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Abstract

Recent advances in practical quantum computing have led to a variety of cloud-based
quantum computing platforms that allow researchers to evaluate their algorithms on noisy
intermediate-scale quantum (NISQ) devices. A common property of quantum computers is
that they exhibit instances of true randomness as opposed to pseudo-randomness obtained
from classical systems. Investigating the effects of such true quantum randomness in the con-
text of machine learning is appealing, and recent results vaguely suggest that benefits can
indeed be achieved from the use of quantum random numbers. To shed some more light on
this topic, we empirically study the effects of hardware-biased quantum random numbers on
the initialization of artificial neural network weights in numerical experiments. We find no
statistically significant difference in comparison with unbiased quantum random numbers as
well as biased and unbiased random numbers from a classical pseudo-random number gen-
erator. The quantum random numbers for our experiments are obtained from real quantum
hardware.

1 Introduction

The intrinsic non-deterministic nature of quantum mechanics (Kofler and Zeilinger, 2010) makes
random number generation a native application of quantum computers. It has been exemplarily
studied in Bird et al. (2020) how such quantum random numbers can affect stochastic machine
learning algorithms. For this purpose, electron-based superposition states have been prepared
and measured on quantum hardware to create random 32-bit integers. These numbers have sub-
sequently been used to initialize the weights in neural network models and to determine random
splits in decision trees and random forests. Bird et al. observed that quantum random numbers can
lead to superior results for certain numerical experiments in comparison with classically1 generated
pseudo-random numbers.

However, the authors have not further explained this behavior. In particular, they have not dis-
cussed the statistical properties of the generated quantum numbers. Due to technical imperfections
and physical phenomena like decoherence and dissipation, measurement results from a quantum
computer might in fact significantly deviate from idealized theoretical predictions (Shikano et al.,
2020, Tamura and Shikano, 2021). This raises the question of whether it is not the superiority of
the quantum random number generator to sample perfectly random from the uniform distribution
that leads to the observed effect, but instead its ability to sample bit strings from a very particular
distribution that is imposed by the quantum hardware.

1We use the term “classical” in the sense of the physics community to distinguish deterministically behaving
entities from the realm of classical physics from those governed by the non-deterministic rules of quantum physics
(Norsen, 2017).
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We therefore revisit this topic in the present manuscript and generate purposely biased random
numbers using real quantum hardware. The structure of the remaining paper is as follows. In
section 2, we briefly summarize the background of the main ingredients of our work, namely
quantum computing and random number generation. Subsequently, we present the setup of our
quantum random number generator and discuss the statistics of its results in section 3. In section 4,
we study the effects of the generated quantum random numbers on artificial neural network weight
initialization using numerical experiments. Finally, we close with a conclusion.

2 Background

In the following, we provide a brief introduction to quantum computing and random number
generation without claiming to be exhaustive. For more in-depth explanations, we refer to the
cited literature.

2.1 Quantum computing

Quantum mechanics is a physical theory that describes objects at the scale of atoms and subatomic
particles, e. g., electrons and photons (Norsen, 2017). An important interdisciplinary subfield is
quantum information science, which considers the interplay of information science with quantum
effects and includes the research direction of quantum computing (Nielsen and Chuang, 2011).

2.1.1 Quantum devices

A quantum computer is a processor which utilizes quantum mechanical phenomena to process in-
formation (Benioff, 1980, Grumbling and Horowitz, 2019). Theoretical studies show that quantum
computers are able to solve certain computational problems significantly faster than classical com-
puters, for example, in the fields of cryptography (Pirandola et al., 2020) and quantum simulations
(Georgescu et al., 2014). Recently, different hardware solutions for quantum computers have been
realized and are steadily improved. For example, superconducting devices (Huang et al., 2020) and
ion traps (Bruzewicz et al., 2019) have been successfully used to perform quantum computations.
However, various technical challenges are still unresolved so that the current state of technology,
which is subject to substantial limitations, is also phrased as noisy intermediate-scale quantum
(NISQ) computing (Preskill, 2018, Boixo et al., 2018).

There are different theoretical models to describe quantum computers, typically used for spe-
cific hardware or in different contexts. We only consider the quantum circuit model in which a
computation is considered as a sequence of quantum gates and the quantum computer can con-
sequently be seen as a quantum circuit (Nielsen and Chuang, 2011). In contrast to a classical
computer, which operates on electronic bits with a well-defined binary state of either 0 or 1, a
quantum circuit works with qubits. A qubit is described by a quantum mechanical state, which
can represent a binary 0 or 1 in analogy to a classical bit. In addition, however, it can also represent
any superposition of these two values. Such a quantum superposition is a fundamental principle
of quantum mechanics and cannot be explained with classical physical models. Moreover, two or
more qubits can be entangled with each other. Entanglement is also a fundamental principle of
quantum mechanics and leads to non-classical correlations (Bell and Aspect, 2004).

In order to illustrate the aforementioned fundamental quantum principles and to connect them
with well-known notions from the field of machine learning, one can consider the following intuitive
(but physically inaccurate) simplifications: Superposition states can be understood as probability
distributions over a finite state space, while entanglement amounts to high-order dependencies
between univariate random variables. This intuition particularly emphasizes the close relationship
between quantum mechanics and probability theory.

