
Implementing Hierarchical Heavy Hitters in

RapidMiner: Solutions and Open Questions

Marco Stolpe and Peter Fricke
firstname.surname@tu-dortmund.de

Technical University of Dortmund,

Artificial Intelligence Group

Baroper Strasse 301, Dortmund, Germany

Abstract

Huge masses of data and potentially infinite data streams pose big
challenges to methods in data mining that analyse data off-line and in
several passes. In the area of intrusion detection, algorithms that detect
characteristical patterns in system call data could have to process several
hundred megabytes of data per minute. We describe a plugin for the
aggregation of data streams by determining frequent tuples of hierarchical
elements, so called Hierarchical Heavy Hitters. We further discuss more
general questions concerning the current state of RapidMiner in relation
to stream mining.

1 Introduction

Current data mining research increasingly examines algorithms that are capable
of detecting interesting patterns in or to learn prediction models from potentially
infinite streams of data. The amount of data created per time interval is often
too high to be saved efficiently on mass storage devices and to be analysed
off-line in several passes by traditional data mining algorithms. Methods are
needed that continuously update their internal models, adapting to underlying
changes in a stream in real-time and incrementally. Even if no data stream is
given, methods for mining streams can potentially be more efficient on huge
data sets in comparison to algorithms that follow a more traditional paradigm.
Also think of embedded systems and mobile devices which are highly resource
constraint regarding processing power and memory, but could profit from data
analysis. Examples are the reduction of energy consumption by the prediction
of usage patterns or the automatic grouping of similar images on mobile phones.

In section 2, we motivate stream mining by a case study from the area of
intrusion detection that deals with the automatic identification of applications.
We shortly describe Hierarchical Heavy Hitters that were used by our research
group to identify application behavior with high accuracy, but low consumption

1



of memory and processing power. Further, we describe implementation details
and issues of an accompanying RapidMiner plugin. In section 3, we discuss our
own approach critically and pose the more general question of how to integrate
methods for stream mining into RapidMiner. The paper ends with a short
summary and potential future research and development.

2 Aggregation of System Calls by Hierarchical
Heavy Hitters

In the field of intrusion detection, malware is sometimes identified by compar-
ing the system calls it executes with a profile representing the normal mode of
execution. To achieve high prediction accuracy, it might suffice to compare rel-
atively simple features, like the frequency of n-grams of system call sequences,
where each call is simply represented by the name of its type [7]. If more com-
plex features are needed, like information about parameter values, processing
time naturally increases with a higher complexity of the representation. Being
sensitive to the resource consumption of malware detectors, while nevertheless
maintaining a sufficient prediction quality, is therefore vital.

In [4] and [5], approximation algorithms for finding Hierarchical Heavy Hit-
ters (HHHs) [1] in data streams were used to aggregate system calls and their
parameters. The resulting sets of hitters were interpreted as characteristical pro-
files and, by the introduction of new distance measures for sets, used to identify
individual applications. By profiling system calls of eleven applications over
intervals of about one minute, we were able to achieve a cross-validated (leave-
one-out) classification error of 8.7% by using 7NN and our newly developed
similarity measure DSM. In comparison, we arrived at only about 21.7% with
the naive approach of comparing log files by the relative frequency of contained
system calls. Resource consumption could be kept fairly low during all runs
of the algorithms. Even processing the biggest log file and using all available
hierarchical variables resulted in a memory consumption of just several hundred
kilobytes, compared to 764.287 system calls in several megabytes of the original
log file. The whole data set contained 1,8 Gbyte or about 23 million lines of
system call data from eleven different Linux applications, monitored five times
over ten minutes and five times over five minutes each. All data was gathered
with the strace tool (version 4.5.17) under Ubuntu Linux (kernel 2.6.26, 32 bit).

For further information regarding the exact representation of system calls
and conducted experiments, please consult [4]. In the following, we will describe
implementation details and issues of the accompanying RapidMiner plugin, after
shortly introducing the HHH problem.

2.1 Hierarchical Heavy Hitters

The heavy hitter problem consists of finding all frequent elements and their
frequency values in a data set [1]. For a multiset S of size N and a threshold

2



0 < φ < 1, an element e is a heavy hitter if its frequency f(e) in S is not smaller
than bφNc. The set of heavy hitters is then HH = {e|f(e) ≥ bφNc}.

The following problem can be stated if the elements in S originate from a
hierarchical domain D [1]:

Definition 2.1 (HHH Problem) Given a (multi)set S of size N with ele-
ments e from a hierarchical domain D of height h, a threshold φ ∈ (0, 1) and
an error parameter ε ∈ (0, φ), the Hierarchical Heavy Hitter Problem is that of
identifying prefixes P ∈ D, and estimates fp of their associated frequencies, on
the first N consecutive elements SN of S to satisfy the following conditions:

• accuracy: f∗p − εN ≤ fp ≤ f∗p , where f∗p is the true frequency of p in SN .

