
Bachelor Thesis

Sequence synthesis with Conditional
Generative Adversarial Recurrent Neural

Networks

Alexander Becker
March 7, 2018

Department of Computer Science
Chair of Artificial Intelligence (LS8)
TU Dortmund
http://www-ai.cs.uni-dortmund.de

http://www-ai.cs.uni-dortmund.de

2 Contents

Contents

1 Introduction 3

2 Preliminaries 3
2.1 Artificial Neural Networks . 3
2.2 Long Short-Term Memory . 7
2.3 Generative Adversarial Networks . 10
2.4 Conditional Generative Adversarial Networks 12
2.5 Conditional Generative Adversarial Recurrent Neural Networks . . . 12

3 Experiments 13
3.1 MNIST . 14
3.2 Football Events Data . 26

3.2.1 Data set . 27
3.2.2 Preprocessing . 28
3.2.3 Experiment I . 30
3.2.4 Experiment II . 41
3.2.5 Experiment III . 43
3.2.6 Experiment IV . 44
3.2.7 Experiment V . 46

4 Conclusion 48

Bibliography 51

1. Introduction 3

1 Introduction

The task of sequence generation is relevant in many fields of application, e.g. text
and speech generation, music compositions, machine regulations over time and pre-
diction of protein structures. At the same time it is often important to depend on
a certain context in addition to the preceding sequence such as a certain informa-
tion that should be phrased, the scale of a song or a machine’s target temperature.
The most common and successful model used for sequence generation tasks is the
Long Short-Term Memorie (LSTM). However, LSTMs are limited in the sequences
they can generate since the training process always depends on a certain sequence
that was drawn from the original data. This means that if we use the LSTM to
generate a sequence with respect to a yet unknown context vector without having
an example sequence it will not be able to do so. For this purpose we introduce the
Conditional Generative Adversarial Recurrent Neural Networks (CGARNNs) that
combines the advantages of LSTMs and Generative Adversarial Networks (GANs).
Since the CGARNN’s generative part only depends on the feedback of the discrim-
inative part, we expect it to learn how to generate sequences with respect to valid
context vectors that are not included in the training data set but are element of
the set from which the context vectors are drawn. In section 3 we will investigate
the behavior regarding the above-mentioned property in multiple experiments. We
start with a proof of concept on the MNIST data set and continue with a text
corpus containing descriptions of football game situations. Beforehand we explain
the necessary preliminaries in section 2. In section 4 we will draw a conclusion and
describe how to continue the work on the CGARNN model in the future.

2 Preliminaries

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a well-known and widely used model in ma-
chine learning, common in nearly every field of application and occurring in many
different variations while the basic mechanisms stay similar. Basically, an ANN is a
concatenation of biologically inspired neurons (Fig. 1) that take vectors x as input
and calculate output values regarding neuron specific weight matrices W and biases
b. Therefore the neurons’ output scalar y will be calculated by (Eq. 1). The weights

x y

b

W

Figure 1: Neuron with input x, weight matrix W , bias b and output y.

are necessary to incorporate the different significance of the inputs and form the
neurons’ ”knowledge”.

y = xW + b (1)

4 Contents

Figure 2: The blue line describes the linear function represented by the neuron. The
black point is the value for which the neuron returns 1 (≥ θ), the white points
are the values for which the neuron returns 0 (< θ). Thus this neuron represents
the logical and.

When we think of biological neurons, there is one important aspect we have not
considered yet: the impulse propagation. A biological neuron receives an impulse
and passes it if it was strong enough, which allows a more complex behavior than
simply passing all impulses no matter how strong they are to the next neurons. The
simplest way to achieve this behavior is by adding a threshold θ to every neuron.
The neuron will pass the ”impulse” when the output is greater or equal to the
threshold, otherwise it will not (Eq. 2). Comparing the output to the threshold
results in either 1 or 0 depending on whether the equation is true or false. This
result will then be used as the neuron’s actual output.

xW + b ≥ θ

⇔ xW + b− θ ≥ 0 (2)

Even if adding a threshold to each neuron expresses the above-mentioned behavior,
we are only able to describe linear functions because every neuron that can be
described by equation 2 represents a line that divides the plane into two parts
(Fig. 2). Unfortunately, most problems are very complex and therefore cannot be
represented by a linear function such as the xor function (Fig. 3). To describe non-
linearity we use activation functions which serve the same purpose as the comparison
to a threshold does - the regulation of the propagated impulses. The difference
between those two approaches is that the comparison to a threshold always results
in 0 or 1 and is not continuously, whereas most activation functions map into the
interval of [0,1] and are continuous. Figure 4 shows a graphical representation of the
threshold comparison and one of the most basic activation functions: the sigmoid
function

σ(x) =
1

1 + e−x
(3)

Usually, networks contain neurons arranged in multiple layers (see Fig. 5). We
differentiate between the input layer that takes the network’s input, any number of
hidden layers that are responsible for the main processing and the output layer that

2. Preliminaries 5

Figure 3: xor function. The black and the white points cannot be separated by a
single line and therefore the xor function cannot be represented by a neuron as
described above.

(a) comparison (b) sigmoid

Figure 4: Threshold comparison vs. sigmoid

provides the network’s output. In order to propagate the impulses from the neurons
in layer l − 1 to all the neurons in layer l, we provide the l − 1-th layer’s output
as the input for layer l by combining the outputs from all the neurons to a single
vector. Equation 4 describes the computation of a layer’s output element-wise and
recursively. In case we reached the first layer in our recursion (base case), we will
not be able to access a previous layer’s output, because there is none, so we will
use the network’s input instead. Each column of W (l) represents a weight vector for
each neuron in layer l, whereas the vector b(l) contains the bias values. f denotes the
activation function. Consider that it is possible to use a different activation function
for each neuron and that equation 4 is just a simplified representation.

y
(l)
i =

{
f(xW

(0)
i + b

(0)
i), l = 0

f(y(l−1)W
(l)
i + b

(l)
i), otherwise

(4)

6 Contents

x1

x2

x3

x4

y

Hidden
layer

Input
layer

Output
layer

Figure 5: Artificial Neural Network with multiple layers

Now that we know how to calculate the output of an ANN, we can focus on the
learning process. Therefore we will look at the most common learning approach,
backpropagation, as described by Rumelhart, Hinton and Williams in 1985 [18].
When starting the training of an ANN for a specific problem, its outputs will be
rather random. The reason for this is that the network’s weights were not adjusted
to process the input data to the desired output. As mentioned above, the network’s
weights represent its actual knowledge. So in order to make the network learn how to
solve the specific problem, we need to adjust the weights in a way that the network’s
”knowledge” is increased. Instead of defining the network’s ”knowledge”, we rather
define its error, since a smaller error can be achieved by weights that are adjusted
properly. The network’s error is always determined as a function of a processed
input. Depending on the specified problem, the error is defined by different loss
functions. Equation 5 shows a basic example of a loss function - the mean squared
error

1

N

N∑
i=1

(ŷi − f(xi))
2 (5)

where N is the number of training samples, ŷi the label and f(xi) the output for
the i-th sample. ŷi− f(xi) describes the difference between the label and the actual
output. In order to receive positive error values only, the difference is squared. Then
the mean of the errors for all inputs in the batch is calculated. The result describes
the network’s error for a batch of inputs. Next, we need to use the information about
the network’s error to adjust its weights. This procedure is rather complex due to
the many connections between the neurons and the missing information about the
influence of a single neuron on the resulted error. We therefore need a function that
assigns blame to a single neuron depending on the network’s error. This function is
known as the delta rule (Eq. 6).

δ
(l)
i =

{
f ′(neti)λ

′(ŷi, yi), output layer

f ′(neti)
∑

j δ
(l+1)
j wij, otherwise

(6)

f ′(neti) denotes the derivative of the activation function, λ′(ŷi, yi) denotes the

2. Preliminaries 7

derivative of the loss function, neti is the non-activated output of the i-th neu-
ron, ŷi is the label’s i-th value, yi is the output of the i-th neuron and wij the
weight between neuron i in the current layer and neuron j in the next layer. For
the output layer, the error is determined by the multiplication of the activation
function’s derivative and the loss function’s derivative. These describe the direction
towards the minimum error and the degree of the error and if we should go further
in the direction that is indicated by the activation derivative or if we should go in
the opposite direction in order too reach the minimum. For all remaining layers we
multiply the activation derivative with the sum of all errors of the neurons in the
next layer that are connected to the current neuron. Thereby the sum describes
the influence of the current neuron’s output on the error of the following neurons.
By means of the delta rule we are actually able to define the weight updates for all
neurons, even those that are not part of the output layer. The weight updates are
defined by

∆wij = αδjyi (7)

where ∆wij is the difference of the weight between neuron i in the current layer
and neuron j in the next layer, α is the learning rate that describes the size of the
weight’s difference before and after updating and yi is the i-th neuron’s activation.
The backpropagation algorithm then works like this: First, a certain number of
inputs are given to the network one after another. For each input the loss and error
values are calculated using the loss function and the delta rule. Then the weights
are updated by using the errors and the neurons’ activations. In order to obtain a
network with an error near 0 these steps are repeated for several iterations.

2.2 Long Short-Term Memory

In 1997, Hochreiter and Schmidhuber introduced a novel approach for handling long
term dependencies within the input data and therefore provided a model that is
able to process sequential data with regard to earlier sequence elements called Long
Short-Term Memory [12]. The family of networks whose outputs depend on some
earlier calculations represented by additional time-delayed inputs for the neurons
of the hidden layers are called Recurrent Neural Networks (RNNs). To explain
the properties of RNNs, we will first look at Elman nets. Then we will discuss
possible problems and explain Long Short-Term Memories (LSTMs) which solve
these problems.

Elman nets [5] were described by Elman in 1990 and are one of the most basic
forms of RNNs. The problem Elman wanted to solve with his recurrent nets is the
representation of time which is a natural property of sequences since they can be
seen as data that is divided into n time steps where n is the number of sequence
elements. The idea of Elman nets is to represent time implicitly as the effect it
has on the data processing by slightly modifying vanilla ANNs (section 2.1). The
neurons of the hidden layer now have two different kinds of inputs (Fig. 6). The
first and already known kind of input is the output that comes from neurons of the
previous layer. The second input is a time-delayed input - the neuron’s output at the
last time step - that is represented by an additional context neuron for each neuron

8 Contents

x h

c

y

Figure 6: Elman net with one hidden layer. The neuron of the hidden layer receives
an additional input from the context neuron that saves the hidden neurons output
from the last time step. x and y denote the input and output values, h the hidden
neuron and c its correpsonding context neuron.

x0

c0 h0

y0

x1

h1

y1

. . .

xt

ht

yt

ct+1

Figure 7: Unrolled Elman net.

in the hidden layers. The context neuron stores the hidden neuron’s output and
feeds it back in the next time step. Therefore, information about the last processing
step is stored and used to make each output of the hidden neuron dependent on the
previous sequence element.

