
AN ADAPTABLE SOFTWARE PRODUCT EVALUATION METRIC
Timm Euler

Computer Science VIII
University of Dortmund

D-44221 Dortmund, Germany
email: euler@ls8.cs.uni-dortmund.de

ABSTRACT
Software product evaluation is a tool to choose among al-
ternative software products for an intended application, but
can also assist the developers of the software in judging
the relevance of their product and in identifying missing
functionalities. The suitability of software products is de-
pendent on the intended application scenario and environ-
ment, which is why quantitative, objective metrics for prod-
uct evaluation are difficult to find. This paper presents an
adaptable method of quantifying product characteristics,
and includes an application of the method in tool selec-
tion, for knowledge discovery (data mining) tools. The
method can be made objective by providing precise eval-
uation plans or scenarios. It is adaptable by the evaluator
to reflect different levels of detail, and/or different priori-
tisations of criteria, in different evaluation scenarios. Two
possible levels of details are illustrated based on the exam-
ple evaluation.

KEY WORDS
Software Product Evaluation, Software Evaluation Metrics,
COTS Comparison

1 Introduction

There are many aspects of software which can be evalu-
ated. A useful distinction can be made between the devel-
opment of a software and its actual use as a product. The
main evaluations concerning the development of software
assess the quality and correctness of the source code; this
is usually called testing. A higher-level type of evaluation
assesses the development process in an institution, to see
whether it follows certain standards that make the process
controllable and repeatable [1].

The present work is concerned with software product
evaluation, also referred to as COTS (commercial off-the-
shelf) software evaluation. Since the intended employment
scenario determines which aspects of the software product
are relevant for an evaluation, it is difficult to find general,
objective criteria for the evaluation. This paper presents a
methodology to identify application-dependent, basic cri-
teria that extends previous work [2], and contributes an
adaptable scheme, or metric, of quantifying the degree to
which the criteria are fulfilled. The adaptability of the
method can reflect different weightings (prioritisations) of

the criteria as well as different granularities of detail. The
latter allows to present the same evaluation on different
levels of detail, so that the presentation can be adapted
to different audiences like technicians or decision mak-
ers. The method is exemplified by an evaluation of soft-
ware tools in the area of data mining, or knowledge discov-
ery in databases (KDD), addressing several methodological
deficiencies that previous work on evaluating KDD tools
showed. The effect of changing the presentation level is
illustrated by two evaluation tables that are based on the
same data, but employ different granularity levels.

After section 2 describes related work, section 3
presents the evaluation methodology proposed in this pa-
per. Section 4 then applies the methodology to data mining
tools and presents a quantitative and objective evaluation
of such tools, on two levels of detail. Finally, section 5
concludes the paper.

2 Related Work

Software product evaluation aims at determining the ex-
tent to which a software product fulfills a number of spec-
ified characteristics [3]. The characteristics of software
quality are defined in an international standard, ISO/IEC
9126, entitled “Information Technology—Software Prod-
uct Evaluation—Quality Characteristics and Guidelines for
their Use”, developed in 1991 and slightly modified several
times afterwards. It defines six main characteristics of soft-
ware quality, each with several subcharacteristics. These
characteristics can be the subject of an evaluation of a soft-
ware product. While the standard aims at comprehensive-
ness, [4] and others have pointed out that different users of
a product may have rather different quality requirements,
and that it may be difficult for an organisation to determine
the level and type of quality required in a specific situation.

Importantly, the evaluation itself should also follow
a standard procedure in order to be as objective as possi-
ble, and in particular to be reproducible. To this end an-
other standard was published in 1999, the ISO 14598 stan-
dard, entitled “Information Technology—Software Product
Evaluation”. It introduces four phases that the evaluation
process should follow:

1. Establish evaluation requirements: The purpose of the
evaluation, and the types of products to be evaluated,
must be identified in this phase. Most importantly,



a quality model is set up, which lists the characteris-
tics that are agreed to bear an influence on the quality.
The ISO 9126 quality characteristics provide a useful
guide, or a checklist, for the identification of quality-
related issues in a particular evaluation, but the ISO
14598 standard also allows other categorisations of
quality that are more appropriate under the given cir-
cumstances. ISO 14598 explicitly states that there are
no established methods for producing software quality
specifications.