Any quantum computation can be considered as a three-step process. First, an initial quantum
state of the qubits is prepared, usually a low-energy ground state. Second, a sequence of quantum
gates deterministically transforms the initial state into a final quantum state. Third, a measure-
ment is performed on the qubits to determine an outcome. When a qubit is measured, the result
of the measurement is always either 0 or 1, but the observation is non-deterministic with a proba-
bility depending on the quantum state of the qubit at the time of the measurement. In this sense,
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a quantum computation includes an unavoidable element of randomness. This randomness is in
particular not a consequence of uncertainty or noise, but instead an intrinsic property of quantum
mechanics (Bera et al., 2017). A sketch of the quantum computation process is shown in Fig. 1.

2.1.2 Quantum machine learning

In a machine learning context, we may consequently identify a quantum circuit with a parameter-
izable probability distribution over all possible measurement outcomes, where each measurement
of the circuit draws a sample from this distribution. The interface between quantum mechanics
and machine learning can be attributed to the field of quantum machine learning (Biamonte et al.,
2017). A typical use case is the processing of classical data using algorithms that are fully or
partially computed with quantum circuits.

With the currently available NISQ technology, the result of a quantum computation on a
physical device may deviate significantly from the expected outcome. A fundamental reason is that
the quantum computer, despite all technical efforts, is not perfectly isolated and interacts (weakly)
with its environment. In particular, there are two major effects of the environment that can
contribute to computational errors, namely dissipation and decoherence in the sense of dephasing
(Zurek, 2007, Vacchini, 2016). Dissipation describes the decay of qubit states of higher energy due
to an energy exchange with the environment. Decoherence, on the other hand, represents a loss of
quantum superpositions as a consequence of environmental interactions. Typically, decoherence is
more dominating than dissipation.

In Fig. 1, we briefly outline different error sources in the quantum computation process. Specif-
ically, each computation step is affected by certain hardware-related errors, which are referred to as
state preparation errors, gate errors, and measurement errors, respectively (Nachman and Geller,
2021). All of them are a consequence of the imperfect physical hardware and they are non-negligible
for NISQ devices (Leymann and Barzen, 2020). In addition, the final measurement step is also
affected by the intrinsic randomness of quantum mechanics. The measurement ultimately yields
a computation result that contains two layers of uncertainty: First, the uncertainty caused by the
hardware-related errors, and second, the uncertainty caused by the intrinsic randomness. Further-
more, hardware-related errors can also induce additional systematic deviations of the computation
result. While technological advances (like better hardware and improved algorithm design) can in
principle reduce (or even eliminate) hardware-related errors and thus the hardware-related uncer-
tainty, the intrinsic uncertainty is an integral part of quantum computing that cannot be avoided.
It is this intrinsic uncertainty which can be exploited to construct QRNGs.

2.2 Random number generation

For many machine learning methods, random numbers are a crucial ingredient and therefore ran-
dom number generators (RNGs) are an important tool. Examples include sampling from generative
models like generative adversarial networks, variational autoencoders or Markov random fields, pa-
rameter estimation via stochastic optimization methods, as well as randomized regularization and
validation techniques, randomly splitting for cross-validation, drawing of random mini-batches,
and computing a stochstic gradient, to name a few. Randomness also plays an important role
in non-deterministic optimization algorithms or the initialization of (trainable) neural network
parameters (Glorot and Bengio, 2010, He et al., 2015).

At its core, a RNG performs random coin tosses in the sense that it samples from a uniform
distribution over a binary state space (or, more generally, a discrete state space of arbitrary size).
Given a sequence of randomly generated bits, corresponding integer or floating-point values can
be constructed straightforwardly.

2.2.1 Classical RNGs

In the classical world, there are two main types of random number generators. Pseudo-random
number generators (PRNGs) represent a class of algorithms to generate a sequence of apparently
random (but in fact deterministic) numbers from a given seed (James and Moneta, 2020). In other
words, the seed fully determines the order of the bits in the generated sequence, but the statistical
properties of the sequence (e. g., mean and variance) are independent of the seed (as determined
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Figure 1: Sketch of the three-step quantum computation process consisting of an initial state preparation,
a sequence of gate operations and a final measurement, which yields the result of the computation. Also
shown are the errors associated with each step in the computation process: the state preparation errors,
the gate errors, and the measurement errors, respectively. They are all hardware-related errors, which
can in principle be reduced (or even eliminated) by technological advances. These errors can cause a
hardware-related uncertainty (and additional systematic deviations) of the computation result. On the
other hand, the intrinsic randomness of quantum mechanics emerging at the time of the measurement
causes an intrinsic uncertainty of the computation result, which is an unavoidable aspect of quantum
computing and can be exploited to construct QRNGs.

by the underlying algorithm). We remark that PRNGs can also be constructed based on machine
learning algorithms (Pasqualini and Parton, 2020).

The more advanced true random number generators (TRNGs) are hardware devices that re-
ceive a signal from a complex physical process to extract random numbers (Yu et al., 2019), for
example the telegraph noise in a transistor (Brown et al., 2020), which is unpredictable for all
practical purposes. For TRNGs, the lack of knowledge about the observed physical system induces
randomness, but it cannot be guaranteed in principle that the dynamics of the underlying physical
system are unpredictable (if quantum effects are not sufficiently involved). Likewise, the statistical
properties of the generated random sequence are not in principle guaranteed to be constant over
time since they are subject to the hidden process.

