Discovery of Data Dependenciesin Relational Databases

Siegfried Bell & Peter Brockhausen
Informatik VIII, University Dortmund
44221 Dortmund, Germany
email: {bell, brockh}@Is8.informatik.uni-dortmund.de

Abstract

Since real world databases are known to be very
large, they raise problems of the access. There-
fore, real world databases only can be accessed by
database management systems and the number of
accesses has to be reduced to a minimum. Con-
sidering this property, we are forced to use stand-
ard set—oriented interfaces of relational database
management systems.

We present asystem for discovering data depend-
encies, which is build upon a set—oriented inter-
face. The point of main effort has been put on the
discovery of domain restrictions, unary inclusion-
and functional dependencies in relational data-
bases. The system also embodies an inference
relation to minimize database access.

1 Introduction

Data dependencies are the most common type of semantic
constraintsin rel ational databaseswhich determinethedata-
base design. Despite the advent of highly automated tools,
database design still consists basicdly of two types of
activities: first, reasoning about data types and data de-
pendencies and, second, normalizing the relations. Auto-
matic database design may serve as a process to support
database designers with a dependencies proposing system,
which may help to design optimal relation schemes for
those cases where data dependencies are not obvious. The
so called dependency inference problem is described in
[Mannilaand Raihg 1991] as: Given arelationr, find a set
of datadependencieswhichlogically determinesall thedata
dependencieswhich arevalidinr.

Unfortunately, it is impractical to enumerate al data de-
pendencies and to try to verify each of them. Alternatively,
asecond approach to discovery isto avoid unnecessary quer-
ies by inferring as much as possible from already verified

data dependencies. A third approach isto draw inferences
not only from verified data dependencies but aso from in-
valid data dependencies. In this paper we will follow this
approach.

In general, knowledge discovery in databases incorporates
the same problems as the above approaches. Firgt, itisim-
practical totest al hypothesesand second, theonly interface
to the database is a database management system.

To address these problems we present an inference relation
on valid and invalid data dependencies and show how a
set—oriented language like SQL can be used for testing data
dependencies. We exemplify this by domain restrictions,
unary inclusion and functional dependencies. The plot of
this paper isas follows: In section 2 domain restrictions of
attributes, functional and unary inclusion independencies
are introduced and the corresponding inference relations
are discussed. In section 3 we show how to test dependen-
ciesby SQL queriesand how to deduce more dependencies.
Then, we discuss the complexity of our inference. We con-
clude with empirical results and a comparison with similar
systems.

2 Terminology and Related Work

Familiarity is assumed with definitions of relational data-
basetheory asgivenfor examplein[Kandlakis, 1990]. The
uppercase letters A, B, C' stand for attributesand X, Y, 7
for sets of attributes. By convention we omit the braces.
Functiona dependencies (FD) and unary inclusion depend-
encies (UIND) are defined as usua. Further, we assume
without loss of generdity that the right hand side of func-
tional dependencies consists of only one attribute.

Therél ationship between unary inclusion dependencies and
functional dependenciesisdiscussed in [Bell, 1995] and an
axiomatization is given regarding independencies, which
simplifies the inference. Our third type of constraints, do-
main restrictions, means that each value of an attribute has
tobeinan certain interval.

The discovery of data dependencies may bevisudized asa
search in a semi |attice consisting of hodes and edges. The
nodes are label ed with data dependencies and the edges de-
scribe a relationship between the nodes. In generd, this
relationship can be described as amore-general—than rela-
tionship likein [Savnik and Flach, 1993]: Let X and Y be
sets of attributes such that X C Y, then the dependency
X — A ismore—genera—than the dependency ¥V — A.

This means, if arelation satisfies a functiona dependency,
then the relation satisfies also each dependency, which is
more-specific-than. For example, if arelation satisfies the
functional dependency AB — ', then therelation satisfies
ABD — C. Thisreationship implies a partial ordering
which simplifies the discovery of functional dependencies
by a simple representation. Thisisusualy caled minimal
cover. We use not minimal cover as defined in database
theory, therefore we call the cover the most genera cover.
The differenceis shown by the following example: The set
{A — B,B — (', A — (C} ismost—genera in our sense,
but not minima as defined in database theory, because the
transitivity ruleis applicable.