2. Specification of the evaluation: Since the ISO 9126
characteristics are not directly quantifiable, metrics
that are correlated with them have to be established.
The term “metric” is used in ISO 14598 not in the
usual mathematical sense, but refers to a quantitative
scale and a method which can be used for measure-
ment. The word “measure” is used to refer to the re-
sult of a measurement (the term “score” is also used in
this work). According to ISO 14598, every quantifi-
able feature of software that correlates with a charac-
teristic from the quality model can be used as a metric.
For every metric, a written procedure is needed that
prescribes the assignment of measured values to it, to
achieve objectivity.

3. Design of the evaluation process: An evaluation
plan is produced that specifies the required resources,
e.g. people, techniques or costs, and assigns them to
the activities to be performed in the last phase.

4. Execution of the evaluation: Measurements are taken
and scores computed as fixed in the evaluation plan.

In [3] a critical review and some refinements of this
process can be found. In particular, the importance of es-
tablishing and prioritising the goals of an evaluation, and
of involving all stakeholders of the evaluation in this, are
stressed. The first aspect is reflected in the present work by
the adaptability of the presented methodology, while the
second is irrelevant because the methodology is indepen-
dent from concrete applications.

A new standard, ISO 25000, entitled “SQuaRE—
Software Product Quality Requirements and Evaluation” is
currently being developed to combine ISO 9126 and ISO
14598 [5].

The present work addresses mainly the identification
of a quality model, and the specification of metrics for
its quality characteristics (first and second phase above).
Previous work on identifying suitable quality models for
COTS software [6] (the first phase above) has refined the
ISO 9126 standard, while the approach presented here is
more empirical, and inspired by [2]. The latter authors
suggest to identify those features of a technology that dis-
tinguish it from existing technologies. Such distinctive fea-
tures are called “technology deltas”. This approach evalu-
ates a product with emphasis on its relation to competitive
products. Section 3 takes up this idea. [2] stresses that

the technology deltas should be evaluated in well-defined,
sharply focused usage contexts, because then the extent to
which a technology delta supports a given context can be
evaluated. A limitation of this approach is that it can lead
to a focus on functional quality characteristics as defined in
ISO 9216.

Regarding evaluation techniques, [7] argues for the
use of weighted checklists, where the presence or absence
of a number of agreed features is indicated and integrated
into an overall score. Checklists are easy to customise and
are a transparent, reproducible method of evaluation. A
problem is the choice of items on the list, that is, the identi-
fication of the quality model (first phase above); [7] argues
that the only way to make this choice less subjective is to
document and justify it extensively. The technology delta
method is another way to increase objectivity, as it is an
empirical method.

As regards metrics (see the second phase above), ob-
viously no internal, source-code related metrics can be
used for COTS products [8]. Previous research on product
metrics has mainly concentrated on such internal metrics
(e.g. [9, 10]). Research on COTS evaluations has concen-
trated on process-oriented aspects [11, 6] but has not es-
tablished quantitative metrics, except for [12, 8]. In [12],
rather general metrics are given, only some of which are
external, but require much effort to measure (such as the
percentage of design goals met by the finished product). In
contrast, in [8] an approach similar to the one in this paper
seems to be used, but no details are given, nor any examples
from a concrete evaluation project.

3 An Adaptable Product Evaluation Metric

In the following, the proposed methodology is developed in
four subsections, following the four phases of the standard
product evaluation process introduced in section 2.

3.1 Establishing evaluation requirements

The ISO 14598 standard requires the specification of the
purpose of the evaluation, the type of products to be eval-
uated, and the quality model in this phase. This work as-
sumes that the purpose of the intended evaluation is to gain
a detailed, yet clear picture of the strengths and weaknesses
of one or more available software tools in a specific area.
The type of products to be evaluated is restricted to finished
software products and can be further limited in a concrete
instantiation of this evaluation process (e.g. section 4).

The quality model is derived empirically in this work.
Basic evaluation aspects are identified using the technology
delta method described in section 2, by comparing features
of different products. Another source for features can be a
thorough analysis of necessary features in a particular ap-
plication domain, as described in [13]. This results in lists
indicating the presence or absence of the distinctive fea-
tures in the products. Typically, such features will be very



fine-grained or detailed. For example, one word-processing
tool might offer automatic enumeration for item lists, while
another might only offer manual enumeration. Such a
level of detail provides a maximum amount of information,
but is usually not appropriate to gain clear overviews of
tools, though it could be appropriate for the developers of
such software to identify missing features in their products.
Therefore section 3.2 introduces an adaptable aggregation
method.