Independent of their source, random numbers have to fulfill two properties: First, they have
to be truly random (i. e., the next random bit in the sequence must not be predictable from
the previous bits) and second, they have to be unbiased (i. e., the statistics of the random bit
sequence must correspond to the statistics of the underlying uniform distribution). In other words,
they have to be secure and reliable. A “good” RNG has to produce numbers that fulfill both
requirements. Typically, statistical test are organized in the form of test suites (e. g., the NIST
Statistical Test Suite described in Rukhin et al., 2010) to provide a comprehensive statistical
screening. A predictive analysis based on machine learning methods can also be used for a quality
assessment (Li et al., 2020). It remains a challenge to certify classical RNGs in terms of the
aforementioned criteria (Balasch et al., 2018) to, e. g., ensure cryptographical security.

When implementing learning and related algorithms, PRNGs are typically used. Despite the
broad application of randomness in machine learning, the apparent lack of research regarding the
particular choice of RNGs suggests that it is usually not crucial in practice. This assumption has
been exemplarily verified, e. g., in Rajashekharan and Shunmuga Velayutham (2016) for differential
evolution and is most certainly due to the fact that modern PRNGs seem to be sufficiently secure
and reliable for most practical purposes. However, the specific implications of varying degrees of
security and reliability of RNGs on machine learning applications generally remain unresolved, i. e.,
it generally remains unclear whether a certain machine learning algorithm may suffer or benefit
from the artifacts of an imperfect RNG. In the present work, we approach this still rather open field
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of research by specifically considering the randomness in artificial neural network initialization.

2.2.2 Quantum RNGs

As previously stated, quantum computers (or, more generally, quantum systems) have an intrinsic
ability to produce truly random outcomes in a way that cannot be predicted or emulated by any
classical device (Calude et al., 2010). Therefore, it seems natural to utilize them as a source of
random numbers in the sense of a quantum random number generator (QRNG) (Herrero-Collantes
and Garcia-Escartin, 2017). Such QRNGs have already been realized with different quantum
systems, for example using nuclear decay (Park et al., 2020) or optical devices (Leone et al., 2020).

A simple QRNG can be straightforwardly realized using a quantum circuit. For this purpose,
each of its qubits has to be brought into a superposition of 0 and 1 such that both outcomes
are equally probable to be measured. This operation can for example be performed by applying
a single Hadamard gate on each qubit (Nielsen and Chuang, 2011). Each measurement of the
circuit consequently generates a sequence of random bits, one for each qubit. However, due to
imperfections of the quantum hardware, such a QRNG is likely to produce biased outcomes. For
this reason, technically more refined solutions are necessary and QRNGs have to be certified similar
to classical RNGs.

Currently, there exist various commercially available QRNGs, which can be used to create
quantum random numbers on demand. Although there still seem to be some practical challenges
(Mart́ınez et al., 2018, Petrov et al., 2020), theoretical and technological advances in the field will
most certainly lead to a steady improvement of QRNGs.

3 Biased QRNG

Motivated by the work in Bird et al. (2020), we take a different approach in this manuscript than
is usually used. Instead of aiming for a RNG with as little bias as possible, we discuss whether
the typical bias in a naively implemented, gate-based QRNG can actually be beneficial for certain
machine learning applications. In other words, we consider the bias that is naturally imposed by
the quantum hardware itself (i. e., by the hardware-related errors shown in Fig. 1). In the present
section, we describe our experimental setup for this purpose and subsequently discuss the statistics
of the resulting “hardware-biased” quantum random numbers.

3.1 Setup

To realize a hardware-biased QRNG (B-QRNG), we utilize a physical quantum computer, which
we access remotely via Qiskit (Abraham et al., 2019) using the cloud-based quantum computing
service provided by IBM Quantum (IBM, 2021). With this service, users can send online requests
for quantum experiments using a high-level quantum circuit model of computation, which are then
executed sequentially (LaRose, 2019). The respective quantum hardware, also called backend,
operates on superconducting transmon qubits.

For our application, we specifically use the ibmq manhattan backend (version 1.11.1), which
is one of the IBM quantum Hummingbird r2 processors with N ≡ 65 qubits. A sketch of the
backend topology diagram can be found in Fig. 2(a). It indicates the hardware index of each
qubit and the pairs of qubits that support two-qubit gate operations between them. IBM also
provides an estimate for the relaxation time T1 and the dephasing time T2 for each qubit at
the time of operation. The mean and standard deviation of these times over all qubits read
T1 ≈ (59.11± 15.25) µs and T2 ≈ (74.71± 31.22) µs, respectively.

Initially, all qubits in this backend are prepared in the ground state. Our B-QRNG cicuit,
which is sketched in Fig. 2(b), consists of one Hadamard gate applied to each qubit such that
it is brought into a balanced superposition of ground state and excited state. A subsequent
measurement on each qubit should therefore ideally (i. e., in the error-free case) reveal an outcome
of either 0 (corresponding to the ground state) or 1 (corresponding to the excited state) with
equal probability. However, since we run the circuit on real quantum hardware, we can expect
to obtain random numbers which deviate from these idealized outcomes due to hardware-related
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(a) Topology diagram of the ibmq manhattan backend
with 65 qubits. Qubits are shown as boxes with their
respective hardware index n. Pairs of qubits that sup-
port two-qubit gate operations (which are not used in
our setup) are connected with lines.
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H
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...
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...