This simple modification gives Elman nets the potential of handling sequen-
tial data while the processing of each sequence element depends on the previous
elements. In order to minimize the loss of an RNN using a gradient-based optimiza-
tion function, we have to unroll the network first. This means that the recurrent
connections are replaced by multiple copies of the same network. The number of
copies is equal to the number of elapsed time steps. Therefore, when t time steps
of the Elman net in figure 6 are unrolled, we achieve the vanilla ANN seen in figure
7. Unfortunately, there is a grave problem when using Elman nets to process large
sequences. Hochreiter and Schmidhuber described this problem in [12]. When cal-
culating the error values through time, the error decreases exponentially with every
step we take. This phenomenon is called the vanishing gradients problem. The error
of a nonoutput neuron j at time step t can be described as

δj(t) = f ′j(netj(t))
∑
i

wijδi(t+ 1) (8)

where f ′j(netj(t)) is the derivative of the activation of neuron j at time step t,
netj(t) its non-activated output, wij the weights to all neurons of the next time
step t + 1 and δi(t + 1) the error of neuron i at time step t + 1. Thus the sum
represents the influence of neuron j on the error values of time step t + 1 at time
step t. The i-th neuron’s error results from multiplying this error influence with the
neuron’s activation derivative that determines in which direction the weights must

2. Preliminaries 9

x s × +

c

p ×

gin gout

y

Figure 8: LSTM memory cell and gates. x and y denote the input and output, gin
and gout the input and output gates and everything inside the dashed rectangle
shows the actual LSTM memory cell. Inside the memory cell the output of s
describes the information that wants to be stored in the memory, c describes the
context neuron, p’s output describes the information that wants to be propagated
and the nodes with × and + describe vector multiplication and addition.

be adjusted. From this follows the update rule

wji = wji − αδj(t)yi(t− 1) (9)

where α is the learning rate and yi(t− 1) is the activation of neuron i at time step
t− 1. The total error flow from an arbitrary neuron l0 = u at time step t to another
arbitrary neuron lq = v at time step t− q is defined as

n∑
l1=1

· · ·
n∑

lq−1=1

q∏
m=1

f ′lm(netlm(t−m))wlmlm−1 (10)

The sums represent all paths from v to u and the product describes the error flow
for each path. In case that all errors on a path are smaller than 1, the total error
will vanish due to the multiplication of the single errors which results in exponential
error decreasing. Therefore the weight changes per update are insignificant. In order
to solve the vanishing gradients problem, Hochreiter and Schmidhuber introduced
LSTM networks. The neurons of an LSTM network are called memory cells and are
provided with an input and an output gate (Fig. 8). An LSTM memory cell takes
an input x, which is either the initial input at time step 0 or the output of the last
time step concatenated with the input at time step t, and processes it by a basic
neuron s. The result is then the new information that wants to be stored in the
cell’s memory. The input gate gin also takes x as an input and returns a vector of
values from [-2,2]. These values describe how much of the new information should
be stored and which parts of the stored information should be forgotten. Thus these
two vectors will be multiplied and the result is added to the current memory. The
resulting memory will be processed by another basic neuron p. Its result describes
the information that wants to be propagated to the next time step. The output gate
gout then decides how much of the memory should be propagated. Therefore, it also
takes the input x and returns a vector with values from [-1,1]. The multiplication of

10 Contents

x0

c0

s × + p ×

gi go

x1

s × + p ×

⊕ gi go

. . .

. . .

Figure 9: Unrolled LSTM memory cell. c0 describes the initial memory state and
⊕ is the vector concatenation. Each repetition of the LSTM cell represents one
time step.

the gate’s result and the information that wants to be propagated is then the actual
output of the memory cell. Unrolling the LSTM network leads to a representation
that reveals how the concept of the memory cell solves the problem of vanishing
gradients (Fig. 9). To avoid the vanishing gradients problem, we want to have
a constant error flow for the recurrent connections. In other words, we want the
following equation to be true.

δi(t) = δi(t+ 1)

⇔ f ′i(neti(t))wiiδi(t+ 1) = δi(t+ 1)

⇔ f ′i(neti(t))wii = 1

In order to satisfy the above equation, a proper activation function f must be chosen.
Integrating this equation leads to the result that the activation function must be
linear. ∫

f ′i(neti(t))wii =

∫
1

⇔ fi(neti(t))wii = neti(t)

⇔ fi(neti(t)) =
neti(t)

wii

This means that we can achieve a constant error flow by choosing a linear activation
function for the connection between the hidden and the context neurons. This is
why the identity function is used in the LSTM memory cells. In summary, LSTMs
are able to process sequences and learn long time dependencies because they are not
affected by the vanishing gradient problem due to their linear memory.

2.3 Generative Adversarial Networks

In 2014, Goodfellow et al. introduced a generative adversarial framework [10] that is
capable of generating high quality samples and at the same time uses exact gradients
for optimizing the network parameters.

The generative adversarial framework consists of two parts. First, the generative
part that is trained to generate samples similar to the data of a given distribution. In

2. Preliminaries 11

other words, the generator represents a probability distribution and tries to approx-
imate the distribution of the real data. The second part is the discriminator that is
trained to distinguish between samples provided by the generator and samples from
the real data distribution. Therefore, both the generator and the discriminator com-
pete against each other. The generator’s goal is to outsmart the discriminator such
that all the generated samples will be classified as real data. On the other hand,
the discriminator wants to distinguish both probability distributions perfectly such
that it always relates a sample to the correct distribution. The exact models for the
generator and the discriminator are not fixed such that all kinds of generative and
classifying models can be used in this framework. Goodfellow et al. recommended
using artificial neural networks for both the generator and the discriminator because
it makes the implementation and the learning process straightforward. This is why
the framework is called Generative Adversarial Networks (GAN)(Fig. 10). The
competition between the generative and the discriminative part of the framework
can be described by the following minimax game:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (11)

where G and D are the generator and the discriminator, x is a sample drawn from the
real data distribution pdata and z is a noise sample drawn from a noise distribution
pz. logD(x) describes the discriminator’s accuracy on classifying data from the real
distribution whereas log(1 − D(G(z))) describes the accuracy on classifying data
provided by the generator. The discriminator wants to maximize its accuracy by
relating as much data as possible to the correct data distribution. Thereby the
maximum accuracy is 0. The generator wants to minimize the same accuracy the
discriminator wants to maximize. Because of the missing influence of the generator
on the samples drawn from the real distribution, its goal is just minimizing log(1−
D(G(z))). Goodfellow et al. noticed that during training the minimax game (Eq.
11) does not provide good gradients for the generator, especially in the first training
iterations. Therefore, the objective of G was changed from minimizing log(1 −
D(G(z))) to maximizing logD(G(z)) which is practically the same but leads to
stronger gradients.

Having specified the objectives of G and D, the training works like this: In each
training iteration we first calculate the gradients of the discriminator for k mini-
batches of real and generated data. We then calculate the generator’s gradients for
a single mini-batch of noise samples. Using a gradient-based optimization method,
we then update the network weights. The reason for using k mini-batches for the
discriminator is that we want to have a good classifying model in order to provide
good gradients for the generator. Training the discriminator in advance is out of
the question because this would lead to an overfitted classifier. So, using k mini-
batches for the discriminator per mini-batch for the generator is a trade-off between
a non-overfitting classifier and a classifier that provides good gradients.

12 Contents

z1

z2

z3

z4

D(G(z))

Generator Discriminator

G(z)

Figure 10: Generative Adversarial Network with generator G and discriminator D

2.4 Conditional Generative Adversarial Networks

In 2014, Mirza and Osindero introduced an extension to Goodfellow’s Generative
Adversarial Networks, namely the Conditional Generative Adversarial Networks
(CGAN) [17]. The goal of this modification is the generation of samples depending
on a certain condition y, e.g. a class label or incomplete data that will be completed
during the generation process. Since the discriminator must verify if the input de-
pends on the condition, both the generator and the discriminator will use y as an
extra input during training. Thus the minimax game (Eq 11) described in section
2.3 will be modified such that it includes the condition input y.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x | y)] + Ez∼pz(z)[log(1−D(G(z | y)))] (12)

The way how y is actually processed by the networks is not predetermined. In [17]
Mirza and Osindero just concatenated the input and the condition to a single input
vector. Therefore, we can use the learning algorithm as described by Goodfellow et
al. [10] without further changes.

2.5 Conditional Generative Adversarial Recurrent Neural
Networks

In this thesis, we aim to investigate the CGAN framework’s ability to generate se-
quential data. Since the generator and the discriminator can be chosen arbitrarily
as long as the generator is a generative and the discriminator is a classifying model,
we will use LSTMs for both. As mentioned in section 2.2, LSTMs are a common
model for processing sequential data and were often used with huge success. We
refer to this model as Conditional Generative Adversarial Recurrent Neural Net-
works (CGARNNs). We expect CGARNNs to combine the abilities of generating
context-sensitive high quality samples while learning and utilizing the distribution
of the sequential data. Other than LSTMs, CGARNNs might give us the possibility
to generate data described by context vectors that were not available during training
because the LSTM’s loss always depends on a specific sample sequence per training

3. Experiments 13

step while the CGARNN’s loss only depends on the discriminator’s feedback. We
expect the model to interpolate the behavior for unknown context vectors since a
context vector contains multiple random variables and therefore parts of the un-
known vectors were processed during training before. This is particularly beneficial
if the number of possible context vectors is very large and it is impossible to provide
training data for all of them. In the following section we will explore the potential
of the CGARNN model empirically in multiple experiments.

3 Experiments

In this section we describe the Conditional Generative Adversarial Recurrent Neural
Network (CGARNN) experiments which are divided into two sections.

The first section is a proof-of-concept to show that the model is able to generate
data depending on a given context. Therefore we use the MNIST data set [14] and
compare our results to those of three other models (Tab. 1): a Generative Adver-
sarial Network (GAN), a Conditional GAN (CGAN) and a Generative Adversarial
Recurrent Neural Network (GARNN). We chose those three rather similar models in
order to determine the advantages of the single properties of the CGARNN model,
namely the use of Recurrent Neural Networks (RNNs) to achieve some kind of mem-
ory unit and the dependency on a context vector. The experiments should show that
both the use of RNNs and the additional context input improve the quality of the
generated data.

no memory memory
no context GAN GARNN

context CGAN CGARNN

Table 1: MNIST - Comparison of model properties

The second section describes the experiments on the Football Events data set
(REF) with which we want to discover the advantages of the CGARNN model
for the text generation task. For comparison reasons we train a Long Short-Term
Memory (LSTM) model that also depends on a context vector in addition. So
the main difference between these two models is the way the feedback is given to
them. While the CGARNN’s generator gets it’s feedback from the discriminator,
the LSTM model needs an original text from the data set in order to compare it to
the generated one. We further discuss the impact of the way the feedback is given
to the different models in 3.2.

