Get some Coffee for free — Writing
Operators with RapidMiner Beans

Christian Bockermann and Hendrik Blom
Technical University of Dortmund
Artificial Intelligence Group
{christian.bockermann,hendrik.blom}@udo.edu

Abstract

RapidMiner has become a valuable tool for business intelligence as
well as in highschool education. Its plugin mechanism allows for creating
powerful extensions and various plugins exist for different applications,
data formats and learning schemes.

In this paper we present the RapidMiner Beans library, a simple li-
brary and plugin that aims at simplifying the development and doc-
umentation of custom operators using standard Java technologies like
annotations and JavaBeans conventions.

One of the main objectives is to allow for the developer to solely focus
on the operator development without caring about the house keeping
required. For demonstration we give an example implementation that
shows the benefits of the RapidMiner Beans.

1 Introduction

RapidMiner is a powerful tool for various data analysis and business intelli-
gence tasks. It provides a wide range of data mining and machine learning
algorithms, data pre-processing operators and evaluation methods. One of
its strongest qualities is the plugin architecture, which allows for extending
RapidMiner with additional functions using RapidMiner Extensions or Plug-
ins.

These plugins add new operators and functions to the core RapidMiner
suite and are implemented within the RapidMiner programming API. Over
the years this API has evolved to a powerful — yet sometimes complicated to
learn — instrument. Besides their core implementation, operators need to be
registered within the operator descriptions file and various additional meta
data files need to be defined for creating a custom plugin.

When developing extensions or plugins for RapidMiner, we often see stu-
dents and new developers struggling with the same hurdles, a very big one of
which is related to the plugin definition files. A second unpleasant burden is
the way to document operators.

Whereas the former issue can be solved by some investment in setup time
of the development environment, the latter causes the more severe follow-up as
it discourages developers/students to properly document their achievements.
This effectively feeds another hurdle — usage of the new operators within the
student/RapidMiner community.

With the RapidMiner Beans plugin/library we approach these issues by

(a) lowering the effort required to write and deploy a new operator
(b) providing a simple tool for documenting that operator.

One of our superior goals was to achieve these objectives by working as close to
the existing path of developing RapidMiner operators as possible — just with
a little simplification.

In addition to this, we seek to feed some coding guidelines by following well-
accepted conventions such as JavaBeans[I] and the use of Java’s annotations
mechanism. This allows for creating new operators by creating a single Java
class file as well as additionally creating a single text file for documentation.
Everything else will be taken care of by the RapidMiner Beans framework.

The rest of this paper is organized as follows: Section [2| gives a short
high-level overview of the RapidMiner Beans library and the JavaBean conven-
tions used within. Following that we will give a walk-through example for
implementing and loading a RapidMiner operator simply with annotations in
Section [3] Next we will demonstrate how to document our operator using the
Markdown wiki-like dialect. Finally we will give some outlook on future work.

2 RapidMiner Beans — Overview

The RapidMiner plugin meachnism requires operators to be defined within a
descriptive XML file. This file is referenced in RapidMiner extension files and
used to register operators of a plugin at the start of RapidMiner. For each
operator, the XML file contains

e the operator’s name,
e a short description of the operator,
e the class implemeting the operator, and

e the group in which the operator is displayed within RapidMiner.

The RapidMiner Beans library facilitates two aspects: It is a standalone
library that provides a small set of Java annotations. This allows to define
all of the operator properties directly within the class by using class-level
annotations.

As a second aspect the RapidMiner Beans library implements a plugin itself.
At RapidMiner start-up time this plugin will check for classes annotated with
the aforementioned annotations and register these in RapidMiner. This allows
for adding new operators by simply creating annotated Java classes.

2.1 JavaBeans and Parameter Annotations

Partially following the JavaBeans conventions, operators can be equipped with
get- and set-methods. By annotating these methods with field- or method-
level @ParameterInfo annotations, this allows for automatically extracting
RapidMiner parameter type lists.

With the @ParameterInfo annotation all basic properties of parameters
that are required for displaying parameters within the RapidMiner user inter-
face can be defined. This further decouples the operator implementation from
the GUI layer aiming towards a cleaner separation of view and logic.

2.2 Operator Documentation

Finally, the documentation of operators is another important aspect of the
RapidMiner Beans library. For this, we focus on the simple Markdown format,
a simple wiki-like markup language that has recently become popular in portals
such as github.com, and which easily translates to HTML.

