Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
Deliverable No. D16.1

Discretization and Grouping operators

Petr Berka?

1 University of Economics
Laboratory for Intelligent Systems
CZ-13065 Prague, Czech Republic

berka@vse.cz

1. December 2002

1 Introduction

The genuine symbolic machine learning algorithms were able to process symbolic, categorial data only.
However, real-world problems, particularly in medicine, involve both symbolic and numerical attributes.
Therefore, there is an important issue of machine learning to discretize numerical attributes. The assignment of
discretization of numerical variables is well known to statisticians. Different approaches are used; for instance,
discretization into a given number of categories using equidistant cutpoints, discretization into given number of
categories with the same cardinality (equifrequent discretization), or categorization based on mean and standard

deviation. All these approaches are “class-blind” (or unsupervised), since they deal only with the discretized
attribute (Fig. 1).

0 ol

15\ 15\

NN I

::312 \h %12 \l\
I sl
S R
ToUA LA LA LA
4 U U

NI BAY SVAY. AV

0 9.25 18.5 27.75 37 1545 0.3 &
hodnota hodnata

Fig. 1 Equidistant and equifrequent discretization

In the framework of machine learning, the fact that the examples (objects) belong to different classes is taken
into account. So the discretization algorithms are “class sensitive” (or supervised) - see Fig. 2. A variety of
algorithms has been developed in the last decade. Most newer versions of machine learning algorithms have
been designed and enhanced by adding the possibility to deal also with numerical data. In ID3 or C4.5, the
algorithms for discretization are based mostly on binarization within a subset of training data created during tree
generation [Catlett, 1991], [Fayyad, Irani, 1993]. KNOWLEDGESEEKER, a commercial system of the TDIDT
family, uses F-statistics instead of y’-statistic to test the dependence when processing a numerical attribute
during tree induction [Biggs et al., 1991]. Another interesting approach to discretization can be found in [Lee,
Shin, 1994]. As pointed out by Elomaa and Rousu [Elomaa, Rousu, 2002], most algorithms are guided by the

criterion of minimal training error — they search for intervals with one dominant class. The differences between
the algortihms are in

e integration with machine learning algorithms (integrated or stand-alone as preprocessing tool),
e search strategy (top-down by splitting intervals or bottom-up by merging intervals),

e the impurity measure for evaluating potential intervals (entropy, information gain, %* test, minimum
classification error),

e number of intervals (binarization or creating more intervals),
e stopping criterion (number of intervals, frequency of intervals),

e type of intervals (most algorithms create crisp intervals, algorithms for creating fuzzy intervals can be found
e.g. in [Bruha, Berka, 2000] or [Peng, Flach, 2001]),

e number of processed attributes (most algorithms are univariate and consider only one numeric attribute a
time, a multivariate algorithm is described e.g. in [Bay, 2000]).

For implementation within the MiningMart project, we choose discretization algorithms that are univariate,
create crisp intervals, perform merging of intervals and have different stopping criterions.

14

podet wiskytu

[+] 2.4 37
hodnota

Fig. 2 Class sensitive discretization

Grouping values of a nominal attribute becomes important if the number of these values is too large (e.g.
hundreds of ZIP codes or profession codes). To deal with each value separately can bring problems both during
computation (e.g. branching a node) and interpretation. While discretization is a standard preprocessing
operation, grouping of values of categorial attribute is less common. Some examples of grouping algorithms can
be found in [Biggs et al., 1991] or [Berka, Bruha, 1998].

For implementation within the MiningMart project, we choose grouping algorithms that are cunterpart to the
discretization ones.

2 Discretization operators

The idea of discretization is to divide the range of a numeric or ordinal attribute (i.e.attribute with values
encoded using numbers) into intervals according to given CutPoints. The CutPoints can be given directly by the
user (UserDefinedDiscretization), can be computed from the request to create equidistant intervals
(EquidistantDiscretizationGivenWidth, EquidistantDiscretizationgivenNoOfInt), from the request to create
equifrequent intervals (EquifrequentDiscretizationGivenCardinality, EquifrequentDiscretizationGivenNoOfint),
or can be computed from the request to create intervals that will help to classify examples (rows) into classes
given in ClassAttribute (ErrorBasedDiscretizationGivenMinCard, ErrorBasedDiscretizationGivenNoOfInt). To
assign the CutPoint, to one of the intervals, two types of intervals are assumed to be created: ClosedToLeft - i.e.
[CutPointy.;, CutPointy), [CutPoint,, CutPointy.,;), and ClosedToRight (CutPointy.;, CutPoint,] (CutPoint,
CutPointy.]. The Labels for the intervals can be given by the user or can be created automatically.

If some out-of-range values (i.e. values not in the interval [ug, vo] = [TheTargetAttribute.min,
TheTargetAttribute.max] which is given in the COLSTATIST1 T) will occur in the data, the discretization
should deal with such situation. There are basically three possibilities: (1) create new ‘boundary’ intervals i.e.
intervals (-0, ug) and (vg, ©), (2) report out-of-range error, or (3) merge boundary intervals with first resp. last
interval — i.e. create intervals (-0, CutPoint;) and (CutPoint 57,). In the specification of operators, I assume
the third option (this option corresponds also to the case that no out-of-range values can occur).