• coverage: all prefixes q 6∈ P satisfy φN >
∑
f(e) : (e � q) ∧ (6 ∃p ∈ P :

e � p).

Here, e � p means that element e is generalizable to p (or e = p) in the
lattice induced by forming all possible combinations of hierarchical values and
their generalizations. For the extended multi-dimensional heavy hitter problem
introduced in [2], elements can be multi-dimensional d-tuples of hierarchical
values that originate from d different hierarchical domains with depth hi, i =
1, . . . , d. In our case, features of system calls were encoded as tuples of values
stemming from a handcrafted taxonomy of system call types, the file system
hierarchy and a hierarchy induced by the possible combinations of call sequences
having a fixed length. For instance, the HHH (FILESYS/open/*, /etc/hosts,
fstat64/*) would mean that the event “file /etc/hosts is accessed by an open
call with an arbitrary read write mode, preceded by a fstat64 call” occurred
frequently in the stream.

There exist two variants of algorithms for the calculation of multi-dimensional
HHHs: Full Ancestry and Partial Ancestry. Both have been implemented in a
plugin for RapidMiner1. For further information concerning the particular de-
tails of the algorithms, please consult [3]. In the following, we will instead
focus on an overiew and description of the accompanying packages, classes and
operators.

2.2 The hitters.* package

The algorithms for the approximation of HHHs from data streams, their helper
classes and test code can be found in the hitters.* packages, in particular
hitters.multi. As the packages have almost no dependencies to RapidMiner,
they also could be used on their own.

The core of package hitters.multi is class AbstractComplexHHH, which as
an abstract superclass contains all common functionality of the Full Ancestry
(class FullAncHHH) and Partial Ancestry (class PartAncHHH) variants. After

1The code, all data sets and installation instructions can be downloaded at
http://www-ai.cs.uni-dortmund.de/PUBDOWNLOAD/HHHPlugin/. The plugin was written for
RapidMiner 4.6, but work is in progress to port it to version 5.

3



initialization with parameter ε and some information about the used hierarchical
variables, single stream elements can be (incrementally) inserted into the data
structure by calling the insert method. All stream elements themselves are
instances of class Element, which represents tuples of hierarchical values as
native Java arrays internally and provides helper methods for the construction
of such tuples. In case the taxonomy a hierarchical value originates from has
unknown depth, like in the case of file system paths, hierarchical values are
simple strings. Path elements are separated from each other by slashes (”/”),
similar to Unix file system paths. For taxonomies of known depths and with
static values, hierarchical values may be represented by single integer values.
Each component of the path must then be (statically) mapped to particular bits
of the integer. The exact mapping can be defined by instances of the Parameter
class, which is expected by several methods that deal with hierarchical value
tuples. By using integer values, the run-time of all related operations could be
considerably decreased, since path elements are extracted by constructing and
applying appropiate bit masks and bit operations are fast. In addition, the bit
representation saves lots of memory, since the Element class is also used for
frequent prefixes in the internal data structures of the algorithms.

At any time, it is possible to get the current set of hitters, whose elements
are again represented by the Element class. The set is determined internally by
approximating the elements’ frequencies and comparing them to threshold pa-
rameter φ. The method returns a hash map which contains all elements (heavy
hitters) as keys and further information about an element, like its estimated
frequency, as a value of type MultiHitterInfo.

The domain specific functionality for the analyses of system call data gen-
erated by strace is contained in class MultiDatabase and its dependent classes.
It allows to read in a whole log file by calling method readSystemCalls. In-
ternally, all lines are parsed by regular expressions und transformed into tuples
of hierarchical values (Element instances). By iterating over this set, single
elements can then be incrementally inserted by calling the insert method.

2.3 Integration into RapidMiner

For the domain specific aggregation of strace generated system call data and
resulting hitter sets, the whole functionality described above is wrapped by a
single RapidMiner operator HHHExtractionPlain and a special ResultObject,
HHHResult. As input, the operator receives an ExampleSet. Each example
represents one single log file from which the hitter sets are to be extracted as
a characteristical profile. Regarding later classification tasks, this aggregation
is a preprocessing step. The log data isn’t saved in the examples themselves,
but instead referenced by the file system path to the log file. This solution was
chosen since log file sizes can vary and be big. It was not straightforward to
see how several megabytes of system call data could be represented efficiently
by a single feature vector. The remaining attributes represent weights for the
individual types of system calls and allow for the automatic selection of relevant
calls. For further information, see [4]. The result of HHHExtractionPlain is an

4



ExampleSet that contains the calculated set of hitters for each log file. Again,
it was unclear how to encode sets of varying sizes in a single feature vector.
As a solution, we used a special attribute of type ObjectAttribute (see [6]),
which can map arbitrary Java objects to double values as they are needed by
RapidMiner’s internal data structures like DataRow.

