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Abstract A large part of software development these days deals with
building so-called Web applications. Many of these applications are data-
base-powered and exhibit a page layout and navigational structure that is
close to the class structure of the entities being managed by the system.
Also, there is often only limited application-specific business logic. This
makes the usual three-tier architectural approach unappealing, because it
results in a lot of unnecessary overhead. One possible solution to this prob-
lem is the use of model-driven architecture (MDA). A simple platform-
independent domain model describing only the entity structure of interest
could be transformed into a platform-specific model that incorporates a
persistence mechanism and a user interface. Yet, this raises a number of ad-
ditional problems caused by the one-way, multi-transformational nature of
the MDA process. To cope with these problems, the authors propose the no-
tion of a model-driven runtime (MDR) environment that is able to execute
a platform-independent model for a specific purpose instead of transform-
ing it. The paper explains the concepts of an MDR that interprets OCL-
annotated class diagrams and state machines to realize Web applications. It
shows the authors’ implementation of the approach, the Infolayer system,
which is already used by a number of applications. Experiences from these
applications are described, and the approach is compared to others.

? This is an extended and revised version of a paper originally presented at
the UML 2003 conference in San Francisco [23]. The second author has been
supported by the German Federal Ministry of Education and Research (BMBF),
grant 08NM098.
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1 Introduction

A large part of software development these days deals with building so-
called Web applications, that is, server-sided applications that are remotely
accessed via the Internet using a standard Web client. Communication be-
tween client and server is based on the Hypertext Transfer Protocol (HTTP)
and uses the Hypertext Markup Language (HTML) for content description.
For nontrivial applications, static HTML pages are usually not sufficient –
instead, each page exists in two variants: the server holds the original page
that consists of HTML code and embedded scripting commands which, for
example, access the content of some underlying database. This template-like
page is processed on the server, resulting in a pure HTML page which is
then delivered to the client.

Web applications often employ a traditional three-tier architectural ap-
proach: the lower tier provides a persistence mechanism for the entities the
application deals with. The upper tier provides either the HTML user in-
terface meant to be consumed by humans or a communication interface for
other applications based on, for example, the Simple Object Access Proto-
col (SOAP). The middle tier ties the other two together and implements
the application’s business logic. While this approach is relatively common,
it raises a number of problems:

– The database used in the persistence tier is likely to be a relational
one. Given that the rest of the application is modeled using the Uni-
fied Modeling Language (UML) [11,2] and later implemented using an
object-oriented programming language like Java, a mapping between the
object-oriented and relational worlds is necessary. This mapping is fur-
ther complicated by the need for a normalization of database tables and
the expressive mismatch between the Standard Query Language (SQL)
and a modern object-oriented language like Java.

– As mentioned, most approaches use some form of scripting language to
separate static and dynamic portions of a Web page. While it is possible
that the scripts are implemented in (roughly) the same language as the
rest of the application – like in the combination of Java and Java Server
Pages (JSP) – this is not a necessity. It may well be a different language
like PHP or Perl, which results in at least five languages being used in
the overall system: UML, SQL, HTML, Java plus the scripting language.
This poses high demands on the developers’ skills, it raises development
time and cost and it complicates maintenance.

– In a significant number of cases, the application’s business logic is pretty
uniform. Take, for example, the typical simple Web application used to
realize the Web site of a university department (as depicted in Fig.
1). The database stores instances of some entity classes, and the user
interface provides access to them. Often, even the navigational structure
of the user interface is close to the entities’ class structure, that is, there
is a correspondence between domain classes and HTML pages used to
display, manipulate or query instances of these classes. If the logic is
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Fig. 1 A (simplified) domain model of a university department

not application-specific, it seems unnecessary to explicitly model and
implement it. Instead of going through the effort of the full three-tier
approach, one would want to focus on the entities and their presentation
in the user interface and leave the rest to a tool.

A solution to the aforementioned problems, as mandated by OMG, is
the use of Model Driven Architecture (MDA) [10,9]. For a given problem,
MDA proposes that first a platform-independent model (PIM) be created.
This model is then transformed to one or more platform-specific models
(PSM) using appropriate transformation rules. In the given domain of Web
applications, the PIM could encompass application-specific information like
the domain model and the application’s business logic. From the potentially
infinite number of possible PSMs, a specific one could incorporate a user
interface based on HTML and a persistence layer employing a relational
database. A PSM can in principle be refined into an even more platform-
specific model. Yet, at some point programming language code has to be
emitted that can be compiled into an executable application.

From a programmer’s point of view, MDA is not completely new. It
is extending the traditional idea of a compiler to the earlier phases of the
software development process, that is, to the models. While this is surely
a powerful idea, it has some consequences for the overall process as well as
the application under development:

– Evolution is complicated. As Heckel and Lohmann [16] have noted be-
fore, MDA doesn’t pay enough attention to functional evolution of the
system. Every such evolutional step, for example a new requirement,
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induces changes to the PIM or the specification of the transformations
from the PIM to the PSMs. In either case, the whole transformational
chain up to the executable application has to be applied over and over
again. Given that a large part of Web application development deals with
the creative process of designing an appropriate user interface, that is,
small changes to HTML pages (or their equivalent in the model) are
made and evaluated, these time-consuming transformations are likely to
hamper development progress.

