Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
No. TR 12-04

How to implement M4 operators

Timm Euler

Dortmund, March 27, 2003



1 What this document is about

This document wants to provide explanations about the current compiler im-
plementation for those who would like to implement a new operator for the
MiningMart system. It explains the internal operator hierarchy of the Java code
for the compiler and describes which methods need to be implemented for a new
operator. Please also refer to the following document: MiningMart technical re-
port TR12-02, “Compiler Constraints and Operator Parameters” (referred to
as TR12-02 henceforth in this document).

2 General issues

In general, the compiler works under the assumption that all metadata of the
conceptual level of M4 (concepts, features, relations) are provided before a
step is compiled. Also, all metadata of the relational level of M4 (columns and
columnsets) exist for the input of the step (of the operator), and the parame-
ters for the operator are listed in the table Parameter _T. Compiling an operator
means to create the metadata for the output of the step the operator is attached
to, and write it into the database.

The compiler code is organized in two packages, miningmart.compiler
(with subpackages) and miningmart.compilerInterface. The latter provides
the methods to call the compiler. New operators belong into the package mining-
mart.compiler.operator or a subpackage thereof.

All M4 objects (e.g. concepts or columns) have corresponding Java classes in
the package miningmart.compiler. The operators work with Java objects rep-
resenting the M4 database entries; writing new objects back into the database is
done by special methods in the higher classes of the operator hierarchy. Usually,
new operators inherit these methods and do not need to write metadata into
the database.

All database access is done through the classminingmart.compiler.DB. java.
During every compiler run, exactly one instance of it exists and is accessible by
every operator using the inherited method getM4Db(). It provides a number
of public methods to read and write SQL commands to the business or meta-
data schema, such as executeM4SqlRead() or executeBusinessSqlWrite().
Operators must not open their own database connections.

Every operator has a specification which is part of the M4 model; please refer
to the MiningMart technical reports in WP 18, TR18-0x. These specifications
must exist in the database to be able to execute an operator. Further, please
note that the name of an operator as it is entered into the M4 table Operator_T
must correspond exactly to the name of the Java class that implements this
operator, respecting case (but ignoring the suffix .java). If you introduce a
new package for your operator, the constructor of the class Step.java must
be extended in a straightforward way, so that the new package is also searched
through to find the new operator.

For output to the screen or a log file, all operators inherit the method



doPrint (int, String) which expects a verbosity level and a String which is
to print if the user-defined verbosity level for the current compiler run is at
least as high as the given one. The possible levels of verbosity are provided
as static fields in the class miningmart.operator.Print.java. The method
doPrint (Exception) is also available for operators, it prints the message String
of the given exception object using the maximum verbosity level.

You may want or need to implement additional classes which are not part
of the operator hierarchy, and which therefore do not inherit the methods for
printing (for example wrapper classes, see section 4). For them you can access the
print object for the current compiler run using this.getM4Db() .getCompiler-
AccessLogic() .getCasePrintObject (). This object provides the doPrint ()
methods mentioned before.

3 Operator hierarchy

There are two different kinds of operators, ConceptOperators and Feature-
Construction operators. The first have as output on the conceptual level a
Concept, the latter a BaseAttribute (see TR12-02). Correspondingly, the ab-
stract Java class Operator. java, which is the superclass of all operators, has two
abstract subclasses, ConceptOperator. java and FeatureConstruction. java.
Both manual and machine learning operators are part of this hierarchy.

The concept operators are divided into two further abstract classes, Single-
CSOperator.java and MultipleCSOperator. The latter is for operators that
create more than one Columnset for the output concept. At the moment, only
the segmentation operators do so; new operators will very likely be subclasses of
SingleCSOperator. java or FeatureConstruction. java. So they create only
one Columnset for the output concept, or only one Column for the output at-
tribute.

The implementation of the creation of Java M4 objects representing the
new Column or Columnset is provided by these superclasses. New operators
need to implement all abstract methods that they inherit; these methods will
be explained below. In essence, what an operator implementation has to pro-
vide is an SQL definition for a new Columnset (usually a database view defi-
nition) or a new Column, respectively. Some more complex operators, such as
MultiRelationalFeatureConstructionfor instance, have a more complex task
and override the methods of the superclasses that create the new M4 objects.
It is expected that most new operators do not need to do that, which will make
their implementation easier.

Rather simple operators to take as an example implementation are Linear-
Scaling. java for feature construction and RowSelectionByQuery. java for a
SingleCSOperator. Please note their abstract super classes as well.



4 Special hints for machine learning operators

ML operators call external algorithms to be able to provide their results. These
external algorihms must be wrapped by wrapper classes that are part of the
compiler. However, the wrapper itself can be part of a different package, for ex-
ample miningmart.tools; only the operator calling the wrapper should be part
of the operator package. So for the operator itself, there is not much difference
between a manual and a machine learning operator. Yet, ML operators are more
complex because the wrapper for the external algorithm must be written.