For documentation, the RapidMiner Beans library requires a simple text file
to be created for each operator, with the same name as the operators Java file
but with the .md-extension instead.

This simple convention requires two files to be touched for creating a com-
plete and documented operator: An annotated Java file and a single Markdown
text file.

2.3 Support for User-Libraries

When being added to the RapidMiner plugins directory, the RapidMiner Beans
library acts as a plugin that will search for external JAR files found in the
.RapidMiner5/beans directory of the current user’s home directory. Any
JAR file within that directory will be checked for classes annotated with the
@0peratorInfo annotation.

This alternate plugin mechanism has proven to be useful especially in envi-
ronments where users are not allowed write-access to a central/shared instal-
lation of the RapidMiner suite.

© 00 O Ut W~

3 Example — A simple Operator

In this section we will outline the implementation of a simple operator using
the RapidMiner Beans library. As mentioned above, this requires the class to
be annotated using the RapidMiner Beans annotations. Everything else follows
the regular RapidMiner operator implementation.

We will outline the annotations in Section [B.1] and will show the use of
parameter annotations in Section [3.2]

3.1 Operator Annotations

The sample code in Figure [1] implements a very basic RapidMiner operator.
The class inherits the Operator super class and implements an almost empty
doWork () method, which effectively passes through any input received at its
input port.

Apart from the @0peratorInfo annotation, present in this class, the code
follows the usual implementation of a RapidMiner operator. The annotation,
however, defines all information that is required for registering an operator
with RapidMiner. With the RapidMiner Beans library present in the Rapid-
Miner plugins directory, all classes that are annotated with @0peratorInfo
are added to the list of RapidMiner operators.

import com.rapidminer.beans.annotations.OperatorInfo;
import com.rapidminer.beans.annotations.ParameterInfo;

@OperatorInfo(name="Sample Operator", group="RapidMinerBeans.Example",
description="A simple pass-through Operator")
public class SampleOperator extends Operator {

Inputport input = getInputPorts().createPort("input");
OutputPort output = getOutputPorts().createPort("output");

/** Simply pass through the input object to the output port */
public void doWork(){
I00bject in = input.getDataOrNull();
if(in != null){
output.deliver(in);

}

Figure 1: A simple RapidMiner operator. Lines 4-5 do provide the
@0peratorInfo annotation, defining the name, group and tooltip-text of the
operator within RapidMiner.

3.2 Adding Parameters with OperatorBeans

In this section we will be extending the operator implementation of Figure
by adding parameters following the JavaBeans convention. The parameters
are annotated using the @ParameterInfo annotation of the RapidMiner Beans
library. Figure[2]shows the enhanced example operator with additional param-
eters lambda and name. In the case of the lambda parameter in the example,
the @ParameterInfo has been added to the class field of the operator. Alter-
natively, it is also possible to add this annotation to the set- or get-method
as for the name parameter in Figure

@OperatorInfo(name="Sample Operator", group="RapidMinerBeans.Example",
description="A simple pass-through Operator")
public class SampleOperator extends OperatorBean {
// port definitions left out for brevity...

QParameterInfo(required = true, min = 0.0, max = 1.0,
description = "A threshold value")
Double lambda = 0.0; // A parameter of type double

String name = ""; // A string type parameter

/** A set-method for the ’lambda’ parameter */
public void setLambda(Double d){

this.lambda = d;
}

/** A set-method for the ’name’ parameter */
@ParameterInfo(required = false,
description = "An optional name parameter")
public void setName(String name){
this.name = name;

}

/** The doWork method */
public void doWork(){

if(lambda > 0.5){ ... }
}

Figure 2: A OperatorBean example, which is a simple operator that provides
JavaBean-style parameters. The OperatorBean class ensures that all parame-
ters are set before the doWork () method is executed.

The annotations ensure, that the parameter lists of the operator can be
detected. The RapidMiner Beans library also provides the necessary meth-
ods to inject the user-entered parameter values into the operator. For this,
the class extends the super class OperatorBean, which ensures that all pa-

rameters have been set when the doWork() method is called during operator
execution. The OperatorBean class also automatically provides the parameter
type lists, required by RapidMiner to display the required parameters in the
graphical user-interface. An analogue bean also exists for OperatorChains.
Alternatively, the beans functionality is provided by the RapidMinerBeans
class.

