
Discovery of Data Dependencies in Relational Databases

Siegfried Bell & Peter Brockhausen
Informatik VIII, University Dortmund

44221 Dortmund, Germany
email: fbell; brockhg@ls8.informatik.uni-dortmund.de

Abstract

Since real world databases are known to be very
large, they raise problems of the access. There-
fore, real world databases onlycan be accessed by
database management systems and the number of
accesses has to be reduced to a minimum. Con-
sidering this property, we are forced to use stand-
ard set–oriented interfaces of relational database
management systems.

We present a system for discovering data depend-
encies, which is build upon a set–oriented inter-
face. The point of main effort has been put on the
discovery of domain restrictions,unary inclusion-
and functional dependencies in relational data-
bases. The system also embodies an inference
relation to minimize database access.

1 Introduction

Data dependencies are the most common type of semantic
constraints in relational databases which determine the data-
base design. Despite the advent of highly automated tools,
database design still consists basically of two types of
activities: first, reasoning about data types and data de-
pendencies and, second, normalizing the relations. Auto-
matic database design may serve as a process to support
database designers with a dependencies proposing system,
which may help to design optimal relation schemes for
those cases where data dependencies are not obvious. The
so called dependency inference problem is described in
[Mannila and Räihä, 1991] as: Given a relation r, find a set
of data dependencies which logically determines all the data
dependencies which are valid in r.

Unfortunately, it is impractical to enumerate all data de-
pendencies and to try to verify each of them. Alternatively,
a second approach to discovery is to avoid unnecessary quer-
ies by inferring as much as possible from already verified

data dependencies. A third approach is to draw inferences
not only from verified data dependencies but also from in-
valid data dependencies. In this paper we will follow this
approach.

In general, knowledge discovery in databases incorporates
the same problems as the above approaches. First, it is im-
practical to test all hypotheses and second, the only interface
to the database is a database management system.

To address these problems we present an inference relation
on valid and invalid data dependencies and show how a
set–oriented language like SQL can be used for testing data
dependencies. We exemplify this by domain restrictions,
unary inclusion and functional dependencies. The plot of
this paper is as follows: In section 2 domain restrictions of
attributes, functional and unary inclusion independencies
are introduced and the corresponding inference relations
are discussed. In section 3 we show how to test dependen-
cies by SQL queries and how to deduce more dependencies.
Then, we discuss the complexity of our inference. We con-
clude with empirical results and a comparison with similar
systems.

2 Terminology and Related Work

Familiarity is assumed with definitions of relational data-
base theory as given for example in [Kanellakis, 1990]. The
uppercase letters A;B;C stand for attributes and X;Y; Z

for sets of attributes. By convention we omit the braces.
Functional dependencies (FD) and unary inclusion depend-
encies (UIND) are defined as usual. Further, we assume
without loss of generality that the right hand side of func-
tional dependencies consists of only one attribute.

The relationship between unary inclusion dependencies and
functional dependencies is discussed in [Bell, 1995] and an
axiomatization is given regarding independencies, which
simplifies the inference. Our third type of constraints, do-
main restrictions, means that each value of an attribute has
to be in an certain interval.



The discovery of data dependencies may be visualized as a
search in a semi lattice consisting of nodes and edges. The
nodes are labeled with data dependencies and the edges de-
scribe a relationship between the nodes. In general, this
relationship can be described as a more–general–than rela-
tionship like in [Savnik and Flach, 1993]: Let X and Y be
sets of attributes such that X � Y , then the dependency
X ! A is more–general–than the dependency Y ! A.

This means, if a relation satisfies a functional dependency,
then the relation satisfies also each dependency, which is
more–specific–than. For example, if a relation satisfies the
functional dependency AB ! C, then the relation satisfies
ABD ! C. This relationship implies a partial ordering
which simplifies the discovery of functional dependencies
by a simple representation. This is usually called minimal
cover. We use not minimal cover as defined in database
theory, therefore we call the cover the most general cover.
The difference is shown by the following example: The set
fA ! B;B ! C;A! Cg is most–general in our sense,
but not minimal as defined in database theory, because the
transitivity rule is applicable.