The operators described bellow share a common part that creates a specification of intervals (SQL statement) for
TheTargetAttribute according to CutPoints {ux} and parameter ClosedTo.

Discretize

if Label=NULL then
for k=1 to kmax Label,=k
Labelimax+1= kmax+1

case ClosedTo
’LEFT’: Create View T as Select *, Label; | To.A <u; {Labely | To.A € [ux, Ug+1) } =141 to kmax Lab€lkmax+1

| To.A > Ugmax @as A’ From T
’RIGHT’: Create View T as Select *, Label; | To.A < u; {Labely | Top.A € (U, Ug+1]}i=1+1 to kmax
Labelymax+1 | To-A > Ugmax as A’ From T

2.1 Manual discretization operators

Manual discretization operators use only the information about discretized attribute itself (min, max, frequencies
of distinct values). Three basic types of operators will be implemented: (1) equidistant operators divide the
range of the numeric attribute into intervals with the same width, (2) equifrequent operators divide the range of
the numeric attribute into intervals with the same number of examples, and (3) user defined operator divides the
range of the numeric attribute into intervals according to cutpoints given by the user. Remember, that & cutpoints
will create £+ intervals.

2.1.1 EquidistantDiscretizationGivenWidth

This operator divides the range of TheTargetAttribute into intervals with given width IntervalWidth starting at
StartPoint. The first and the last interval cover also the out of range values'.

e Operator
- name EquidistantDiscretizationGivenWidth
- loopable —yes
- multistepable — no
- manual —yes

e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
StartPoint 0 1 IN \Y
Interval Width 1 1 IN \Y
ClosedTo 1 1 IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints

- TheTargetAttribute is in ThelnputConcept
- TheOutputAttribute is in ThelnputConcept
- TheTargetAttribute is NUMERIC

- ClosedTo one-of ‘LEFT,RIGHT”’

- IntervalWidth is NUMERIC

- IntervalWidth > 0

- StartPoint is NUMERIC

Conditions

Assertions
- TheOutputAttribute is CATEGORIAL

' It would be nice to have a possibility to add this (and all the others) comments to the operators (like the DOCU field in
tables OP_ PARAMS T, OP_ CONSTR_T, OP_COND T).

e OPChecks
- IntervalWidth < (TheTargetAttribute.max — TheTargetAttribute.min)
- StartPoint > TheTargetAttribute.min
- StartPoint < TheTargetAttribute.max

Algorithm
Up := TheTargetAttribute.min, vy := TheTargetAttribute.max
Find CutPoints {uy} : k>1, ux < Uki1 , Ukmaxt1 > Vo, Uks1— Ux = IntWidth
Discretize

Where the Find_CutPoints procedure can be described as follows:

Find_Cutpoints

k=1
If StartPoint == NULL then CutP, = u, else CutP, = StartPoint
repeat until CutPy > v,
CutPys = CutPy + IntWidth
k=k+1
k=k-1

2.1.2 EquidistantDiscretizationGivenNoOfIntervals

This operator divides the range of TheTargetAttribute into given number of intervals NoOflntervals with the
same width. The first and the last interval cover also the out of range values. Values of TheOutputAattribute can
be specified in Label.

e Operator
- name EquidistantDiscretizationGivenNoOfIntervals
- loopable —yes
- multistepable - no
- manual —yes

e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
NoOflIntervals 1 1 IN \Y
ClosedTo 1 1 IN \Y
Label 0 NULL |IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints
- TheTargetAttribute is in ThelnputConcept
- TheOutputAttribute is in ThelnputConcept
- TheTargetAttribute is NUMERIC
- ClosedTo one-of ‘LEFT,RIGHT’
- NoOflIntervals is NUMERIC
- NoOflIntervals > 1
- Label is CATEGORIAL

e Conditions

e Assertions
- TheOutputAttribute is CATEGORIAL

e OPChecks
- NoOflIntervals < number of unique values of TheTargetAttribute

Algorithm
Up := TheTargetAttribute.min, vy := TheTargetAttribute.max
IntWidth := (vg - ug) / NoOfInt
Find CutPoints {uy} : k>1, ux < Ukt , Ukmaxt1 = Vo, Uks1— Ux = IntWidth
Discretize

Where the Find_CutPoints procedure can be described as follows:

Find_Cutpoints

k=1

CutP 1= Ug

repeat until CutPy > v,
CutPy,; = CutPy + IntWidth
k=k+1

k=k-1

2.1.3 EquifrequentDiscretizationGivenCardinality

This operator divides the range of TheTargetAttribute into intervals with given cardinality Cardinality (number
of examples with values within the interval). The first and the last interval cover also the out of range values.
Values of TheOutputAattribute can be specified in Label (this makes sense only if CardinalityType is relative.

e Operator
- name EquifrequentDiscretizationGivenCardinality
- loopable —yes
- multistepable — no
- manual —yes

e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
Cardinality 1 1 IN \Y
CardinalityType 1 1 IN \Y
ClosedTo 1 1 IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints
- TheTargetAttribute is in ThelnputConcept
- TheOutputAttribute is in TheInputConcept
- TheTargetAttribute is NUMERIC
- ClosedTo one-of ‘LEFT,RIGHT’
- Cardinality is NUMERIC
- CardinalityType one-of ‘ABSOLUTE,RELATIVE’
- Cardinality >
e Conditions
- TheTargetAttribute NOT NULL

e Assertions
- TheOutputAttribute is CATGORIAL

e OPChecks
- If CardinalityType is RELATIVE, then Cardinality < 0.5
- If CardinalityType is ABSOLUTE then Cardinality < no_ of rows in the table / 2
(ThelnputConcept.allNumber / 2 ??)