– Maintenance is complicated. This is due to the fact that the application
has not only undergone the transformation(s) inherent in the traditional
compilation step, but also additional ones for the models. Tracking a
problem in the running application back to its roots in either the PIM
or one of the transformations requires that the equivalent to “debug-
ging” information is available for each model that was derived from a
less-specific one. Currently, there seems to be no solution for this prob-
lem. Also, unless special care is taken, the generated models and source
code might be hard to read, since they are not primarily meant to be
consumed by humans.

– The process is one-way. While it is in principle possible to modify mod-
els generated during a previous transformation step, this is not rec-
ommended. Manually changing a PSM or some generated source code
potentially results in an inconsistent description of the whole system ar-
chitecture, since these changes are neither reflected in the other models
nor gained “legally” through a transformation. They are lost when a
complete rebuild of the system is done starting from the PIM. Thus,
until there exists a means to propagate manual changes in any model to
the rest of the system architecture, it is best to treat generated models
and source code as read-only.

Since all three problems stem from the multiple transformations (or
compilations) inherent in the MDA approach, the authors were looking for
a solution that suited the Web application domain better. As a result, we
propose a slight variant of MDA that does not compile PIMs, but inter-
prets them instead. In this approach, the transformation from the PIM to
the PSM is handled implicitly by a model-driven runtime (MDR) environ-
ment. Where MDA potentially transforms object-oriented concepts to non
object-oriented ones (as in the case of the relational database), an MDR
implements selected parts of the UML metamodel and interprets them for
a given application domain. Just like it is possible to derive multiple PSMs
from a single PIM in the pure MDA approach, it is possible to have a num-
ber of very different MDRs executing the same PIM for different reasons.
In our case, the MDR of interest is one that supports the development of
Web applications like the one described in the university scenario of Fig.
1, that is, database-powered applications with limited business logic and a
navigational structure that is close to the underlying entity structure.

The rest of this paper is organized as follows: section 2 presents the basic
concepts of an MDR for Web applications. It shows how UML is used to
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describe static and dynamic aspects of a Web application and how these
descriptions are interpreted at runtime. Section 3 shows how the user in-
terface of the MDR can be customized using templates. Section 4 presents
our implementation of an MDR for Web applications, the Information Layer
system, or Infolayer for short. Section 5 describes examples of concrete appli-
cations realized with the approach, with experiences from these being given
in section 6. The final sections 7 and 8 compare our approach to others and
draw a conclusion. A detailed case study is presented in the appendix.

2 Core concepts

The basic idea of an MDR is avoid the transformational steps from the
PIM via the PSM and the generated source code to the working applica-
tion. Instead, the MDR is to execute the PIM itself: a UML model designed
in a Computer Aided Software Engineering (CASE) tool and exported to
the standard Extensible Metadata Interchange (XMI) format supported by
most contemporary tools shall be sufficient to invoke the system. The MDR
then provides a user interface and a persistence mechanism that would be
gained through explicit modeling/implementation or a suitable transfor-
mation in the traditional or MDA approach, respectively. To achieve this,
the model information, possibly annotated with constraints specified in the
Object Constraint Language (OCL) [30], is interpreted in several ways:

1. The model drives the database.
2. The model determines the user interface.
3. The model provides business logic.

The MDR can be seen as a domain-specific UML interpreter the core
semantics of which is taken verbatim from the UML specification. Only
in those areas that are not covered by the UML specification, we need to
define additional semantics. These are typically areas which are specific to
the domain of Web applications.

Fig. 2 depicts the system at a very high level of abstraction, with the
MDR being in the center. The next sections provide more detail on the
various aspects of the interpretation sketched above.

2.1 The model drives the database

At the heart of the UML model fed into the system is a class diagram de-
scribing the entities of interest. Based on this structural model, the MDR
provides a persistence mechanism that supports creating, accessing, mod-
ifying, and deleting instances of the given classes. The semantics of the
persistence mechanism is taken directly from the UML specification: at-
tributes store values of the primitive types Boolean, Integer, Float, String,
and DateTime. Associations describe which instances can be linked to each
other. Inheritance is used to build specialization hierachies.



6 Stefan Haustein, Joerg Pleumann

Fig. 2 Overview of an MDR-based Web application

Since we interpret the model instead of generating lower-level code, we
do not lose valuable information inherent in the class diagram. Thus it is
easy for the MDR to, for instance, treat associations between classes as
first-order elements that are kept consistent by the system according to the
multiplicities at the association ends.

Changes are made persistent to an underlying storage by serializing the
objects. Object configurations that violate OCL constraints specified in the
model are rejected. Practically speaking, the MDR makes it possible to con-
struct a persistent object diagram that conforms to the given class diagram.

Operations are supported, too, with OCL serving as the primary lan-
guage for evaluating any kind of expressions throughout the system:

– Query operations (that is, operations with no side effects) are imple-
mented directly using OCL expressions. OCL is basically used like a
functional programming language in that case.

– Non-query operations are implemented using UML action semantics. To
minimize the learning effort for users, we chose a superset of OCL as the
surface language (the concrete syntax) for action semantics. Details of
this action language are presented in [14].

The system knows several predefined classes. One of them is the usual
Object class that forms the root of the class tree. Object provides a built-in
operation toString(): String the purpose of which is to derive a print-
able text from an object. It is used and redefined in the same way as, for
example, in the Java class libraries. Another predefined class User serves as
the basis for user management, authentication and access control to classes
and objects based on permissions (again expressed in OCL).
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Fig. 3 Generic user interface derived from the model

2.2 The model determines the user interface

An MDR can be accessed in numerous ways, of course, but for the moment
we are only interested in Web-based access. Technically, the system needs to
run inside a Web server or provide Web server functionality itself. Conceptu-
ally, an HTML user interface needs to be generated by the interpreter when
a client accesses the system. This interface is based both on the structural
information inherent in the UML model and on the existing instances. The
mapping from the model to user interface components is straightforward:

– The interface shows a clickable inheritance tree of known classes. When
a specific class is selected, its current instances are listed, individual
instances can be selected for display, and new instances can be created.