Definition 1 (Most General Cover) The set of functional
dependencies F is a most–general cover if for every de-
pendency X ! A 2 F , there exists no Y with Y � X and
Y ! A 2 F .

Our presented system can be seen at the first glance as
an optimized version of CLAUDIEN regarding functional
dependencies, [Dehaspe et al., 1994]. But there are differ-
ences: first, in CLAUDIEN the relationship between the
dependencies is based on �–subsumption and the verifica-
tion of the hypotheses on theorem proving. In our approach,
the relationship of the dependencies is based on an axiomat-
ization of FDs and UINDs. The verification is done by the
database management system which groups the rows. This
offers several advantages: First theorem proving is for this
purpose too powerful and we can infer dependencies by
transitivity which is really simple. Second, we can find de-
pendencies in relational databases, which can not be stored
in the main memory as PROLOG assertions. In most others
ILP learning systems like RDT, [Morik et al., 1993], func-
tional dependencies can not be expressed. Systems, which
are closer to ours, are empirically compared in section 4.

3 Discovering Data Dependencies

In this section we present the algorithms to infer integrity
constraints, unary inclusion dependencies and functional
dependencies. For more details see [Brockhausen, 1994].

3.1 Value Restrictions

We consider value restrictions or the upper and lower
bounds of attribute domains. We select the minima and

1. SELECT COUNT(DISTINCT Ri:A1)
FROM Ri;Rj

WHERE Ri:A1 = Rj:A2 =: e

2. SELECT COUNT(DISTINCT A1)
FROM Ri =: e1

3. SELECT COUNT(DISTINCT A2)
FROM Rj =: e2

4. e = e1 ) A1 � A2

5. e = e2 ) A2 � A1

6. e = e1 = e2 ) A1 = A2

Figure 1: SQL–Statements and Conditions for Calculating
UINDs

maxima for all attributes in all relations with the corres-
ponding SQL statements. The SQL statement uses the
normal order on numbers for numerical attributes and the
lexicographic order on the character set for attributes of a
symbolic type. Since it is possible to compute the two val-
ues in one query, the overall costs areO(n�m). Throughout
this section n denotes the number of attributes in all tables
and m the maximal number of tuples in the table which
possesses the most.

3.2 Unary Inclusion Dependencies

Inclusion dependencies can be computed by taking advant-
age of the transitivity and of a run through all possible
combinations in a special sequence. First we start with the
presentation of the necessary SQL–statements and condi-
tions for calculating the UINDs in figure 1.

The results of the queries are numbers. It is possible to
combine the second and third statement in one query, be-
cause in some cases both UINDs A � B and B � A are
possible, but in others only one UIND. The implemented
version of the algorithm always uses the appropriate query.
The time complexity of the SQL–statements is determined
by the join in the first one and is O(m2).

The algorithm INCLUSION DEPENDENCIES depicted in figure
2 is called one time for each kind of a "super data type" in
the database. Normally the DBMS offers many different
numeric and alphanumeric data types. But theses types like
CHAR or VARCHAR2 in OracleV7 are mainly meant for
storage efficiency reasons for example and do not imply
any fundamental differences in the data which justify a
separate treatment in the algorithm. Therefore it makes
sense to gather all different numeric and alphanumeric types
in "super types" NUMBER and STRING.

The algorithm uses a graph representation for UINDs.
There exists an directed edge from the node Ai to the node



Aj , if and only if there exists an UIND Rp[Ak] � Rq[Al]
in the database and Ai and Aj are numbers which represent
the attributesAk andAl in the relationsRp and Rq respect-
ively. In the algorithm we denote by Ai � Aj the edge in
the graph as well as the corresponding UIND.

The correctness of the algorithm is considerably based on
the following lemma. It is a direct consequence of the
axiomatization of dependencies and independencies, cf.
[Bell, 1995], and the proof is done by contradiction con-
cerning the transitivity of UINDs.

Lemma 1 1. If there exists a directed edge from the node
Ai+r to the nodeAk and no edge from the node Ai to
the nodeAk with k < i, then it is impossible that there
exists an edge from the node Ai to the node Ai+r .

2. If there exists a directed edge from the node Ai to the
node Ak and no edge from the node Ai+r to the node
Ak with k < i, then it is impossible that there exists
an edge from the node Ai+r to the node Ai.