We implemented all experiments in Python using Google’s TensorFlow1 library
for machine learning, published the code under an open source license2 and wrote a
code documentation (see appendix).

1https://www.tensorflow.org/
2https://bitbucket.org/ROYALBEFF/conditional_generative_adversarial_rnns (also

listed in the appendix)

https://www.tensorflow.org/
https://bitbucket.org/ROYALBEFF/conditional_generative_adversarial_rnns

14 Contents

3.1 MNIST

The first data set we used for our experiments is the well-known MNIST data set
[14] consisting of 70000 28×28 images showing handwritten digits. The experiments
on the MNIST data set are a proof-of-concept, whereas the experiments in 3.2 show
the model’s capabilities. As mentioned above, we trained three models in addition
to the CGARNN on the MNIST data in order to compare their results. The three
models are: a GAN that is independent of the context and does not make use of
RNNs, a CGAN that depends on the context and does not make use of RNNs either,
and a GARNN that is independent of the context but uses RNNs instead of common
Artificial Neural Networks (ANNs) (Tab 1).

Generator Discriminator
N (per layer) noise size, 392, 784 784, 392, 1

loss Sigmoid cross entropy with logits
optimizer ADAM

k - 1
batch size 64
noise size 100 -

α 0.001
initializer Glorot normal distribution

epochs 50000

Table 2: GANs network settings. N describes the number of neurons per layer
(input, hidden, output) for generator and discriminator. The second and third
line are the loss and optimizer functions. k is the number of the discriminator’s
training steps per each training step of the generator. Batch size is the number
of training examples per epoch. Noise size describes the size of the generator’s
input vector that is then formed to a 28× 28 image. α is the learning rate. The
initializer describes the way the variables are initialized. Epochs is the number
of training epochs.

First we trained a GAN with parameters as seen in Tab. 2. In this model both
the generator and the discriminator are artificial neural networks sharing most of
their network parameters.

The generator consists of three layers: input layer (noise size neurons), hidden
layer (392 neurons) and output layer (784 neurons). The number of neurons per
layer depends on the noise size which describes the size of the input vector, and
on the size of the MNIST data. The input layer contains one neuron per entry in
the input vector. The hidden layer contains exactly half of the neurons the output
layer contains. This way the size of the output vectors across the layers increases
regularly, such that the network’s output does not depend on a specific part of the
network too much. The output layer then contains exactly 784 (28× 28) neurons in
order to produce an output vector similar to those in the MNIST data set.

The discriminator also consists of three layers: input layer (784 neurons), hidden
layer (392 neurons) and output layer (1 neuron). The number of neurons per layer is

3. Experiments 15

also decreasing regularly, such that the discriminator profits from this the same way
the generator does. The discriminator’s job is to distinguish real MNIST images
from those that are produced by the generator. The single scalar output describes
the probability that the input vector came from the MNIST data set rather than
having been generated. k describes the number of training steps of the discriminator
per training step of the generator. We set k = 1, which is a very common choice.

As mentioned in chapter 2.3, the loss function of the generator and the dis-
criminator can be described as a minimax game. During our experiments we often
observed the discriminator’s loss being NaN (not a number). A quick look at the
discriminator’s loss function (Eq. 13) reveals the reason for this behavior. The
problem occurs when the discriminator is so good at classifying the input vectors
that its loss value is really close to 0. Rounding errors then lead to a loss value of
0. At this point we try to calculate the logarithm of 0, which is not defined.

LD = −(logD(x) + log(1−D(G(z)))) (13)

The first idea that came to mind was adding a small value ε = 0.001 to the
network’s output in order to prevent the loss value from becoming too small (Eq.
14). Though even while this fixed the problem and results in better loss progression
and generated samples, it did not feel satisfactory.

LD = −(logD(x+ ε) + log(((1−D(G(z)) + ε))) (14)

Another idea was to try a different and established loss function that does not
have the problem described above: the concept of cross entropy. We noticed some
similarities between these two loss functions and while having a closer look at them
we realized that they are exactly the same. This means we can still use the minimax
game described in the paper by just rearranging the formula and without adding the
aforementioned value ε. In the following we explain cross entropy and then prove
that it is the same as the minimax game.

Cross entropy (Eq. 16) can be used as a measure of similarity between two
probability distributions. Before we can understand what cross entropy is, we must
have an understanding of how entropy works in general. Entropy measures the
average information content of a random variable X over a discrete probability
distribution p and is described by Eq. 15.

H =
n∑
i=1

pi log
1

pi
(15)

The number of possible values X can obtain is n. pi is the probability for X = i and
log 1

pi
is the information content of X. A very demonstrative way of understanding

entropy is the task of assigning each value a bit sequence. The goal is to assign
the bit sequence in a way that the expected length of the bit sequence of a random
sequence of values is minimized. To achieve this goal we assign values with high
probabilities shorter bit sequences than values with smaller probabilities. We can
use this property to compare the likeliness of two probability distributions that are
defined over the same set of values. Let’s say we want to approximate a given

16 Contents

probability distribution p over a certain set. Furthermore, we assume that H is
the entropy defined over p such that the number of expected bits per sequence is
minimal. Now we replace p with our approximated distribution p̂ for the assignment
of the bit sequences. This results in another entropy with another expected number
of bits per sequence. The difference between these two expected number of bits can
be used to determine the likeliness of two probability distributions over the same
set. This method is called cross entropy (Eq. 16).

The two distributions we compare are the real distribution p that describes our
data set whereas the second distribution p̂ is the distribution representing the trained
model. The goal is to change the network’s weights in a way that the represented
distribution converges to the real distribution or minimizes the loss, respectively.

H =
n∑
i

pi log
1

p̂i
(16)

A closer look at Eq. 16 will help us understand how it works. First of all we can
rearrange Eq. 16, because we know that there are just two classes in total (n = 2)
and this way obtain Eq. 17. Either the input vector will be classified as real or as
fake. We can describe these two outcomes with the probabilities y (probability that
the input vector is real) and it’s complementary probability 1− y (probability that
the input vector is fake) for the real probability distribution and ŷ and 1− ŷ for the
learned distribution respectively with y ∈ {0, 1} and ŷ ∈ [0, 1].

H = y log
1

ŷ
+ (1− y) log

1

1− ŷ
= −(y log ŷ + (1− y) log(1− ŷ))

(17)

y log ŷ describes the error that occurs in case the input vector came from the real
data distribution. (1− y) log(1− ŷ) describes the error for generated input vectors.
When calculating the error for an input vector, only the corresponding part of the
equation is used. The other part will be 0 due to the actual label y. If y is 0 then
the first part of the equation results in 0, otherwise the second part of then equation
results in 0. The error then describes the difference between the optimal entropy
given by the real data distribution and the entropy given by the learned distribution.
Obviously, when the learned and the real distribution are the same, the entropy of
the different outcomes are the same and therefore the cross entropy is 0.

Now we prove that the minimax game and the cross-entropy are the same. The
main idea behind this proof is that we want to make the cross entropy independent
of the actual output of the network. Therefore we rearrange the cross entropy in a
way that it does not take the activated output of the network, but its logits. We
can describe the activated output of the discriminator D(x) as σ(x̂), where x̂ is
the discriminator’s last layer’s output, before we apply the activation function to it.
This rearrangement works, because the activation function of the output layer is the
sigmoid function σ. As we can see in equation 18, we can make use of this property
and rearrange the cross entropy such that it uses the logits instead of the activated

3. Experiments 17

output and therefore will be defined totally. We call this rearranged variant Hσ

sigmoid cross entropy with logits.

H = −(y log ŷ + (1− y) log(1− ŷ))

= y ∗ (− log ŷ) + (1− y) ∗ (− log(1− ŷ))

= y ∗ (− log σ(x̂)) + (1− y) ∗ (− log(1− σ(x̂)))

= y ∗ (− log(
1

1 + exp(x̂)
)) + (1− y) ∗ (− log(1− 1

1 + exp(x̂)
))

= y ∗ (log(1)− log(1 + exp(x̂))) + (1− y) ∗ (− log(
exp(x̂)

1 + exp(x̂)
))

= y ∗ (−log(1 + exp(x̂))) + (1− y) ∗ (log(exp(x̂))− log(1 + exp(x̂)))

= y ∗ (−log(1 + exp(x̂))) + (1− y) ∗ (x̂− log(1 + exp(x̂)))

= y ∗ (−log(1 + exp(x̂))) + (1− y) ∗ x̂+ (1− y) ∗ (− log(1 + exp(x̂)))

= (1− y) ∗ x̂+ (− log(1 + exp(x̂)))

= x̂− y ∗ x̂− log(1 + exp(x̂))

= Hσ(y, x̂)

(18)

Next, we show that we can express the minimax game as the sigmoid cross
entropy with logits. As seen in equation 19, this procedure is very straight forward.

LD = −(logD(x) + log(1−D(G(z)))

= −log(D(x)) + (− log(1−D(G(z))))

= −log(σ(x̂)) + (− log(1− σ(ẑ)))

= 1 ∗ (−log(σ(x̂))) + 0 ∗ (−log(1− σ(x̂))) + 0 ∗ (− log(σ(ẑ)))

+ 1 ∗ (− log(1− σ(ẑ)))

= 1 ∗ (−log(σ(x̂))) + (1− 1) ∗ (−log(1− σ(x̂))) + 0 ∗ (− log(σ(ẑ)))

+ (1− 0) ∗ (− log(1− σ(ẑ)))

= yx̂ ∗ (−log(σ(x̂))) + (1− yx̂) ∗ (−log(1− σ(x̂)) + yẑ ∗ (− log(σ(ẑ)))

+ (1− yẑ) ∗ (− log(1− σ(ẑ))), with yx̂ = 1, yẑ = 0

= Hσ(yx̂, x̂) +Hσ(yẑ, ẑ)

(19)

Now that we have shown that the minimax game describes the same optimization
problem as the sigmoid cross entropy with logits, we can use it without running into
the problem that the loss value can be NaN.