The result of the external algorithm must be used in the SQL definition of
the new Columnset or Column. For this to be possible, the learned model (for
example a decision tree) must be converted into a function that is executable
in the database, ie a PL/SQL function. The call to this function provides the
SQL definition for the new Column(set). The conversion to PL/SQL is one of
the tasks of the wrapper.

An example implementation of an ML operator is the operator Missing-
ValuesWithRegressionSVM. java which uses the external algorithm mySVM by
calling (a subclass of ) the wrapper class SVM_Wrapper . java. Also, Segmentation-
WithKMean. javais a good example for an operator which is separated from the
wrapper it calls.

5 Methods to be implemented by a new opera-
tor

5.1 Methods for all operators

It is useful to have parameter-getter methods, which should be used whenever
a parameter is accessed. For example, if an operator has a parameter of type
Value called SampleSize, which is expected to have an integer value, a method
like int getSampleSize () should be implemented. This can be done as follows.

All parameters for an operator are loaded by the superclass Operator. java,
which uses the information in the table OP_PARAMS_T to be able to do so (see
MiningMart technical reports TR18.1 and TR18.2). In the subclasses, parame-
ters are accessed by calling the inherited methods getParameter (String name)
and getSingleParameter(String name). The first is for lists of parameters
(see MiningMart technical report TR12.2) while the latter is for single parame-
ters. Special attention is needed for FeatureConstruction operators, because they
are loopable and the set of parameters is different for each loop. The number of
loops can be found by calling the inherited method int getNumberOfLoops();
in the case of loopable operators, the method get (Single)Parameter (String
name, int loopnr) must be called, using the inherited method int getCurrent-
LoopNumber () to find the right value for loopnr.

The inherited methods to get a parameter return an M4 object like Value
etc which comes directly from the database. You can now convert this object
(for example into integer) and check if it is in the right range.



Note: Several of the so-far implemented operators load their parameters
themselves, in a method called 1load(); however, this is part of an older im-
plementation. It still works, but for new operators, the new mechanism should
be used because it is simpler. Example implementations of the new mechanism
can be found in the operators MultiRelationalFeatureConstruction. java
(without loops) and LinearScaling. java (with loops).

5.2 Methods for FeatureConstruction operators
5.2.1 String generateSQL(Column targetColumn)

This method returns the SQL definition of the new virtual Column as a Java
String. The given targetColumn is the column that belongs to the target at-
tribute of this operator (every feature construction operator has a parameter
called TheTargetAttribute; see TR12-02). During execution, make sure that the
right set of parameters is accessed with respect to loops (see section 5.1).

5.3 Methods for SingleCSOperators
5.3.1 String generateSQLDefinition(String selectPart)

This method returns the SQL definition of the new Columnset as a Java String.
The given String selectPart is the String to be placed between the SELECT- and
the FROM-part of the resulting definition if it is a definition for a database view.
If this operator does not create a view, but a table, then the method String
generateColumns (Columnset csForQOutputConcept) in the super class Con-
ceptOperator. java must be overridden. Then the String selectPart may be
ignored by this method (as it will be null anyway), and the SQL definition for
the Columnset is equal to the name of the created table. The usual case is that an
operator creates a view; therefore, all that is needed here is to provide the parts
after FROM and, optionally, WHERE. A simple example is RowSelection. java.

5.3.2 String getTypeOfNewColumnSet()

This method must return the String “V” if this operator creates a view, and
“T” if it creates a table.

5.3.3 boolean mustCopyFeature(String featureName)

If the super class method String generateColumns(Columnset csForOutput-
Concept) is not overridden, it copies every column from the input concept to the
output concept for which a) there is a feature in the output concept and b) this
method returns TRUE. This method provides the option to operators to exclude
this copying for certain features, using their name to decide; however, in general
operators should simply return TRUE here, unless there are specific purposes. If
generateColumns(. ..) is overridden, this method (mustCopyFeature(...))is
never called.



5.4 Methods for MultipleCSOperators
5.4.1 int numberOfColumnSets()

This method must return the number of Columnsets this operator is going to
create. If this number is the result of an external algorithm, like in Segmenta-
tionWithKMean. java, the algorithm must be called first before this value can
be returned. The number of Columnsets to be created may also be specified by
a parameter of this operator; then this method simply returns the value that
was loaded in the load method.

5.4.2 String generateSQLDefinition(String selectPart, int index)
This method is similar to the one for SingleCSOperators (section 5.3.1). The
given index is the number of the Columnset that the newly created SQL defi-
nition will be used for. It runs from 0 to numberO fColumnSets() — 1.

5.4.3 String getTypeOfNewColumnSet(int index)

This method must return the String “V” if the new Columnset with this index
is a view, and “T” if it is a table.

5.4.4 boolean mustCopyFeature(String featureName)

See section 5.3.3.