– The system shows for each instance a list of all attributes and associa-
tions, with associations being rendered as hyperlinks to the associated
objects. The latter supports the user in easily navigating through the
whole object diagram.

– When editing an object, the system takes care to restrict the user’s input
to sensible choices – like exactly those objects that can participate in a
certain association under the constraints imposed by the multiplicities
at the association ends.

– For querying the database a very similar screen is used. The results of
a query are displayed as a list of instances where individual objects can
be selected for display.
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Fig. 4 State machine for the Thesis class

Fig. 3 depicts the user interface generated for the Thesis class of the
university example. Underlined strings denote hyperlinks. Arrows are used
to indicate which parts of the user interface are derived from which parts
of a class declaration.

2.3 The model provides business logic

Experience with Web applications shows that a number of systems display
workflow-like characteristics. Take, for example, the university department
model from Fig. 1. The corresponding Web site would usually provide a
list of master theses, each of which can be in a different state: a thesis can
be available, it can be reserved for a student who is writing a proposal, it
can be work in progress, and it can be finished. The possible transitions
between these states are restricted, and the user interface should enforce
these restrictions. For example, one should be able to go from in progress
to finished, but going back should be prohibited. Such behavior is easily
specified by means of a UML state machine, as Fig. 4 shows.

The MDR interprets state machines as additional business logic of the
system. Every class in the domain model can be annotated with a state ma-
chine that describes its behaviour. Once a new object is created at runtime,
it not only has all its attributes set to default values, but also starts in its
initial state(s).

The statechart interpretation follows the core semantics of the UML
specification. Only the generation of the user interface parts require addi-
tional semantics:

– When an object is displayed, the user interface shows a list of buttons
representing the potential triggers. These are the triggers of exactly those
transitions that are enabled, or, more precisely, would be enabled if these
events were to enter the system. In Fig. 3, the Assign button is displayed
because the corresponding trigger is attached to a transition that leaves
the currently active state.
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– The buttons take into account any guard expressions attached to the
transitions. These guards are, again, specified in OCL and may thus
encompass both the model information and the existing instances.

– When a button is pressed, the enabled transitions are taken, resulting in
a new active state configuration. Actions executed by a transition can
be used to modify an object’s attributes, for example by assigning values
to attributes or associations.

– The new state configuration is made persistent together with the object,
just as the attributes and associations are. Once a state machine reaches
a terminal state, the object it belongs to is deleted.

If required within an expression or operation, the current active state
configuration of an object can be queried using the OclInState(<state>)
function. As an example, the toString() operation of a class could take
the active state configuration of an object into account when deriving the
resulting string.

3 Customizing the user interface

Being relatively simple and thus not sufficient for real-life applications, the
generic user interface needs to be tailorable to specific needs. It is tempting
to achieve this on the level of the UML model, too, since it would result in a
coherent approach that employs a minimum number of formalisms. Yet, for
pragmatic reasons we find it more appropriate to perform this tailoring on
the level of HTML pages. This is due to the observation that HTML is also
the target language of the system and that a number of powerful and mature
tools exist for creating HTML pages. We assume that people responsible for
the artistic design of a Web application will be more comfortable with these
and prefer them over a CASE tool.

What is required then is a means to intertwine fixed parts of HTML
pages with variable content taken from the database, that is, with objects
currently stored in the system. We solve this problem by augmenting HTML
pages (XHTML, actually) with special XML elements that are evaluated on
the server side before a page is being delivered to a client. Each of these
augmented pages, or templates, is bound to a class of the UML model and
is subject to inheritance and refinement. The next sections provide more
detail.

3.1 Templates

A template is a named HTML page that is bound to a class of the UML
model. When requested by a client, the template is loaded, and any special
XML elements that access the model or its instances are evaluated. Standard
HTML elements and those elements to be evaluated are easily distinguished
by XML namespaces. The results of the evaluation are inserted into the
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<h1>Theses Available</h1>

<ul>
<!-- ’forAll’ traverses a collection of objects and -->
<!-- repeats the enclosed elements for each of them. -->
<!-- ’t’ denotes the namespace for template elements. -->

<t:forAll expr="Thesis->select(author->isEmpty())">
<li>

<!-- ’self’ holds the current iteration item (optinal). -->
<!-- ’valueOf’ evaluates an expression and prints the -->
<!-- result. -->

<t:valueOf expr="self.title"/>

<!-- ’if’ encloses a conditional block. -->

<t:if expr="advisor->notEmpty()">
(advised by <t:valueOf expr="advisor.givenName"/>

<t:valueOf expr="advisor.familyName"/>)
</t:if>

</li>
</t:forAll>

</ul>

Fig. 5 Template incorporating OCL expressions

HTML page, and the page is finally delivered to the client. Figure 5 shows
an excerpt from a template of the Thesis class. The template displays a list
of all theses that are available, that is, those theses that don’t already have
have an author assigned. For each thesis, the title and a possible advisor
are printed.