Non-functional characteristics are less amenable to
the technology delta method, and other methods to com-
plete the quality model may be useful (e.g. [6]). Yet many
non-functional characteristics can be broken down into par-
ticular features of a product if the employment circum-
stances are known.

3.2 Specification of the evaluation

Having found the quality model (the basic, boolean fea-
tures) in the previous phase, it must now be assigned a met-
ric, in the sense defined in ISO 14598 (see section 2). A
simple metric would assign a boolean value to each identi-
fied distinctive feature, indicating either its presence or ab-
sence. However, many small groups of features are usually
related in a rather natural way. For example, all features re-
lated to enumeration of item lists in word-processing tools
(like automatic indentation, availability of different “bul-
lets”, etc.) could be grouped to reflect the strength of the
tool in the area of enumeration lists. Therefore, such nat-
urally related features are grouped together in this work,
and each group forms a criterion. The n-of-m metric is
used to indicate the strength of a tool with respect to such
a criterion: m is the number of features grouped together
for this criterion, and n is the number of features that are
present in the given tool. Thus each n-of-m criterion could
be transformed into m boolean criteria. A simple score can
be assigned to each tool under each criterion, which is the
real value 0 ≤ n/m ≤ 1. To increase the adaptability of
this method, each of the m features can be weighted before
the score for the criterion is computed. To allow for single
features that cannot be grouped, m may be 1.

This method allows much flexibility concerning the
groupings of the basic features. For a quick overview or su-
perficial comparison, only the more important features can
be used, or larger inherently related groups can be formed.
This corresponds to larger average values of m. For de-
tailed surveys, more fine-grained criteria can be used, so
that the list of criteria is longer but the average value of m
is lower. These options are illustrated using the example
application in section 4.

The measures for several single criteria can be com-
bined to more integrated scores by building weighted sums,
where the sum of the weight coefficients should be 1.0. For
example, to assess the strength of a tool in text formatting,
all criteria related to this can be evaluated and combined
to a single value. If desired, a single global score could
be computed for every tool to get a ranking of the tools,

though such a ranking would hide many aspects that the
detailed score list can provide.

The methodology described here results in objective
criteria, with reproducible results, if a written procedure
that prescribes how to identify the presence or absence of
each feature in a criterion is given (see also section 4).

A limitation to this methodology may be that, when
applied to a different type of software products, not all tech-
nology deltas might correspond to boolean features that can
easily be grouped. Some features, such as performance-
related features, require a real-valued, continuous scale.
However, such metrics can be mapped to the real interval
[0..1] easily, which makes them easily combinable with n-
of-m metrics. A more serious limitation is that different n-
of-m criteria can result in identical values when evaluated,
although the respective values of n and m are different. It
is not clear whether the fulfillment of 2 out of 4 features
of a criterion “means” the same strength as the fulfillment
of 4 out of 8 features. However, to compare a number of
software products under any given criterion, of course the
same value of m is always used.

3.3 Design of the evaluation process

Based on the list of basic features to evaluate, an evalua-
tion plan can be set up that serves to fix in writing the exact
procedures for finding out whether a feature is fulfilled by a
given tool or not. If past experiences (evaluations) based on
the same list of features are available, it is suggested to sort
the list of features, in descending order by the degree of ful-
fillment of the features in the tools examined previously. In
this way, the evaluation plan will check the most common
features first, focusing on more and more specific and rare
features as the evaluation proceeds. Resource-activity as-
signment depends on the concrete evaluation scenario, thus
nothing is said about it in this general methodology.

3.4 Execution of the evaluation

Executing the evaluation consists of following the execu-
tion plan, taking the measurements required by the criteria,
and documenting them, as exemplified in section 4.

4 An Application Example

The evaluation methodology from the previous section was
applied in the field of Data Mining, or Knowledge Discov-
ery in Databases (KDD), in order to demonstrate its prac-
tical usefulness. Previous work on comparing KDD tools
[14, 15, 16, 17] shows a number of methodological defi-
ciencies, in that no evaluation standards are used, no writ-
ten evaluation procedures ensure the reproducibility of re-
sults, the list of criteria is not justified in a systematic way,
and no flexible quantification of measurements is given.
Thus the presented approach led to a quantitative and re-
producible evaluation of KDD tools for the first time.