Algorithm
Up := TheTargetAttribute.min, vy := TheTargetAttribute.max
if IntCardType = ‘ABSOLUTE’ then IntCardA := IntCard, else IntCardA :=
ThelnputConcept.alNumber * IntCard
Case ClosedTo
’LEFT’: Find CutPoints {ux} : k>1, ug <Ugs1, Ukmaxs1 = Vo, card([ug ugs1)) = IntCardA
’RIGHT’: Find CutPoints {uy} : k>1, ug <Ugs1, Ukmaxs1 = Vo, card((uy uxi1]) = IntCardA
Discretize

Where the Find_CutPoints procedure can be described as follows”:

Find_CutPoints

sort the values of the numeric attribute in ascending order;
for each value 4, compute the frequency #(z) in the data (available in COLSTAT?)
k=1: i=0: MaxDif=0
Clltpl = Up //u070.001u0
repeat until a; > vq
count =0
repeat until count > IntCardA
count = count + n(a;)
i=i+l
k=k+1:i=i-1
if count — IntCardA > IntCardA — (count — n(a;))
then MaxDif = max(MaxDif, IntCardA — (count — n(a;)))
i=i-1
CutPy = (a; + aj11)/2
else MaxDif = max(MaxDif, count — IntCardA)
CutPy = (a; + aj11)/2
if (MaxDif / IntCardA) > 0.125 then print (error message)

2.1.4 EquifrequentDiscretizationGivenNoOfIntervals

This operator divides the range of TheTargetAttribute into given number of intervals NoOfIntervals. The
intervals have the same cardinality (number of examples with values within the interval). The first and the last
interval cover also the out of range values. Values of TheOutputAattribute can be specified in Label.

e Operator
- name EquifrequentDiscretizationGivenNoOfIntervals
- loopable —yes
- multistepable - no
- manual —yes

e Parameters

* This is a locally optimal method. A globally suboptimal method will require to keep track of all possible
variants (two possibilities for each CutPoint), e.g. for k CutPoints 2* different discretizations.

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
NoOflntervals 1 1 IN \%
ClosedTo 1 1 IN \%
Label 0 NULL |IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints
- TheTargetAttribute is in ThelnputConcept
- TheOutputAttribute is in TheInputConcept
- TheTargetAttribute is NUMERIC
- ClosedTo one-of ‘LEFT,RIGHT’
- NoOflntervals is NUMERIC
- NoOflntervals > 1
- Label is CATEGORIAL

e Conditions
- TheTargetAttribute NOT NULL

e Assertions
- TheOutputAttribute is CATEGORIAL

e OPChecks
- NoOflntervals < number of unique values of TheTargetAttribute

Algorithm
Up := TheTargetAttribute.min, v := TheTargetAttribute.max
IntCardA := ThelnputConcept.allNumber / NoOfInt
Case ClosedTo
’LEFT’: Find CutPoints {ux} : k>1, ugx <Ugs1, Ukmaxs1 = Vo, card([ug ugs1)) = IntCardA
’RIGHT’: Find CutPoints {uy} : k>1, ugx <Ugs1, Ukmaxs1 = Vo, card((uy uxi1]) = IntCardA
Discretize

Where the Find CutPoints procedure can be described as follows:

Find_Cutpoints

sort the values of the numeric attribute in ascending order;
for each value 4, compute the frequency #(z) in the data (available in COLSTAT?)
k=1: i=0: MaxDif=0
CUtPl = Up //U()—0.00IUO
repeat until a; > vy
count =0
repeat until count > IntCardA
count = count + n(a;)
i=itl
k=k+1
if count — IntCardA > IntCardA — (count — n(a;))
then MaxDif = max(MaxDif, IntCardA — (count — n(a;)))
i=i-1
u = (a; + ai)/2
else MaxDif = max(MaxDif, count — IntCardA)
u = (a; + ai)/2
if (MaxDif / IntCardA) > 0.125 then print (error message)

2.1.5 UserDefinedDiscretization

This operator divides the range of TheTargetAttribute into intervals according to user given cutpoints
TheCutpoints. Values of TheOutputAattribute can be specified in Label.

e Operator
- name UserDefinedDiscretization
- loopable —yes
- multistepable - no
- manual —yes

e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
ClosedTo 1 1 IN \%
TheCutpoints 1 NULL |IN \%
Label 0 NULL |IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints
- TheTargetAttribute is in ThelnputConcept
- TheOutputAttribute is in TheInputConcept
- TheTargetAttribute is NUMERIC
- ClosedTo one-of ‘LEFT,RIGHT’
- TheCutpoints is NUMERIC
- TheCutpointsK+1 > TheCutpointsK
- Label is categorial
e Conditions

e Assertions
- TheOutputAttribute is CATEGORIAL

e OPChecks
- TheCutpoints_ < TheTargetAttribute.max
- TheCutpoints_ > TheTargetAttribute.min
Algorithm
Discretize

2.2 ML discretization operators

The algorithms proposed for implementation in MiningMart discretize a single attribute into crisp intervals,
perform bottom-up search, can create more intervals and are based on minimum classification error criterion.
The training data are taken as random sample of given size (default size is 10 000).