The template mechanism is similar in spirit to the embedding of a pro-
gramming or database query language into HTML pages. Yet, there are also
differences:

– Templates are not just a collection of HTML pages. They are prop-
erties of classes, loosely related to operations: templates are requested
(or invoked) in the context of either their class or an instance of their
class (similar to class and instance operations). The invocation context is
stored in a variable self that can be accessed from inside the template.

– Instead of incorporating yet another query language, OCL is used as an
expression language for all sorts of queries in templates. For example,
<t:valueOf expr="advisor.givenName"/> outputs the givenName at-
tribute of an object that is referenced by the advisor association of a
Thesis (self is optional, as usual).

Additional XML elements provide a limited degree of what might be
called control flow while generating an HTML page. As an example, there
is an element that iterates the constituents of an OclCollection (the result
of a <class>.allInstances->select(<condition>) expression) and out-
puts a certain HTML fragment for each. Another XML element provides an
equivalent to the usual if construct known from programming languages.
Its condition is an OCL expression that evaluates to a boolean value.
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Fig. 6 Inheritance and refinement of templates

Several template names are reserved for specific purposes. For exam-
ple, edit.html is used for editing the details of an object. The effect of
providing templates with these reserved names is that the default pages
for listing, displaying, editing, and searching objects are changed, while the
overall structure of the system is still determined by the model. By provid-
ing additional templates, it is possible to build systems with a more complex
navigational structure.

3.2 Inheritance and refinement

Being properties of classes, the templates propagate according to the inher-
itance rules dictated by the class hierarchy: subclasses inherit the templates
defined by their superclasses, but can override them by providing a tem-
plate of the same name. If no specific templates are defined at all, classes
inherit their templates from Object – which results in the default output
behaviour described in section 2.

Refinement of templates is supported by an XML element <inner> that
behaves similar to the way refinement is handled in the BETA program-
ming language [21]: each template can define a slot where it wants to be
refined by specialized templates. When a specialized template that refines
a more general one is processed by the MDR, the resulting HTML page
contains the general template, with the <inner> element being replaced by
the specialized template.

It should be noted that the BETA way of handling refinement is rather
different from the super construct used in programming languages like Java
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or C++. Conceptually, super inserts inherited code into overriding code at
a position where the call occurs, so specialized code “encloses” inherited
code. BETA does it the other way around. For the purpose of dealing with
HTML pages (or general XML documents, actually), the BETA approach
is more appropriate, because it supports a more natural way of organizing
templates: the most general template contains the usual outermost HTML
elements (<html>, <head>, . . . ) and provides a general page layout (for
example, a title and a menu bar). In particular, this template is already a
complete and well-structured (X)HTML document. Specialized templates
simply fill in their details into the appropriate refinement slot.

Figure 6 illustrates template refinement in the context of the univer-
sity example. The default.html template for the Object class defines the
general page layout for all classes in the system. This layout includes a
fixed menu on the left side. By means of the <inner> element, the template
reserves the dashed rectangle for refinement. Subclasses that override and
refine default.html specify their additional information here. The Thesis
class, for instance, adds the aforementioned list of available theses.

4 Implementation

We have implemented the above ideas in our Infolayer system. The roots
of this Java-based system go back to the COMRIS [13] project funded by
the European Community. Fig. 7 shows a very rough approximation to the
architecture. At the heart of the system lies an implementation of selected
portions of the UML metamodel:

– A core part, implementing basic properties of all model elements. This
part has a loose conceptual relationship to the UML meta-metamodel,
but it is not an implementation of the Meta Object Facility (MOF).

– A part that implements UML classes and objects, including all the nec-
essary properties, such as attributes, associations, methods, inheritance,
etc. In addition to the usual built-in datatypes, a primitive File type
provides for easily storing binary files and thus supports a limited form
of content management system (CMS) functionality.

– A part that implements UML state machines, including a runtime com-
ponent that is able to simulate a state machine.

– An OCL parser and evaluator. This component implements the OCL
as defined in the UML 1.5 specification. As mentioned, a few additional
constructs have been introduced to turn the OCL into a full UML action
semantics surface language.

– An XMI loader that is used to feed the model into the system. Since XMI
operates on the UML meta-metamodel, this part requires the core part
only and handles arbitrary metamodel elements through the reflective
capabilities introduced in the core part.

– A part that implements an XML-based persistence mechanism as well
as other ones, for example one based on Java Database Connectivity



A Model-Driven Runtime Environment for Web Applications ?? 13

Fig. 7 Architecture of the Infolayer

(JDBC) that makes it possible to integrate an existing relational data-
base into the Infolayer. Actually, it is even possible to have the Infolayer
operate on a BibTeX file – in that case a model is automatically provided
that represents the various BibTeX entry types.

All these components contribute to the system’s model layer or back-
end, which is still largely application-independent. Atop the model layer lie
different application front-ends which provide the functional equivalent to
transformations from a PIM to a PSM in MDA, among them the servlet
already mentioned in the previous sections. The servlet uses the template
mechanism to generate output based on the model and instance informa-
tion. HTML is one possible output format, but it is not the only one. The
template processor can actually be used for generating output in any XML-
based target language. As an example, an approach to produce output con-
forming to the Resource Description Framework (RDF) and thus open the
Infolayer to the Semantic Web is described in [15]. Further template sets
could easily be used to address mobile phones using the Wireless Markup
Language (WML) or a limited subset of HTML.