To minimize the loss value during training we use Adaptive Moment Estima-
tion, an optimization method presented by Kingma and Ba in 2015 [13]. Adaptive
Moment Estimation (ADAM) is a stochastic gradient-based optimization method,
which means that it optimizes stochastic functions, such as the sigmoid cross en-
tropy with logits, by using partial derivatives of that function. The idea of using
gradient descent (ascent) to optimize a loss function is standard practice and used
in all established optimization methods in the domain of machine learning. What is

18 Contents

special about ADAM is the fact that the learning rate is adaptive in each iteration.
The advantage of using an adaptive learning rate rather than a constant learning
rate is that we can adjust it to the current learning progression. E.g. when the
gradients of the last few iterations indicate a step size that is too large, the learning
rate will be decreased for the next iterations in order to converge to the global min-
imum rather than surpassing it. To determine the learning rate in each iteration we
use the first (Eq. 20a) and second moment (Eq. 20b) of the gradients, which are
the mean value and the variance, where t is the current iteration, gt the gradients in
iteration t, g2t the element-wise multiplication and β1 and β2 are hyper-parameters
describing the exponentially decreasing influence of the previous gradients. Kingma
and Ba provide default values for the hyper-parameters, which are β1 = 0.9 and
β2 = 0.999.

mt = β1 ∗mt−1 + (1− β1) ∗ gt (20a)

vt = β2 ∗ vt−1 + (1− β2) ∗ g2t (20b)

m0 and v0 are initialized with 0’s which leads to biased moments in later iterations.
Fortunately, one can simply correct these biased values by dividing by (1 − βt1)
or (1 − βt2) respectively, which leads to the moments as seen in (Eq. 21). We
reformulated the corrected moments to make the influence of the single gradients
easier to see and to make it easier to understand why (1−βt1) or (1−βt2) respectively
is used to correct the biased moments.

m̂t =
mt

1− βt1
=

∑t
i=1(β

t−i
1 − βt−i+1

1) ∗ gi
1− βt1

=
(1− β1) ∗

∑t
i=1 β

t−i
1 ∗ gi

1− βt1
(21a)

v̂t =
vt

1− βt2
=

∑t
i=1(β

t−i
2 − βt−i+1

2) ∗ g2i
1− βt2

=
(1− β2) ∗

∑t
i=1 β

t−i
2 ∗ g2i

1− βt2
(21b)

The actual update step is then described in Eq.(22), where θt are the parameters at
the t-th iteration, α is the upper bound of the learning rate (default: α = 0.001),
m̂t is the mean value of the last t gradients,

√
v̂t is the standard deviation of the

last t gradients and ε is a small value (default: 10−8) that is added to
√
v̂t to avoid

division by 0.

θt = θt−1 − α ∗
m̂t√
v̂t + ε

(22)

The term m̂t/
√
v̂t is also called signal-to-noise ratio (SNR). One can imagine the

learning rate adjusting as follows: When the standard deviation is rather large, then
the fraction will lead to a small value and so does the adjusted learning rate. A large
standard deviation means that the direction the gradients have to move in, in order
to reach the global minimum, is vague. In this case the SNR is rather large and
the decreased learning rate prevents the gradient steps from being too large and
smaller steps are taken instead. A small standard deviation means that the last few

3. Experiments 19

steps reveal a clear direction for the gradients, such that the gradient steps can be
increased in order to speed up the optimization process. Nonetheless, the step size
is always bounded by α.

The next interesting part is the variable initialization which is typically based on
a probability distribution where the initialization values are drawn from. For this
we used a Xavier initialization, described by Xavier Glorot and Yoshua Bengio in
2010 [3]. The idea behind Xavier initialization is to solve the problem of too large
or too small variances of the weights and therefore of the values that are propagated
through a network. In the following we assume a uniform probability distribution
with mean 0. When the variance of the weights is too small, then all weights are
near the mean value. Calculating a layer’s output then results in values that are
also near 0. Looking at the sigmoid function for instance, this will give us mostly
gradients of about 1, which leads to an almost linear behavior (Fig. 11, blue area).
But when the variance of the weights is too large, the output values of a layer are
far away from the mean value, too. This results in gradients near 0, which in turn
means that the weights will stay as they have been in the previous iterations (Fig.
11, red area). Thus, the goal is to find a variance that we can use to initialize the
weights in a way such that the variances of the inputs and outputs of all layers are
the same. Looking at a single layer, we can describe the variance of its output y as:

Figure 11: Problem of too small or too large variance of the weights, illustrated by
the sigmoid function. A too large variance results in output values that are far
away from the mean value and leads to gradients near 0 (red areas). A too small
variance results in output values that are very close the mean value and therefore
leads to linear behavior (blue area).

V ar(y) = V ar(xW + b) = V ar((
n∑
i=1

wixi) + b) (23)

Since b can be seen as another weight that is always multiplied with the input 1,

20 Contents

we can drop it to simplify things. The summands are variances of products of
independent variables and can therefore be described as:

V ar(wixi) = E(wi)
2V ar(xi) + E(xi)

2V ar(wi) + V ar(wi)V ar(xi)

= V ar(wi)V ar(xi)
(24)

The expected values are 0, such that the variance of wi and xi is just the product
of their variances. Assuming that the variances of the weights and the input in a
single layer are all the same, equation 23 can be expressed as

V ar(y) = n ∗ V ar(w)V ar(x) (25)

, where n is the number of neurons in the corresponding layer. Now we want the
variances of the output y and the input x to be the same. Therefore we want to
know the variance of the weights.

V ar(x) = V ar(y)

⇔ V ar(x) = n ∗ V ar(w)V ar(x)

⇔ 1 = n ∗ V ar(w)

⇔ 1

n
= V ar(w) (26)

In case the size of y is not equal to the size of x, we have to average the input
and the output size:

V ar(w) =
1

(ni + ni+1)/2
=

2

ni + ni+1

(27)

To adjust the variance of the uniform distribution to the variance described in
equation 27, we needed to choose the boundaries of the interval the random values
are drawn from, since the variance of a uniform distribution is given by:

V ar(x) =
1

12
(b− a)2 (28)

Where a is the lower bound and b the upper bound of the interval. We assume
that a = −b. Now we just have to solve the following equation in order to achieve
interval boundaries that lead to a uniform distribution with the desired properties.

3. Experiments 21

2

ni + ni+1

=
1

12
(a− b)2

⇔ 2

ni + ni+1

=
(2b)2

12

⇔ 2

ni + ni+1

=
4b2

12

⇔ 24

ni + ni+1

= 4b2

⇔ 6

ni + ni+1

= b2

⇔
√

6√
ni + ni+1

= b (29)

In summary this means that we can use a uniform distribution with mean 0 to
initialize our weights without running into the problem of too large or too small
variances when we set the interval boundaries as seen in equation 29 to adjust the
variance of our distribution to 2/(ni+ni+1) for each layer, where ni is the input size
and ni+1 the output size of layer i.

Now we will have a look at the experimental results. We trained the GAN model
8 times for 50000 epochs with a batch size of 64 and a learning rate α of 0.001 and
calculated the means of the loss values (Fig. 12).

Figure 12: Progress of GAN models loss values over 50000 epochs with a batch size
of 64 and a learning rate of 0.001. The pink line shows the generator’s loss, the
green line shows the discriminator’s loss.

Analyzing the plot, we noticed that at the very beginning the discriminator’s

22 Contents

Figure 13: Failed GAN experiment.

loss value goes to 0, while the generator’s loss reaches a maximum of about 8. The
reason for this is the strong discriminator in the first epochs. Here, most of the
generator’s outputs are rejected whereupon it slowly progresses and minimizes its
loss. At the same time the discriminator gets better, too, which makes training
difficult for the generator. The discriminator’s loss stays about constant near 0,
while the generator’s loss decreases at first and then varies around a certain value
unstably. All in all both the generator and the discriminator converged to a certain
value. While the discriminator converged to 0, the generator converged to a value
around 4. The fact that the generator’s loss converges to a value greater than 0
is a rather normal behavior of the GAN model. If both networks had a loss near
0, this would mean that the discriminator distinguishes real data from generated
data with high accuracy and at the same time the generator generates data that is
always classified as real data. These two cases exclude each other. The somehow
unstable loss progression of the generator arises from the one GAN experiment that
failed(Fig. 13).

Looking at the actual generated data (Fig. 14), we noticed an overfitting of the
generator on one certain digit, which in all experiments was 1. A possible reason
for this is that the only goal of the generator is to generate data that is classified as
real data by the discriminator. The easiest way to achieve this goal is to specialize
on a single digit. We expect this issue to resolve itself for the models that depend
on a context vector.

The second model we examined is a CGAN. The difference between the GAN and
the CGAN model is the extra input that contains some information the generated
data depends on. As described in section 2.4, we combine the noise vector and
the context vector by simply concatenating them. For generator and discriminator
we again use ANNs that share most of their network parameters (Tab. 3). Both

3. Experiments 23

Figure 14: Generated samples of the GAN model showing the overfitting problem.

networks consist of three layers, just as in the GAN model, but here the number
of neurons in the input layer is increased by the context size. We do this in order
to fit the size of the input vector which for the CGAN model is the noise vector
concatenated with the context vector. The context vector has a size of 10, because
it is a one-hot-vector representing one of the ten possible labels. We have to do this
for both networks, because they both have the context vector as an additional input.
The generator uses the context to generate data that depends on this context while
the discriminator uses the context to know the label of the input data in order to
classify it as real or generated data. All other parameters stay the same as they are
for the GAN model.

Generator Discriminator
N (per layer) noise size + context size, 392, 784 784 + context size, 392, 1

loss Sigmoid cross entropy with logits
optimizer ADAM

k - 1
batch size 64 / 128
noise size 100 -

context size 10
α 0.001

initializer Glorot normal distribution
epochs 50000

Table 3: CGANs network settings. N describes the number of neurons per layer
(input, hidden, output) for generator and discriminator. The second and third
line are the loss and optimizer functions. k is the number of the discriminator’s
training steps per each training step of the generator. Batch size is the number of
training examples per epoch. Noise size describes the size of the generator’s input
vector that is then formed to a 28× 28 image. Context size describes the size of
the context vector the generated data depends on. α is the learning rate. The
initializer describes the way the variables are initialized. Epochs is the number
of training epochs.

24 Contents

We also ran the CGAN experiments 8 times and expected the loss progression
to behave similar to the GAN model, because of the similarity of these two models.
Unfortunately, its behavior was completely different. Instead of decreasing, the loss
value of the generator was increasing constantly, while the discriminator acted the
same as in the GAN model (Fig. 15). Thus the generated samples do not show
any digits at all (Fig. 16). By adding the label as an additional condition to
the generator’s input, the task of generating MNIST-like data becomes even more
difficult because now the generator is not able to specialize on a specific label. If
the generator still specialized on a single digit no matter what the given context
vector was, the discriminator would instantly classify the input vector as generated,
because of the wrong label. The discriminator’s task is still the same, except for the
fact that it has additional information about the label of the input vector that will
be classified. We solved this problem by increasing the number of training samples
to 128 samples per epoch as seen in Fig. 17. Thus the raised difficulty of the
generation task is balanced by the increased number of training samples. But the
deviations of the loss values still adumbrate some instability of the training process.