Definition 1 (Most General Cover) The set of functional
dependencies ' is a most—general cover if for every de-
pendency X — A € F,thereexistsno Y withY C X and
Y —-A€cF.

Our presented system can be seen at the first glance as
an optimized version of CLAUDIEN regarding functiona
dependencies, [Dehaspe et al., 1994]. But there are differ-
ences: first, in CLAUDIEN the relationship between the
dependencies is based on #—subsumption and the verifica-
tion of the hypotheseson theorem proving. |nour approach,
therelationship of the dependenciesisbased on an axiomat-
ization of FDs and UINDs. The verification is done by the
database management system which groupsthe rows. This
offers several advantages: First theorem provingisfor this
purpose too powerful and we can infer dependencies by
transitivity whichisrealy simple. Second, we can find de-
pendenciesin relational databases, which can not be stored
inthe main memory as PROLOG assertions. Inmost others
ILP learning systems like RDT, [Morik et d., 1993], func-
tional dependencies can not be expressed. Systems, which
are closer to ours, are empirically compared in section 4.

3 Discovering Data Dependencies

In this section we present the algorithms to infer integrity
congtraints, unary inclusion dependencies and functiona
dependencies. For more details see [Brockhausen, 1994].

3.1 ValueRestrictions

We consider value restrictions or the upper and lower
bounds of attribute domains. We select the minima and

1. SELECT COUNT(DISTINCT R;.A:)

FROM R;, R;

WHERE R; . A1 = R;.A> =:e
2. SELECT COUNT(DISTINCT A;)

FROM R; =:e€1
3. SELECT COUNT(DISTINCT A,)

FROM R; =:eo

»

e=¢€e1 = A QAQ
Be=ex=> Ay C A

6. e=¢e; =€ = A = A

Figure 1: SQL-Statements and Conditionsfor Calculating
UINDs

maxima for al attributes in al relations with the corres-
ponding SQL statements. The SQL statement uses the
normal order on numbers for numerical attributes and the
lexicographic order on the character set for attributes of a
symbolic type. Sinceit is possible to compute the two val-
uesinonequery, theoveral costsare O (n*m). Throughout
this section n denotes the number of attributesin all tables
and m the maximal number of tuples in the table which
possesses the most.

3.2 Unary Inclusion Dependencies

Inclusion dependencies can be computed by taking advant-
age of the transitivity and of a run through all possible
combinationsin a special sequence. First we start with the
presentation of the necessary SQL—statements and condi-
tionsfor calculating the UINDs infigure 1.

The results of the queries are numbers. It is possible to
combine the second and third statement in one query, be-
cause in some cases both UINDs A C Band B C A are
possible, but in others only one UIND. The implemented
version of the algorithm always uses the appropriate query.
The time complexity of the SQL—statements is determined
by thejoinin thefirst oneand is O(m?).

The algorithm INCLUSION DEPENDENCIES depicted in figure
2 iscalled one time for each kind of a "super datatype" in
the database. Normally the DBMS offers many different
numeric and al phanumeric datatypes. But thesestypeslike
CHAR or VARCHAR2 in OracleV7 are mainly meant for
storage efficiency reasons for example and do not imply
any fundamental differences in the data which judtify a
separate treatment in the algorithm. Therefore it makes
senseto gather al different numeric and a phanumerictypes
in"super types' NUMBER and STRING.

The agorithm uses a graph representation for UINDs.
There exists an directed edge from the node A; to the node

A;, if and only if there exists an UIND R,[A;] C R,[A4]
inthe database and A; and A; are numberswhich represent
theattributes A, and A4, intherelations /2, and R, respect-
ively. Inthe agorithm we denote by A; C A; the edgein
the graph as well as the corresponding UIND.

The correctness of the algorithm is considerably based on
the following lemma. It is a direct consequence of the
axiomatization of dependencies and independencies, cf.
[Bell, 1995], and the proof is done by contradiction con-
cerning the transitivity of UINDs.

Lemmal 1. Ifthereexistsadirected edgefromthenode
Aiy, tothenode A, and no edge from the node 4; to
thenode A; withk < ¢, thenitisimpossiblethat there
exists an edge from the node A; to thenode A; .