Fig. 8 shows the default HTML user interface for the university example.
This is an actual screenshot from an Infolayer installation working on the
class diagram depicted in Fig. 1 when no specific templates are used. Fig. 9
shows the improved user interface after templates have been added to the
system. The templates make use of the refinement mechanism, that is, they
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Fig. 8 User interface without templates

all inherit the main layout (the darker frame parts of the page) from Object
and fill in their details into an <inner> slot (the white rectangle).

Given a Web browser that is capable of rendering the Scalable Vector
Graphics (SVG) format, even an object’s state machine can be displayed in
the user interface, employing the visual information taken from the UML
model exported by the CASE tool.

Several other front-ends exist in addition to the servlet. A command-line
front-end can be used to access the system using OCL expressions only, and
a similar front-end uses the Telnet protocol to access an Infolayer instal-
lation from a remote host. A Swing-based graphical application front-end
that adapts its user interface to the model has also been implemented, but
is currently not maintained, because the focus lies on Web-based access. Fi-
nally, a front-end implementing the Simple Object Access Protocol (SOAP)
make it possible to remotely access the Infolayer from third-party applica-
tions. Using SOAP, objects can be created, updated, or deleted, and publicly
visible methods can be called, as long as security settings permit this.

5 Applications

In the spirit of “eating one’s own food”, that is, the idea that a (software)
engineer should always be the first one to apply his or her own systems, the
Infolayer is being actively used in a number of different projects.
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Fig. 9 User interface with templates

The largest of these applications is probably the Web site for MuSofT
(http://www.musoft.org), a distributed project that develops multimedia
teaching material for software engineering education in Germany [7]. The
goal of this application is to manage and distribute the material contributed
by the various project partners and to facilitate sustainable (re-) use inside
and outside this community. The corresponding database is rather complex:
it not only features authors, their (binary) material and access rights, but
also metadata conforming both to the Learning Objects Metadata (LOM)
standard [5] and a subset of the ACM computing classification system [8] for
proper structuring and efficient retrieval within the database. The MuSofT
application is described as a detailed case study in the appendix.

A second application is the Java 2 Micro Edition (J2ME) Device Data-
base (http://devicedb.kobjects.org), a database of mobile phones and
personal digital assistants (PDAs) supporting J2ME. Although these de-
vices follow a common standard, they all have their own bugs, peculiarities
and limitations – which is critical information from the point of view of a
developer who, naturally, cannot own all the devices available in the world.
The database accumulates this information. It receives “live” data from a
small benchmarking application that is publicly available and can be run
on the different devices by their owners, sending its results to the Infolayer
database after it has been executed.

Other applications include the Machine Learning Net (MLnet) teaching
server (http://kiew.cs.uni-dortmund.de:8001), a system that provides
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information for the artificial intelligence community, and several chairs of
the University and the University of Applied Sciences in Dortmund who use
it to manage their Web sites. In addition to these, the Infolayer is used in
numerous smaller projects where a database with Web-based front-end and
an easy-to-use navigational structure is required without spending much
effort on its implementation.

6 Lessions learned

Some of the above applications have been in use for about three years.
Experiences with these applications and with the overall Infolayer approach
have shown a number of things. For this paper, we would like to concentrate
on the areas of feasibility, methodology, OCL usage, and tool support.

6.1 Feasibility

First, the general approach of modeling relevant structural and dynamic
parts of a Web application in a CASE tool and then executing this model
works well. For the applications mentioned in the previous section, there was
practically no additional Java programming necessary (only the MuSofT ap-
plication required the two additional classes to handle e-mail notifications
and the export functionality). With the model itself becoming executable,
we were able to produce a working prototype for any of the applications
very early. If a database schema proved to be insufficient for the applica-
tion, it was possible to go back to the CASE tool, change the model, and
then execute it again. No implementation effort was spent on thrown-away
prototypes, which makes the Infolayer ideal for a rapid application devel-
opment (RAD) approach in the Web application or database context. We
think a similar approach should be possible in other areas, too.

6.2 Methodology

Second, a methodology or “best practice” for working with the Infolayer
has evolved over time. It emcompasses these steps:

1. A domain model consisting of OCL-annotated UML class diagrams and
possibly UML state machines is designed using one or more iterations
of designing and testing a prototype, as described above.

2. The system’s layout is tailored to personal taste or a given corporate
design using one very simple template that provides a basic frame and
a main navigation structure. This is usually the point at which the sys-
tem can actually be utilized by its users, that is, the Web application’s
database can be filled with content.
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3. The page layout for individual classes is successively improved. If re-
quired, the system’s whole navigational structure is changed according
to the specific needs dictated by the application. Since changes to the
templates are recognized by the running system without a restart being
necessary, they can be applied and evaluated easily and with near-zero
turnaround time.

4. The model itself can be modified, too, as long as these changes only
introduce elements (classes, attributes, associations, constraints) into the
system that are consistent with existing instances. We hope to loosen
this restriction using refactoring facilities in the near future.

6.3 OCL usage

Third, the decision to use OCL both as a query language and as the basis for
the action language inside the system proved to be very helpful. A previous
version of the Infolayer used the Object Query Language (OQL) [3] instead,
so the authors are in a position to draw a comparison here: OQL is basically
a slight syntactic adaption of SQL to the object-oriented world. Queries that
encompass multiple associations with a cardinality greater than one tend
to become lengthy and unreadable, because they result in nested select
statements. The implicit collect() in OCL expressions supports much
shorter and more intuitive queries. Also, OCL is tightly integrated with
the various UML diagrams, in particular class diagrams. This results in a
more coherent approach and the possibility to leverage existing knowledge.
After all, if someone has prior experience with UML, he or she is likely to
have run into OCL, too.