2.2.1 ImplicitErrorBasedDiscretization

This operator divides the range of TheTargetAttribute into intervals by merging subsequent values with the same
majority class (or classes) given in TheClassAttribute. The resulting intervals minimize the classification error.
If FullMerge is set to yes, then an interval with two or more majority classes is merged with its neighbour, if
both intervals share the same majority class.

e Operator
- name ImplicitErrorBasedDiscretization
- loopable —yes
- multistepable - no
- manual —no

e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheClassAttribute 1 1 IN BA
TheTargetAttribute 1 1 IN BA
FullMerge 1 1 IN \%
ClosedTo 1 1 IN \%
SampleSize 0 1 IN \%
TheOutputAttribute 1 1 OUT |BA

e Constraints
- TheTargetAttribute is in ThelnputConcept
- TheOutputAttribute is in TheInputConcept
- TheTargetAttribute is NUMERIC
- TheClassAttribute is in ThelnputConcept
- TheClassAttribute is CATEGORIAL
- FullMerge one-of ‘YES,NO’
- ClosedTo one-of ‘LEFT,RIGHT’
- SampleSize is NUMERIC
- SampleSize > 0
e Conditions
- TheTargetAttribute NOT NULL
- TheClassAttribute NOT NULL
e Assertions
- TheOutputAttribute is CATEGORIAL

Algorithm
Create stratified sample of ThelnputConcept
Up := TheTargetAttribute.min, vy := TheTargetAttribute.max
Find CutPoints {ux} : k>1, ux < U1, Ukmaxr1 = Vo, card((ug ugs1)) > MinIntCardA
Discretize

Where the Find_CutPoints procedure can be described as follows:

Find_CutPoints

1. sort the values of the numeric attribute in ascending order;

2. for each value 4
2.1. LBound; := (a;.;+ay)/2, UBound; := (a;+a;.;)/2
2.2. count the frequencies of each class and store the max frequency into maxfi-eq;
2.3. assign class label using procedure ASSIGN;

3. create intervals using procedure INTERVAL,;

ASSIGN: //unique label corresponds to each combination of most frequent classes that can occur
label =0
fork=1to No_of classes

if ng(a) = maxfreq then label = label + 2* // my(a) is #.examples with value a belonging to class &

INTERVAL:

1. create interval INT = [I.Bound, UBound] for a sequence of values with the same class label; /first pass

2. if FullMerge="YES’ then

2.1 for each interval INT, //second pass
2.1.1 if INT, has no single majority class //i.e. label equals 2*

then create interval INT,, INT; or INT; or INT, U INT,,, that will not increase the min. error
if both merges are possible, then prefer merge with single majority class interval, if both merges
are possible then prefer merge with interval with smaller frequency

// a merge will not increase the error, if both intervals share same majority class, i.e. labelAd bitAND labelB > 0

10

Min. error for an interval is computed as n(Int) — n(Int);
where n(Int) is the no. of examples having the value in the interval
n(Int) is the no. of examples of the majority class having the value in the interval

2.2.2 ErrorBasedDiscretizationGivenMinCardinality

This operator divides the range of TheTargetAttribute into intervals with cardinality greater or equal to
MinCardinality. The numeric attribute is divided into intervals with respect to TheClassAttribute, but unlike the
implicit discretization, intervals with single majority class are further merged if they do not have the required
cardinality. This will increase the classification error.

e Operator
- name ErrorBasedDiscretizationGivenMinCardinality
- loopable —yes
- multistepable - no
- manual —no

e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheClassAttribute 1 1 IN BA
TheTargetAttribute 1 1 IN BA
MinCardinality 1 1 IN \Y
MinCardinalityType |1 1 IN \Y
ClosedTo 1 1 IN)\
SampleSize 0 1 IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints

- TheTargetAttribute is in ThelnputConcept

- TheOutputAttribute is in TheInputConcept

- TheTargetAttribute is NUMERIC

- TheClassAttribute is in ThelnputConcept

- TheClassAttribute is CATEGORIAL

- ClosedTo one-of ‘LEFT,RIGHT’

- MinCardinality is NUMERIC

- MinCardinalityType one-of ‘ABSOLUTE,RELATIVE’
- MinCardinality > 0 SampleSize is NUMERIC

- SampleSize > 0

e Conditions
- TheTargetAttribute NOT NULL
- TheClassAttribute NOT NULL
e Assertions
- TheOutputAttribute is CATEGORIAL
e OPChecks
- If MinCardinalityType is RELATIVE, then MinCardinality < 0.5
- If MinCardinalityType is ABSOLUTE then MinCardinality <no of rows in the table /2
Algorithm

Create stratified sample of ThelnputConcept

Up := TheTargetAttribute.min, v := TheTargetAttribute.max

if MinCardinalityType = ‘ABSOLUTE’ then MinCardA := MinCardinality, else MinCardA :=
ThelnputConcept.alNumber * MinCardinality

Find_CutPoints {uy} : k>1, ux <Uxs1 , Ukmaxs1 = Vo, card((ug Uxs1)) > MinIntCard A

Discretize

11

Where the Find_CutPoints procedure can be described as follows:

Find_CutPoints

1. sort the values of the numeric attribute in ascending order;

2. for each value 4
2.1. LBound, := (a.;+ay)/2, UBound; : = (a;ta;.;)/2
2.2. count the frequencies of each class and store the max frequency into maxfieq;
2.3. assign class label using procedure ASSIGN;

3. create intervals using procedure INTERVAL;

ASSIGN: //unique label corresponds to each combination of most frequent classes that can occur
label =0
for k= 1to No_of classes

if ny(a) = maxfireq then label = label + 2%/l my(a) is #.examples with value a belonging to class k&

INTERVAL:
1. create interval INT = /L.Bound, UBound] for a sequence of values with the same class label; //first
2. do while the frequencies of intervals are smaller then MinlntCardA //second
2.1 take the interval with smallest frequency as INT,
2.2 create either interval INT,, INT, or INT, CINT,,, according to min. error
if both merges are possible, then prefer merge with single majority class interval, if
both merges are possible then prefer merge with interval with smaller frequency
/I 'a merge will not increase the error, if both intervals share same majority class, i.e.
labelA bitAND labelB > 0
2.3. update frequency of the new interval

2.2.3 ErrorBasedDiscretizationGivenNoOfInt

This operator divides the range of TheTargetAttribute into at most NoOfIntervals intervals. The numeric
attribute is divided into intervals with respect to TheClassAttribute, but unlike the implicit discretization, if the
number of interval exceeds NoOfInt, intervals are further merged. This will increase the classification error.
Values of TheOutputAattribute can be specified in Label.

e Operator
- name ErrorBasedDiscretizationGivenNoOfInt
- loopable —yes
- multistepable - no
- manual —no

e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheClassAttribute 1 1 IN BA
TheTargetAttribute 1 1 IN BA
NoOflIntervals 1 1 IN \Y
ClosedTo 1 1 IN \Y
SampleSize 0 1 IN \Y
Label 0 NULL |IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints
- TheTargetAttribute is in ThelnputConcept
- TheOutputAttribute is in TheInputConcept
- TheTargetAttribute is NUMERIC
- TheClassAttribute is in ThelnputConcept
- TheClassAttribute is CATEGORIAL
- ClosedTo one-of ‘LEFT,RIGHT’
- NoOflIntervals is NUMERIC

12

- NoOflIntervals > 1

- SampleSize is NUMERIC

- SampleSize > 0

- Label is CATEGORIAL
e Conditions

- TheTargetAttribute NOT NULL

- TheClassAttribute NOT NULL
e Assertions

- TheOutputAttribute is CATEGORIAL
e OPChecks

- NoOflIntervals < number of unique values of TheTargetAttribute

Algorithm
Create stratified sample of ThelnputConcept
up := TheTargetAttribute.min, v := TheTargetAttribute.max
Find CutPoints {uy} : k>1, ug <Ugs1, Ukmaxt1 = Vo, Kmax = NoOfInt
Discretize

Where the Find CutPoints procedure can be described as follows:

Find_CutPoints

1. sort the values of the numeric attribute in ascending order;

2. for each value 4
2.1. LBound; := (a;.;+ay)/2, UBound; : = (a;+a;.;)/2
2.2. count the frequencies of each class and store the max frequency into maxfi-eq;
2.3. assign class label using procedure ASSIGN;

3. create intervals using procedure INTERVAL,;

ASSIGN: //unique label corresponds to each combination of most frequent classes that can occur
label =0
for k= 1to No_of classes

if ny(a) = maxfireq then label = label + 2%/ my(a) is #.examples with value a belonging to class k&

INTERVAL:
1. create interval INT = [L.Bound, UBound] for a sequence of values with the same class label; //first
2. for each interval INT, //second
2.1 if INT, has no single majority class //i.e. label bitAND 2"°-9-<"%s | > |
2.1.1 then create either interval INT;, ' INT, or INT, or INT, U INT,,, according to
min. error
2.1.2 if NoOfInt is reached then terminate
3. do while the no. of intervals is greater then NoOfint //third
take the interval with smallest frequency as INT,
create either interval INT,, INT, or INT, UINT.,, according to min. error

3 Grouping operators

The idea of grouping is to merge values of a categorial attribute to have less but more frequent values. The
values of TheTargetAttribute that will belong to a group can be given directly by the user
(UserDefinedGrouping), can be found from the request to have a minimal cardinality (no of examples — rows) of
the groups (GroupingGivenMinCardinality), can be found from the request to have a given number of groups’
(GroupingGivenNoOfGroups), or can be found from the request to have groups that that will help to classify
examples (rows) into classes given in ClassAttribute. The Labels for the groups can be given by the user or can

be created from the original values of TheTargetAttribute within a group.

’ Since there is no ordering between the values of a categorial attribute, an equivalent to equidistant

discretization makes no sense.

13

As for discretization, there is again a common part of all operators that creates the SQL statement for defining
the groups:

Group
if Label=NULL then Label,="G ¢ + k
Create View T as Select *, {Labely | To.A € {ux;}i }x as A’ From T,

3.1 Manual grouping operators

The proposed manual grouping operators are a counterpart to equifrequent and user defined discretization
operators.