4 Writing Documentation

As mentioned before, the RapidMiner Beans library uses Markdown [2] as for-
mat for documentation. The documentation is provided by following a very
simple convention:

If the operator class is my.package.Operator, the documentation is ex-
pected to be found in a file /my/package/Operator.md within the classpath.

The objective of this simple rule is to encourage developers to document
their operators by simply creating a single additional text file that provides a
textual description.

4.1 The Markdown Format

The Markdown format used by the RapidMiner Beans library has been proposed
by John Gruber and is a simple wiki-like dialect that may additionally integrate
HTML tags for any elements not supported by Markdown. Markdown provides
generic support for

e lists (numbered and bullet lists)
e cmphasizing text (italic, bold)
e hyperlinks and images

e code blocks, block-quotes

Markdown has gained a lot of attention as the primary plain-text format for
documentation at github.com and became widely accepted. Multiple tools like
pandoc provide conversion support from markdown in various other formats.

The RapidMiner Beans library uses MarkdownlJ [3] to convert operator doc-
umentation to HTML which can then be displayed within RapidMiner. The
following Figure [3| shows a sample of Markdown text describing the example
operator introduced in Section

The Sample Operator

This very simple example operator is used for demonstration purposes
for the RapidMiner Beans library. It simply passes through any input
delivered to its *input*-port.

The extended version provides additional parameters

- ‘lambda‘
- ‘name‘

which also do simply serve for demonstration purposes.

Figure 3: Example markdown documentation for the example operator. The
major headline is provided by underlining a line with equal characters. The *
character switches to italic style, the back-ticks form typewrite code.

4.2 Documentation within RapidMiner

If operators are documented following the convention mentioned above, the
RapidMiner Beans library automatically generates the required operator docu-
mentation at registration time of the corresponding annotated operator. This
documentation is additionally enriched with the list of parameters created by
RapidMiner. The parameter list documentation in turn is extracted from the
parameter annotations described in Section [3.2]

|

i) RapidMiner Beans (1)
= &) Examples (1)

= o Countenl $30

| SampleOperator

This very simple example operator is used for demonstration
purposes for the RapidMiner Beans library. It simply passes
through any input delivered to its input-port.

The extended version provides additional parameters
@ lambda
4 name

which also do simply serve for demonstration purposes.

[e R R e e R R B R EI e
Eh Eh Eh Eh e Eh e Eh Eh EN ET)

Press "F3" for focus.

Figure 4: Documentation of the Sample Operator operator, which has been
written in the Markdown format.

5 Summary and Future Work

We presented the RapidMiner Beans library, which provides a simplified way to
create and document new RapidMiner operators by using modern technologies
such as Java annotations and JavaBean conventions. The plugin mechanism
provided by the RapidMiner Beans library allows for automatically loading cus-
tom operators from plain JAR files available in a user’s home directory. This is
especially useful for developing and testing custom operators in environments
where the central plugin directory is not writable by users.

For future work we are looking into automatically registering operators at
runtime to support quick code-replacement of classes as is for example provided
in hot-deployment settings such as Tomcat or JBoss. This will further shorten
the development-cycle for new operators.

Another future direction is additional tool support to convert JAR files with
annotated operator classes into regular RapidMiner plugins by generating the
required XML description files from the annotated classes.

Acknowledgements This work was supported by the DFG within the Col-
laborative Research Center on Providing Information by Resource-Constrained
Data Analysis (SFB-876).

References

[1] “JavaBeans API specification Version 1.01,” 1997. http:
//download.oracle.com/otndocs/jcp/7224- javabeans-1.
01-fr-spec-oth-JSpec/.

[2] J. Gruber, “Markdown.” http://daringfireball.net/projects/
markdown/|

[3] “markdownj— A Java port of Markdown, the text-to-html conversion tool.”
http://code.google.com/p/markdownj/.

http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://code.google.com/p/markdownj/

	Introduction
	RapidMiner Beans – Overview
	JavaBeans and Parameter Annotations
	Operator Documentation
	Support for User-Libraries

	Example – A simple Operator
	Operator Annotations
	Adding Parameters with OperatorBeans

	Writing Documentation
	The Markdown Format
	Documentation within RapidMiner

	Summary and Future Work

