlik. Gradient-based
boosting for statistical relational learning: The relational dependency network case.
Machine Learning, 2012.

20. K. Kersting and K. Driessens. Non–parametric policy gradients: A unified treat-
ment of propositional and relational domains. In ICML, 2008.

21. K. Driessens. Non-disjoint modularity in reinforcement learning through boosted
policies. In Multi-disciplinary symposium on Reinforcement Learning, 2009.

22. K. Driessens and S. Dzeroski. Integrating guidance into relational reinforcement
learning. Machine Learning, 57(3):271–304, 2004.