As a consequence, we propose to use OCL as a general (side-effect free)
query language for OODBMS. As mentioned in section 2, a limited number
of additional constructs suffices to turn OCL into a full action semantics lan-
guage, thus even providing the functionality required for arbitrary database
modifications.

6.4 Tool support

Fourth, it has become clear that contemporary CASE tools have a number
of limitations when used for modeling Infolayer applications.

– While most CASE tools have excellent support for editing the graphical
parts of a UML model, the incorporation of non-graphical information, in
particular OCL constraints, is rather weak. As a result, Infolayer appli-
cations that make heavy use of OCL or the OCL-based action language
are sometimes difficult to develop and maintain. OCL information is
distributed over tagged values or general comment fields, depending on
what is supported better by a particular CASE tool. Some tools provide
a limited form of OCL syntax checking, but are far from the features
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of typical programming language editors. Hence, small errors in OCL
constraints often only show up at runtime and then need a correction of
the model and a restart of the whole application.

– XMI support is another weak point in many existing CASE tools. Dif-
ferent XMI variants are used in different tools, and often it is difficult if
not impossible to load a UML model generated by one tool into another
tool. This multitude of XMI variants naturally also affects the Infolayer,
which, in the ideal case, should load any well-formed XMI file. The XMI
loader used inside the system tries to detect and accept as many XMI
variants as possible, but the incorporation of special cases required for
even the handful of tools regularly used by the authors has made its
implementation rather complex.

Both problems are not limited to the Infolayer approach, though. We
expect the importance of OCL and action languages to grow with the ac-
ceptance of model-driven development in general. Something similar holds
for other forms of annotation that are required for directing model transfor-
mations or code generation in MDA. CASE tools will hopefully reflect this
by better support for editing and managing non-graphical parts of a model.
While dedicated syntax support for arbitrary action languages might not
be feasible for CASE tool vendors, support for an action semantics surface
language based largely on OCL would only be a small step from support-
ing OCL itself. XMI support, too, has to mature, because interoperability
of tools is critical to any form of model-driven development. The XMI 2.0
specification seems to head into the right direction here, because it sup-
ports simpler and more compact descriptions of UML models, which will
hopefully result in more robust implementations.

7 Related work

The Infolayer is not the first system that is based on the idea of interpret-
ing and executing a graphically specified formal model. Harel’s Statemate
tool [12] uses state machines to describe and simulate system behavior. The
Real-Time Object-Oriented Modeling (ROOM) [27] language specifies both
system structure and behavior using a mixture of classes and state machines.
Both systems are targeted at generating code for embedded systems, not
for database systems or Web applications. As a result, user interface con-
siderations are not a concern for them.

Riehle [24], Mellor [22] and Frankel [9] mention UML virtual machines
(VM) capable of interpreting arbitrary UML models. Yet, these VMs seem
to focus on simulating and model checking a given model or use it for
research purposes in areas like refactoring [17]. As far as we can see, most
of them are not targeted at a certain application domain, as is the Infolayer,
yet the systems are very close in spirit to ours.

A commonplace alternative to the UML/OCL/HTML combination used
in our approach is a pure XML approach as mandated by the W3C. This
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approach would use XML Schema [31] for structural modeling, XPath [28]
as a query language, and XSLT stylesheets [29] for transforming XML doc-
uments to HTML output renderable in a browser. Unfortunately, it can be
shown that XML Schema does not allow to model arbitrary associations
between concepts without information loss [19]. Hierarchical relationships
in XML Schema cannot express cyclic associations such as the Person–
Publication–Project–Person cycle in our university scenario. The identifier-
based references between elements of an XML Schema are unable to ensure
a mutual reference between two instances of these elements that take part
in a bidirectional association: if a person is linked from a project, the re-
verse link is not necessarily set, too. Even if XML Schema were extended to
cover those cases, it would not seem adequate to use a language primarily
designed to describe document tree structures for more general graphs, such
as our domain model. Another problem is that the XPath language – used
for expressions inside XSLT stylesheets – operates on XML instances only,
but igores valuable information that is available in the corresponding XML
Schema. XML queries are evaluated against XML documents based on ele-
ment names and nesting structure only, ignoring the data types and other
information inherent in the original model [20].

There’s already a number of methodologies trying to employ the UML
for creating Web applications. Conallen [6] uses UML stereotypes to model
various aspects of a Web application, from client and server components
to details of individual HTML pages. While this approach pays off for very
large applications that incorporate traditional executable code development,
we find it overly complex for the average small or medium Web applica-
tion. Baumeister et al. [1] describe a systematic design method for Web
applications combining ideas from the Object-Oriented Hypermedia De-
sign Method (OOHDM) [26] and UML. The system specification is divided
into a conceptual model, which is roughly equal to our domain model, and
a navigational model. Since our premise is that the system’s navigational
structure is close or equal to the entity structure anyway, we do not see the
necessity for the navigational model, and the examples given in [1] seem to
concede more to our point than to theirs. WebML [4] is a high-level spec-
ification language for data-intensive Web applications. It seems closest to
our approach in that it focuses on an entity-relationship model, that is, ba-
sically on a subset of UML class diagrams specifying the domain classes of
interest. One then composes Web pages from these entities and high-level
components like buttons, indexes etc.