(b) Circuit diagram. A single Hadamard gate (denoted
by H) is applied to each of the 65 qubits from (a) and
a subsequent measurement is performed. The idealized
measurement result of each qubit is either 0 or 1 with an
equal probability of 50%.

Figure 2: Main components of our B-QRNG setup: (a) topology diagram of the backend and (b) circuit
diagram.
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Figure 3: Bit string composition from our B-QRNG. A single job is submitted to the backend, it consists
of 564 experiments. In each experiment, 8192 shots are performed. In each shot, each of the 65 qubits
yields a single bit. The resulting bit string consequently contains 300 318 720 bits.

errors. An analogous setup with a different backend is considered in Shikano et al. (2020), Tamura
and Shikano (2021).

We sort the qubit measurements according to their respective hardware index in an ascending
order so that each run of the backend yields a well-defined bit string of length N . Such a single
run is called a shot in Qiskit. We perform sequences of S ≡ 8192 shots (which is the upper
limit according to the backend access restrictions imposed by IBM) for which we concatenate the
resulting bit strings in the order in which they are executed. Such a sequence of shots is called
experiment in Qiskit. We repeat this experiment R ≡ 564 times (900 experiments is the upper limit
set by IBM) and again concatenate the resulting bit strings in the order of execution. A sequence
of experiments is denoted as a job in Qiskit and can be submitted directly to the backend. It is
run in one pass without interruption from other jobs.

Our submitted job ran from March 5, 2021 10:45 AM GMT to March 5, 2021 11:58 AM GMT.
The final result of the job is a bit string of length M ≡ NSR = 300 318 720 as sketched in Fig. 3.
The choice of R is determined by the condition M ' 3× 108, which we have estimated as sufficient
for our numerical experiments. We split the bit string into chunks of length C ≡ 32 to obtain
L ≡ M/C = 9 384 960 random 32-bit integers, which we use for the following machine learning
experiments.

3.2 Statistics

Before we utilize our generated random numbers for learning algorithms, we first briefly discuss
their statistics. The measurement results from the nth qubit can be considered as a Bernoulli
random variable (Forbes et al., 2011), where n ∈ {0, . . . , 64} represents the hardware index as
outlined in Fig. 2. Such a variable has a probability mass function

f(b; p) ≡ pb(1− p)1−b (1)
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depending on the value of the bit b ∈ B and the success probability p ∈ [0, 1] of observing an
outcome b = 1.

3.2.1 Bias

We denote the measured bit string from our B-QRNG as a vector B ∈ BM . The extracted bit
string exclusively resulting from measurements of the nth qubit is given by the vector

bn ≡ (Bn+1, Bn+1+N , . . . , Bn+1+M−N ) (2)

with bn ∈ BM/N . Based on its population, the corresponding expected probability pn(0) of
obtaining the bit b for the nth qubit is given by

pn(b) =
N
∑M/N
i=1 1n(i, b)

M
(3)

with the indicator function

1n(i, b) ≡
{

1 if Bn+(i−1)N+1 = b

0 otherwise
(4)

such that pn(0) + pn(1) = 1.
From an idealized prediction of the measurement results of qubits in a balanced superposi-

tion, we would assume that all expected probabilities p0(b), . . . , pN (b) correspond to the uniform
probability

p̃ ≡ p̃(b) ≡ 1

2
(5)

with uncertainties coming only from the finite number of samples.
We show the estimated probabilities in Fig. 4. It is apparent that all bit probabilities deviate

significantly from their idealized value p̃, Eq. (5). In particular, we find an expected probability
and standard deviation with respect to all measured bits of

p̄(0) ≈ 0.5112± 0.0215. (6)

We assume that this is a consequence of the imperfect hardware with its decoherence and dissipation
effects. In particular, the fact that p̄(0) > p̄(1) is most likely a consequence of dissipation since
a bit of 0 corresponds to an observation of a qubit ground state, whereas a bit of 1 is associated
with an excited state.

From a χ2 test (Pearson, 1900) on the measured bit distribution, the null hypothesis of a
uniform zero bit occurrence can be rejected as expected with a confidence level of 1.0000. To
further quantify the deviation of the measured probabilities from a uniform distribution, we utilize
the discrete Hellinger distance (Hellinger, 1909)

H(q1, q2) ≡ 1√
2

√∑
i∈Q

(√
q1(i)−

√
q2(i)

)2
, (7)

which can be used to measure similarities between two discrete probability distributions q1 ≡ q1(i)
and q2 ≡ q2(i) defined on the same probability space Q. By iterating over all qubits we find the
mean and standard deviation

〈H(pn, p̃)〉 ≈ 0.0133± 0.0110. (8)

The mean value quantifies the average deviation of the measured qubit distributions from the ide-
alized uniform distribution and confirms our qualitative observations. The non-negligible standard
deviation results from the fluctuations in-between the individual qubit outcomes.
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Figure 4: Measured bit distribution for each qubit from the B-QRNG on ibmq manhattan. We show the
expected probability pn(0) of obtaining a zero bit from the measured bit string for the nth qubit, Eq. (3),
and (stacked on top) its complement pn(1) = 1 − pn(0). Also shown are the corresponding expected
probabilities with respect to all measured bits p̄(0) ≈ 0.51 and p̄(1) = 1− p̄(0) ≈ 0.49, respectively, Eq. (6).
Apparently, all bit distributions deviate differently from the uniform probability p̃, Eq. (5), which we
assume to be a consequence of the imperfect hardware. The distributions with the highest (n = 50) and
lowest (n = 19) expected probabilities of obtaining a zero bit are marked on top.