Figure 15: Progress of CGAN models loss values over 50000 epochs with a batch
size of 64 and a learning rate of 0.001. The pink line shows the generator’s loss,
the green line shows the discriminator’s loss.

Having a look at the generated data (Fig. 19), we examined that concatenating
the label as a context vector to the input noise vector solves the overfitting problem
that occurred in the GAN model. The generated samples clearly show the digits
that were given by the context vector and only a few of them are hard to recognize.
It is no surprise that some of the generated digits are hard to recognize, because the
original digits sometimes are too (18). Unexpectedly, in one of our 8 experiments
the network was not able to learn properly (Fig. 20).

3. Experiments 25

Figure 16: Generated samples of the CGAN model with a batch size of 64. The
network was not able to generated any digits.

The third model we trained is a GARNN. This model is similar to the GAN
model insofar as it uses exactly the same network parameters (Tab. 2), but uses
RNNs instead of ANNs for both generator and discriminator. RNNs add the ability
of processing sequential data while storing and regarding information about the
preceding inputs. In order to process MNIST data sequentially, we divided each
image into four pieces as seen in figure 21. For the generator we do the same with
the noise vector. The training then works like this: The generator’s input vector
will be divided into four parts. Next we pass the sequence part by part to the
multi layered RNN. By doing so the RNN will store information about the already
processed data. After processing the whole sequence we obtain an output vector of
size 392, which will then be multiplied with a weights matrix in the final output
layer and finally results in an 28× 28 MNIST-like image. For the discriminator we
split the input image into four parts and also pass the sequence element-wise to the
multi layered RNN, which then results in a single scalar. We have not expected the
model to behave different to the GAN, because the only change is the use of RNNs
instead of ANNs and at a first view at the MNIST data, we thought that processing
the images sequentially would not bring us any advantages. However, the results
of the GARNN were slightly better than those of the GAN, because the model was
not overfitting as much as the GAN was, but still the diversity of the samples is low
(Fig. 22). Examining the loss values of the model (Fig. 23), we again observe that
the GARNN behaves very similar to the GAN, except for the increased stability of
loss progression due to the use of RNNs. Altogether the results show that the use of
RNNs within a GAN can improve the model even with a data set that is not usually
processed sequentially.

Last but not least, we will have a look at the CGARNN, that processes data
sequentially using RNNs and generating samples depending on a certain context.
Taking the results of the previous three experiments into account, we expect the
CGARNN to combine the advantages of both properties, namely a more stable
learning process and generated samples of high diversity due to the context. For the
network settings we use the same settings as the CGAN model (Tab. 3, 64 training
samples per batch) and divide the input vectors into four parts the same way we

26 Contents

Figure 17: Progress of CGAN models loss values over 50000 epochs with a batch
size of 128 and a learning rate of 0.001. The pink line shows the generator’s loss,
the green line shows the discriminator’s loss.

Figure 18: Samples from the MNIST data set showing that there are samples in the
original data that are hard to recognize, too.

did for the GARNN. The results confirm our assumptions. Figure 24 shows that the
use of RNNs results in a much more stable training process than the use of ANNs
(Fig. 17). The generated samples (Fig. 23) show that the use of the context vector
results in a higher diversity and prevents the model to overfit, compared to a model
without an additional context input (Fig. 22).

Concluding, the experiments showed, that both the sequential processing of the
data and the additional context vector improved the learning process and the quality
of the generated samples immensely. In order to compare the results of all four
models, we combined the loss progressions of the models to two plots, one for the
generator (Fig. 26) and the other for the discriminator (Fig. 27). In addition we
opposed samples from each model to each other in Figure 28.

3.2 Football Events Data

In this section we analyze the experiments on the Football Events data set3 and
their results. Prior to this, we will have a look at the data set itself. Then we
will examine the performance of our model in four experiments in which we will

3https://www.kaggle.com/secareanualin/football-events (also listed in the appendix)

https://www.kaggle.com/secareanualin/football-events

3. Experiments 27

Figure 19: Generated samples of the CGAN model. The number above the corre-
sponding sample is the label that was fed to the network as a context vector.

Figure 20: Failed experiment of the CGAN model with a batch size of 128.

use different input and context representations and discuss their advantages and
disadvantages. In the last experiment, we train a basic LSTM network on the same
task and compare its results to those of the CGARNN model.

3.2.1 Data set

The Football Event data set is a csv file that contains information about 941008
game situations of 9074 different matches. The information is separated in 22 classes:
The game specific ID id odsp, the event specific ID id event, the sort number that
describes the order in which the events occurred in a game, the time that describes
the minute in which the event occurred, the text that is a description of the event
itself, the event types event type (primary event) and event type2 (secondary event)
that describe the kind of event, the side that describes whether the main player
participating in this event belongs to the event team, the event team, the opponent,
the player participating in the primary event, the player player2 participating in
the secondary event, the player in that describes the player entering the field in
case of a substitution, the player out that describes the player leaving the field in
case of a substitution, the shot place that describes the placement of the shot, the
shot outcome that describes if the shot was placed were it was intended to be, the

28 Contents

Figure 21: Splitting of MNIST samples in order to use them sequentially.

Figure 22: Generated samples of the GARNN model

is goal that describes if the shot resulted in a goal, the location on the field where
the event took place, the bodypart that was used, the assist method in case of an
assisted shot, the situation in which the event took place and the fast break that
describes if the event was followed by a time-out. Except for the text, the players
and the teams, each class in the data set is represented by IDs or NA (not available).
In order to process NA, we replaced it with -1 for each class. The classes is goal
and fast break are naturally binary, but there is one exception for the is goal class.
In case of an own goal is goal is set to -1. In order to be able to process the players
and clubs, we simply enumerated them and thereby gave them IDs as well. The
remaining, more complex classes are described in table 4, 5, 6 and 7.

Not all of these 22 classes are actually relevant for our experiments. The classes
we do not need are the game specific ID id odsp, the event specific ID id event,
the sort number, the time and the side. Since the goal of the experiments is the
achievement of a model that is able to generate context sensitive event descriptions
and the six above-mentioned classes do not influence this description, we will ignore
them in our experiments.

3.2.2 Preprocessing

First, we need to preprocess parts of the data set in a way that we can use it for
the experiments. In order to use the texts from the data set as input sequences for
our model, we have to know the different elements the texts are made of. These are
club names, player names, other words, punctuation and special characters. Since
an event description can contain several sentences, a full stop does not indicate that
the end of the text was reached. Therefore, to mark the end of a text, we added
$ as an additional symbol. Next, we analyzed all event descriptions in the data
set for frequencies of their elements. With this we determined the IDs for each

3. Experiments 29

ID event type ID event type2

0 Announcement 12 Key Pass
1 Attempt 13 Failed through ball
2 Corner 14 Sending off
3 Foul 15 Own goal
4 Yellow card -1 NA
5 Second yellow card
6 Red card
7 Substitution
8 Free kick won
9 Offside
10 Hand ball
11 Penalty

Table 4: Possible values for the classes event type and event type2.

ID shot place ID shot outcome

1 Bit too high 1 On target
2 Blocked 2 Off target
3 Bottom left corner 3 Blocked
4 Bottom right corner 4 Hit the bar
5 Center of the goal -1 NA
6 High and wide
7 Hits the bar
8 Misses to the left
9 Misses to the right
10 Too high
11 Top center of the goal
12 Top left corner
13 Top right corner
-1 NA

Table 5: Possible values for the classes shot place and shot outcome.

30 Contents

Figure 23: Progress of GARNN model’s loss values over 50000 epochs, with a batch
size of 64 and a learning rate of 0.001. The pink line shows the generator’s loss,
the green line shows the discriminator’s loss.

element in the description, starting at 0 for the most frequent element and then
further enumerating the remaining elements. The context information must be pre-
processed, too. Fortunately, most of the event information is already represented by
IDs. The only information that is not represented by IDs are the classes event team,
opponent, player, player2, player in and player out. We therefore need mappings
for clubs and players. These were obtained simply by building a list of all players
and clubs in the order they occurred in the data set and then enumerated them
starting at 0. This way, all context information for the event descriptions could be
represented as numeric values, too. All experiments use the event descriptions and
their context vectors as an input, so we want to preprocess them as far as possible,
such that while running the experiments only mapping of text elements to indices
must be done. That means that we provide a file containing the event descriptions
as strings, where all words and special characters are already separated by blanks,
and their corresponding context vectors, representing all information by their IDs.
The above-mentioned preprocessing must be done for all experiments. For some of
the experiments there are more necessary preprocessing steps that will be explained
in the corresponding section.

3.2.3 Experiment I

For the CGARNN model experiments on the Football Events data set, we decided
to use word embeddings to represent words and other sequence elements such as
punctuation characters or the end of line symbol $. Word embeddings are a popular
representation of data when it comes to tasks such as text generation because they

3. Experiments 31

Figure 24: Progress of CGARNN model’s loss values over 50000 epochs, with a batch
size of 64 and a learning rate of 0.001. The pink line shows the generator’s loss,
the green line shows the discriminator’s loss.

encode similarity of words and linguistic structures and improve the quality of the
generated texts. A simple alternative to word embeddings is an index representation
where each possible sequence element is assigned an integer value. This way, the
word representation is rather arbitrary and does not contain any information about
the word itself or about the relation to other words. There are many approaches that
benefit from the usage of word embeddings instead of simple index representation
(e.g. [1, 2]). To obtain the word embeddings for our dictionary, we followed the
approach that was introduced by Mikolov et al. in 2013 [15, 16], namely the Skip-
gram model. In order to use this model to obtain the word embeddings, we have
to do some more preprocessing. The Skip-gram model uses subsequences of the
original texts where each of the subsequences contains a target word and a certain
number of history and future words that are directly nearby. We therefore prepared
a tsv file containing one target word and up to four future and history words per
line. If the target word is the first word in the sequence there are no history words
and for the last word in a sequence there are no future words, respectively. The
goal of the Skip-gram model is then to maximize the average probability (Eq. 30)
that describes how well our model predicts the nearby words given the target words,
where T is the length of the observed sequence, c is the number of history and future
words and wt is the current subsequence’s target word.

1

T

T∑
t=1

∑
−c≤i≤c,i 6=0

log p(wt+i | wt) (30)

32 Contents

Figure 25: Generated samples of the CGARNN model

Figure 26: Comparison of loss progression for the generators of all models.

In [16], Mikolov et al. discuss various ways of expressing the probability function p
in equation 30. The first way is to describe p using the softmax function

p(wt+i | wt) =
exp(v′wt+i

)>vwt∑W
w=1 exp(v′>w vwt)

(31)

that can be used to describe the probability of an event with a certain number of
outcomes where all the probabilities sum up to 1. Here the number of possible
outcomes is the size of the vocabulary W . v and v′ describe vector representations
for input and output data. As described by Goldberg and Levy [9], the different
vector representations are used to avoid assigning a high probability in case of the
target and the nearby word being the same, because in texts, a word is usually not

3. Experiments 33

Figure 27: Comparison of loss progression for the discriminators of all models.