Six KDD tools were used for this evaluation: Min-
ingMart is the result of a research project [18], while
SPSS Clementine, Prudsys Preminer, IBM Intelligent
Miner, SAS Enterprise Miner and NCR Teradata Ware-
house Miner are commercial products. See [19] for brief
descriptions of these tools. This evaluation concentrated
on all aspects related to data processing and models of this
process. The goal of the evaluation was to give an overview
of the strengths and weaknesses of various KDD tools in
the processing area. The technology delta method is par-
ticularly useful for such a purpose. Its application led to
123 basic boolean features. Such a detailed list of boolean
features counteracts the aim of the evaluation stated above,
while on the other hand, it can serve developers of such
tools as a checklist of functionalities they might want to in-
clude. Yet, for decision making, for instance tool selection,
more aggregated views of the results are needed.

Tables 1 and 2 show two different groupings into
higher-level criteria. Table 2 is suggested as appropriate
for actual evaluation projects; the criteria it uses are ex-
plained in a technical report [19]. In contrast, table 1 is
more suitable for final decisions, public presentations, or
more superficial overviews. It aggregates all boolean fea-
tures into fewer criteria with larger values of m. Some of
these latter criteria are described below, to give a flavour.
However, since this is not a paper about KDD, more de-
tailed discussions are omitted. All scores in both tables are
built using equal weights for each boolean feature, because
a weighting would be application-dependent and no par-
ticular application scenario was intended to be modelled
in this evaluation. However, various weighting schemes,
in particular linear combinations of boolean features, are
easily applicable to the scores presented here, so that the
evaluation can be adapted to user preferences or certain ap-
plication scenarios.

The discussion of criteria below is a condensed ver-
sion of the evaluation plan (see section 3.3), in that it pre-
scribes (at least to KDD experts, who are familiar with the
terminology) how to check the single boolean features that
form a criterion. For each criterion of table 1, a few exam-
ples of boolean features included in it are given below, and
also the list of criteria in table 2 that it subsumes. A more
elaborate description [19] makes the evaluation as objective
as possible by prescribing how to decide whether a feature
is fulfilled in a given tool or not, and by providing a use
case that is small yet comprehensive enough to check all
criteria in a few hours.

Data handling A KDD tool must at least be able to
import data from flat files in arbitrary formats, and rela-
tional databases using ODBC. Further, the user must be
able to specify the place of processing: in the database or
on hard disc. Data must be inspectable at all points in the
process, and so on (criteria 1, 2, 7, 8 and 19 from table 2).

Caching To enable the handling of large data sets,
tools must not attempt to store data sets in temporary files
or database tables unless the user has determined that this
be done. To enable informed decisions by the user, interme-

diate data set sizes must be estimated before the data set is
computed, must be available after it is computed, and every
intermediate data set must be clearly linked to the operator
that produced it (criteria 3 through 6).

Data Modelling This criterion subsumes aspects con-
cerning the explicit representation of data sets in the tool,
such as data types, relations between data sets, statistical
information, and so on (criteria 9 through 16, 21 and 27).
This kind of information must not only be recognised au-
tomatically, but must also be available for the user when
choosing parameters or setting up formulas that depend on
this information.

Process Modelling This criterion collects features re-
garding the explicit representation of the KDD process, in-
cluding its automatic adaptation to changed input and oth-
ers. It subsumes criteria 17, 19, 20, 25, 28-30, 35, 37 and
45. For example, it is checked that the data flow can be
modeled as an unrestricted directed acyclic graph, or that
this graph can be partitioned into meaningful subparts by
the user (chunking). These chunks must be nestable (this is
one basic, boolean feature).

Execution A KDD process must be executable from
the tool that models it. This criterion reflects a tool’s
strength in supporting this by logging, displaying the cur-
rent status, etc (criteria 31-34).

Operators The list of processing operators available
in a tool, together with a few special options, is reflected in
this criterion. It unifies criteria 22-24, 26 and 36.

Mining Some aspects around the actual data mining
are also related to data processing [13]. This is reflected in
criteria 36 and 38-44. They concern the data flow that is
needed for experiments with and evaluations of the mining
algorithm, plus some administrative issues.

5 Conclusions

This paper has addressed software product evaluation and
provided an adaptable, quantitative and objective method-
ology to identify lists of criteria and evaluate software prod-
ucts based on the criteria. The n-of-m metric was intro-
duced for this purpose, and demonstrated using an exam-
ple product evaluation in the field of KDD, addressing a
number of methodological deficiencies that previous evalu-
ations showed. The metric is adaptable to various purposes,
weighting schemes and levels of detail. The methodology
is applicable to any product evaluation, and easily applica-
ble in practice.