All the other steps in the algorithm are responsible for an
ordered run through all possible tests and are trivial. The
procedure UPDATE GRAPH discovers the transitive relations
between the UINDs. The two steps and the distinction
between the two cases guarantees that tests are deleted only
in those lists, where they can occur. Hence the list structure
becomes "incomplete" and some more cases are needed in
the algorithm INCLUSION DEPENDENCIES which we omitted
here.

The procedure UPDATE GRAPH has a time complexity of
O(n + e), where n and e denote the number of nodes and
edges as usual. For example in the case i < j we have to
execute a depth–first search or breadth–first search in step 1a
and 1b. Deleting of tests can be done on the run and in time
O(1), but one has to change the data structure at step 4 in the
algorithm INCLUSION DEPENDENCIES from a list structure
to arrays in order to achieve this result, which is a simple
transformation, but would complicate the presentation here.

A naive algorithm for computing inclusion dependencies
has a time complexity of �(n2 �m2). It generates exactly
n�(n�1)

2 database queries, if the corresponding UINDs are
valid or not. In contrast the algorithm INCLUSION DEPEND-
ENCIES has a overall time complexity of O(n4 + n2 �m2).
The summandO(n4) is caused by the nested loop and each
call to UPDATE GRAPH.

At a first glance, this result looks strange because of the
O–notation. But our algorithm has one very important
property. Given a fixed numbering of the attributes at step
2, the algorithm presented here always poses a minimal
number of database queries for the discovery of UINDs, by
exploiting the transitivity of UINDs and hence it saves all
superfluous queries to the database. It can be shown that

Algorithm: INCLUSION DEPENDENCIES

Input: A list of all attributes of one type
Output: A list of all inclusion dependencies between attrib-
utes of one type

1. Compute all candidate attributes for UINDs, which
fulfill the condition: the interval, made up by the min-
imal and maximal value for this attribute – these are
the integrity constraints – is a subset or a superset for
any other attribute of this type.

2. Number all attributes from A1 up to An.

3. Construct a directed graph with nodes Ai and edges
Ai ! Aj , iff Aj is marked in the system table as a
foreign key for Ai.

4. Construct the following list structure:h�
A1 : [A2; A2]; [A3; A3]; : : : ; [An; An]

�
�
A2 : [A3; A3]; : : : ; [An; An]

�
...�
An�1 : [An; An]

�i

Aj and Aj respectively are symbols for the tests, if
the UINDs Ai � Aj or Aj � Ai are valid. The list
of Ai contains Aj or Aj with j > i, if there does not
exist a path in the graph from Ai to Aj or Aj to Ai

respectively.

5. For all Ai with 1 � i < n do:

(a) Let Ai+r with r 2 f1; : : : ; n � ig be the next
test. If there exists an edge from Ai+r to a node
Ak with k < i and no edge from Ai to Ak, then
continue at step 5b with the next test, else execute
the test. If Ai � Ai+r is valid, then call UPDATE

GRAPH with Ai � Ai+r and continue at step 5b,
else continue directly at step 5b.

(b) Let Ai+r with r 2 f1; : : : ; n � ig be the next
test. If there exists an edge from Ai to a node
Ak with k < i and no edge from Ai+r to Ak,
then continue at step 5a with the next step, else
execute the test. If Ai+r � Ai is valid, then call
UPDATE GRAPH with Ai+r � Ai and continue,
else continue.

(c) While the list of the tests for Ai is not empty,
continue at step 5a with the next test Ai+r+1.

6. Return all edges of the graph as UINDs

Figure 2: Algorithm INCLUSION DEPENDENCIES



Procedure: UPDATE GRAPH

Input: One valid UIND Ai � Aj

1. Insert the edge Ai ! Aj into the graph.
2a) i < j

(a) Find all nodes Ak , k > i, from which exists a path
to the node Ai.

(b) Find all nodes Al, l > i, which are reachable from
Aj .

(c) Delete all tests Al; l > j in the list Ai.
(d) Delete all tests Al; k < l in the lists Ak .

(e) Delete all tests Ak; k > l in the lists Al.
2b) i > j

(a) Find all nodes Ak , k > j, from which exists a path
to the node Ai.