2. If there exists a directed edge from the node A; to the
node A;, and no edge from the node A; . to the node
A with k < 4, then it isimpossible that there exists
an edge fromthe node A4, to thenode A;.

All the other steps in the agorithm are responsible for an
ordered run through al possible tests and are trivial. The
procedure UPDATE GRAPH discovers the transitive relations
between the UINDs. The two steps and the distinction
between the two cases guarantees that testsare deleted only
inthoselists, where they can occur. Hencethelist structure
becomes "incomplete” and some more cases are heeded in
the algorithm INCLUSION DEPENDENCIES Which we omitted
here.

The procedure UPDATE GRAPH has a time complexity of
O(n + ¢), where n and e denote the number of nodes and
edges as usual. For exampleinthecase ¢ < j we have to
executeadepthfirst search or breadth—first searchinstep 1a
and 1b. Deleting of tests can bedoneontherunand intime
O(1), but onehastochangethedatastructureat step4inthe
algorithm INCLUSION DEPENDENCIES from a list structure
to arrays in order to achieve this result, which is a simple
transformation, but would complicate the presentation here.

A naive agorithm for computing inclusion dependencies
has a time complexity of ©(n? + m?). It generates exactly
% database queries, if the corresponding UINDs are
valid or not. In contrast the algorithm INCLUSION DEPEND-
ENCIES has aoverall time complexity of O(n* + n? m?).
The summand O (n*) iscaused by the nested loop and each
call to UPDATE GRAPH.

At afirst glance, this result looks strange because of the
O-notation. But our agorithm has one very important
property. Given afixed numbering of the attributes at step
2, the agorithm presented here always poses a minimal
number of database queriesfor the discovery of UINDs, by
exploiting the transitivity of UINDs and hence it saves all
superfluous queries to the database. It can be shown that

Algorithm: INCLUSION DEPENDENCIES

Input: A list of al attributes of onetype

Output: A list of al inclusion dependencies between attrib-
utes of one type

1. Compute al candidate attributes for UINDs, which
fulfill the condition: the interval, made up by the min-
ima and maxima vaue for this attribute — these are
the integrity constraints —is a subset or a superset for
any other attribute of thistype.

2. Number al attributesfrom A; upto A4,,.

3. Construct a directed graph with nodes A; and edges
A; — Ay, iff A; is marked in the system table as a
foreign key for A;.

4. Congtruct the following list structure:
([0 (A2, 7], [, 7] [,]
[AZ : [&aA_E}]a sy [ﬁaA_n]]

[An-1 [, A1)

A; and A; respectively are symbols for the tests, if
theUINDs 4; C 4; or A; C A; arevalid. Thelist
of A; contains A; or A; with j > i, if there does not
exist a path in the graph from A; to 4; or A; to A;
respectively.

5. Foradl A; withl < i < ndo:

(@ Let A;4, withr € {1,...,n — i} be the next
test. If there exists an edge from A, to anode
A with k£ < ¢ and no edge from A; to A, then
continueat step 5b with the next test, el se execute
thetest. If 4; C A;4, isvalid, then call UPDATE
GRAPH with A; C A;4, and continue at step 5b,
else continuedirectly at step 5b.

(b) Let A,y withr € {1,...,n — i} be the next
test. If there exists an edge from 4; to a node
Ap with £ < ¢ and no edge from A;, to Ay,
then continue a step 5a with the next step, else
execute thetest. If A;,, C A; isvalid, then cdl
UPDATE GRAPH with 4;,, C A; and continue,
el se continue,

(c) While the list of the tests for A; is not empty,
continue at step S5awith the next test 4,4, 41.

6. Returnall edges of the graph as UINDs

Figure2: Algorithm INCLUSION DEPENDENCIES

Procedure: UPDATE GRAPH

Input: Onevalid UIND A; C A,

1. Inserttheedge A; — A; into the graph.
2a) 1 < j
(@) Findall nodes Ax, k > 1, from which exists a path
to the node A;.
(b) Find all nodes A4;, I > ¢, which are reachable from

e
(c) Deleteall tests A;, 1 > jinthelist A;.

(d) Deleteall tests A;, k < linthelists Az.
(e) Deleteall tests Ay, k > linthelists A;.

2b) i >j
(& Findall nodes Ax, k > j, from which exists a path
to the node A;.
(b) Find all nodes A;, I > 3, which are reachable from
Aj.