3.1.1 GroupingGivenMinCardinality

This operator groups values of TheTargetAttribute by iteratively merging in each step two groups with the
lowest frequencies until all groups have the cardinality (number of examples with values within the interval) at
least MinCardinality. The algorithm has been inspired by hierarchical clustering.

e Operator
- name GroupingGivenMinCardinality
- loopable —yes
- multistepable — no
- manual —yes

e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
MinCardinality 1 1 IN \Y
MinCardinalityType |1 1 IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints
- TheTargetAttribute is in ThelnputConcept
- TheTargetAttribute is CATEGORIAL
- TheOutputAttribute is in TheInputConcept
- MinCardinality is NUMERIC
- MinCardinalityType one-of ‘ABSOLUTE,RELATIVE’
- MinCardinality > 0

e Conditions
- TheTargetAttribute NOT NULL
e Assertions
- TheOutputAttribute is CATEGORIAL

e OPChecks
- If MinCardinalityType is RELATIVE, then MinCardinality < 0.5
- If MinCardinalityType is ABSOLUTE then MinCardinality < no_of rows in the table / 2
(ThelnputConcept.allNumber / 2 ??)
Algorithm

if MinCardinalityType = ‘ABSOLUTE’ then MinCardA := MinCardinality, else MinCardA :=
ThelnputConcept.alNumber * MinCardinality

forall uy; such that card (ux;) <MinCardA
Find Groups {Uy Ux ={ux;}i} : k>1, card(Uy) > MinCardA

Group

14

Where the Find_Groups procedure can be described as follows:

Find_Groups

1. create one group for each value
2. until each group has the frequency at least MinCardA do
2.1. sort the values in ascending order of their frequencies
2.2. merge first two groups into new group(i.e. the groups with lowest frequencies)

3.1.2 GroupingGivenNoOfGroups

This operator groups values of TheTargetAttribute by iteratively merging in each step two groups with the
lowest frequencies until the number of groups NoOfGroups is reached. The algorithm has been inspired by
hierarchical clustering. Values of TheOutputAttribute can be specified in Label.

e Operator
- name GroupingGivenNoOfGroups
- loopable —yes
- multistepable - no
- manual —yes
e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
NoOfGroups 1 1 IN \Y
Label 0 NULL |IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints
- TheTargetAttribute is in ThelnputConcept
- TheTargetAttribute is CATEGORIAL
- TheOutputAttribute is in ThelnputConcept
- NoOfGroups is NUMERIC
- NoOfGroups > 1
- Label is CATEGORIAL

e Conditions
- TheTargetAttribute NOT NULL

e Assertions
- TheOutputAttribute is CATEGORIAL

e OPChecks
- NoOfGroups < number of unique values of TheTargetAttribute
Algorithm
Find Groups {Uy Uy ={uy;}i} : k=NoOfGroups
Group

Where the Find_Groups procedure can be described as follows:

Find_Groups

1. create one group for each value
2. repeat until the number of groups is NoOfGroups
2.1. sort the values in ascending order of their frequencies
2.2. merge first two groups into new group(i.e. the groups with lowest frequencies)

15

3.1.3 UserDefinedGrouping

This operator creates groups of TheTargetAttribute according to specifications given by the user in
TheGroupings. Values not specified for grouping retain their original values. Unlike in the operator Mapping,
more groups can be defined (TheGroupings is for each group a list of values). Values of TheOutputAttribute can
be specified in Label.

e Operator
- name UserDefinedGrouping
- loopable —yes
- multistepable - no
- manual —yes

e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
TheGroupings 1 NULL |IN \4
Label 0 NULL |IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints
- TheTargetAttribute is in ThelnputConcept
- TheTargetAttribute is CATEGORIAL
- TheOutputAttribute is in ThelnputConcept
- TheGroupings is CATEGORIAL
- Label is CATEGORIAL

e Conditions

e Assertions
- TheOutputAttribute is CATEGORIAL

Algorithm
Find Groups
Group

Where the Find_Groups procedure can be described as follows:

Find_Groups

1. create one group for each list of values given by the user
2. create one group for each remaining value not assigned to any group

3.1.4 UserDefinedGroupingWithDefaultValue

This operator creates groups of TheTargetAttribute according to specifications given by the user in
TheGroupings. Values not specified for grouping are grouped into default group Default. Unlike in the operator
MappingWithDefaultValue, more groups can be defined (TheGrouping is for each group a list of values). Values
of TheOutputAttribute can be specified in Label.

e Operator
- name UserDefinedGroupingWithDefaultValue
- loopable —yes
- multistepable - no
- manual —yes

16

e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
Default 1 1 IN Vv
TheGroupings 1 NULL |IN \4
Label 0 NULL |IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints
- TheTargetAttribute is in ThelnputConcept
- TheTargetAttribute is CATEGORIAL
- TheOutputAttribute is in ThelnputConcept
- TheGroupings is CATEGORIAL
- Label is CATEGORIAL
- Default is CATEGORIAL

e Conditions

e Assertions
- TheOutputAttribute is CATEGORIAL

Algorithm
Find Groups
Group

Where the Find_Groups procedure can be described as follows:

Find_Groups

1. create one group for each list of values given by the user
2. create one group for all remaining value not assigned to any group and assign the Default
to this group

3.2 ML grouping operators

The machine learning grouping operators proposed for implementation in MiningMart were designed as an
extension of machine learning discretization. They group values of a single attribute using the minimum
classification error criterion. The training data are taken as random sample of given size (default size is 10 000).