3.2.2 Randomness

Although quantum events intrinsically exhibit a truly random behavior, the output from our B-
QRNG is the result of a complex physical experiment behind a technically sophisticated pipeline
that appears as a black box to us and it can therefore not be assumed with certainty that its
outcomes are indeed statistically independent. To examine this issue in more detail, we briefly
study the randomness of the resulting bit string in the following.

For this purpose, we make use of the Wald–Wolfowitz runs test (Wald and Wolfowitz, 1940),
which can be used to test the null hypothesis that elements of a binary sequence are mutually
independent. We perform a corresponding test on the measured bit string from the nth qubit bn,
Eq. (2), and denote the resulting p-value as prn. The null hypothesis has to be rejected if this
probability does not exceed the significance level, which we choose as α = 0.05.

The test results are shown in Fig. 5. We find that the bit strings from almost all qubits pass
the test and can therefore be considered random in the sense of the test criteria. However, the bit
strings from five qubits fail the test, which implies non-randomness. We also perform a test on the
total bit string B, which yields the p-value pr ≈ 0.0000 < α such that the test also fails for the
entire sequence of random numbers.

Summarized, we find that the reliability of the generated quantum random numbers is question-
able. A typical binary random sequence from a PRNG of the same length as B can be expected
to pass the Wald–Wolfowitz runs test. However, within the scope of this work, the reason for
this observation cannot be further investigated and we accept it as an integral part of our naive
approach to the B-QRNG. A more detailed study of the properties of our setup (applied to a
different quantum hardware) can be found in Tamura and Shikano (2021), which contains similar
observations.

3.2.3 Integers

Next, we analyze the resulting random 32-bit integers. To obtain these, we convert B into a vector
of integers B 7→ I ∈ {0, . . . , 2C − 1}L by consecutively grouping its elements into bit strings of
length C and converting them to non-negative integers according to

Ij ≡
C−1∑
i=0

BC(j−1)+i+12i (9)
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Figure 5: Results of Wald–Wolfowitz runs test on the bit strings of all qubits, where prn denotes the
resulting p-value of the bit string of the nth qubit bn, Eq. (2). We show p-values in different colors
depending on whether or not they exceed α = 0.05. In case of prn ≤ α, the corresponding hardware indices
are additionally denoted on top of the plot and indicate the qubits that fail the test of randomness.

with j ∈ {1, . . . , L}. For a bit string of Bernoulli random variables B with a fair success probability
p = p̃, Eqs. (1) and (5), the sequence of random integers in I would be uniformly distributed.
However, as we have seen before, this assumption does not hold true for the results from our
B-QRNG. So the question arises as to what the distribution of random integers looks like for our
unfair set of Bernoulli variables.

For this purpose, we rescale the elements of I by a division by ξ ≡ 2C−1 such that I/ξ ∈ [0, 1]L

and group the range [0, 1] into K ≡ 250 equally sized bins. Thus, the population of the kth bin is
given by

ck ≡
L∑
i=1

1(Ii, k) (10)

with the indicator function

1(i, k) ≡


1 if k < K ∧ k−1

K ≤ i
ξ <

k
K

1 if k = K ∧ K−1
K ≤ i

ξ

0 otherwise

(11)

for k ∈ {1, . . . ,K}.
Additionally, we consider a simplified theoretical description of the bin population by modeling

the bit string as the result of a Bernoulli process with a single success probability p, Eq. (1). Based
on this presumption, the predicted (possibly non-integer) population of the kth bin is given by

ĉk(p) ≡ L
ξ∑
i=0

1(i, k)P (i, p) (12)

with P (j, p) ≡∏C
i=1 p

τi(j)(1−p)1−τi(j). The latter expression contains the binary vector τ(j) ∈ BC ,

which is the unique result of the relation
∑C−1
i=0 τi+1(j)2i = j for j ∈ {0, . . . , ξ}.

We show both the measured bin population ck, Eq. (10), and the theoretical bin population
ĉk(p), Eq. (12), for a success probability p corresponding to the expected probability of all measured
bits p̄(1) = 1− p̄(0), Eq. (6), in Fig. 6. Clearly, the generated sequence of random integers is not
uniformly distributed (i. e., with a population of L/K in each bin). Instead, we find a complex
arrangement of spikes and valleys in the bin populations.

Specifically, since p̄(0) > p̄(1), random integers become more probable when their binary repre-
sentation contains as many zeros as possible, which is reflected in the bin populations. In particular,
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Figure 6: Measured distribution of 32-bit integers from the B-QRNG. The values from the generated
vector of random integers I, Eq. (9), are rescaled by a division by (232−1) and sorted into 250 equally sized
bins. The kth bin (with k ∈ {1, . . . , 250}) has a population of ck according to Eq. (10). For comparison,
the corresponding theoretic bin population of the kth bin ĉk(p̄(b)) is shown, which is obtained from a
Bernoulli process according to Eq. (12) with a success probability of p = p̄(1) = 1 − p̄(0), Eq. (6). The
minor deviations between the two populations results from the finite number of measured samples as well
as the observation that bits from different qubits have their own success probability, cf. Fig. 4. An outline
of the uniform bin population is shown as a frame of reference.

the first bin (containing the smallest integers) has the highest population. The minor deviations
between the measured and the theoretic bin populations results from the finite number of measured
samples and the simplification of the theoretical model: The success probability of each bit from
the B-QRNG specifically depends on the qubit it is generated from as shown in Fig. 4, whereas
our theoretical model only uses one success probability for all bits corresponding to p̄(1).