(c) Deleteall tests A, k > i inthelist A;.
(d) Deleteall tests A;, k < linthelists Az.

(e) Deleteall tests Ay, k > linthelists A;.

Figure 3: Procedure UPDATE GRAPH

thereexist "good" and "bad" numberingsof the attributesin
step 2, resulting in different numbers of "necessary” data
base queries. But even if the numbering is a worst case
one, as long as there exists at least one valid UIND in the
database, our algorithm saves at least one database query.

And since one database query — given a"real" database and
measured in cpu—time — takes considerably longer then
our wholeal gorithm INCLUSION DEPENDENCIES without the
database queries, the extraamount of work with time com-
plexity O(n*) ismore than justified. And for thisreason it
does not matter if it possibleto drop the time compl exity of
summand O(n*), which seems possible, because it would
not save one more database query. We did some empirical
experiments wrt. these questions, but in lack of space we
omit the resultsin section 4.

3.3 Functional Dependencies

We start this subsection with apresentation of the necessary
SQL—statement in order to compute functional dependen-
cies. Figure 4 lists the statement and the condition which
must hold. The clue is the GROUP BY instruction. The
computational costs of this operation are dependent on the
database system, but it can be doneintime O(m * log m).
Thestatement itself countsthedifferent valuesineach group
and sumsup over al groups. Itissufficient tocount only the
different valuesfor the attribute A, because thisnumber is
the same for al attributes A; up to A,,. But it isimportant
that the attribute B, the right—hand side of the hypothesis
does not appear as an attribute in the grouping. And since
we are looking for most—genera FDs, it is assured, that

1. SELECT SUM (COUNT (DISTINCT A,)),
SUM (COUNT (DISTINCT B))
FROM R
GROUPBY Ay,..., A,

2. e =b=>A,...A, — B

Figure 4. A SQL-statement for the Computation of Func-
tional Dependencies

Algorithm: FUNCTIONAL DEPENDENCIES
Input: All attributes A4, . .., A, of therelation
Output: All discovered most—general FDs
vspace*-0.3cm

1. Computethe class of attributes NKNN.

2. For each attribute A; computealist of all possible attributes
for the left-hand side of most—general FDs X — A;.

3. For eachattribute A; do:
IF bottom—up—search THEN top—down-search

Figure5: The Algorithm FUNCTIONAL DEPENDENCIES

theattributes A4, .. ., A,, B aredl digtinct. The statement
returnsabinary tuple. If thetwo numbers are the same then
the hypothesis is true, that means that the corresponding
functional dependency holdsin the database.

In the algorithm FUNCTIONAL DEPENDENCIES we have in-
tegrated twomainideas, namely to exploit thetransitivity of
FDsand to concentrate on the computati on of most—general
FDs. Figure5 shows an outline of the a gorithm.

Every attributein arelation can be classified in one of three
digunct classes. We denote the first class with UCK, that
means unary candidate key. Attributes which contain only
distinct values and no NULL-vaues belong to this class.
Some of them for example may be marked in the system
table of the database asthe unary primary key or asaunique
index and so on. All the attributes of thisclass are keysand
therefore they build the left—hand sides of most—general
FDs, which the algorithm need not to generate anymore.

Other attributes contain NULL—values. They build up the
second class NK, "no key". All these attributestrivialy do
not imply any other attribute and more important they are
useless for specializations of hypotheses which correspond
to an invalid most—general FD.

As a consequence only the attributes of the third class
NKNN, that means " no-key-no-null-values', are needed for
the left—hand sides during the search for unknown most—
genera FDs. For the computation of the class NKNN we
exploit the information in the system table of the database
and anayze the data itself where needed. The time com-
plexity for thefirst stepis O(n * m).

The second step mainly initiaizes data structures for the
following third step. But if we are looking for FDs of the
form X — B and the attribute B isan element of the class
UCK then we need not consider any unary hypothesesin
the third step with the attribute B on the right—hand side,
because they all areinvalid FDs. Thisis also recognized in
this step which has atime complexity of O(n?).