Interestingly, all three approaches try to model HTML page layout by
means of UML and find equivalents to single HTML elements using stereo-
types. In our opinion this is putting the cart before the horse. The purpose
of a Web application is determined by its content, that is, the entities it
deals with, so these should come first and be central to the whole devel-
opment process. Also, HTML is just one of many possible user interfaces
for accessing the application. For HTML-centric approaches, incorporating
alternative user interfaces or handling changes to the entity structure will
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be complicated. For a model-based approach – be it transformational or
interpretative – this is easily done by either adding a new transformation
or implementing a variant of the runtime environment.

Schattkowsky and Lohmann [25] describe a use-case-based development
process for dynamic Web sites. While their work has a different emphasis
in some areas, their premises are strikingly similar to ours. In particular,
they target the special needs database-powered Web applications with lim-
ited business logic. Yet, their ProGUM system generates PHP and HTML
code from UML models and thus is likely to run into the MDA problems
mentioned in section 1, particularly those with maintaining generated code.
The same holds for the UWE tool by Kraus and Koch [18] that generates
XSLT stylesheets from a UML model. We hope to be more flexible with our
interpretative approach.

8 Summary and Outlook

We have presented a novel approach to developing Web applications. It is
highly model-driven, but instead of transforming a platform-independent
model to a platform-specific one, as in the case of Model-Driven Archi-
tecture, it directly interprets or executes the domain model. For that pur-
pose we have introduced the notion of a model-driven runtime environment
that accepts a UML model consisting of a class diagram and a number of
state machines and makes this model accessible through a servlet. A de-
fault HTML user interface is generated on-the-fly, but can be tailored to
specific needs using a template mechanism. The template mechanism uses
OCL plus a few additional constructs to access the domain model and the
existing objects and renders them to HTML.

The idea has been implemented in the Infolayer system, which provides
the basis for a number of different Web applications already in use. Experi-
ences with developing and using these applications have been very positive
so far, and we feel that it should be feasible to apply the same ideas to
other application domains, too. Amongst the things we consider for future
extensions to the system are additional UML diagram types and refactoring
facilities.

The Infolayer system is available under the terms of the GNU General
Public License (GPL) from http://www.infolayer.org.
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20. Bertram Ludäscher, Ilkay Altintas, and Amarnath Gupta. Time to leave the
trees: From syntactic to conceptual querying of XML. In Intl. Workshop
on XML Data Management (XMLDM), in conjunction with Intl. Conf. on
Extending Database Technology (EDBT), Prague, March 2002.
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Appendix: The MuSofT case study

MuSofT (Multimedia in Software Engineering) is a distributed project fun-
ded by the German Federal Ministry for Education and Research (BMBF)
in which a number of German universities create multimedia content for
software engineering education. The goal of the MuSofT Web site is to
manage and distribute the material (so-called learning objects) contributed
by the various partners and to facilitate sustainable (re-) use inside and out-
side this community. It was clear from the beginning that the corresponding
database would be rather complex: it not only had to feature authors, their
(binary) material and access rights, but also metadata conforming both to
the Learning Objects Metadata (LOM) standard [5] and a subset of the
ACM computing classification system [8] for proper structuring and effi-
cient retrieval within the database. Since, apart from the complex entity
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structure, the application’s business logic was rather straightforward – in-
stances of the various entity classes had to be managed and made accessible
via the Web –, the MuSofT project chose to implement its distribution site
using the Infolayer.

8.1 Database

Figure 10 shows a slightly simplified version of the class diagram for the
MuSofT application, which is basically the domain model that resulted from
the project’s analysis phase.

The central class LearningObject defines the properties that all sorts
of learning objects share. The attribute filename stores the actual binary
content of a learning object using the Infolayer’s built-in type File. All
other attributes and associations hold the learning object’s metadata: some
attributes, such as title and description, store arbitrary String values.
Others, such as difficulty and interactivity, make use of enumeration
types to ensure that only valid LOM values can be used. Associations to
additional classes like Language are used when a metadata value has a
complex structure itself, the multiplicity may be larger than one, or the set
of possible values may evolve at run-time by adding new instances.

LearningObject itself is abstract and thus cannot be instantiated. The
concrete descendants LearningUnit, LearningModule, GroupObject, and
MediaObject have to be used instead. These classes extend LearningObject
by capabilities to structure material into up to four levels of granularity.

UML initial values are used to set some attributes and associations to
sensible defaults whenever a new learning object is created. They make use
of the built-in Infolayer class that represents the run-time system itself.
The initial value of creationDate is Infolayer.getCurrentDate(), that
is, the current date and time. The default value of the author association is
Infolayer.getCurrentUser(), which returns the currently logged in user
(who also created the object).

The User class serves as a basis for access management. LearningObject
has a total of three associations to this class. One specifies the original
author and owner of a learning object, which should be a single person. A
number of additional users may be specified as contributors. Author and
contributors form the set of people that are allowed to modify the learning
object. Furthermore, users that apply a learning object in their classes may
express their interest in being notified whenever the object changes. As
mentioned in section 2.1, the Infolayer consults the instances of the User
class whenever a user attempts to log in to the system.

AcmClassifier, finally, represents the nodes of the ACM classification
system. Each node has attributes that store its classifier and title informa-
tion. A parent/child association from the class to itself is used to organize
the nodes into a proper tree.