(a) GAN (b) CGAN

(c) GARNN (d) CGARNN

Figure 28: Comparison of generated samples.

34 Contents

ID location ID location

1 Attacking half 11 Right side of the box
2 Defensive half 12 Right side of the 6yd box
3 Center of the box 13 Very close range
4 Left wing 14 Penalty spot
5 Right wing 15 Outside the box
6 Difficult angle and long range 16 Long range
7 Difficult angle on the left 17 More than 35yds
8 Difficult angle on the right 18 More than 40yds
9 Left side of the box 19 Not recorded
10 Left side of the 6yd box -1 NA

Table 6: Possible values for location class.

ID body part ID assist method ID situation

0 Right Foot 0 None 1 Open play
1 Left Foot 1 Pass 2 Set piece
2 Head 2 Cross 3 Corner
-1 NA 3 Headed pass 4 Free kick

4 Through ball -1 NA

Table 7: Possible values for the classes bodyparts, assist methods and situation.

followed by itself. Using the softmax function leads to the objective function

1

T

T∑
t=1

∑
−c≤i≤c,i 6=0

log
exp(v′wt+i

)>vwt∑W
w=1 exp(v′>w vwt)

(32)

The problem of the softmax function is the computational complexity due to W .
For each tuple of target word and nearby word exp(v′>w vwt) must be calculated for all
the words in the vocabulary. Since the vocabulary in text generation tasks is rather
large, we aim to use a probability function that is independent of the vocabulary
size. To this end, Mikolov et al. introduced the concept of negative sampling
[16]. Negative sampling is a modified version of the Noise-Contrastive Estimation
as described by Gutmann and Hyvärinen in 2010 [11]. Noise-Contrastive Estimation
defines the objective function

1

2T

T∑
t=1

log σ(log p(xt)− log pn(xt)) + log(1− σ(log p(yt)− log pn(yt))) (33)

where pn is the probability distribution the noise samples yt are drawn from and xt
describes the samples drawn from the real data. This means that the objective is to
approximate the probability distribution describing the real data by distinguishing
real samples and noise samples. Modifying Noise-Contrastive Estimation as in [16]
leads to

log σ(v′>wt+i
vwt) +

k∑
j=1

Ewj∼pn(w)(log σ(−v′>wj
vwt)) (34)

3. Experiments 35

as a representation for log p, where log σ(v′>wt+i
vwt) is the probability of the word wt+i

being a nearby word of the target word wt and log σ(−v′>wj
vwt) is the probability of

the noise vector being a nearby word of wt. Therefore the Skip-gram objective
function is:

1

T

T∑
t=1

∑
−c≤i≤c,i 6=0

(log σ(v′>wt+i
vwt) +

k∑
j=1

Ewj∼pn(w)(log σ(−v′>wj
vwt))) (35)

This means that we take k negative samples per pair of target word and nearby word
to approximate the data’s probability distribution and thereby reduce the compu-
tational complexity, which is now independent of the vocabulary size. In order to
speed up the learning process even more and to improve the vector representations
of words that do not occur often, we use the concept of subsampling during train-
ing. Subsampling rejects certain words per training iteration depending on their
frequencies. All pairs of target and nearby words that contain any of the rejected
words are not considered in the corresponding iteration. Mikolov et al. provided a
heuristically chosen function that can be used to reject more frequent words:

P (w) = 1−

√
θ

f(w)
(36)

where w is a word, f(w) the word’s frequency and θ a threshold for the word fre-
quency. If the frequency of a word exceeds θ it is assigned a high probability of
being rejected for the current iteration. In [16] they chose θ = 10−5 heuristically.
Since our data set contains much less words, we increased θ to 10−3. In order to ob-
tain the word embeddings, we trained a neural network consisting of an input layer,
a projection layer and an output layer. The projection layer is a matrix of size
vocabulary size× embedding size that maps each index to a vector representation
of the corresponding word. Using the Skip-gram objective function (Eq. 35) as the
network’s loss function, we trained the network for 1000000 iterations with an em-
bedding size of 32 and minimized the loss with gradient descent. After training, the
matrix that was used for the projection layer contains the learned word embeddings.
We saved those embeddings to a file in order to use it for further computations.

Since there is no standard method for evaluating word embeddings [7] and due
to its complexity, we decided to evaluate the word embeddings by representing them
graphically and checking the resulting plots for noticeable patterns and regularities.
In order to represent high dimensional vectors graphically, we have to map them
to a two dimensional vector space first. Therefore, we use t-distributed stochastic
neighbor embedding (t-SNE) as described by van der Maaten and Hinton in 2015
[19]. We consider two sets of data points X and Y , where X is the set of the original
high dimensional data points and Y is the set of the corresponding data points in
the two dimensional space. Then we assign a probability that xi and xj are nearby
points by

pij =
pj|i + pi|j

2n
(37)

36 Contents

to each pair of data points where pj|i is the probability that xj is a neighbor of xi
and vice versa for pi|j, using the softmax function

pj|i =
exp(− ‖ xi − xj ‖2)/2σi∑
k 6=l exp(− ‖ yk − yl ‖2)

(38)

‖ · ‖ denotes the Euclidean distance. For the set Y , we also describe a probability
distribution

qij =
exp(− ‖ yi − yj ‖2)∑
k 6=l exp(− ‖ yk − yl ‖2)

(39)

that describes the probability that yi and yj are neighbors. The goal is then to
minimize the difference between the probability distributions p and q because we
want nearby data points in the high dimensional space to be nearby in the two
dimensional space too. To this end, the Kullback-Leibner divergence KL (Eq. 40)
is used, which is the sum of the cross-entropy of pi and qi and the entropy of pi for
a fixed data point i.

KL(pi ‖ qi) = −
∑
j

pij log qij +
∑
j

pij log pij

=
∑
j

pij log pij −
∑
j

pij log qij

=
∑
j

pij log pij − pij log qij

=
∑
j

pij(log pij − log qij)

=
∑
j

pij log
pij
qij

(40)

The loss function describing the overall difference of p and q for all pairs of data
points is then described by

KL(p ‖ q) =
∑
i

∑
j

pij log
pij
qij

(41)

In order to minimize the loss function, gradient descent is used. In our experiments
we used the t-SNE implementation of the scikit-learn4 Python library for machine
learning. Figure 29 shows an extract of the learned vector representations.

Having a vector representation for all words and characters unfortunately leads
to the problem that we cannot restrict the generated vectors to the subset of the
vector space that actually represents valid elements. In comparison, the problem
would not occur when using an index representation instead, because the output
would then be a bag-of-words - a vector containing as many values as the vocabulary
does, where each of these values would represent the probability of the element with
the corresponding index. The idea is to find the nearest vector to the generated

4http://scikit-learn.org/stable/index.html

http://scikit-learn.org/stable/index.html

3. Experiments 37

Figure 29: Extract of the learned word embeddings with four history and future
words in the Skip-gram data and an embedding size of 32. The plot does not
contain all words in the vocabulary and is reduced to the 200 most frequent
words for the purpose of plot clarity. We see that many words that are either
used together or in a similar context are nearby, e.g. the numbers 0,1,2, left and
right, the left and right parenthesis, $ and full stop and so on. The complete plot
is listed in the appendix.

one. What makes the nearest neighbor search difficult is the high dimensionality
of the vector space. The most naive way to determine the nearest vector would be
the calculation of the Euclidean distance of the generated vector to all those that
are actually representing sequence elements. The time complexity per batch would
be O(batch size× dictionary size× embedding size), where dictionary size is the
number of possible sequence elements.

To avoid the calculation of all the Euclidean distances, we will use an optimized
form of a multidimensional binary search tree as described by Friedman, Bentley and
Finkel in 1977 [8]. Multidimensional binary search trees are also known as k-d-trees.
Before we describe the optimized version of the k-d-tree, we will have a look at the
standard k-d-tree as described by Bentley in 1975 [4]. A k-d-tree is a binary search
tree with k-dimensional node elements. To build a k-d-tree, we start with an initial,
empty tree and insert all given vectors gradually. Therefore, we start with the first
element V0 and make it the tree’s root node in layer 0. For all the remaining vectors
we will continue in the same manner we would for regular binary search trees. Each
new node we want to insert into the tree must find its proper place such that the
order persists. The main difference is the way how we compare the current node
with the one we want to insert. Depending on the current layer, we have to compare
a different dimension of the vectors. Each layer i is assigned a vector dimension

38 Contents

(5,5)

(1,4) (7,6)

(2,3) (3,6) (9,9)

Figure 30: Example for a k-d-tree with k=2. The points
(5, 5), (1, 4), (2, 3), (3, 6), (7, 6), (9, 9) were added to the tree in this order.
Left: Graphical representation of a plane that is divided into subspaces by points
in tree. Right: k-d-tree after inserting all the points.

d = i mod k. If the value of the inserted node in dimension d is smaller than that
of the current node, the insertion will be continued in the left subtree, otherwise it
will be continued in the right subtree. In the next step, dimension d+1 will be used
for comparison. In case d + 1 ≥ k, we use the first dimension (d = 0) again. This
results in a binary tree in which each node in the i-th layer can be understood as
a point in a k-dimensional space that divides the space in the d-th dimension into
two subspaces (Fig. 30).

When inserting the vectors gradually in this manner, there is no guarantee that
the resulting tree is balanced. This possibly makes a nearest neighbor search rather
inefficient. Therefore, we use an optimized k-d-tree [8] instead. For building an
optimized tree, we have to know all the vectors in advance. Instead of choosing
dimension d to divide the space into two subspaces with regard to the depth of the
corresponding node, d is determined in the following way: For each space division
we look at all values for each vector in the current subspace. Since we want to divide
the space in a way that we separate those vectors that are rather different to each
other, we use the dimension with the highest variance of the values to do so. Thus
the space is divided into two largest possible subspaces where the ”left” subspace
contains all the vectors having a smaller value than the mean in dimension d and
the ”right” subspace contains all the vectors with larger values accordingly. This
procedure always results in a balanced tree and guarantees that the tree will be of
logarithmic depth. For the nearest neighbor search, the concept of buckets is added
to the optimized k-d-tree. Instead of dividing the space at every vector in our data,
the tree is only divided at a certain number of vectors such that each of the resulting
subspaces contains a predefined number of vectors, the bucket size. These subspaces
are called buckets and are represented by the leave nodes of the tree. Thanks to
the modified division of space, we can assume that all buckets contain almost the
same number of vectors. After building the optimized k-d-tree it can be used for a
nearest neighbor search in vector space [8]. When searching for the nearest neighbor
of a given query vector Q, we first start a binary search for the bucket where the

3. Experiments 39

nearest neighbor can most likely be found. Keep in mind that the dimension at each
node in the tree is still the same as the dimension we used while building the tree.
Having found the desired bucket, we determine the nearest neighbor among all the
vectors in the bucket. The distance to the nearest neighbor then decides if the search
is finished. Regarding the hypersphere that is formed when using the determined
distance as a radius, we check if it exceeds the boundaries of the current subspace.
In that case, it is possible that there is a nearer vector to Q in one of the intersecting
subspaces. So we have to calculate the distances for those vectors, too. Even if a
large amount of intersecting subspaces could worsen the time complexity, Friedman
et al. showed that the expected time complexity is logarithmic and therefore is
advantageous for our experiment.