(b) Find all nodes Al, l > j, which are reachable from
Aj .

(c) Delete all tests Ak; k > i in the list Aj .
(d) Delete all tests Al; k < l in the lists Ak .

(e) Delete all tests Ak; k > l in the lists Al.

Figure 3: Procedure UPDATE GRAPH

there exist "good" and "bad" numberings of the attributes in
step 2, resulting in different numbers of "necessary" data-
base queries. But even if the numbering is a worst case
one, as long as there exists at least one valid UIND in the
database, our algorithm saves at least one database query.

And since one database query — given a "real" database and
measured in cpu–time — takes considerably longer then
our whole algorithm INCLUSION DEPENDENCIES without the
database queries, the extra amount of work with time com-
plexityO(n4) is more than justified. And for this reason it
does not matter if it possible to drop the time complexity of
summand O(n4), which seems possible, because it would
not save one more database query. We did some empirical
experiments wrt. these questions, but in lack of space we
omit the results in section 4.

3.3 Functional Dependencies

We start this subsection with a presentation of the necessary
SQL–statement in order to compute functional dependen-
cies. Figure 4 lists the statement and the condition which
must hold. The clue is the GROUP BY instruction. The
computational costs of this operation are dependent on the
database system, but it can be done in timeO(m � logm).
The statement itself counts the different values in each group
and sums up over all groups. It is sufficient to count only the
different values for the attributeA1, because this number is
the same for all attributes A1 up to An. But it is important
that the attribute B, the right–hand side of the hypothesis
does not appear as an attribute in the grouping. And since
we are looking for most–general FDs, it is assured, that

1. SELECT SUM (COUNT (DISTINCT A1)),
SUM (COUNT (DISTINCT B))

FROM R
GROUP BY A1; : : : ;An =: a1; b

2. a1 = b) A1 : : :An ! B

Figure 4: A SQL–statement for the Computation of Func-
tional Dependencies

Algorithm: FUNCTIONAL DEPENDENCIES

Input: All attributes A1; : : : ;An of the relation
Output: All discovered most–general FDs
vspace*-0.3cm

1. Compute the class of attributes NKNN.

2. For each attribute Ai compute a list of all possible attributes
for the left–hand side of most–general FDs X ! Ai.

3. For each attribute Ai do:
IF bottom–up–search THEN top–down–search

Figure 5: The Algorithm FUNCTIONAL DEPENDENCIES

the attributesA1; : : : ; An; B are all distinct. The statement
returns a binary tuple. If the two numbers are the same then
the hypothesis is true, that means that the corresponding
functional dependency holds in the database.

In the algorithm FUNCTIONAL DEPENDENCIES we have in-
tegrated two main ideas, namely to exploit the transitivityof
FDs and to concentrate on the computation of most–general
FDs. Figure 5 shows an outline of the algorithm.

Every attribute in a relation can be classified in one of three
disjunct classes. We denote the first class with UCK, that
means unary candidate key. Attributes which contain only
distinct values and no NULL–values belong to this class.
Some of them for example may be marked in the system
table of the database as the unary primary key or as a unique
index and so on. All the attributes of this class are keys and
therefore they build the left–hand sides of most–general
FDs, which the algorithm need not to generate anymore.

Other attributes contain NULL–values. They build up the
second class NK, "no key". All these attributes trivially do
not imply any other attribute and more important they are
useless for specializations of hypotheses which correspond
to an invalid most–general FD.

As a consequence only the attributes of the third class
NKNN, that means "no-key-no-null-values", are needed for
the left–hand sides during the search for unknown most–
general FDs. For the computation of the class NKNN we
exploit the information in the system table of the database
and analyze the data itself where needed. The time com-
plexity for the first step is O(n �m).



The second step mainly initializes data structures for the
following third step. But if we are looking for FDs of the
form X ! B and the attributeB is an element of the class
UCK then we need not consider any unary hypotheses in
the third step with the attribute B on the right–hand side,
because they all are invalid FDs. This is also recognized in
this step which has a time complexity of O(n2).