All classes in the model implement the toString() method to derive a
short, printable description of each instance. In the case of the Language
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Fig. 10 UML class diagram for the MuSofT application
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Fig. 11 Frame page with space reserved for refinement

class, for example, the method concatenates the value of description
and identifier, the latter being in parentheses. Most classes also imple-
ment the canRead() and canWrite() methods, which are invoked when-
ever access rights for an object need to be checked. The implementation of
LearningObject.canWrite(), for example, uses the expression author->
union(contributor)->contains(Infolayer.getCurrentUser()), allow-
ing the original author and all contributors to modify the object – just the
desired behavior described above. Most other classes implement canWrite()
based on the OCL expression Infolayer.getCurrentUser()->notEmpty()
and Infolayer.getCurrentUser()->isAdmin to make sure only adminis-
trative users are allowed to create, modify, or delete instances.

8.2 User Interface

Up to this point, more or less standard UML features have been used. The
creation of HTML output was not a concern. Thus, with the exception
of possibly the built-in Infolayer class and the two operations used for
deriving initial values, the above model should be roughly on the level of a
PIM. Yet, the model already suffices for driving the Infolayer and getting a
working prototype of the system. This prototype looks rather minimalistic
(similar to Fig. 8), but it makes it possible to fill the database with content.

To improve both the layout and the navigational structure of the appli-
cation, a number of XML templates were provided to the system along the
lines of section 2.2. First of all, a prototypical plain HTML page was created
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Fig. 12 HTML page for details of a learning object

by a Web designer. This page, which is depicted in figure 11, contains the
general layout of the application as well as some HTML elements that are
common to all pages (for example, the topmost menu with links to a num-
ber of external pages that are not handled by the Infolayer). The page was
named frame.html, and it was attached as a template to the basic class
Object, so that it became available to all other (sub-) classes in the system.

The highlighted area of the frame template was reserved for content
determined by the various classes of the model and their instances using
the XML element <inner> at the corresponding position of the HTML file.
An example of a specialized page is shown in figure 12. This page displays
the metadata of a learning object.

For each class in the model, four additional templates for listing, dis-
playing, editing, and querying instances were defined. Each filled the gap
provided by the <inner> element of the frame template. While it would have
been possible to use only four templates attached to Object for all classes in
the system – which is the Infolayer’s default behavior –, this was not appro-
priate for MuSofT, since the templates were rather different: instructions
on how to use each page had to be added to the templates, because the
end users could not be expected to be experts in using the system. Some
templates divided the rather long list of attributes and association ends
into several groups separated by sub-headings. The list of available learning
objects not only displayed toString() values for each object (which is the
only detail the Object class would have known). They also incorporated
attributes of a class, as in the case of the author list, where the number
of learning objects was printed next to the name. Last, but not least, one
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Fig. 13 HTML page for ACM classification scheme

class did not show a flat list of instances at all: for AcmClassifier, a tree
of instances was desired to better reflect the hierarchical nature of the clas-
sification system. Figure 13 shows this HTML page.

8.3 Business Logic

The MuSofT application makes limited use of statemachines. A very simple
statemachine with states like new, in review, approved, or deprecated is used
in the LearningObject class to describe the editorial workflow currently
adopted in the project. Only approved objects are visible to external users.
This workflow might become more complex in the future, depending on the
experiences with the working system.

8.4 Additional Features

Most functionality of the MuSofT application was easily implemented by
means of UML/OCL or the XML template mechanism. Only two features
required additional Java programming:

– E-Mail notifications. Users may register for change notifications on learn-
ing objects. The author of a learning object decides whether a notifica-
tion is actually sent when he or she changes the object.

– Standardized export. Users may download a number of interconnected
learning objects in a single, standardized package format, basically a
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ZIP file that contains both the binary content and the metadata of the
exported objects.

Both features were implemented in the form of specialized XML template
elements that add a button to generated HTML pages. Pressing that button
results in the corresponding Java code being invoked. Since the Infolayer’s
core part is basically an implementation of the UML metamodel, accessing
the model or its instances from Java is straightforward.

The MuSofT application also makes use of the Infolayer’s SOAP capabil-
ities: an external tool supports authors in uploading a number of intercon-
nected learning objects along with their metadata to the system, bypassing
the HTML user interface. Since the Infolayer is able to generate an XML
schema corresponding to the UML model, the syntactical correctness of the
uploaded file can be checked on the client side before actually executing the
(possibly time-consuming) upload process.

8.5 Experiences

A first prototype of the MuSofT application was developed in December
2001. This prototype used a much simpler domain model than the one de-
picted in Fig. 10, but the important parts of the metadata, such as the
ACM tree and the corresponding search facilities, were already included. A
small number of templates were added to the system to establish a mini-
mal corporate design and to give the other project members an impression
of what the final system might look like. The prototype also featured the
standardized export format, since this was considered a necessary feature,
too. In only two weeks, a working version of the system was developed that
included all the critical features, though much of it was still in its infancy.

After the Infolayer-based approach to the distribution site had been
approved by the MuSofT project members, the system was successively im-
proved during 2002. The domain model was refined. More templates were
added to the system, including the layout provided by the Web designer.
Most of the template work was done by a single student worker who had
prior experience with HTML and some insight into UML/OCL. Over time,
several new features were incorporated, such as the e-mail notifications,
download counters, graphical reports on the database content, and the
SOAP upload tool. Though still in development, the MuSofT application
was already being actively used by the project members for uploading their
learning material, so the developers were able to incorporate feedback early.

The application was made publicly available in the fall of 2002. Since
then, about 100 different learning objects on software engineering along
with their metadata have been stored on the server. These learning objects
range in complexity and size from simple slides over specialized applications
to complete videos of several hundred megabytes.