References

[1] Mark C. Paulk, Charles V. Weber, Bill Curtis,
and Mary Beth Chrissis. The Capability Maturity
Model: Guidelines for Improving the Software Pro-
cess. Addison-Wesley, 1995.



No Name m MM Clem. Prem. IBM SAS NCR
1 Data Handling 14 0.43 0.79 0.57 0.43 0.64 0.36
2 Caching 7 0.71 0.43 0.43 0.71 0.43 0.71
3 Data Modelling 25 0.76 0.88 0.36 0.6 0.68 0.32
4 Process Modelling 28 0.39 0.57 0.5 0.21 0.43 0.14
5 Execution 18 0.39 0.28 0.5 0.28 0.39 0.11
6 Operators 22 0.73 0.63 0.32 0.36 0.36 0.45
7 Modeling/Deployment 9 0.22 0.56 0.44 0.44 0.44 0.33

Table 1. Higher-level evaluation table. The value of n/m is given for each criterion and each tool.

[2] Alan W. Brown and Kurt C. Wallnau. A Framework
for Systematic Evaluation of Software Technologies.
IEEE Software, 13(5):39–49, 1996.

[3] Teade Punter, Rob Kusters, Jos Trienekens, Theo Be-
melmans, and Aarnout Brombacher. The W-Process
for Software Product Evaluation: A Method for Goal-
Oriented Implementation of the ISO 14598 Standard.
Software Quality Journal, 12(2):137–158, 2004.

[4] R.J. Kusters, R. van Solingen, and J.J.M. Trienekens.
User-Perceptions of Embedded Software Quality. In
Proceedings of the STEP97 Conference. IEEE Com-
puter Society Press, 1997.

[5] Witold Suryn, Alain Abran, and Alain April. ISO/IEC
SQuaRE. The Second Generation of Standards for
Software Product Quality. In Proceedings of the 7th
IASTED International Conference on Software En-
gineering Applications, Marina del Rey, CA, USA,
2003.

[6] Juan P. Carvallo, Xavier Franch, Gemma Grau, and
Carme Quer. On the Use of Quality Models for COTS
Evaluation. In Proceedings of the International Work-
shop on Models and Processes for the Evaluation of
COTS Components (MPEC), Edinburgh, UK, 2004.

[7] Teade Punter. Using Checklists to Evaluate Software
Product Quality. In Proceedings of the 8th European
Software Control and Metrics Conference (ESCOM),
Berlin, Germany, 1997.

[8] Regina Colombo and Ana Guerra. The Evaluation
Method for Software Products. In Proceedings of
the International Conference on Software and Sys-
tems Engineering and Their Applications (ICSSEA),
Paris, France, 2002.

[9] Jean Mayrand and Francois Coallier. System Acquisi-
tion Based On Software Product Assessment. In Pro-
ceedings of the International Conference on Software
Engineering (ICSE), 1996.

[10] Michelle Cartwright and Martin Shepperd. An Em-
pirical Investigation of an Object-Oriented Software

System. IEEE Transactions on Software Engineering,
26:786–796, 2000.

[11] Neil A.M. Maiden, Cornelius Ncube, and Andrew
Moore. Lessons Learned During Requirements Ac-
quisition for COTS Systems. Communications of the
ACM, 40(12):21–25, 1997.

[12] Krishnan Rangarajan, N. Swaminathan, Vishu Hedge,
and Jacob Jacob. Product Quality Framework: A Ve-
hicle for Focusing on Product Quality Goals. Soft-
ware Engineering Notes, 26(4):77–82, 2001.

[13] Timm Euler. Modelling Data Mining Processes on
a Conceptual Level. In Proceedings of the 5th
International Conference on Decision Support for
Telecommunications and Information Society, War-
saw, Poland, 2005.

[14] Dean W. Abbott, I. Philip Matkovsky, and John F. El-
der IV. An Evaluation of High-end Data Mining Tools
for Fraud Detection. In IEEE International Confer-
ence on Systems, Man, and Cybernetics, San Diego,
CA, 12–14. Oct. 1998. IEEE.

[15] Michael Goebel and Le Gruenwald. A Survey of Data
Mining and Knowledge Discovery Software Tools.
ACM SIGKDD Explorations, 1(1):20–33, 1999.

[16] Ken W. Collier, Donald Sautter, Curt Marjaniemi, and
Bernard Carey. A Methodology for Evaluating and
Selecting Data Mining Software. In Proceedings of
the 32nd Hawaii Int. Conference on System Sciences,
1999.