We recall the Hellinger distance, Eq. (7), to quantify the deviation of the distribution of integers
from the uniform distribution. Specifically, we find

H(pc, p̃c) ≈ 0.0213, (13)

where we have made use of the measured integer distribution pc ≡ pc(k) ≡ ck/L and the corre-
sponding uniform distribution p̃c ≡ p̃c(k) ≡ 1/K with k ∈ {1, . . . ,K}. This metric quantifies our
observations from Fig. 6.

For comparative purposes, we show additional theoretical bin populations for other success
probabilities in Fig. 7. As expected, the rugged pattern of the distribution becomes sharper for
higher values of p and the deviation from the uniform distribution increases.

4 Experiments

To study the effects of quantum-based network initializations, we consider two independent ex-
periments, which are both implemented in PyTorch (Paszke et al., 2019): First, a convolutional
neural network (CNN) and second, a recurrent neural network (RNN). The choice of these exper-
iments is motivated by the statement from Bird et al. (2020) that “neural network experiments
show greatly differing patterns in learning patterns and their overall results when using PRNG
and QRNG methods to generate the initial weights.”

To ensure repeatability of our experiments, PyTorch is run in deterministic mode with fixed
(i. e., hard-coded) random seeds. The main hardware component is a Nvidia GeForce GTX 1080 Ti
graphics card. Our Python implementation of the experiments is publicly available online (Wolter,
2021).

In the present section, we first summarize the considered RNGs. Subsequently, we present the
two experiments and discuss their results.
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Figure 7: Theoretical distribution of 32-bit integers in analogy to Fig. 4 for different success probabilities
p ∈ {p1, p2, p3}, Eq. (12). We also show the corresponding Hellinger distance H(p̂c(p), p̃c), Eq. (7), with
p̂c(p) ≡ p̂c(p; k) ≡ ĉk(p)/L and the uniform distribution p̃c as used in Eq. (13), respectively, where
k ∈ {1, . . . ,K}.

4.1 RNGs

In total, we use four different RNGs to initialize neural network weights:

1. B-QRNG: Our hardware-biased quantum random number generator introduced in section 3
from which we extract the integer sequence I according to Eq. (9).

2. QRNG: A bias-free quantum random number generator based on quantum-optical hardware
that performs broadband measurements of the vacuum field contained in the radio-frequency
sidebands of a single-mode laser to produce a continuous stream of binary random numbers
(Symul et al., 2011, Haw et al., 2015). We particularly use a publicly available pre-generated
sequence of random bits from this stream (ANU QRNG, 2017), extract the first M bits
and convert them into the integer sequence I′ ∈ {0, . . . , 2C − 1}L according to Eq. (9).
Based on the Hellinger distance H(p′c, p̃c) ≈ 0.0018, Eq. (7), with p′c ≡ p′c(k) ≡ c′k/L and

c′k ≡
∑L
i=1 1(I ′i, k), Eq. (11), for k ∈ {1, . . . ,K}, we find that I′ is indeed much closer to the

uniform distribution than I, Eq. (13). We visualize the corresponding integer distribution in
Fig. 8.

3. PRNG: The (presumably unbiased) native pseudo-random number generator from PyTorch.

4. B-PRNG: A “pseudo hardware-biased quantum random number generator”, which generates
a bit string of Bernoulli random variables with a success probability p corresponding to the
expected probability of all measured bits p̄(1) = 1− p̄(0), Eqs. (1) and (6), using the native
pseudo-random number generator from PyTorch. The bit strings are then converted into
integers according to Eq. (9).

All of these RNGs, which are summarized in Tab. 1, produce 32-bit random numbers. However, the
random numbers from the B-QRNG and the QRNG are taken in order (i. e., unshuffled) from the
predefined sequences I and I′, respectively, whereas the PRNG and the B-PRNG algorithmically
generate random numbers on demand based on a given random seed.

For the sake of completeness, we also analyze the binary random numbers from the B-QRNG
and the QRNG, respectively, with the NIST Statistical Test Suite for the validation of random
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Table 1: Overview over the four considered RNGs presented in section 4.1, which are either based on a
classical pseudo-random number generator or a quantum experiment (as indicated by the rows) and yield
either unbiased or biased outcomes (as indicated by the columns).

unbiased biased

classical PRNG B-PRNG

quantum QRNG B-QRNG
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Figure 8: Distribution of 32-bit integers from the QRNG in analogy to Fig. 6. The values from the vector
of random integers I′ are rescaled by a division by (232 − 1) and sorted into 250 equally sized bins. The
population of the kth bin (with k ∈ {1, . . . , 250}) is denoted by c′k. For comparison, we also show the
corresponding population ck, Eq. (10), from the B-QRNG and an outline of the uniform bin population.

number generators (Rukhin et al., 2010, NIST, 2010). A summary of the results is listed in Tab. 2
and shows that the B-QRNG numbers fails a majority of statistical tests of randomness, whereas
the QRNG passes all, as expected.