Now that we have described all the conditions for the experiment, we will have
a look at the model itself. The network specifications for this experiment were the
following: For weight initialization we used the Xavier initialization again. The
generator was a 5 layer LSTM model, the discriminator a 2 layer LSTM model. We
chose a higher number of layers for the generator because the task of generating word
vectors is more complex than the task of distinguishing between real and generated
sequences. The generator’s input then is a batch of random noise vectors drawn
from the same vector space as the word embeddings. Each noise vector will be con-
catenated with a random context vector that contains 16 context variables, namely
event type, event type2, event team, opponent, player, player2, player in, player out,
shot place, shot outcome, is goal, location, body part, assist method, situation and
fast break as described in section 3.2.1. The drawn context vectors are limited in a
way that combinations that cannot occur because they contain conflicting informa-
tion e.g. is goal = 1 and event type2 = 15 (own goal) will not be generated. Also,
there is certain information that must be available in case of some events e.g. for
event type = 7 (substitution) the variables player in and player out must contain
valid player IDs. The concatenated vectors are used to produce the batch of the first
elements of the sequences. Afterwards ,the last batch of generated elements will be
concatenated with the same labels again and used as the next input for the genera-
tor and so on. This leads to the problem that we have to decide when to stop the
sequence generation. The most obvious way to do so is to stop the generation when
the end of sequence symbol $ was generated. Unfortunately, this approach leads to
even more problems. Early in learning, the $ most likely will not be generated at all
such that the generator will generate an infinite sequence, which cannot be handled
in practice. The second problem is that even if the $ will be generated at some point,
the generated sequences are not of the same length. We therefore must pad them to
the same length in order to use them for further computations, but we do not know
the maximal length in advance. This way we cannot define the dimensions of the
generator’s output. To avoid these two problems, we looked for the longest sequence
in the Football Events data set, which was 54, such that we always ask the gener-
ator to generate sequences of exactly that size. Therefore the generator’s output
dimensionality is 54× batch size× embedding size. After mapping the generator’s
output vectors to their nearest neighbors and concatenating them with the context
vectors, we will pass them to the discriminator. In conclusion, the discriminator’s

40 Contents

Figure 31: Loss progression of the CGARNN model on the Football Events data set
with word embeddings.

input dimensionality is 54× batch size× (embedding size+ 16). Since the genera-
tor only generates sequences of length 54 and therefore the discriminator only takes
input of the same length, we have to pad all samples drawn from the data set to
the length of 54 by appending $’s when using real data as the discriminator’s input.
The output of the discriminator is then a scalar between 0 and 1, representing an
estimation of the input sequence to be generated (0) or real data (1) with regard to
the concatenated context vector.

We trained the model for 24000 iterations (∼12 hours) using the above-mentioned
network parameters. The progression of the loss values (Fig. 31) unfortunately
shows that the generator was not able to converge whereas the discriminator’s loss
reaches the minimum of 0 very early in training. Observing the generated samples
(Fig. 32) we see that the network is clearly not learning to generate texts, because
it just repeats a few words over and over again. Moreover, the generated words
are names only. Having a closer look at the learned word embeddings by plotting
all words in the data set instead of only the 200 most frequent (Fig. 33), we see
that the Skip-gram model was not able to learn proper vector representations for
names. We expected the names to be nearby in the vector space because they occur
in similar contexts. Even if the names total frequency is large (97.7%) because a
name occurs in almost every sentence of the data set, a single name occurs rather
infrequent which makes the learning of a proper vector representation difficult. The
names are evenly spread over the whole vector space and due to the large number
of names, any nearest neighbor search will most likely return a name.

3. Experiments 41

cole cole cole cole cole cole cole cole cole cole cole cole cole cole cole cole cole
ryan ryan ryan ryan ryan ryan forster forster forster forster forster forster forster
forster forster forster forster forster forster forster forster forster forster forster
forster forster forster forster forster forster forster forster forster forster forster
forster forster

joe joe
joe joe joe joe joe joe joe joe joe sabo sabo sabo sabo sabo sabo sabo sabo sabo sabo
sabo sabo sabo sabo sabo sabo sabo sabo sabo sabo sabo sabo sabo sabo

cole cole cole cole cole cole cole cole cole cole cole cole cole ham ham ham
enner enner enner enner enner enner enner enner enner enner enner tokelo tokelo
tokelo tokelo tokelo tokelo tokelo tokelo tokelo tokelo tokelo tokelo tokelo tokelo
tokelo tokelo tokelo tokelo tokelo tokelo tokelo tokelo tokelo tokelo tokelo tokelo
tokelo

Figure 32: Generated samples of the CGARNN model on the Football Events data
set with word embeddings. The samples are made of names only. A file containing
all generated samples is listed in the appendix.

3.2.4 Experiment II

Due to the difficulties that result from the weak word embeddings representing
names, we decided to rerun the experiment with new word embeddings where all
player names are represented by the PLAYER placeholder and all clubs by the CLUB
placeholder. Therefore the total number of name occurrences does not change but
we only have to learn two vector representations for all of them. Since the player
names are encoded in the context vector, the placeholders can easily be replaced
after the text was generated. We therefore expect the nearest neighbor search to be
more successful and improve the text generation. We again trained the model for
24000 iterations (∼ 7 hours) using the same network and parameters as described
in section 3.2.3 and word embeddings with placeholders instead of actual names.
The loss value’s progression slightly improved (Fig. 34). Where the generator that
was trained on word embeddings with names reached a loss value of about 12, the
replacement of the names with placeholders reduced the generator’s loss by roughly
50%, leading to a value of about 6. The discriminator still converges to a loss value
of 0 but takes more iterations to do so compared to the first experiment. Still,
the loss progression shows that the generator is not able to assert itself against the
discriminator. Examining the generated samples in figure 35, we see that the weak
word embeddings for names in the first experiment were actually a problem. If a
sentence actually contained a high number of names, the model should now generate
sequences containing the placeholders with a high ratio. However, the problem of
the missing variances within the sequences is still unsolved.

42 Contents

(a) (b)

Figure 33: Learned word embeddings with four history and future words in the Skip-
gram data and an embedding size of 32. (a) 200 most frequent words. Almost
no names. (b) All words. The plot clearly shows that the name’s word vector
were not learned properly and are evenly spread. A high resolution versions of
the images are listed in the appendix.

Figure 34: Loss progression of the CGARNN model on the Football Events data set
with word embeddings and placeholders for names.

3. Experiments 43

fighting fighting fighting fighting fighting fighting fighting fighting fighting fighting
fighting fighting violent violent violent violent violent violent violent violent violent
violent violent violent violent violent violent violent violent violent violent violent
violent violent violent violent violent violent violent violent violent violent vio-
lent violent violent violent violent violent violent violent violent violent violent violent

62’ 62’ 62’ 62’ 62’ 62’ 62’ 62’ 62’ 62’ fighting fighting fighting fighting fight-
ing fighting fighting fighting fighting fighting fighting fighting fighting fighting fighting
fighting fighting fighting fighting fighting fighting fighting fighting fighting fighting
fighting fighting fighting fighting fighting fighting fighting fighting fighting fighting
fighting fighting fighting fighting fighting fighting fighting fighting fighting

six six six six six six six six six half half half half half half half half half half
half half half half half half half half half half half half half half half half half half half
half half half half half half half half half half half half half half half half

Figure 35: Generated samples of the CGARNN model on the Football Events data
set with word embeddings and placeholders for names. The samples are made of
a few words that are repeating steadily. A file containing all generated samples
is listed in the appendix.

3.2.5 Experiment III

Facing the problem that the model still is not able to generate proper sequences, we
want to investigate its behavior when changing the generator’s output from a single
sequence element to a bag-of-words that describes the probability for all words in
the dictionary. The generator’s output size will therefore increase to the size of the
vocabulary. We want to keep this size small in order to reduce the duration per
training iteration and because of the problems mentioned in section 3.2.3. This is
why we use name placeholders for this experiment again. Since we use the bag-of-
words approach for this experiment, the word embeddings and therefore the k-d-tree
becomes unnecessary. For the generator’s input, we decided to use a simple index
representation of words. The problem that occurs in this case is that we have to take
the word with the largest value out of the bag-of-words after every element that was
generated in order to use it as the generator’s next input. Unfortunately, we noticed
that the argmax function is not differentiable and therefore, we were not able to
obtain any gradients at all. In order to solve this problem, we decided to use a bag-
of-words as the generator’s input, too. This way the generator’s output can easily be
used as its input again. The use of the bag-of-words also makes generating a noise
vector for the generator much easier since we can simply generate a vector containing
a probability for each word in the vocabulary. For generating noise samples while
using indices, we could randomly choose an index. The problem with this approach
is that the generator could be biased by the noise sample. For example, the noise
input could be the index representing a full stop and the generator would only
generate the end of line symbol $ since this is the most probable element that is
following the full stop.

44 Contents

In order to make the results of the different experiments as comparable as possi-
ble, we again trained the model for 24000 iterations (∼ 17 hours). Figure 36 shows
a significant improvement in the loss progression. The generator’s loss at the end
of the training reaches a value of 4 while the discriminator never clearly reaches
0, other than in the last experiment where the discriminator reaches a value near
0 very early in the training. This indicates the difficulty of generating a single
vector representing a word compared to the determination of a probability vector.
While examining the generated sequences, we noticed that they have not profited
by the improved loss progression and are still made of just a few words, repeating
continuously.

Figure 36: Loss progression of the CGARNN model on the Football Events data set
with index representations for words and placeholders.