[17] Christophe G. Giraud-Carrier and Olivier Povel.
Characterising Data Mining Software. Intelligent
Data Analysis, 7(3):181–192, 2003.

[18] Katharina Morik and Martin Scholz. The MiningMart
Approach to Knowledge Discovery in Databases. In
Ning Zhong and Jiming Liu, editors, Intelligent Tech-
nologies for Information Analysis. Springer, 2004.

[19] Timm Euler. Criteria for KDD Tool Evalua-
tion. Technical report, Fachbereich Informatik,
Universität Dortmund, 2005. http://www-ai.cs.uni-
dortmund.de/PERSONAL/euler.html.



No Name m MM Clem. Prem. IBM SAS NCR
1 Data formats 6 0.33 0.83 0.5 0.5 0.66 0.33
2 Data handling 3 0.33 1.0 0.66 0.66 0.66 0.33
3 Caching control 2 1.0 1.0 0.5 1.0 0 1.0
4 Caching size estimation 1 0 0 0 0 0 0
5 Automatic caching 2 0.5 0 0 0.5 0.5 0.5
6 Caching transparency 2 1.0 0.5 1.0 1.0 1.0 1.0
7 Data inspection 1 1.0 1.0 1.0 0 1.0 1.0
8 Attribute import 3 0.66 0.66 0.66 0.33 0.33 0.33
9 Conceptual data types 1 1.0 1.0 0 1.0 1.0 0

10 Type recognition 5 0.8 1.0 0.4 0.8 0.8 0.2
11 Flexibility of type mapping 3 1.0 1.0 0 0.66 1.0 0
12 Robustness of type mapping 1 1.0 1.0 1.0 1.0 0 1.0
13 Data char. recognition 6 0.66 0.66 0 0.66 0.66 0.33
14 Data char. deployment 1 0 1.0 1.0 0 1.0 0
15 Attribute roles 4 0.75 1.0 0.75 0.5 1.0 0.75
16 Attribute matching 2 1.0 1.0 1.0 0.5 0 0.5
17 Metadata inference 10 0 0.2 0.1 0.1 0.2 0
18 Checking wellformedness 4 0.25 0.5 0.75 0 0.25 0.25
19 Empty data sets recognition 1 0 0 0 0 1.0 0
20 Metadata propagation 5 1.0 1.0 1.0 0.2 0.8 0.2
21 Relations between concepts 1 1.0 0 0 0 0 0
22 Operator transparency 2 0.5 0 0 0 1.0 0.5
23 Availability prim. operators 6 1.0 1.0 1.0 0.83 0.33 0.33
24 Availability conv. operators 10 0.8 0.5 0.1 0.2 0.3 0.6
25 Attribute derivation support 2 0 1.0 1.0 0.5 0.5 0
26 Iteration attribute derivation 3 0 0.33 0 0 0 0
27 Data independence 1 1.0 1.0 0 0 0 0
28 Representation of data flow 1 1.0 1.0 1.0 0 1.0 0
29 Support for chunking 2 1.0 0.5 0 1.0 1.0 0
30 Graph structure 1 1.0 1.0 0 1.0 1.0 1.0
31 Execution transparency 7 0.29 0.14 0.43 0.29 0.43 0.14
32 Execution automation 3 0 0.33 0.66 0 0 0
33 Execution administration 7 0.57 0.29 0.43 0.29 0.57 0
34 Execution in background 1 1.0 1.0 1.0 1.0 0 1.0
35 Export transparency 1 1.0 0 1.0 0 1.0 1.0
36 Editing flexibility 1 1.0 1.0 0 1.0 0 1.0
37 Visual graph arrangement 1 0 1.0 1.0 0 0 0
38 Splitting training and test set 1 1.0 1.0 1.0 1.0 1.0 1.0
39 Model evaluation 1 0 1.0 1.0 1.0 1.0 1.0
40 Cross validation 1 0 0 0 0 0 0
41 Automatic parameter tuning 1 0 0 0 0 0 0
42 Nestability of control operators 1 0 0 0 0 0 0
43 Export of models 1 1.0 1.0 0 1.0 1.0 0
44 Post-processing 1 0 0 0 0 0 0
45 CRISP support 1 0 1.0 0 0 0 0
46 PMML support 2 0 1.0 1.0 0.5 0.5 0.5

Table 2. Finer granularity evaluation table. See [19] for details about the criteria. m = 1 indicates boolean (ungrouped) criteria.