4.2 CNN

In the first experiment, we consider a LeNet-5 inspired CNN without dropout (Lecun et al., 1998).
The network weights are uniformly initialized as proposed by He et al. (2015). As data we use
the MNIST handwritten digit recognition problem (LeCun et al., 1998), which contains 70 000
grayscale images of handwritten digits in 28× 28 pixel format. The digits are split into a training
set of 60 000 images and a training set of 10 000 images. The network is trained using Adadelta
(Zeiler, 2012) over d ≡ 14 epochs.

In Fig. 9 we show the CNN test accuracy convergence for each epoch over 31 independent
training runs using the four RNGs from section 4.1. The use of a biased RNG means that the He
et al. initialization is actually effectively realized based on a non-uniform distribution instead of a
uniform distribution. Therefore, such an approach could potentially be considered a new type of
initialization strategy (depending on the bias), which is why one might expect a different training
efficiency. However, the results show that the choice of RNG for the network weight initialization
has no major effect on the CNN test accuracy convergence. Only a closer look reveals that the
mean QRNG results seem to be slightly superior to the others in the last epochs.

To quantify this observation, we utilize Welch’s (unequal variances) t-test for the null hypothesis
that two independent samples have identical expected values without the assumption of equal
population variance (Welch, 1947). We apply this test to two of each of the four results from
different RNGs, where the resulting test accuracies from all runs in a specific epoch are treated as
samples. We denote the two results to be compared as x and y, respectively, with x,y ∈ R31×d
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Table 2: Summary of the results from the NIST Statistical Test Suite for the validation of random number
generators (NIST, 2010) applied to the whole sequence of binary random numbers from the B-QRNG and
the QRNG, respectively. Specifically, we have considered 10 bit streams containing 30 031 872 bits each.
A detailed description of the software and its statistical tests of randomness can be found in Rukhin et al.
(2010). Several iterations of each test are performed and we list the corresponding number of acceptances
(“pass”) and rejections (“reject”) of the null hypothesis that the sequence is random. For all tests, the
predefined standard parameters are used. We also list the total number of acceptances and rejections in
bold.

Test name pass reject pass reject

Approximate entropy 0 1 1 0

Frequency within block 0 1 1 0

Cumulative sums 0 2 2 0

Discrete Fourier transform 0 1 1 0

Frequency 0 1 1 0

Linear complexity 1 0 1 0

Longest run of ones within block 0 1 1 0

Non-overlapping template matching 15 133 148 0

Overlapping template matching 0 1 1 0

Random excursions 0 0 8 0

Random excursions variant 0 0 18 0

Binary matrix rank 1 0 1 0

Runs 0 1 1 0

Serial 1 1 2 0

Maurer’s “universal statistical” 0 1 1 0

Total 18 144 188 0

B-QRNG QRNG

for 31 runs and d epochs. Consequently, for each pair of results and each epoch i ∈ {1, . . . , d}, we
obtain a two-tailed p-value pti(x,y). The null hypothesis has to be rejected if such a p-value does
not exceed the significance level, which we choose as α = 0.05.

We are particularly interested whether the aforementioned hypothesis holds true for all epochs.
To counteract the problem of multiple comparisons, we use the Holm-Bonferroni method (Holm,
1979) to adjust the p-values pti(x,y) 7→ p̄ti(x,y) for all i ∈ {1, . . . , d}. Summarized, if the condition

min
i,x,y

p̄ti(x,y) ≡ min
x,y

p̄tmin(x,y)
!
> α = 0.05 (14)

is fulfilled, no overall statistically significant deviation between the results from different RNGs is
present.

In addition, we also quantify the correlation of x and y using the Pearson correlation coefficient
(Pearson, 1895)

ρ(x,y) ≡
∑c
i=1 x̄

m
i ȳ

m
i√∑

i(x̄
m
i )2

∑
j(ȳ

m
j )2

∈ [−1, 1] (15)

of the mean values over all runs, where we make use of the abbreviations x̄′i ≡ x′i −
∑d
i=1 x

′
i/d,

x′i ≡
∑31
j=1 xji/31, ȳ′i ≡ y′i −

∑d
i=1 y

′
i/d, and y′i ≡

∑31
j=1 yji/31. A coefficient of 1 implies a perfect

linear correlation of the means, whereas a coefficient of 0 indicates no linear correlation.
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Figure 9: CNN test accuracy convergence on the MNIST data set using four different random number
generators (B-QRNG, QRGN, PRGN and B-PRNG from section 4.1). Shown are mean values over 31
runs with the respective standard deviations (one sigma). The inset plot zooms in on the means of the
final epochs.

For the results from the CNN experiment, we obtain the similarity and correlation metrics
listed in Tab. 3 in the rows marked with “CNN”. Summarized, we find a high mutual similarity
(Eq. (14) holds true) and almost perfect mutual correlations of the results. This means that the
choice of RNG for the network weight initialization has no statistically significant effect on the
CNN test accuracy convergence and, in particular, the QRNG results are not superior despite the
visual appearance in Fig. 9.

4.3 RNN

In the second experiment, we consider a recurrent LSTM cell with a uniform initialization on
the synthetic adding and memory standard benchmarks (Hochreiter and Schmidhuber, 1997) with
T = 64 for the memory problem. For this purpose, we use RMSprop (Hinton, 2012) with a step
size of 10−3 to optimize LSTM cells (Hochreiter and Schmidhuber, 1997) with a state size of 256.
For each problem, a total of 9× 105 updates with training batches of size 128 is computed until
the training stops. In total, there are b9× 105/128c = 7031 training steps.