The function bottom—up—search in the next step is quite
simple. Assumethat theattributes A4, . .., A,, arepossible
attributesfor the left—hand side of amost—general FD X —
B. Then wetest the most specid hypothesis A, ... A, —
B. If the corresponding FD is not true then we need not
consider this search space. Otherwise the function returns
true and the function top—down—search will be called.

All theattributesfor theleft—hand side of most—general FDs
of thetype X — F' buildasemiattice. Figure 6 showsthe
intuitive reduction of this semi—attice into a tree structure
where we have left awvay the right—hand sides, which is
awaystheattribute /" in thisexample.

Our agorithm uses a top—down and left—to-the—right and
breadth—first search strategy. The queue isinitiaized with
al nodes in left—to—right order, which represent most—
genera hypotheses. At every step, wetake thefirst el ement
of the queue, test the hypothesis and if the test is negative,
the nodein the tree is expanded and the children are put in
left to right order at the end of the queue.

But we need some more procedures, which can befoundin
[Brockhausen, 1994]. As the globa data structure for the
exploitation of thetransitivity of FDs, we use agraph struc-
ture similar to the one described for the algorithm INCLU-
SION DEPENDENCIES. Here again we start with the known
most—general FDs as edges, i.e. the primary keys, and
after the detection of new FDs by database queries or by
inference, the graph is updated. The procedure for deriv-
ing one new FD because of the transitivity has a running
time O({ + ¢), where [denotes the number of nodes in
the graph. At the moment we still use search procedures
like DFS or BFS in a graph which also exploit the known
independencies but we do not use any theorem prover.

But this search procedure can be called [timesin theworst
case. Andworgt in this case isthe fact that the number of
nodes in the graph can be exponentid in n, the number of
attributes. Even if we have n attributesand O(n) tuplesin
asingletable, it is possible that there exists (2%) most—
genera FDs, as shown in [Mannilaand Réaiha, 1991], or
correspondingly nodesin the graph.

We should mention that we a so usethediscovered inclusion
dependenciesinthea gorithm above. If weknow that the set
of values of theattribute A isaproper subset of theattribute
B, then A cannot functionally determine B or A /~ B.

AB AC AD AE BC BD BE Ch CE DE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Figure 6: Reduction of a semi-attice into atree structure

| Algorithm [DB [|r[[[R] | [X]] Time |

Savnik/Flach L. 150 | 19 7 am.
Schlimmer | B.C. | 699 | 11 4 1h14m.
Bell/Brockh. L. [150 | 19 7 >33h
Bell/Brockh. | B.C. | 699 | 11 | 11 | 8 m. 53s.
Bdl/Brockh. | B.C. | 699 | 11 4 | 4m. 19s.

Table 1: Comparison of the Experimental Results from
[Savnik and Flach, 1993] and [Schlimmer, 1993] with the
algorithm FUNCTIONAL DEPENDENCIES.

4 Evaluation and Conclusions

We compared our agorithm with two approaches:
Savnik and Flach call their method “bottom-up in-
duction of functional dependencies from relations’,
[Savnik and Flach, 1993]. Briefly, they start withabottom—
up anaysis of the tuples and construct a negative cover,
which is a set of FIs. Therefore they have to anayze al
combinations between any two tuples. In the next step they
use a top—down search approach similar to ours in order
to discover the functional dependencies. They check the
validity of a dependency by searching for Fls in the neg-
ative cover. Schlimmer also uses a top—down approach,
but in conjunction with a hash—function in order to avoid
redundant computations [Schlimmer, 1993].

But in contrast to our algorithm, in both articles mentioned,

[Daabase [[r[[[RI[[X[][Time [N
Books | 9931 | 9 9 (4h44min. | 25
Books | 9931 | 9 6 |4h40min. | 25
Books | 9931 | 9 3 | 2h10min. | 20

Table 2: Summary of the results of the algorithm FuNc-
TIONAL DEPENDENCIES.

the authors do not use a relational database like OracleV7
or any other commercial DBMS. They even do not use a
database at al. And this has some important effects on
the results, which will be discussed in the next paragraph.
Table 1 shows asummary of their results, where || denotes
the number of tuples, | R| the number of attributes, | X | the
maximal number of attributeson theleft—hand side of aFD
and time is the time needed for the discovery of the most—
general—cover. L. standsfor the Lymphography domain and
B.C. for the Breast Cancer domain. For comparison reasons
we introduced such a bound on the number of attributesin
our agorithm.