3.2.1 ImplicitErrorBasedGrouping

This operator merges the values of TheTargetAttribute into groups with the same majority class (or classes)
given in TheClassAttribute. If FullMerge is set to yes, then a group with two or more majority classes is merged
with a group that have the same majority class. The resulting grouping minimize the classification error.

e Operator
- name ImplicitErrorBasedGrouping
- loopable —yes
- multistepable - no
- manual —no

17

Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
TheClassAttribute 1 1 IN BA
FullMerge 1 1 IN \%
SampleSize 0 1 IN \%
TheOutputAttribute 1 1 OUT |BA
Constraints

- TheTargetAttribute is in ThelnputConcept
- TheTargetAttribute is CATEGORIAL

- TheClassAttribute is in ThelnputConcept
- TheClassAttribute is CATEGORIAL

- FullMerge one-of ‘YES,NO’

- TheOutputAttribute is in ThelnputConcept
- SampleSize is NUMERIC

- SampleSize > 0

e Conditions

- TheTargetAttribute NOT NULL

- TheClassAttribute NOT NULL
e Assertions

- TheOutputAttribute is CATEGORIAL
Algorithm

Create Groups {Uy Ux ={uy;}i} : k>TheClassAttribute.distinct
Group

Where the Create Groups procedure can be described as follows:

1.

2.

Create_Groups

for each value «

1.1. count the frequencies of each class and store the max frequency into maxfi-eq;
1.2. assign class label using procedure ASSIGN;

create groups using procedure GROUP;

ASSIGN: //unique label corresponds to each combination of most frequent classes that can occur
label =0
for k=1to No_of classes

if ny(a) = maxfireq then label = label + 2%/l my(a) is #.examples with value a belonging to class k&

GROUP:
1.
2.

create one group for values with the same class label; //first
if FullMerge="YES’ then //second
2.1. sort the groups having single majority class in ascending order into list 4
2.2. sort the groups having no single majority class in ascending order into list B
2.3. repeat until each group from list B has been processed
2.3.1. take first group from the list B //i.e. group with lowest frequency
2.3.2. add this group to the first group from the list A that will not increase the
classification error
//i.e. to a group form A that has the same majority class and that has the lowest frequency
2.3.3. resort list 4

18

3.2.2 ErrorBasedGroupingGivenMinCardinality

This operator merges the values of TheTargetAttribute into groups with the cardinality above given threshold
MinCardinality. The grouping is performed with respect to TheClassAttribute, but unlike implicit grouping,
groups with single majority class are further merged if they do not have the required cardinality. This will

increase the classification error.

e Operator

e Parameters

name ErrorBasedGroupingGivenMinCardinality
loopable —yes

multistepable - no

manual — no

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
TheClassAttribute 1 1 IN BA
MinCardinality 1 1 IN \4
MinCardinalityType | 1 1 IN \4
SampleSize 0 1 IN \%
TheOutputAttribute 1 1 OUT |BA

° Constraints

e Conditions

e Assertions

e OPChecks
Algorithm
if MinC

TheTargetAttribute is in ThelnputConcept
TheTargetAttribute is CATEGORIAL
TheClassAttribute is in ThelnputConcept
TheClassAttribute is CATEGORIAL
TheOutputAttribute is in ThelnputConcept
MinCardinality is NUMERIC

MinCardinality Type one-of ‘ABSOLUTE,RELATIVE’
MinCardinality > 0

SampleSize is NUMERIC

SampleSize > 0

TheTargetAttribute NOT NULL
TheClassAttribute NOT NULL

TheOutputAttribute is CATEGORIAL

If MinCardinalityType is RELATIVE, then MinCardinality < 0.5
If MinCardinalityType is ABSOLUTE then MinCardinality < no_of rows_in the table / 2

(ThelnputConcept.allNumber / 2 ??)

ardinalityType = ‘ABSOLUTE’ then MinCardA := MinCardinality, else MinCardA :=

ThelnputConcept.alNumber * MinCardinality
Create Groups {Uy Uy ={ugi}i} : n(Ux) > MinCardA

Group

Where the Create Groups procedure can be described as follows:

19

Create_Groups

1. for each value 4
1.1. count the frequencies of each class and store the max frequency into maxfreq;
1.2. assign class label using procedure ASSIGN;

2. create groups using procedure GROUP;

ASSIGN: //unique label corresponds to each combination of most frequent classes that can occur
label =0
fork =1to No_of classes

if ng(a) = maxfreq then label = label + 2% // ny(a) is #.examples with value a belonging to class &

GROUP:

1. create one group for values with the same class label; //first

2. sort the groups in ascending order of their frequencies into list 4

3. for all groups from A with frequency bellow MinCardA //second i.e. processing of ordered
list A starting with lowest frequencies

3.1. create a merge (new group) that will minimize the increase of classification error
3.2 update frequency of the new group
3.3. resort list 4

3.2.3 ErrorBasedGroupingGivenNoOfGroups

This operator merges the values of TheTargetAttribute into at most NoOfGroups groups. The grouping is
performed with respect to TheClassAttribute, but unlike the implicit discretization, if the number of groups
exceeds NoOfGroups, groups are further merged. This will increase the classification error. Values of
TheOutputAttribute can be specified in Label.