Since the synthetic data sets are infinitely large, overfitting is not an issue and we can con-
sequently use the training loss as performance metric. Specifically, we consider 89 consecutive
training steps as one epoch, which leads to d ≡ 4687/89 = 79 epochs in total, each associated with
the mean loss of the corresponding training steps.

The results are shown in Fig. 10, where we present the loss for each of the 79 epochs over
31 independent training runs for both problems. Again, we compare the results using random
numbers from the four RNGs from section 4.1. The use of a biased RNG effectively realizes a
non-uniform initialization (depending on the bias) in comparison with the uniform initialization
from a non-biased RNG. However, we find that no RNG yields a major difference in performance.

In analogy to the first experiment, we list the similarity and correlation metrics in Tab. 3 in the
rows marked with “RNN-M” and “RNN-A”, respectively. Again, we find a high mutual similarity
(Eq. (14) holds true) and correlation. Thus, the choice of RNG also has no statistically significant
effect in this second experiment.
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Table 3: Minimum p-values from Welch’s t-test over all epochs p̄tmin(x,y), Eq. (14), and Pearson corre-
lation coefficient ρ(x,y), Eq. (15), of the experimental data. The metrics are listed for all mutual combi-
nations of the results from the four RNGs (B-QRNG, QRGN, PRGN, and B-PRNG from section 4.1) of
all experiments (CNN, RNN-M, and RNN-A from sections 4.2 and 4.3, respectively).

x y p̄tmin(x,y) ρ(x,y)

C
N

N

B-QRNG QRGN 0.3784 0.9984

B-QRNG PRGN 1.0000 0.9980

B-QRNG B-PRNG 0.9749 0.9986

QRGN PRGN 0.0641 0.9941

QRGN B-PRNG 0.0577 0.9992

PRGN B-PRNG 1.0000 0.9951

R
N

N
-M

B-QRNG QRGN 1.0000 0.9997

B-QRNG PRGN 0.4526 0.9995

B-QRNG B-PRNG 1.0000 0.9998

QRGN PRGN 1.0000 0.9998

QRGN B-PRNG 1.0000 0.9999

PRGN B-PRNG 0.5355 0.9996

R
N

N
-A

B-QRNG QRGN 1.0000 0.9946

B-QRNG PRGN 1.0000 0.9954

B-QRNG B-PRNG 1.0000 0.9962

QRGN PRGN 1.0000 0.9944

QRGN B-PRNG 1.0000 0.9951

PRGN B-PRNG 1.0000 0.9965

5 Conclusions

Summarized, by running a naively designed quantum random number generator on real quantum
hardware we have generated a random bit string. Its statistical analysis has revealed a significant
bias and mutual dependencies as imposed by the quantum hardware. When converted into a
sequence of integers, we have found a specially shaped distribution of values with a rich pattern.
We have utilized these integers as hardware-biased quantum random numbers (B-QRNG).

In two experiments we have studied their effect on the initialization of artificial neural network
weights. For comparison, we have additionally considered unbiased random numbers from another
quantum random number generator (QRNG) and a classical pseudo-random number generator
(PRNG) as well as random numbers from a classical pseudo-random number generator replicating
the hardware bias (B-PRNG). The two experiments consider a CNN and a RNN, respectively, and
show no statistically significant influence of the choice of RNG.

Despite a similar setup, we have not been able to replicate the observation from Bird et al.
(2020), where it is stated that quantum random number generators and pseudo-random number
generators “do inexplicably produce different results to one another when employed in machine
learning.” However, we have not explicitly attempted to replicate the numerical experiments from
the aforementioned work, but have instead considered two different examples that we consider
typical applications of neural networks in machine learning.

Since our results are only exemplary, it may indeed be possible that there is an advantage in
the usage of biased quantum random numbers for certain applications. Based on our studies, we
expect, however, that in such cases it will not be the “true randomness” of the quantum random
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Figure 10: RNN convergence on two benchmark data sets using four different RNGs (B-QRNG, QRGN,
PRGN and B-PRNG from section 4.1). Shown are mean values over 31 runs with the respective standard
deviations (one sigma) in analogy to Fig. 9. The inset plot zooms in on the means of the final epochs.

numbers, but rather their bias that will cause an effect. But is quantum hardware really necessary
to produce such results? It seems that classical pseudo-random number generators are also able
to mimic a corresponding bias. Therefore, we think that for typical machine learning applications
the usage of (high-quality) pseudo-random numbers is sufficient. Accordingly, a more elaborate
experimental or theoretical study of the effects of biased pseudo-random numbers (with particular
patterns) on certain machine learning applications could be a suitable research topic, e. g., to better
understand the claims from Bird et al. (2020).

Repeatability is generally difficult to achieve for numerical calculations involving random num-
bers (Crane, 2018). In particular, our B-QRNG can in principle not be forced to reproduce a
specific random sequence (as opposed to PRNGs). Furthermore, the statistics of the generated
quantum random numbers may depend on the specific configuration of the quantum hardware at
the time of operation. It might therefore be possible that a repetition of the numerical experiments
with quantum random numbers obtained at a different time or from a different quantum hardware
may lead to significantly different results. To ensure the greatest possible transparency, the source
code for our experiments is publicly available online (Wolter, 2021) and may serve as a point of
origin for further studies.
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