First, our algorithm cannot detect the FDs in the Lympho-
graphy domain in reasonabl e time, because we do not hold
the datain main memory like Savnik and Flach. And since
most of the FDs are redlly long, for some attributes the
shortest most—genera FDs have aready seven attributeson
theleft side, the search space and the overhead for the com-
munication with the database is to big. But it cannot be
said that our approach is inferior to the one of Savnik and
Flach, because the circumstances are to different, namely
the presence or absence of a database for the storage of the
tuples.

Second, inthe Breast Cancer domain our algorithmisreally
fast, more than seventeen times faster than Schlimmer’'s
algorithm. Even without any bound on the length of the
FDsit is dill eight timesfaster and it uses a database. We
conjecture, that this interesting but also unexpected result
ismainly caused by the distinction between the three types
of attributesin the search for functional dependencies.

But of course the two domains above are not typical data-
baseapplications. Table2 showstheresultsof our agorithm
with respect to a real database, the library database of our
computer science department. Hereit becomes obviousthat
our pruning criterions are efficient, because with a bound
of six attributes and without any bound the time needed is
nearly the same. The differences are neglectable because
there are many more users working on the network and the
resultsare only reproduciblewithin some bounds. But apart
from the known primary key of the database the discovered
FDs are semantically meaningless.

Furthermore we have stored the tuples of the databases
mentioned above asordinary PROLOG—Facts. IntheBreast
Cancer domain the results were very surprising, because
the database approach is more than four times faster as
using el even place PROL OG predicates, oneplacefor every
attribute, and simulating the SQL—queriesin PROLOG. But
the reason is obvious. This kind of representation is not
efficient because due to the arity of the predicates which
represent the tuples, we have to take into account eleven
variables even for testing unary FDs.

In summary, on can say that the al gorithmwhich we present
in our work has one important advantage over the two ap-
proaches mentioned above. The agorithm is capable of
dealing with great amounts of data, because we use a resl
database for the storage. And as a side effect, because we
use standard SQL—statements for the discovery of FDs, our
approach is portable and we can use any database which
"understands' SQL as a query language.

Acknowledgment: This work is partly supported by
the European Community (ESPRIT Basic Research Ac-
tion 6020, project Inductive Logic Programming) and the
Daimler—Benz AG, Contract No.: 094 965 129 7/0191.

References

[Bell, 1995] Bell, S.(1995). Inferring dataindependencies.
Technical Report 16, University Dortmund, Informatik
VIII.

[Brockhausen, 1994] Brockhausen, P. (1994). Discovery
of functional and unary inclusion dependenciesin rela
tional databases. Master’sthesis, University Dortmund,
Informatik VII1. in german.

[Dehaspe et d., 1994] Dehaspe, L., Laer, W. V., and Raedt,
L. D. (1994). Applications of a logica discovery en-
gine. In Wrobel, S, editor, Proc. of the Fourth Inter-
national Workshop on Inductive Logic Programming,
GMD-Studien Nr. 237, pages 291-304, St. Augustin,
Germany. GMD.

[Kanellakis, 1990] Kanellakis, P. (1990). Formal Models
and Semantics, Handbook of Theoretical Computer Sci-
ence, chapter Elements of Relationa Database Theory,
12, pages 1074 — 1156. Elsevier.

[Mannilaand Raiha, 1991] Mannila, H. and Raiha, K.-J.
(1991). The design of relational databases. Addison-
Wesley.

[Morik et a., 1993] Morik, K., Wrobdl, S., Kietz, J. U,,
and Emde, W. (1993). Knowledge Acquisition and Ma-
chine Learning Theory, Methods, and Applications. Aca-
demic Press

[Savnik and Flach, 1993] Savnik, I. and Flach, P. (1993).
Bottum-up indution of functional dependencies from re-
lations. In Piatetsky-Shapiro, G., editor, KDD-93: Work-
shop on Knowledge Discovery in Databases. AAAI.

[Schlimmer, 1993] Schlimmer, J. (1993). Using learned
dependencies to automatically construct sufficient and
sensible editing views. In Piatetsky-Shapiro, G., editor,
KDD-93: Workshop on Knowledge Discovery in Data-
bases. AAAI.