e Operator
- name ErrorBasedGroupingGivenNoOfGroups
- loopable —yes
- multistepable - no
- manual —no

e Parameters

Name minarg | maxarg | IO type
ThelnputConcept 1 1 IN CON
TheTargetAttribute 1 1 IN BA
TheClassAttribute 1 1 IN BA
NoOfGroups 1 1 IN \%
SampleSize 0 1 IN \%
Label 0 NULL |IN \Y
TheOutputAttribute 1 1 OUT |BA

e Constraints
- TheTargetAttribute is in ThelnputConcept
- TheTargetAttribute is CATEGORIAL
- TheClassAttribute is in ThelnputConcept
- TheClassAttribute is CATEGORIAL
- TheOutputAttribute is in ThelnputConcept
- Label is CATEGORIAL
- NoOfGroups is NUMERIC
- NoOfGroups > 1
- SampleSize is NUMERIC
- SampleSize > 0

20

Conditions

- TheTargetAttribute NOT NULL
- TheClassAttribute NOT NULL

Assertions

- TheOutputAttribute is CATEGORIAL

Algorithm

Create Groups {Uy Uy ={ugi}i} : n(Uyx) = NoOfGropus
Group

Where the Create_Groups procedure can be described as follows:

1.

2.

2.
3.
4

Create_Groups

for each value 4

1.1. count the frequencies of each class and store the max frequency into maxfi-eq;
1.2. assign class label using procedure ASSIGN;

create groups using procedure GROUP;

ASSIGN: //unique label corresponds to each combination of most frequent classes that can occur
label =0
fork=1to No of classes

if ny(a) = maxfireq then label = label + 2% I/ my(a) is #.examples with value a belonging to class k&

GROUP:
1.

create one group for values with the same class label; //first

sort the groups having single majority class in ascending order into list 4

sort the groups having no single majority class in ascending order into list B

repeat until each group from list B has been processed //second

4.1. take first group from the list B //i.e. group with lowest frequency

4.2. add this group to the first group from the list A that will not increase the classification
error

//i.e. to a group form A that has the same majority class and that has the lowest frequency

4.3. resort list 4

4.4. if NoOfGroups is reached then terminate

repeat until the number of groups in 4 is NoOfGroups //third

/Iprocessing of ordered list A starting with lowest frequencies

5.1. take first group from the list A

5.2. create a merge that will minimize the increase of classification error

5.3. resort list A4

21

References:

[Bay, 2000] Bay,S.D: Multivariate Discretization of Continuous Variables for Set Mining. In: Proc. of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000.

[Berka, Bruha, 1995] Berka,P. - Bruha,l.: Various discretization procedures of numerical attributes: Empirical
comparisons. In: (Kodratoff, Nakhaeizadeh, Taylor eds.) Proc. MLNet Familiarization Workshop on Statistics,
Machine Learning and Knowledge Discovery in Databases, Herakleion, 1995, p.136-141.

[Berka, Bruha, 1998] Berka,P. - Bruha,l.: Discretization and Grouping: Preprocessing Steps for Data Mining. In:
(Zytkow, Quafafou eds.) Proc. Principles of Data Mining and Knowledge Discovery PKDD'98, LNAI 1510,
Springer, 1998, 239-245.

[Biggs et al., 1991] Biggs,D. - de Ville,B - Suen,E.: A~method of choosing multiway partitions for
classification and decision trees. Journal of Applied Statistics, Vol. 18, No. 1, 1991, 49-62.

[Bruha, Berka, 2000] Bruha,l, - Berka,P.: Discretization and Fuzzification of Numerical Attributes in Attribute-
Based Learning. In: (Szcepaniak,P.S. - Lisboa,P.J.G. - Kacprzyk,J, eds.) Fuzzy Systems in Medicine. Physica
Verlag, 2000, 112-138. ISBN 3-7908-1263-3.

[Catlett, 1991] Catlett,].: On changing continuous attributes into ordered discrete attributes. In: Y. Kodratoff, ed.:
Machine Learning - EWSL-91, Springer-Verlag, 1991, 164-178.

[Dougherty et al. 1995] Dougherty,J. - Kohavi,R. —Sahami,M.: Supervised and unsupervised discretization of
continuous features. In Proc. 12th Int. Conf. on Machine Learning, 1995.

[Elomaa, Rousu, 2002] Elomaa,T. — Rousu,J.: Fast Minimum Error Discretization. In: Proc. 19™ Int. Conf. On
Machine Learning ICML2002, Morgan Kaufman, 2002, 131-138.

[Fayyad, Irani, 1993] Fayyad,U.M. - Irani,K.B.: Multi-Interval Discretization ofContinuous-Valued Attributes
for Classifiacation Learning. In: Proc.IJCAI'93, 1993.

[Lee, Shin, 1994] Lee,C. - Shin,D.: A Context-Sensitive Discretization of Numeric Attributes for Classification
Learning. In: (Cohn,A. ,ed.), ECAI'94, Amsterdam, John Wiley \& Sons, 1994, 428-432.

[Peng, Flach, 2001] Peng,Y. — Flach,P.A.: Soft Discretization to Enhance the Continuous Decision Tree
Induction. Int. Workshop on Integration and Collaboration Aspects of Data Mining, Decision Support and Meta-
Learning, ECMLPKDD2001, Freiburg, 2001

22