3.2.6 Experiment IV

We expected the model as described in section 3.2.5 to converge and generate good
sequences, because it makes use of LSTMs and bags-of-words, which have often been
used very effectively. Thus we started to look for the cause of the poor results in
different places and found a possible reason in the generation of the random context
vectors. In our experiments, the generator’s context vectors were always randomly
generated and never came from the original data set. As described in section 3.2.1,
the context vectors consist of 16 different variables, each with a different number of
possible assignments. The total number of possible context vectors exceeds 245∗1024.
Therefore, under the assumption that every vector is equally likely to be generated,
the probability of generating the same context vector twice is nearly 0. This means
that the generator will most probably see every context vector only once. In general,
a model advances by doing the same task multiple times. In this case the problem

3. Experiments 45

bit bit bit bit bit bit bit bit bit yard yard yard yard yard yard yard yard yard yard yard
yard yard yard yard yard yard yard yard yard yard yard yard yard yard yard yard yard
yard yard yard yard yard yard yard yard yard yard yard yard yard yard yard yard yard

bit bit bit bit bit bit $
$ $

bit bit bit bit bit bit bit bit bit bit bit bit bit bit 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 after after after after after after after after after after after after after
after after after after after after after after

Figure 37: Generated samples of the CGARNN model on the Football Events data
set with index representations for words and placeholders. The samples are made
of a few words that are repeating steadily. A file containing all generated samples
is listed in the appendix.

seems to be that the generator cannot make use of its feedback since it will never be
prompted to generate a sequence with the same context vector more than once. In
order to reduce the number of possible context vectors drastically, we only wanted
to use context vectors that actually occur in the data set. Unfortunately, the total
number of different context vectors in the data set is 25379 which leads to about 37
samples per context vector. Comparing this to established data sets like the MNIST
data set that consists of 7000 samples per context vector or label, respectively, we
realized that even this restriction will most probably not lead to better results.
Thus, in order to increase the number of training samples per context vector, we will
reduce the context vector’s size from 16 to 2 variables. For the 2 remaining context
variables we chose event type and event type2 since they contain the game situation’s
most essential information. This further restriction leads to a total number of 11
context vectors and therefore to a number of about 85000 training samples per vector
assuming that the context vectors are uniformly distributed. Since there are only
17 possible assignments for the two variables, we decided to represent them as two
concatenated one-hot-vectors. Therefore each possible variable assignment has its
own weight which makes treating these assignments differently easier than having
a single weight for all of them. This was practically impossible in the previous
experiments since the context vector would have exceeded a length of 1000 and
therefore the duration per training iteration would have been impractically long.
For this experiment, we prepared another text-context data file that contains all
texts and the two corresponding event types.

We reran the experiment for 24000 iterations (∼ 31 hours). Analyzing the
model’s loss progression (Fig. 38), we see that, against our expectations, the above-
mentioned changes to the context vectors deteriorate the learning process instead of
improving it. The discriminator again reached its optimum of 0 early in the training
while the generator’s loss increased continuously. Therefore the generated samples
did not improve either (Fig. 39).

46 Contents

Figure 38: Loss progression of the CGARNN model on the Football Events data set
with index representations for words and placeholders. The context vector was
reduced in the way that it only consists of the event type variables.

3.2.7 Experiment V

In this last experiment, we used a basic LSTM model on the Football Events data
set. The goal again was the generation of event descriptions with regard to certain
context vectors. Since the results in section 3.2.5 were the best we could achieve
with the CGARNN model, we decided to use the same preprocessed data for this
experiment, namely an index representation for words with placeholders for players
and clubs along with the complete context vector consisting of all 16 variables. The
LSTM network used in this experiment consisted of three layers and 17 LSTM cells
per layer. The number of cells per layer is determined by the context vector’s size
and the size of an input word which was represented by a single integer value in
this experiment. The network’s weights were once again initialized using the Xavier
initialization. In each training iteration, we passed a batch of size 64 to the LSTM
network. Each batch consisted of a subsequence of certain length - the step size,
which was 3 in this experiment - that was drawn from the original data set and the
corresponding sequence’s context vector. We therefore used a random sequence from
the data set and also randomly determined a start index for the subsequence. Then
we took as many words as prescribed by the step size from this sequence, starting
at the determined position. If the start position was too close to the sequence’s end
such that there were not enough sequence elements to build a subsequence of the
desired length, we simply padded this subsequence with the end of line symbol $.
When we actually passed the sequence elements to the LSTM network as its input,
we concatenated the context vector of this subsequence to all its elements. Then
the resulting input values were fed to the network successively. The network then

3. Experiments 47

saved saved saved saved saved saved bit bit (((((((defensive defensive defensive
defensive defensive side side side side side side side side side side side by by by by
by by by by by by by by by by by by by by by by by by by

bit bit bit bit bit bit bit bit bit bit set set set set set set set set set set capi-
talise capitalise bottom bottom bottom bottom bottom bottom bottom by by by by by
by by by by by by by by by by by by by by by by by by by by

to to to to to to to to to to to to to to to to to to to post post defensive
defensive defensive defensive defensive defensive defensive defensive defensive
defensive defensive defensive defensive 75’ 75’ 75’ 75’ 75’ 75’ 75’ 75’ 75’ 75’ 75’
75’ 75’ 75’ 75’ 75’ by to to to

Figure 39: Generated samples of the CGARNN model on the Football Events data
set with index representations for words and placeholders. The context vectors
only consisted of the event type variables. The samples are made of a few words
that are repeating steadily. A file containing all generated samples is listed in the
appendix.

predicted the next word following those that were given as the input, represented as a
bag-of-words. The loss value was determined by comparing the network’s prediction
and the actual word that would have been next in the sequence by using the sigmoid
cross entropy with logits. In order to minimize the loss function we used the ADAM
optimizer.

We trained the LSTM model for 24000 iterations (∼ 7 hours) with a learning
rate of α = 0.001. The resulting loss progression looked very promising since the
model reached a small loss value early in the learning process. The loss progression
of the LSTM model is depicted in figure 40. After the 24000 training iterations, we
used the model to generate a batch of sequences (Fig. 41). We therefore fed a batch
of start sequences and context vectors to the network, each consisting of the first
three elements of samples randomly drawn from the data set. The network then
completed the sequences to a length of 54 elements. The results indicate that the
LSTM was able to learn some regularities of the sequences, e.g. a player is often
followed by his club (by PLAYER CLUB) and sentences end with a full stop. Even
though this is an improvement compared to the results of the CGARNN model, the
generated sequences are of a low quality since the model is clearly overfitting on
a few learned patterns such as the ones described above. Moreover, the generated
sequences are rather generic and do not reveal any context sensitivity at all. We
therefore drew the conclusion that the LSTM model learned some simple regularities
within the data but is not able to sufficiently consider the specified context vectors.
This results in sequences even worse than those that would result if we trained a
basic LSTM model without any context vectors at all. This leads to the conclusion
that the use of the context vectors clearly deteriorates the generated samples.

48 Contents

Figure 40: LSTM model’s loss progression on the Football Events data set.

4 Conclusion

The experiments on the MNIST data set in section 3.1 clearly showed that the
CGARNN model is able to generate high quality samples with respect to a certain
context. Beyond that, we showed that it outperforms the basic GAN and CGAN
models. Unfortunately, the subsequent experiments on the Football Events data set
were unsuccessful since none of the applied network settings and data representa-
tions lead to sequences of high quality. The generated sequences could not even be
recognized as sentences and therefore, we could not go a step further and verify the
context dependency of the generated sequences. This indicates that one of the big
problems of the CGARNN model is to find a data set that fits the requirements

attempt blocked CLUB . by PLAYER CLUB by PLAYER CLUB by PLAYER
CLUB by PLAYER CLUB by PLAYER CLUB by PLAYER CLUB by PLAYER
CLUB by PLAYER CLUB by PLAYER CLUB by PLAYER CLUB by PLAYER
CLUB by PLAYER CLUB by PLAYER CLUB by PLAYER CLUB by PLAYER
CLUB by PLAYER CLUB by PLAYER CLUB by PLAYER

PLAYER (CLUB CLUB) $.
. .

foul by PLAYER CLUB .
. .

Figure 41: Generated samples of the LSTM model. The words in bold were given
to the network as a start sequence. The remaining words were generated.

4. Conclusion 49

such as containing sequential data whose labels consist of information that are rep-
resented by the sequences itself. A label containing too much information leads to
the issue of having to represent it as a context vector that the CGARNN model is
able to process properly and at the same time keep its dimensionality rather small.
This is essential because a higher dimensionality of the model leads to a longer du-
ration per training iteration. However, if the label contains too little information,
the model will not be able to generate appropriate sequences due to the lack of
information. As we were looking for a data set for the CGARNN experiments, the
Football Events data set was the only (more or less) applicable data set we found.

During the composition of this thesis, Hyland, Esteband and Rätsch developed
the same model we introduced in this thesis but referred to it as Recurrent Con-
ditional GANs (RCGANs) [6]. They were able to generate synthetic medical data
that could be used in the public domain since it does not contain data of actual
patients. This confirms that the CGARNN model is indeed able to generate more
complex sequential data with respect to a certain context. Moreover, the CGARNN
model offers new possibilities since it seems to be able to provide domain specific
data that can be used by publicly since critical and private information will not be
included in this data. For this reason, we expect the CGARNN model to gain more
relevance in many different domains in the future.

50 References

References

[1] Ehsaneddin Asgari and Mohammad RK Mofrad. Continuous distributed repre-
sentation of biological sequences for deep proteomics and genomics. PloS one,
10(11):e0141287, 2015.

[2] Samy Bengio and Georg Heigold. Word embeddings for speech recognition.
In Fifteenth Annual Conference of the International Speech Communication
Association, 2014.

[3] Y Bengio and X Glorot. Understanding the difficulty of training deep feed
forward neural networks. pages 249–256, 01 2010.

[4] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, September 1975.

[5] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211,
1990.

[6] C. Esteban, S. L. Hyland, and G. Rätsch. Real-valued (Medical) Time Series
Generation with Recurrent Conditional GANs. ArXiv e-prints, June 2017.

[7] Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, and Chris Dyer. Prob-
lems with evaluation of word embeddings using word similarity tasks. CoRR,
abs/1605.02276, 2016.

[8] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM Trans. Math.
Softw., 3(3):209–226, September 1977.

[9] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s
negative-sampling word-embedding method. CoRR, abs/1402.3722, 2014.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 2672–2680. Curran Associates, Inc., 2014.

[11] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Yee Whye Teh and
Mike Titterington, editors, Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 297–304, Chia Laguna Resort, Sardinia, Italy, 13–15
May 2010. PMLR.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

References 51

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014.

[14] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[15] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013.

[16] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages 3111–
3119. Curran Associates, Inc., 2013.

[17] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
CoRR, abs/1411.1784, 2014.

[18] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

[19] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9:2579–2605, 2008.

	Introduction
	Preliminaries
	Artificial Neural Networks
	Long Short-Term Memory
	Generative Adversarial Networks
	Conditional Generative Adversarial Networks
	Conditional Generative Adversarial Recurrent Neural Networks

	Experiments
	MNIST
	Football Events Data
	Data set
	Preprocessing
	Experiment I
	Experiment II
	Experiment III
	Experiment IV
	Experiment V

	Conclusion
	Bibliography