The function bottom–up–search in the next step is quite
simple. Assume that the attributesA1; : : : ; An are possible
attributes for the left–hand side of a most–general FDX !
B. Then we test the most special hypothesis A1 : : :An !
B. If the corresponding FD is not true then we need not
consider this search space. Otherwise the function returns
true and the function top–down–search will be called.

All the attributes for the left–hand side of most–general FDs
of the typeX ! F build a semi–lattice. Figure 6 shows the
intuitive reduction of this semi–lattice into a tree structure
where we have left away the right–hand sides, which is
always the attribute F in this example.

Our algorithm uses a top–down and left–to–the–right and
breadth–first search strategy. The queue is initialized with
all nodes in left–to–right order, which represent most–
general hypotheses. At every step, we take the first element
of the queue, test the hypothesis and if the test is negative,
the node in the tree is expanded and the children are put in
left to right order at the end of the queue.

But we need some more procedures, which can be found in
[Brockhausen, 1994]. As the global data structure for the
exploitation of the transitivity of FDs, we use a graph struc-
ture similar to the one described for the algorithm INCLU-
SION DEPENDENCIES. Here again we start with the known
most–general FDs as edges, i.e. the primary keys, and
after the detection of new FDs by database queries or by
inference, the graph is updated. The procedure for deriv-
ing one new FD because of the transitivity has a running
time O(l + e), where l denotes the number of nodes in
the graph. At the moment we still use search procedures
like DFS or BFS in a graph which also exploit the known
independencies but we do not use any theorem prover.

But this search procedure can be called l times in the worst
case. And worst in this case is the fact that the number of
nodes in the graph can be exponential in n, the number of
attributes. Even if we have n attributes and O(n) tuples in
a single table, it is possible that there exists 
(2

n

2 ) most–
general FDs, as shown in [Mannila and Räihä, 1991], or
correspondingly nodes in the graph.

We should mention that we also use the discovered inclusion
dependencies in the algorithm above. If we know that the set
of values of the attributeA is a proper subset of the attribute
B, then A cannot functionally determine B or A 6! B.

AB AC AD AE BC BD BE CD CE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

DE

ABCD ABCE ABDE ACDE BCDE

ABCDE

A B C D E

Figure 6: Reduction of a semi–lattice into a tree structure

Algorithm DB jrj jRj jXj Time

Savnik/Flach L. 150 19 7 9 m.
Schlimmer B.C. 699 11 4 1 h 14 m.

Bell/Brockh. L. 150 19 7 > 33 h
Bell/Brockh. B.C. 699 11 11 8 m. 53 s.
Bell/Brockh. B.C. 699 11 4 4 m. 19 s.

Table 1: Comparison of the Experimental Results from
[Savnik and Flach, 1993] and [Schlimmer, 1993] with the
algorithm FUNCTIONAL DEPENDENCIES.

4 Evaluation and Conclusions

We compared our algorithm with two approaches:
Savnik and Flach call their method “bottom–up in-
duction of functional dependencies from relations”,
[Savnik and Flach, 1993]. Briefly, they start with a bottom–
up analysis of the tuples and construct a negative cover,
which is a set of FIs. Therefore they have to analyze all
combinations between any two tuples. In the next step they
use a top–down search approach similar to ours in order
to discover the functional dependencies. They check the
validity of a dependency by searching for FIs in the neg-
ative cover. Schlimmer also uses a top–down approach,
but in conjunction with a hash–function in order to avoid
redundant computations [Schlimmer, 1993].

But in contrast to our algorithm, in both articles mentioned,

Database jrj jRj jXj Time N

Books 9931 9 9 4 h 44 min. 25
Books 9931 9 6 4 h 40 min. 25
Books 9931 9 3 2 h 10 min. 20

Table 2: Summary of the results of the algorithm FUNC-
TIONAL DEPENDENCIES.



the authors do not use a relational database like OracleV7
or any other commercial DBMS. They even do not use a
database at all. And this has some important effects on
the results, which will be discussed in the next paragraph.
Table 1 shows a summary of their results, where jrj denotes
the number of tuples, jRj the number of attributes, jXj the
maximal number of attributes on the left–hand side of a FD
and time is the time needed for the discovery of the most–
general–cover. L. stands for the Lymphographydomain and
B.C. for the Breast Cancer domain. For comparison reasons
we introduced such a bound on the number of attributes in
our algorithm.