The parameters of operator HHHExtractionPlain allow for the choice be-
tween the Full Ancestry and Partial Ancestry variants of the hitter algorithms
and the specification of ε and φ. Moreover, it can be specified which hierarchi-
cal variables to use and, if needed, one can limit paths from the hierarchy to
a particular depth. In addition to outputting sets of HHHs in an ExampleSet,
optionally a ResultObject can be output which allows for viewing the cal-
culated HHHs in a table. For faster processing in iterative scenarios like a
cross-validation, which makes repeated use of the same hitter sets, the sets can
be cached on hard disk and don’t need to be calculated repeatedly.

The resulting hitter sets can serve as input to already existing RapidMiner
operators, like kNN (see [4, 5]). Special similarity measures have been imple-
mented for HHHs and can be used in all operators that make use of similarity
measures. For example, one might also cluster sets of HHHs.

3 Discussion

The implemented algorithms are true data stream algorithms, as elements from
the stream can be inserted at any time into the data structures, potentially ad
infinitum. Nevertheless, the HHHExtractionPlain operator doesn’t read from a
stream. Instead, all log files referenced by the entries of a traditional ExampleSet
are read in a whole, returning a vector of stream elements. So although strace
could in principle monitor system calls in a stream-like fashion, the whole pro-
cessing doesn’t appear stream-like at all. In a real-world deployment scenario,
like a malware detector, this type of constant monitoring would be necessary.

We believe that the current shortcomings of our plugin can at least partly
be explained by the lack of support for real stream mining in RapidMiner. The
paradigm shift from traditional off-line to on-line processing of data needs to be
supported by the right tools and frameworks. As RapidMiner is such a successful
tool for the traditional off-line analysis of databases, we pose the challenging
question if and how RapidMiner can be made into a tool that also allows for
the design and execution of true stream mining processes.

Our proposal would be to introduce a general operator StreamReader that is
capable of reading from streams which could be internally represented by pipes
or sockets, for instance. The operator could gather data, like text lines, concur-
rently in the background and buffer them in a queue, either by starting threads
or using asynchronous I/O. In a main loop, single elements from the queue
could then be transformed into IOObject instances and pushed consecutively
to the first nested child operator. A StreamReader would thus closely resemble
the already existing “Loop Examples” operator, but instead read the examples
from one or several streams. The implications of such a processing model aren’t

5



entirely clear yet though and therefore need to be discussed further.

4 Conclusion

We have motivated stream algorithms by shortly presenting the positive results
our working group was able to achieve by calculating HHHs from logs of system
calls. We then described shortly the HHH problem and gave an overview and
implementation details of the accompanying RapidMiner plugin. Although the
plugin is ready for use to analyse data from strace logs, we have also discussed
some shortcomings of our plugin regarding its stream mining character. We
have also identified the current lack of support for stream mining in RapidMiner
and proposed a new type of operator that might be considered as a first step
in a new direction. We see the necessity to discuss and research this subject
further. Future work on the plugin will include its transition to RapidMiner 5
and the introduction of an operator that allows for a more domain independent
extraction of HHHs from data streams.

References

[1] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding hierar-
chical heavy hitters in data streams. In VLDB ’2003: Proc. of the 29th int.
conf. on Very large data bases, pages 464–475. VLDB Endowment, 2003.

[2] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Diamond in
the rough: finding hierarchical heavy hitters in multi-dimensional data. In
Proc. of the 2004 ACM SIGMOD int. conf. on Management of data, pages
155–166, New York, NY, USA, 2004. ACM.

[3] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding hier-
archical heavy hitters in streaming data. ACM Trans. Knowl. Discov. Data,
1(4):1–48, 2008.

[4] P. Fricke. Datenaggregation von Betriebssystemdaten durch Hierarchical
Heavy Hitters. Master’s thesis, TU Dortmund, Computer Science, LS 8,
2010.

[5] P. Fricke, F. Jungermann, K. Morik, N. Piatkowski, and M. Stolpe. Towards
adjusting mobile devices to user’s behaviour. In Proc. of the Int. Workshop
on Mining Ubiquitous and Social Environments (MUSE 2010), 2010. To
appear.

[6] F. Jungermann. Information Extraction with RapidMiner. In Proc. of the
GSCL Symposium Sprachtechnologie und eHumanities, 2009.

[7] S. M. Varghese and K. P. Jacob. Anomaly detection using system call se-
quence sets. Journal of Software (JSW), 2(6):249–278, 2007.

6