First, our algorithm cannot detect the FDs in the Lympho-
graphy domain in reasonable time, because we do not hold
the data in main memory like Savnik and Flach. And since
most of the FDs are really long, for some attributes the
shortest most–general FDs have already seven attributes on
the left side, the search space and the overhead for the com-
munication with the database is to big. But it cannot be
said that our approach is inferior to the one of Savnik and
Flach, because the circumstances are to different, namely
the presence or absence of a database for the storage of the
tuples.

Second, in the Breast Cancer domain our algorithm is really
fast, more than seventeen times faster than Schlimmer’s
algorithm. Even without any bound on the length of the
FDs it is still eight times faster and it uses a database. We
conjecture, that this interesting but also unexpected result
is mainly caused by the distinction between the three types
of attributes in the search for functional dependencies.

But of course the two domains above are not typical data-
base applications. Table 2 shows the results of our algorithm
with respect to a real database, the library database of our
computer science department. Here it becomes obvious that
our pruning criterions are efficient, because with a bound
of six attributes and without any bound the time needed is
nearly the same. The differences are neglectable because
there are many more users working on the network and the
results are only reproducible within some bounds. But apart
from the known primary key of the database the discovered
FDs are semantically meaningless.

Furthermore we have stored the tuples of the databases
mentioned above as ordinary PROLOG–Facts. In the Breast
Cancer domain the results were very surprising, because
the database approach is more than four times faster as
using eleven place PROLOG predicates, one place for every
attribute, and simulating the SQL–queries in PROLOG. But
the reason is obvious. This kind of representation is not
efficient because due to the arity of the predicates which
represent the tuples, we have to take into account eleven
variables even for testing unary FDs.

In summary, on can say that the algorithm which we present
in our work has one important advantage over the two ap-
proaches mentioned above. The algorithm is capable of
dealing with great amounts of data, because we use a real
database for the storage. And as a side effect, because we
use standard SQL–statements for the discovery of FDs, our
approach is portable and we can use any database which
"understands" SQL as a query language.

Acknowledgment: This work is partly supported by
the European Community (ESPRIT Basic Research Ac-
tion 6020, project Inductive Logic Programming) and the
Daimler–Benz AG, Contract No.: 094 965 129 7/0191.

References

[Bell, 1995] Bell, S. (1995). Inferring data independencies.
Technical Report 16, University Dortmund, Informatik
VIII.

[Brockhausen, 1994] Brockhausen, P. (1994). Discovery
of functional and unary inclusion dependencies in rela-
tional databases. Master’s thesis, University Dortmund,
Informatik VIII. in german.

[Dehaspe et al., 1994] Dehaspe, L., Laer, W. V., and Raedt,
L. D. (1994). Applications of a logical discovery en-
gine. In Wrobel, S., editor, Proc. of the Fourth Inter-
national Workshop on Inductive Logic Programming,
GMD-Studien Nr. 237, pages 291–304, St. Augustin,
Germany. GMD.

[Kanellakis, 1990] Kanellakis, P. (1990). Formal Models
and Semantics, Handbook of Theoretical Computer Sci-
ence, chapter Elements of Relational Database Theory,
12, pages 1074 – 1156. Elsevier.

[Mannila and Räihä, 1991] Mannila, H. and Räihä, K.-J.
(1991). The design of relational databases. Addison-
Wesley.

[Morik et al., 1993] Morik, K., Wrobel, S., Kietz, J. U.,
and Emde, W. (1993). Knowledge Acquisition and Ma-
chine Learning Theory, Methods, and Applications. Aca-
demic Press

[Savnik and Flach, 1993] Savnik, I. and Flach, P. (1993).
Bottum-up indution of functional dependencies from re-
lations. In Piatetsky-Shapiro, G., editor, KDD-93: Work-
shop on Knowledge Discovery in Databases. AAAI.

[Schlimmer, 1993] Schlimmer, J. (1993). Using learned
dependencies to automatically construct sufficient and
sensible editing views. In Piatetsky-Shapiro, G., editor,
KDD-93: Workshop on Knowledge Discovery in Data-
bases. AAAI.


